Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/795 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Bounded beam wave pulse propagation and scattering in random media based on the radiative transfer theory using 2-d Gauss quadrature formula
Author: Hu, Sheng-Kai
View Online: njit-etd2000-081
(vii, 70 pages ~ 4.0 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Master of Science
Program: Electrical Engineering
Document Type: Thesis
Advisory Committee: Whitman, Gerald Martin (Committee chair)
Niver, Edip (Committee member)
Grebel, Haim (Committee member)
Date: 2000-05
Keywords: Scattering (Physics).
Waves.
Radiative transfer.
Availability: Unrestricted
Abstract:

The scalar time-dependent equation of radiative transfer is used to develop a theory of bounded beam wave narrow band pulse propagation and scattering in a medium characterized by many random discrete scatters, which scatters energy strongly in the forward scattering direction. Applications include the scattering of highly collimated millimeter waves in vegetation and optical beams in the atmosphere. The specific problem analyzed is that of a periodic sequence of Gaussian shaped pulses normally incident from free space onto the planar boundary surface of a random medium half-space, such as a forest, that possesses a scatter (phase) function consisting of a strong, narrow forward lobe superimposed over an isotropic background. After splitting the specific intensity into the reduced incident and diffused intensities, the solution of the transport equation expressed in cylindrical coordinates in the random medium half-space is obtained by using the Fourier-Bessel transform along with the two-dimensional Gauss quadrature formula and an eigenvalue-eigenvector technique, following the procedure developed by Chang and lshimaru for CW propagation. Curves of received power are obtained for different penetration depths, different incident beamwidths, and different scatter directions. At large penetration depths, as well as for scatter directions different from the incident radiation, the power is shown to attenuate significantly and the pulse widths are shown to broaden, which resulted in considerable pulse distortion. Results for different beam widths are also obtained.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003