Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/1649/ in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Experimental and numerical characterization of multiphase subsurface oil release
Author: Gao, Feng
View Online: njit-etd2018-081
(xix, 138 pages ~ 3.8 MB pdf)
Department: Department of Mechanical and Industrial Engineering
Degree: Doctor of Philosophy
Program: Mechanical Engineering
Document Type: Dissertation
Advisory Committee: Boufadel, Michel (Committee co-chair)
Rao, I. Joga (Committee co-chair)
Singh, Pushpendra (Committee member)
Ji, Zhiming (Committee member)
Miller, Edward (Committee member)
Date: 2018-12
Keywords: Chemical dispersant
Computational fluid dynamics
Experimental measurement
Particle imaging velocimetry
Turbulence modeling
Turbulent oil jet
Availability: Unrestricted
Abstract:

Subsurface oil release is commonly encountered in the natural environment and engineering applications and has received the substantial attention of researchers after the disastrous Deepwater Horizon Blowout oil spill in 2009. The main focus on the present research is to systematically study the hydrodynamics of underwater oil jet under a variety of conditions, including the effect of dispersant and different gas to oil ratios (GOR) by using experimental measurement as well as a Computational Fluid Dynamics (CFD) approach, from which the measured turbulent characteristics (e.g., velocity, turbulent kinetic energy, turbulence dissipation rate, etc.) of underwater oil jet are thoroughly examined and compared. A Lagrangian Particle Tracking Model that coupled with CFD data is used to simulate the trajectories and movement of individual oil droplets under the effect of turbulence and comprehensive physical forces. The trajectories of oil droplets can be very different depending on the droplet diameter and physical force condition, which may bring insight into understanding the fate of oil droplets after the oil release. Large Eddy Simulation (LES) suggests that the oil and gas jet in the Deepwater Horizon Blowout can be churn rather than bubbly, which provides new perspectives on the estimation of the total oil flow rate during the blowout as well as the evaluation of dispersant effectiveness. Furthermore, a laboratory scale multiphase jet experiment by using Particle Imaging Velocimetry (PIV) as well as CFD simulation is conducted to understand and compare the hydrodynamics between the bubbly and churn jets, which shows that the churn jet may result in more entrainment from the ambient environment compared with the bubbly jet.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003