Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/932 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Performance enhancement of linear robotic workcell using DSP based control
Author: Godbole, Kedar Arvind
View Online: njit-etd1998-062
(xiv, 115 pages ~ 4.0 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Master of Science
Program: Electrical Engineering
Document Type: Thesis
Advisory Committee: Chang, Timothy Nam (Committee chair)
Meyer, Andrew Ulrich (Committee member)
Hou, Edwin (Committee member)
Date: 1998-01
Keywords: Robotics.
Automation control.
Availability: Unrestricted
Abstract:

Robotic Controllers have for the major part been computer implementations of PID or similar controllers. In this thesis DSP based control of a Robotic Workcell is presented. The control algorithms used with the DSP based controller are Input Shaping and also State Feedback. Input Shaping is a Feed Forward strategy for eliminating vibration under certain conditions. In this thesis Input Shaping is applied to the performance enhancement of a linear robot system. Although feedback control strategies offer higher accuracy and are much more robust, feedforward strategies offer possibilities for improving the response time. Input Shaping is successfully applied to the robot system. In particular the Zero Vibration (ZV), Zero Vibration and Derivative (ZVD), Extra Insensitive (El), and Optimal shapers are examined. The performance of these shapers is examined, with the system parameters subject to change. The performance of the Shapers is compared to a State Controller, for small steps. Since the command shaping is dependent on the measurement of the system damping (ζ) and the natural frequency (ωn) , performance degradation is observed if these parameters change significantly. By suitable design, this degradation can be restricted, so that useful performance is obtained from the system.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003