Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/98 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Polymeric nitrogen by plasma enhanced chemical vapor deposition
Author: Benchafia, El Mostafa
View Online: njit-etd2015-015
(xiii, 90 pages ~ 7.4 MB pdf)
Department: Committee for the Interdisciplinary Program in Materials Science and Engineering
Degree: Doctor of Philosophy
Program: Materials Science and Engineering
Document Type: Dissertation
Advisory Committee: Ravindra, N. M. (Committee co-chair)
Iqbal, Zafar (Committee co-chair)
Wang, Xianqin (Committee member)
Owens, Frank J. (Committee member)
Dias, Cristiano L. (Committee member)
Date: 2015-01
Keywords: Polymeric nitrogen
Plasma-enhanced chemical vapor deposition
High-density-energy-material
Metastability
Plasma
Carbon nanotubes
Availability: Unrestricted
Abstract:

With the urgent need for new environmentally-friendly energetic materials, the field of polymeric nitrogen, predicted to be a high energy density energetic, is now at a critical stage in its development. In spite of extensive first principles calculations regarding the existence and stability of different polymeric nitrogen structures, their successful syntheses have been rare. This dissertation describes the first detailed study of a plasma-enhanced chemical vapor deposition (PECVD) approach to the synthesis of polymeric nitrogen. PECVD provides non-equilibrium conditions known to produce high pressure-temperature phases. Molecular nitrogen mixed with hydrogen and argon is used as the gas phase precursor to provide nitrogen and passivating hydrogen species. In addition, either solid sodium and lithium azide or azide solution infiltrated sheets of carbon nanotube substrates have been used to initiate plasma polymerization to a polymeric nitrogen phase. Characterization of the samples produced were conducted using micro-Raman spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, powder X-ray diffraction, and temperature programmed desorption. Sample morphologies and compositions have also been performed using scanning electron microscopy combined with energy- dispersive X-ray analysis. The results show that a mixture of polymeric nitrogen phases is formed that is stable under ambient conditions and decompose near 400°C. The long-sought-after cubic-gauche polymeric nitrogen (cg-PN) phase, produced only in a diamond anvil cell at high pressure high temperature conditions and not recoverable under ambient conditions, is shown by the powder diffraction data to be one of the polymeric nitrogen phases synthesized by the plasma process. Density Functional Theory (DFT) calculations were also used to investigate the metastability of cg-PN and that of related nitrogen clusters at ambient conditions in order to understand some of the results. Although these phases were obtained with and without carbon nanotube substrates, the spectroscopic results suggest that carbon nanotubes play a significant role in faster and more efficient plasma synthesis possibly due to stabilization of a PN phase inside the walls of carbon nanotubes. The effect of carbon nanotubes on polymeric nitrogen growth will be investigated by transmission electron microscopy in future studies.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003