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ABSTRACT

BOUNDED BEAM WAVE PULSE PROPAGATION AND SCATTERING IN
RANDOM MEDIA BASED ON THE RADIATIVE TRANSFER THEORY USING

2-D GAUSS QUADRATURE FORMULA

by
Sheng-Kai Hu

The scalar time-dependent equation of radiative transfer is used to develop a theory of

bounded beam wave narrow band pulse propagation and scattering in a medium

characterized by many random discrete scatters, which scatters energy strongly in the

forward scattering direction. Applications include the scattering of highly collimated

millimeter waves in vegetation and optical beams in the atmosphere. The specific

problem analyzed is that of a periodic sequence of Gaussian shaped pulses normally

incident from free space onto the planar boundary surface of a random medium half-

space, such as a forest, that possesses a scatter (phase) function consisting of a strong,

narrow forward lobe superimposed over an isotropic background. After splitting the

specific intensity into the reduced incident and diffused intensities, the solution of the

transport equation expressed in cylindrical coordinates in the random medium half-space

is obtained by using the Fourier-Bessel transform along with the two-dimensional Gauss

quadrature formula and an eigenvalue-eigenvector technique, following the procedure

developed by Chang and Ishimaru for CW propagation. Curves of received power are

obtained for different penetration depths, different incident beamwidths, and different

scatter directions. At large penetration depths, as well as for scatter directions different

from the incident radiation, the power is shown to attenuate significantly and the pulse

widths are shown to broaden, which resulted in considerable pulse distortion. Results for

different beam widths are also obtained.
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CHAPTER 1

INTRODUCTION

For line-of sight communication, cellular communication in particular, interest centers on

the radio-link performance, and how it is affected by wave attenuation, fading and co-

channel interference. If vegetation, such as a forest, lies along the path of the link, the

radio performance will be affected and, hence, needs to be understood. Since vegetation,

a forest, is a medium that is characterized as a random distribution of many discrete

scatterers, multiscattering effects play the dominant role affecting the propagation of the

radio signal.

Two distinct theories have been developed to deal with multiple scattering effects

in random media, namely, analytical multiscattering theory and transport theory [1,2]. In

the analytical theory, basic equations such as Maxwell's equations or the wave equation

apply. The theory developed is mathematically rigorous, but the solutions that are

obtained are approximate and useful in restricted parameter ranges. Transport theory,

meanwhile, deals with the transfer of energy through the multiscattering medium. In this

theory, the basic equation that is studied is the equation of radiative transfer or the

transport equation. This equation is equivalent to Boltzmann's equation in the kinetic

theory of gases and in neutron transport theory.

Transport theory developed heuristically from consideration of power and is not

as mathematically rigorous as the analytical theory. Nonetheless, transport theory has

proven to be successful in the study of many physical problems, such as, optical

communication through the atmosphere, millimeter-wave communication links in forests,

remote sensing, and radiation from stars. In transport theory, the random medium is

characterized by the absorption and scatter cross sections per unit volume, σ A  and σ s ,
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respectively. And the (power) scatter or phase function P(ŝ,ŝ' ), which depends on the

incident power unit vector direction g' or, equivalently, the angles (θ ',ø') and the

scatter power unit vector direction g or, equivalently, the angles ( 0,0 ) for each scatter

event (see Figure 1). Over the past several years, a theory of millimeter-wave CW

(continuous wave) propagation as well as plane wave pulse propagation in vegetation

using transport theory has been developed [3-9]. Of primary interest in these studies was

the determination of the range and directional dependency of the received power, as well

as pulse broadening and distortion. Pulse broadening is of consequence especially in

digital communications where it may cause intersymbol interference and, depending on

the data rate, a significant increase in bit error rate.

In the study presented here, the scalar time-dependent equation of radiative

transfer is used to develop a theory of beam wave pulse propagation and scattering in a

medium that is characterized by many random discrete scatterers which scatter energy

strongly in the forward scattering direction. Applications include the scattering of highly

collimated millimeter-waves in vegetation and the scattering of optical beams in the

atmosphere. Strong forward scattering occurs at millimeter and optical frequencies since

all scatter objects in a forest or in the atmosphere are large compared to wavelength.

Again of interest are the range and directional dependency of received power, pulse

broadening and distortion, in addition to the effect of a finite beamwidth when the

incident fields in not a plane wave. Note that the use of the scalar transport equation

means that the polarization of the incident beam is not considered, which was justified in

[8] by references to experiments performed in vegetation at millimeter-wave frequencies.

The specific problem analyzed here, as depicted in Figure 1, is that of a time

periodic sequence of Gaussian pulses normally incident from free space (air) onto a forest

region. The forest is modeled as a statistically homogeneous slab or half-space of
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randomly distributed particles that scatter and absorb electromagnetic energy. The

incident pulse train under investigation is a collimated beam wave, whose intensity

variation in the transverse plane is taken to be Gaussian as shown in Figure 1. Since

scattering surfaces in a forest have essentially random orientations, it is reasonable to

assume that a forest scatters energy symmetrically about the direction of the incident

radiation, i.e., that the scattering which occurs at each point in a forest can be

characterized by a scatter function that depends only on the angle y cos-¹(ŝ'•ŝ) , which

is the angle subtended by the incident direction S' and the scatter direction s , see

Figure!. Hence, the scatter functionP(ŝ,ŝ')= P(ŝ•ŝ')= P(cos r) . in addition, since, as

noted previously, the forest scatters strongly in the forward direction but minimally in all

other direction, the scatter function is assumed to consist of a strong narrow lobe

superimposed over an isotropic background. Analytically, such a scatter function can be

written in terms of a Gaussian function as follows. (See Figure 2)

which is normalized such that

where dΩ is the differential solid angle about the scatter direction  ŝ, Δγ sis the width

of the forward lobe of the scatter pattern, and a is the ratio of the forward scattered

power to the total scattered power. The scatter function in (1.1) was justified previously

in [11] by reference to the theoretical and experimental comparison of results in [8] and

[9], and by the experiments conducted by Ulaby et al. in [10].
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In transport theory, therefore, according to the above discussion and taking the

scatter function to be specified by (1.1), the random scatter medium is characterized by

four parameters, namely, o-  , , Ay, and a . These four parameters are understood

to be "global" parameters in that they remain valid at all points in the random medium

and apply to an average scatter event that occurs at every point in the scatter medium.

The approached used to study this beam wave pulse scatter problem is an

extension of the method introduced by Chang and Ishimaru in [12] for studying the

propagation and scattering of a monochromatic, unpolarized, collimated laser beam with

a finite beamwidth in a medium consisting of a random distribution of discrete scatterers.

The method of analysis is highly numerical, as no exact analytical solution is available

for the case of a beam wave propagating through such a medium.

Chapter 2 develops the scalar equation of radiative transfer in the cylindrical

coordinate system. Fourier series representations are introduced for the incident time-

periodic pulse train and for all intensity constituents. The incident beam is assumed to be

Gaussian and equations for the reduced incident (coherent) and the diffuse (incoherent)

intensities are derived, together with appropriate boundary conditions. The Fourier-

Bessel transform is used to obtain the equation of transfer for each spatial frequency.

Chapter 3 develops the numerical procedure for solving the transformed transport

equation. This involves using the two-dimensional Gauss quadrature formula and an

eigenvalue-eigenvector technique.

Chapter 4 presents a re-formulation of the analysis for the special case of a beam-

wave pulse train incident on a half-space random medium of discrete scatters rather than

a slab.
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Chapter 5 presents numerical results for the half-space problem. This includes

curves depicting the power received by a highly directive, perfectly matched antenna of

narrow beamwidth located in the forest. The curves show pulse spreading and distortion

at large penetration depths, the effect on received power of finite incident beamwidths,

and the dependence on scatter angle of the received power. In addition, data for the case

of an incident periodic sequence of plane wave pulses is used to quantify the accuracy of

the numerical procedure used in the beam wave pulse case. This is done two ways. First,

the beam wave case is analytically reduced to the plane wave case in order to make a

comparison to the data obtained by the completely different analytical approach used in

[111 Secondly, the beam wave result is shown to yield results approaching the plane

wave case for large values of beamwidth relative to penetration depth.

Finally, conclusions and possible extensions are discussed in Chapter 6.



C • PTER 2

TIME-DEPENDENT SCALAR TRANSPORT THEORY

2.1 Equation of Radiative Transfer In The Cylindrical Coordinate System

In its most general form, the scalar time-dependent equation of radiative transfer or

transport equation takes the form [13]:

wherel(r,t, ŝ) is the specific intensity which is defined as the power per area and per unit

solid angle of the field, at an arbitrary point in the forest at a vector distance 1-7 from the

original and at time t, that flows in the unit vector direction

element of solid angle with apex at the arbitrary point ; σs  and σA are the scatter and

absorption cross-section per unit volume; P(ŝ,ŝ') is the scatter or phase function which

describes, for each scatter event, how specific intensity that is incident from a direction

S i scatters into the direction i. Implicit in writing (2.1.1) is the assumption that all

parameters that describe the scatter medium are independent of frequency. Equation

(2.1.1) is rewritten as follows

where (see Figure 3)

6
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Introducing (z,p,øx ) as the spatial variables of the cylindrical coordinate system and the

directional variables (9,0 ) for s , (2.1.2) then becomes

where p is the radial direction in the (x-y) plane, 	 is the angle between the x-axis and

7, 9 is the angle between the z-axis and g" , and 0 is the angle between the x-axis and

37, (see Figure 3).

Observe that (2.1.3) depends on six variables. However, for the case being

considered here, namely, a normally incident beam wave pulse train and a rotationally

symmetric phase function PCs., P(ŝ•ŝ') , a cylindrical symmetry exists about the z-

axis. Hence, it can be shown that the equation of radiative transfer (2.1.3) reduces to one

which involves the five variables ( z, ρ, t, θ, Ψ) and is given by [12, 14].

where v , defined as the angle between i5 and s1 , is given by (see Figure 4)

solve because it involves five independent variables. In the following sections, the

Fourier-Bessel transform is used to simplify the above integro-differential equation.
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2.2 Fourier Series Representation

The specific intensity of an incident beam wave pulse train traveling through air at the

speed of light "c" in the positive z direction is given by

where the arbitrary but time-periodic pulse train j (t z/ c) with pulse repetition rate T

is represented by its Fourier series expansion

and the amplitude of the beam wave A ( p) is assumed to dependent on p.

Let the bounded beam wave be normally incident upon a slab of finite thickness zo .

Assume that the beam has a Gaussian profile of beamwidth w given by

where Sp is the incident time-averaged Poynting vector at the origin. Thus, the specific

intensity of the incident beam wave pulse train takes the form

As is commonly done [1,15], the specific intensity I is separated into two

components, namely, the coherent or reduced incident intensity 4, and the incoherent or

diffuse intensity 'd '
 i.e.,

Substituting (2.2.3) into (2.1.4) gives the two equations

and
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with the extinction coefficient a, = (TA + as and the term s-r, V,I in (2.2.4b) given by

the third term on the left side of (2.1.4) excluding the term

To solve (2.2.4), we introduce the Fourier series representations for the intensities

and T is the time period of the incident pulse train. Note from (2.2.2)

i.e., dependents only on z, p and 0, which dictates that I,,„

also depends only on these three variables; hence, only /do in (2.2.5) depends on the four

variables z , p , 0 and ,t'. Using (2.2.5) reduces (2.2.4) to

and

Because the forest is modeled as a slab of thickness z0 , the boundary conditions

that must be satisfied are [1, 12]

Equation (2.2.6a) is solved by direct integration and application of the first boundary

condition in (2.2.7), which gives



Substituting (2.2.8) for I„„ in (2.2.6b) yields

1 0

The later identity is written to emphasize that the direction of scatter is defined by the

angles B and tit as opposed to the usual angle 0 and 0 of the spherical coordinate

system. In the discussion to follow, (2.2.9) subject to the boundary conditions in (2.2.7) is

solved.

2.3 Fourier-Bessel Transform of the Time-Dependent Transport Equation

To simplify (2.2.9), the Fourier-Bessel transform in the xy-plane and its inverse are used.

Let 4, be the Fourier-Bessel transform of id, with respect to -15 so that

Using the above transform it follows that
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For convenience, we introduce the normalized variables

the change in variable

and the normalized parameters

The parameter Wo is called the albedo.

Using the Fourier-Bessel transform (2.3.1a) and (2.3.2) as well as the changes

introduced in (2.3.3) reduce (2.2.9) to the equation

is the angle between 37,. and AT. given by

(see Figure 4) and Ev(τ, k, µ) is the Fourier-

Bessel transform of εri,v f o , . Note that lc, Wo and v appear as parameters in (2.3.4)

while the equation itself depends on the three variables τ, µ and v„.. In contrast, (2.1.4)

depends on five variables z , p, t, 0 and yr .

Rewriting the transform pair in (2.3.1) in terms of the normalized quantities defined

in (2.3.3) gives
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2.4 The Fourier-Bessel Transform of the Source Function grip

Converting (2.2.8) to normalized variables, the reduced incident specific intensity takes

the form

The source function generated by	 as defined in (2.2.9a) is determined by using

(2.4.1), which gives

This result is obtained by assuming the scattering to be symmetric about the direction of

from which it follows that

From (2.3.5a), the Fourier-Bessel transform of the source function

(2.4.2) is found to be

Using the following identities [16]



and substituting (2.4.2) into (2.4.4) yields
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Since the spatial spectrum in (2.4.6) decreases as

K > /care small. Hence, the constituents with K <K0 contribute most significantly to the

final beam solution when (2.3.5b) is used to find I dv [12].



CHAPTER 3

2-D QUADRATURE METHOD OF SOLUTION TO THE TIME-DEPENDENT
TRANSPORT EQUATION

In the previous chapter, the Fourier-Bessel transform was used to obtain the transformed

transport equation given in (2.3.4) along with (2.4.6). In the present chapter, this

transformed transport equation, subjected to appropriate boundary conditions, is solved

numerically using the method presented in [12], which will be referred to as the discrete

ordinate method using the 2-dimensional quadrature formula or, simply, the 2-1)

quadrature method. The method in [12] was developed to treat the time-independent

transport equation for the beam wave problem. As expected, the time-dependent case is

more complicated. It is shown below that the complementary solution to the pertinent

system of differential equations remains formally the same as in [12] but that the

particular solution is different. The solution reduces properly to the time-independent

case ( v = 0 ).

3.1 Mathematical Description of the Bounded Beam

The transformed transport equation (2.3.4) with the source function Ev(z, k, µ) given in

(2.4.6) is rewritten more conveniently as

Taking the Fourier-Bessel transform of the boundary conditions in equation (2.2.7) gives

14
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Equation (3.1.1) together with the boundary conditions in (3.1.1a) constitute the

complete mathematical description of the transformed diffuse intensity for the time-

dependent bounded beam problem. Because of the term cos Ψk , the solution to (3.1.1) is

an even function of the variable v, , i.e.,

This allows the integral in (3.1.1) to take the form

Let /Ft, be written as a sum of real and imaginary functions:

functions satisfy the relations

Substituting (3.1.4) into (3.1.1) yields:

Replacing q v by its real and imaginary parts allows the exponential term to be

expressed also in terms of real and imaginary parts:
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Equation (3.1.6) is then separated into real and imaginary terms. Using (3.1.3), (3.1.5a,b)

and (3.1.7), the following coupled differential equations are obtained

represents the phase function in the 1' and 2nd quadrants (east hemisphere) and

represents the phase function in the 3rd and 4th quadrants (west hemisphere) as

v,' varies from 0 to 7-1- .

To simplify (3.1.1) and (3.1.8a,b), we introduce the new variables Iav and 	 such



to obtain the two normalized coupled equations:
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kJ. 1. 1Z UJ

In (3.1.12a) and (3.1.12b), the most difficult task is to evaluate the integral terms. Chang

and Ishimaru [12] chose to use the 2-D Gauss quadrature formula, which approximates

the integral terms as finite summations. The same technique is used here. A description of

the method is presented in Appendix A.

3.2 2-0 Gauss Quadrature Formula

Since an analytical solution to (3.1.1) is not available, a numerical approach to the

bounded beam problem is employed. As in [12], the coupled integro-differential equation

is converted to a system of differential equations that are solved numerically. To

approximate the integral terms, use is made of the 2-D Gauss quadrature formula. As

noted above, the solution to (3.1.1) is an even function in the variable Ψk. The problem

is then divided into two regions of space, namely, the east and west hemisphere. Because

of symmetry, the problem need only be solved in one of these regions. The east

hemisphere is chosen, which is defined as
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The problem does not have the additional symmetry properties used in [12]. The method

of solution is the same, except that more terms are needed to evaluate the integral.

To approximate the double integrations, the following changes in variables are

introduced

and the Gauss-Chebyshev and Gauss-Legendre formulas are used to yield

where the quadrature points and weights are given by*:

(u) is the n h Legendre polynomial, µi is the it' zero of

derivative of the Legendre polynomial. Further details on the 2-D Gaussian quadrature

technique are found in Appendix A.

To simplify the expressions for the numerical approximation of the integrals in

(3.1.12), denote 	 as the spherical variable pair ( , a) and define

integral terms in (3.1.12) then take the form:
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The single index q that is used in (3.2.5) is defined as follows

where n, m, k are non-zero integers and

In (3.2.5b) the last equality holds provided N ic, = 	 . In the reduced k notation, the

quadrature points and their weights are given by

With the reduced notation, the specific intensities are discretized in the following manner

Note the ordering of the discrete points in the above formulation.
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3.3 The Linear System

Using the above discretization, the two coupled integro-differential equations (3.1.12) are

converted into a system of 2N differential equations. Substitution of (3.2.5) into (3.1.12)

and evaluating at the discrete points

and

2N x 2N sub-matrices which are not shown here explicitly, but can easily be determined

from (3.3.1a,b). It can also be shown that
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In order to solve the above system of ordinary differential equations, the method

known as variation of parameters is used [17]. The particular solution is found first and

then the complementary solution. The sum of the two solutions gives the total solution to

the transformed system of equations.

3.4 The Particular Solution

Expanding equation (3.3.2) by rows gives:

and

Let fay and Ibv be solutions of the form:

and

are each column vectors of length 2N. Substituting (3.4.2) into

(3.4.1) yields the following equations:

and
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Coefficients of the linearly independent cos(ω'υτ ) and sin(ω'υτ) terms are set equal to

zero to give

Re-writing equation (3.4.4a-b) in matrix form yields:

Ivy is the identity matrix of size 2N x 2N and 6 is the zero column vector of length 2N.

Equation (3.4.5) is written in compact form as

where it is an 8N x 8N square matrix, .E„ and T3 are column vectors of length 8N,

is the 8N x 8N identity matrix. From (3.4.7), the .17„ vector is found to be



where the A, matrix is given by
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With the IC„ vector known from (3.4.8), the particular solution (3.4.2) takes the form:

To compare the above result to that of Chang and Ishimaru [12], the parameter v is

set to zero in (3.4.5), which yields

The equations in (3.4.11) decouple and separate into the two smaller systems of equations

given in (3.4.12) and (3.4.14) below. Consider the former one,
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Solving for k l and k3 gives

and 14N is the identity matrix of size 4N x 4N. The second smaller system

yields

where

Hence for the v= 0 case, (3.4.10) takes the form:

Observe that the particular solution (3.4.16) agrees with Chang and Ishimaru [12] which

corresponds to the time-independent case (t.) = 0).
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3.5 The Complementary Solution

The homogeneous system of differential equation for the time-dependent bounded beam

problem, i.e., (3.3.2) with Ba = 0 , has the same form as found in [121 for the time-

independent bounded beam problem. Therefore, the system is solved by using the method

developed by Chang and Ishimaru. The complementary solution is found by solving the

homogeneous system of differential equations in (3.3.2), which is written in expanded

form as

where the N x N real matrices A ID and	 may be obtained by comparison with

(3.3.1a,b) and kv is an N x N diagonal real matrix.

The above system is rearranged to demonstrate the coupling between the forward

(0 < p <1) and the backward ( —1< < 0) specific intensities. Therefore, the order of the

specific intensity vector is modified as follow

Note that the dependence on lc is suppressed. The new system of differential equations

are obtained by interchanging row 2 and row 3, while keeping in mind that each element

of the resulting matrix is an N x N matrix. Hence,
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The 4N x 4N system of differential equations in (3.5.3) is rewritten in terms of an anti-

symmetric matrix:

or succinctly as

where A and 4,, are 2N x 2N matrices. Using (3.5.2), the 2N-column vector I± cv(τ) is

given by

The solution to the homogeneous equation (3.5.4) takes the form [1, 121;

where A and /3 are, respectively, the eigenvalues and the correspondence eigenvectors

of the matrix in (3.5.3) or (3.5.4). Denote the eigenvalues as 2 and the associated

eigenvectors as
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Because of the anti-symmetric nature of Acv , the eigenvalues and eigenvectors obey the
relationships [1, 12]

The eigenvectors with a positive index represent propagation and attenuation in the

forward direction. Therefore, the real part of the associated eigenvalues must be negative.

Similarly, the eigenvectors with a negative index represent propagation and attenuation in

the backward direction and the real part of the associated eigenvalues must be positive.

As a result, the complementary solution is expressed as a linear combination of all the

eigervectors with different expansion coefficients. The solution takes the form

with Re(λn) < 0 and Re(λ-n) > 0 or by use of equation (3.5.8) as

It can be expressed in the matrix form

diagonal matrix of the form
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In order to combine the particular and complementary solutions, (3.5.10) is written

in matrix notation as

are column vectors of length 2N whose entities consist of
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3.6 The Total Solution

In order to add the particular and complementary solutions together, the particular

solution in (3.4.10) must be written in the same form as the complementary solution.

Hence,

Therefore, the total diffuse intensity solution to the time-dependent beam wave problem

in transform space (k, Ψk) in matrix notation takes the form:

For convenience, in, is written showing only its dependence on r. but in reality it

depends on the four variables

Recall from (3.1.11) that , where x=a, b and also from

is the Fourier-Bessel

To determine the constant

C. vector in (3.5.13a) and (3.6.2), the boundary conditions in (3.1.1a) expressed as*

are used to obtain the following linear system of equations

* The "+ " superscript designates intensity flow in the forward direction (0<=µ<=1) while the " " superscript
designates intensity flow in the backward direction (-1 p 0) .
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Equation (3.6.4) is numerically stable in the sense that as ro 	,	 =i5 which was

expected for the semi-infinite medium.

Equation (3.6.2) constitutes the complete diffuse intensity solution in the Fourier-

Bessel transform domain for a bounded beam that is incident on a slab of optical

thickness i-0 . To obtain the solution in the space domain, the inverse Fourier-Bessel

transform of equation (3.6.2) is taken using (23 .5b) with (3.1.4) and (3.1.11) to give*

and the result added to the reduced incident specific intensity in (2.2.8). In the next

chapter, the scattering and propagation of beam pulses incident on a half space (r0 -+ co)

are found for which numerical results are obtained.

*Note in (3.6.5) that o A,„ = 7r(o- tw) 2 7C W 12 Ax,,. Thus,	 depends on w' via Aw, and , 	 2/w' • in

numerical evaluation, therefore, w' needs to be specified, not w and 6, separately.



CHAPTER 4

PULSE BEAM WAVE PROPAGATION IN A SEMI-FINITE MEDIUM

In the previous chapter, a theory to study the scattering and propagation of a pulse beam-

wave train incident on a slab of fixed optical thickness using the scalar time-dependent

transport equation was presented. In this chapter, the theory is used to study the

propagation of beam-wave pulses incident on a semi-infinite medium.

4.1 Gaussian Beam-wave Pulses

The medium is assumed to occupy the half-space region z 0 (see Figure 1). A

beam-wave pulse train from the air region z < 0 is assumed to be normally incident

onto the medium. At z 0 , the magnitude of the instantaneous Poynting vector of the

incident signal is expressed as

where co, is the angular carrier frequency, f(0, p, t) is an even function of time t

normalized such that at z = 0 , p =

and S is the time-averaged Poynting vector at the origin; T is the pulse repetition rate.

The shape of the incident beam pulse is arbitrary. For simplicity, assume normalized

Gaussian incident beam-wave pulses that at z 0 and p = 0 are given by

Since the incident beam-wave pulses are even, periodic functions of time, they can be

represented by the even Fourier series at z = 0 :
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where

Hence, for the Gaussian beam-wave pulse train

αo has to be chosen properly to insure that the Gaussian function in equation (4.1.3)

goes to zero at

In Chapter 2, the reduced incident intensity is given in (2.2.8). Substituting (4.1.6)

into (2.18) yields:

The diffuse intensity is found by following the procedure developed in Chapter 3; see

(3.6.5). The specific intensity is calculated only along the beam center axis (p =0)

because solutions off the beam center involves Bessel functions and would require more

computer resources. The transformed source function of the infinite half—space is

expressed as (see (2.4.6))

4.2 The Semi-Infinite Medium (special case)

As mentioned in Chapter 3, as r, -4 00 the backscattered part of the complementary

solution vanishes, namely,	 = 0 . This result and the value of the ET + vector are

obtained by direct substitution of ro 	co into (3.6.4), recalling that Re(.&) > 0 , to

yield



From (4.2.1), C, = 0 and C" . is obtained by solving the linear system

As a result, from (3.6.2) the Fourier-Bessel transform of the diffuse intensity in a semi-

infinite media due to incident beam wave pulses incident on a semi-infinite medium takes

the form:

The inverse Fourier transform of (4.2.3) gives the diffuse intensity at any point in the

forest. Adding this result to the inverse Fourier transform of the reduced incident

intensity in (4.1.7) gives the total intensity for Gaussian beam wave pulses incident on a

semi-infinite medium.

In the forest, the power is received by a highly directive antenna. For such an

antenna the diffuse received power is directly proportional to the diffuse intensity. The

complete derivation of the power received by such a antenna was developed in [11] and is

presented in Appendix B for reference. In summary, the total power received by a highly

directive antenna place in the forest is given by

where Pr,' and Pc; are the normalized reduced incident and diffuse received powers,

respectively. For an antenna whose main beam direction lies in the xz-plane (Om = 0) and

is located at a normalized penetration depth r on the beam center (v = 0) as in Figure

1, the normalized total received power is obtained from the expression
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where

The proof of (4.2.5) is given in Appendix B.

The first term in (4.2.5) reduced to

This result was expected since the reduced incident

intensity, as the name implies, is the power of the incident pulse train which, while

traveling along a straight path into the forest, is attenuation exponentially due to the

absorption and scattering (recall a t = crA + as ), but maintain its narrow (5 -function )

beamwidth. The 0 -dependence of F, thus reproduces the radiation pattern of the

receive antenna. In contrast, the diffuse intensity, generated by scattering of the reduced

incident intensity and continuously regenerated by mutiple scattering, exhibits a broad

beamwith substantially exceeding that of the receive antenna. Hence, when scanned, the

antenna in effect " probes " the angular distribution of I'd , as indicated in (4.2.5)

In the next chapter, the numerical results are presented and comparisons are made to

the data presented in [111.
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CHAPTER 5

NUMERICAL RESULT

All computations are performed using several normalized parameters and normalized

variables. This permits the specification of the scatter medium by the three parameters:

and a , where Wo = ors / cr, is the albedo and cr, = aA crs is the extinction

cross-section. The normalized space and time variables include: r = az, τp = σtρ and

Additional normalized parameters are:

The incident Gaussian pulses, given either by the expression in (4.1.3) or by the

Fourier series representation in (4.1.4) and (4.1.5), are specified with the parameter αo

set equal to 4√5;  this insures that the Gaussian pulse at t' ±T'/ 4 falls to 1/ e 5 times

its maximum value f(0, 0) given in (4.1.3). The normalized pulse repetition period T'

of the incident pulse train is chosen to be 2. The truncated series representation for

um >12 were found to yield values, which overlap indistinguishably from the exact

values. According to (4.2.5) and (4.2.6) (also see B.17), the normalized received power

P' equals f(0, t') in the "reference case" for which the antenna is placed at the origin

in the boundary plane r = 0 , rp = 0 and aligned with the incoming pulse train ( M = 0° ,

= 0° ). Hence, the received power inside the forest at points r # 0 can be compared

to the plot of f(0, t') in Figure 6. Results of a test series conducted with CW signals

[9.101 indicate that the extinction cross-section cr, = o-A + as in the canopy region of a

modestly dense forest (orchard) is in the order of 0.1-0.5 m -1 in the 30-60 GHz band.

With o-, in this order, the assumed value of T' = 2 would correspond to a pulse
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repetition rate of about 5 x 10' Pulses/sec, and the pulse repetition period of 20ns would

extend over 1000 cycles of a 50 GHz carrier signal. These values appear reasonable for

the millimeter-wave region. Under the same conditions, a normalized distance of r .1

corresponds to a vegetation path length of 2-10m. In all subsequent cases, W= 015.

In Figure 2, the Gaussian scatter function is plotted using both the exact expression

in (1.1) and the Legendre polynomial expansion in (17) of [11], truncated at N = 50 , and

were found to be in distinguishable. They exhibited the expected shape of a pronounced

forward lobe superimposed on an isotropic background.

Using (4.2.5), the received power in the forest is computed for the antenna oriented

such that its pointing direction is chosen for Om = 0° and for values of Om that were

pre-determined by the Gauss quadrature formula. For a discussion of the figures to follow,

it is helpful to recall some results of the corresponding CW theory [6, 7]. The reduced

incident intensity dominates at small depths into the random medium (v <1 ). While its

beamwidth remains narrow and does not change with path length, its amplitude decreases

exponentially at a relatively high attenuation rate equal to the extinction cross section of

the medium at = crA +as . Both absorption and scattering reduce the coherent intensity,

I. The diffuse intensity takes over at larger distances ( r > 5 ). It is generated by the

scattering of the reduced incident intensity in the region of small r, reaches a maximum

near r =1 and then decreases again in an exponential fashion. However, the diffuse

intensity decreases at a reduced attenuation rate determined in effect by absorption only

(though by absorption over multiscattered propagation paths of extended length), while

scattering reproduces the diffuse intensity. Hence at large penetration depths, the coherent

field component will disappear within the incoherent component, which will determine

the received power. In the transition region between the high and low attenuation regimes
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significant beam broadening takes place. Thus, it an be expected that in the present case

of beam wave pulsed signals, this beam broadening will be accompanied by substantial

pulse broadening since both effects are due to multiple scattering. On the other hand, at

short distances into the medium where the coherent component dominates, pulse

broadening should be minimal except for a certain "filling in" of the deep valleys

between adjacent pulses (caused by the incoherent intensity which is small for small r ).

The attached figures confirm these trends.

Figure 5 shows satisfaction of the boundary condition that the diffuse intensity

I du is zero at r = 0 throughout the forward angular range 0° < 0 < 90 0 (refer to (2.2.7))

for the time-independent case ( v = 0 ). Although not shown, this same result was

obtained for values of v not zero.

As a check on the numerical results, comparisons are made between the data

obtained for the case of an incident plane wave pulse train entering a half-space random

media using the PN method in [11] and the current method, referred to as the 2-D

Quadrature method. For reference, Figure 6 shows a reproduction of Figure 2 in [11].

Here, the normalized received powers are plotted versus normalized time t' at a

normalized penetration depth of r =1 for an antenna aligned to receive power in the

19A1 = 0 , = 0 direction. Figure 6 also depicts the total normalized received power P

(in dB) as a function of t' at r. 0 , rp = 0 for scan direction

which equals f (r 0, t;'). This facilitates comparison of what happens to the incident

intensity in the random medium as r increases.

Figures 7a to 7g show, for the plane wave case, the normalized received power

(which in this case equals the normalized diffuse received power) at z =1 for scan

angles of the receive antenna °M = 4.38° , 30.02° , 61.58° , 86.84 0 , 118.42° , 149.98° ,
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175.17° with °A1 = 0° for N,= 8, 10, 14. Included in these figures is also the result

obtained using the PN method of [11]. These curves show that agreement is obtained

over the most significant portions of the curve, especially at small scan angles, but differ

in their relative values in the valley regions where the power is extremely small, or when

the scan angle 0A1 gets larger, although the shapes of the curves appear to coincide

nonetheless. Small antennas scan angles yield the best results and, although agreement

improves as N, increases, the improvement is inconsequential; therefore numerical

convergence appears to occur, unless N, needs to be increased considerably before the

level of amplitude values change, which would indicate very slow convergence. It is to be

expected that in the limit of very large number of terms in the series solutions, both

methods would converge and yield the same result. Due to the high computational

intensity of the 2-D Quadrature method, use of very larger values of N, will result in a

considerable increase in computer computational time and is not advisable on the

available computer systems. Recall that the 2-D Quadrature method does not allow

arbitrary choice of scan angles and, therefore, the reduced incident plus diffuse power is

not sampled in the direction Om = 0°, OM 0° .

Figure 8 shows, for the plane wave case, the normalized received power (which

equals the diffuse received power) versus t' at r = 1 for scan angles (that are small and

nearly equal)	 = 3.40° , 4.38°, 5.52° for Ni = 12, 14, 20 with Nc = 8. Again for

such small scan angles, agreement is excellent, although for the very small values of

power in the valley region, there is a discrepancy in value but not in shape. The same

comments made with regard to Figure 7 apply here.

Figures 9 and 10 show the effect of different beamwidths. In Figure 9, the received

power P' versus time t' is plotted at r = 1 for the scan direction (0,41 = 4.38°, Om = 0° )
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and for normalized beamwidths w' = 0.5, 1, 3, 5 using the 2-D Quadrature method as

well as the plane wave case ( w' 00) at z = 1 using both the Quadrature and the PN

methods. Note that the leading flanks of the pulses suffer little distortion while the

trailing flanks are broadened out substantially, particularly for the small beamwidth. As

explained in [11] for the plane wave case, this is explained by observing that pulse

broadening is caused primarily by the delayed arrival of multiscattered waves trains that

travel over paths of extended lengths, thus producing the "tails" of the received pulses.

Note also that for w' » r the beam wave case approaches the plane wave case, as was

expected.

Figures 11a and lib for beamwidths w' = 1 and 5, respectively, depict the total

received power P' (which equals the diffuse received power) versus time t' for

different penetration depths r =1, 3, 5 and 10 for the small scan direction ( Om = 4.38° ,

= 0° ). The figures also include the plane wave cases ( w' 00) at r =1 calculated

using both the Quadrature and the PA, methods. At the larger values of penetration depth,

the power is seen to attenuate and the pulse width to increase with the attendant pulse

distortion due to the overlap of adjacent pulses, (although only slightly for r =1, 3, 5 but

significantly for z - =10).

Finally, Figures 12a and 12b provide a comparison of the received power versus

time t' for three scan directions, O = 4.38°, 17.40° , 30.02° with Om = 0° at z =1, 5

and for w' =1. Note that as Om increases, the beam wave pulse train exhibits more

attenuation and pulse broadening and distortion particularly at r = 5 , although the

overall shapes of the pulses remain similar.



Figure 1 Geometry of a beam wave pulse train normally incident on a semi-infinite
medium and receiving antenna.
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Figure 2 Gaussian scatter (phase) function.
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Figure 3 Variables for the specific intensity in the cylindrical coordinate system at the
point P(r,θ,ø x ).
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Figure 4 The azimuthal angles Ψ  and Ψk and their relation to the :ft , IT and Ti
vectors. Note that tir	 —

43



44

Figure 5 Boundary condition for the time-independent plane wave case, specific intensity
/do at r 0 versus scatter angle 0. Using both PA, Method ( N = 121) and 2-D
Quadrature Method (N 1 = 14, Nc = 8).



normalized received power P 1(0, t',0) in dB versus normalized time t' .
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Figure 7a Normalized received powers P' at r =1.0 versus normalized time t' for
N1 =14, Nc = 8, 10, 14, Om = 4.83° , and beamwidth w' = co (plane wave case). P'
generated by PA, Method (plane wave case) is also shown as a reference.
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Figure 7b Normalized received powers .1-1' at I' = 1 .0 versus normalized time t' for
N, =14, N, = 8, 10, 14, 0M 30,or , and beamwidth 	 = oo (plane wave case). P'
generated by PN Method (plane wave case) is also shown as a reference.
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Figure 7c Normalized received powers 13' at r =1.0 versus normalized time for
N1 = 14, Nc = 8, 10, 14, Om 61.58°, and beamwidth wt oo (plane wave case). P'
generated by PN Method (plane wave case) is also shown as a reference.
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Figure 7d Normalized received powers P' at r = 1.0 versus normalized time t' for
N, = 14, Nc. = 8, 10, 14, Om = 86.84° , and beamwidth w' = 00 (plane wave case). P'
generated by PN Method (plane wave case) is also shown as a reference.



50

Figure 7e Normalized received powers P' at r =1.0 versus normalized time t' for
N = 14, N = 8, 10, 14, Om = 118.42' , and beamwidth w' = 00 (plane wave case). P'
generated by PN Method (plane wave case) is also shown as a reference.
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Figure 7f Normalized received powers F' at 2" = 1.0 versus normalized time t' for
Ni = 14, Nc = 8, 10, 14, Om = 149.98°, and beamwidth w' = co (plane wave case). F'
generated by PN Method (plane wave case) is also shown as a reference.
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Figure 7g Normalized received powers P at r .1.0 versus normalized time t' for
N 14, N, = 8, 10, 14, Om = 175.17°, and beamwidth w' = co (plane wave case). F'
generated by PN Method (plane wave case) is also shown as a reference.
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Figure 8 Normalized received powers P' at r =1.0 versus normalized time t' for
N1 = 12, 14, 20, Nc = 8, Om 3.40°(N1 = 20) , 4.38(N, =14), 5.52*(Ni = 12) , and
beamwidth w' = co . P' generated by PN Method (plane wave case) is also shown as a
reference.
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Figure 9a Normalized received powers P' at r =1.0 versus normalized time t' for
N1 = 14, N, = 8, Om = 4.38° , and beamwidth w' = 0.5, 1, 3, 5, oo . P' generated by
PM Method (plane wave case) is also shown as a reference.
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Figure 9b Normalized received powers P' at r =5.0 versus normalized time t' for
N1 =14, Nc = 8, Om = 4.38°, and beamwidth w' = 0.5, 1, 3, 5, co P' generated by
PN Method (plane wave case) is also shown as a reference.
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Figure 10a Normalized received powers P' at 1- =1.0 versus normalized time 1` for
NI = 14, Ne = 8, Om 30,15° , and beamwidth w' 0.5, 1, 3, 5, 00. P' generated by
PN Method (plane wave case) is also shown as a reference.
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Figure 10b Normalized received powers P' at r = 5.0 versus normalized time t' for
Ni = 14, Nc = 8, Om = 30.15° , and beamwidth w' = 0.5, 1, 3, 5, oc). P' generated by
Pis, Method (plane wave case) is also shown as a reference.
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Figure 118 Normalized received powers P' at r =1, 3, 5, and 10 versus normalized
time t' for NI = 14, Mc = 8, 0,41 = 4.38°, and beamwidth w' = 1. P' generated by
Pm Method and 2-D Quadrature Method with r =1, w = oo (plane wave cases) are also
shown as a reference.
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Figure lib Normalized received powers P' at r = 1, 3, 5, and 10 versus normalized
time t' for N1 14, N, = 8, Om 4.38°, and beam-width w' =5. P' generated by
PN Method and 2-D Quadrature Method with z =1, w = 00 (plane wave cases) are also
shown as a reference.
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Figure 12a Normalized received powers P at z =1 versus normalized time t' for
NI = 14, Nc = 8, 0.4,1 = 4.38', 17.39' , 30.02° and beamwidth w' =1. P' generated
by PA, Method and 2-D Quadrature Method with 9m, = 4.38°,	 = co (plane wave
cases) are also shown as a reference.
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Figure 12b Normalized received powers P at v =5 versus normalized time t' for
N = 14, N = 8, OM = 4.38°, 17.39' , 30.02° and beamwidth w' = 1. P generated
by PN Method and 2-D Quadrature Method with Om = 4.38°, w' oo (plane wave
cases) are also shown as a reference.



C ' TER 6

CONCLUSIONS AND SUGGESTIONS

The 24) Quadrature method of solution to the scalar time-dependent transport equation is

used to study beam wave narrow band pulse propagation in a random medium of discrete

scatters. A bounded beam wave pulse train is assumed to normally enter the medium

which is modeled as a slab or half-space region consisting of a statistically homogeneous,

random distribution of particles which produces strong forward scattering. The averaged

scatter (phase) function of the medium is assumed to consist of a narrow forward lobe

(assumed to be Gaussian) superimposed on an omnidirectional background. The time-

dependent scalar transport equation is solved for both the coherent (reduced incident) and

the incoherent (diffuse) field intensities. Four parameters characterize the propagation,

scattering and absorption properties of the medium. The theory is useful in particular for

the description of collimated millimeter-wave pulse propagation effects in woods and

forests as well as for optical beams in the atmosphere.

Plots of the received power in the random medium (forest) showed pulse broadening

effects and the power attenuation, especially at large penetration depths. Comparison with

a second completely different method of solution, called the PN method, to the scale

transport equation substantiated the results for the special care of an incident plane wave

pulse train in relatively small scan angles and small penetration depths. Work in progress

includes the development of more analytical methods of solution to the problems of

scattering of bounded and divergent beam wave pulse trains in a random medium that is

characterized by a scatter function with a strong forward lobe superimposed on an

isotropic background.
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APPENDIX A

2-D GAUSS QUADRATURE FORMULA

In the discussion of the bounded beam-wave pulse train problem, two coupled integro-
differential equations are solved. As in [121, these equations are converted to a system of
differential equations, which are then solved by using an eigenvalue-eigenvector
technique. In converting to a system of differential equations, the double integral terms
are approximated by summations. In this appendix, the technique known as 2-D Gaussian
quadrature is presented and used to evaluate the double integrals. Most of this discussion
can be found in [1, 9, and 161.
The numerical quadrature formula for an integral of the form

is known as the Gauss-Legendre formula. The variables x i, and 	 are, respectively, the

abscissas and weights, where x i, is the ith zero of Legendre polynomial Pn (x)

The error term Rn' is specified by the following relation

Similarly, the numerical quadrature formula for an integral of the form

is the Gauss-Chebyshev formula. The abscissas and weights are
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The error term in this case takes the form

Let h(0,0) be any function defined on a hemisphere. The east hemisphere is

chosen, i.e.,

Since spherical functions are usually expanded in terms of Legendre polynomials

P„ (cos 0) and dm° , they are polynomials in cos 0 and cos q5. As a result, the 2-D

spherical integral below can be approximated by first making the change of variables

and then using both (A.1) and (A.2) as follows

where the abscissas and weights are defined above, identified by the superscripts " " and

" c ". In addition, the abscissas and weights satisfy the conditions

As in [9], a varying order for the Gauss-Chebyshev integration is used so that the size of

the matrix could be controlled in the computer program.

Using the above results and keeping in mind the format of the matrix equation in

Chapter 3, the integral terms in (3.1.12a and 12b) (see also (3.2.5)) take the form of the

equation



APPENDIX B

POWER RECE WED BY A HIGHLY DIRECTIVE ANTENNA

In this study of beam wave pulses normally incident on a semi-infinite medium, the
power is assumed to be received by a highly directive antenna placed in the forest. The
power calculations were introduced in [8, 11] and are repeated here for convenience.

Assume that a highly directive, lossless antenna of narrow beamwidth and narrow
bandwidth is located inside the forest. This receiving antenna is characterized by an

effective aperture A(yR ) , where yR is the angle included between the direction of

and the pointing direction of the antenna axis, i.e., the main beam

see Figure 3. Hence,

In transport theory powers add. Hence, the instantaneous power received by the antenna
is the sum of the intensity contributions coming from all directions multiplied by the
effective aperture of the antenna, i.e.,

where
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For millimeter waves, the carrier frequency is very large and, therefore, the

bandwidth of the received signal is narrow. For such a small bandwidth, the effective

aperture and gain of the receiving antenna can be taken to be independent of frequency

and to be related by the general expression

where A, is the free space wavelength and D(7.0 is the directive gain of the antenna at

the carrier frequency.

For analytical convenience, the directive gain is assumed to be Gaussian with a

narrow beamwidth AN and no sidelobes, i.e.,

which is normalized such that

Using the normalized directive gain D(yR ) in (B.6) and the total intensity

expressed as in (BA), the total received instantaneous power is obtained as the sum of

diffuse power PRA and reduced incident power PR,,, . The received diffuse power is

obtained as follows



where
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Similarly, the received reduced incident power is obtained as follows

where (using (2.4.1))

The instantaneous power is normalized to the received time-averaged power at

Thus, the normalized total instantaneous power is the sum of the reduced incident and the

diffuse normalized powers, namely,
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Using the expressions in (B.9) and (B.11), the total normalized instantaneous received

power takes the form:

where

The first term in (B. 15) combined with (B.14) yields

Note that at r = 0, rp = 0 and for 6M = 0,

which is given in(4.1.3) for a Gaussian pulse shape.
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