
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

PERFORMANCE ENHANCEMENT OF LINEAR ROBOTIC WORKCELL
USING DSP BASED CONTROL

by
Kedar Arvind Godbole

Robotic Controllers have for the major part been computer implementations of PID or

similar controllers. In this thesis DSP based control of a Robotic Workcell is presented.

The control algorithms used with the DSP based controller are Input Shaping and also

State Feedback. Input Shaping is a Feed Forward strategy for eliminating vibration under

certain conditions. In this thesis Input Shaping is applied to the performance enhancement

of a linear robot system. Although feedback control strategies offer higher accuracy and

are much more robust, feedforward strategies offer possibilities for improving the

response time. Input Shaping is successfully applied to the robot system. In particular the

Zero Vibration (ZV), Zero Vibration and Derivative (ZVD), Extra Insensitive (El), and

Optimal shapers are examined. The performance of these shapers is examined, with the

system parameters subject to change. The performance of the Shapers is compared to a

State Controller, for small steps. Since the command shaping is dependent on the

measurement of the system damping (C) and the natural frequency (co„) , performance

degradation is observed if these parameters change significantly. By suitable design, this

degradation can be restricted, so that useful performance is obtained from the system.

PERFORMANCE ENHANCEMENT OF LINEAR ROBOTIC WO CELL,
USING DSP BASED CONTROL

by
Kedar Arvind Godbole

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

January 1998

APPROVAL PAGE

PERFORMANCE ENHANCEMENT OF LINEAR ROBOTIC WORKCELL
USING DSP BASED CONTROL

Kedar Arvind Godbole

((//7/F 7
Dr. Timothy N. Chang, Thesis Advisor	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Andrew Meyer, Committee Member 	 Date
Professor of Electrical and Computer Engineering, NJIT

f 7 - 11
Dr. Edwin Hou, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Kedar Arvind Godbole

Degree: 	 Master of Science in Electrical Engineering

Date: 	 January 1998

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 1998

• Bachelor of Engineering in Electronics Engineering,
University of Pune, Pune, Maharashtra, India, 1995

Major: 	 Electrical Engineering

To my Mother and Father

ACKNOWLEDGMENT

I wish to take this opportunity to express my sincere gratitude to Dr. Timothy N. Chang,

my advisor, for guiding me at every step. Special appreciation is due to the committee

members Dr. Andrew Meyer and Dr. Edwin Hou. I also wish to express my deepest

gratitude and respect to my Mother and Father who put me where I am. Many thanks are

also due to many fellow students, for their support.

Special mention is due to Mr. Murat Eren and Mr. Vincenzo Pappano, who worked by

my side to develop software for the Robot Control Platform. I also wish to thank

Dr. Chang, the NIST ATP Grant number 70NANB5H1092 for Precision Optoelectronics

Assembly, for my financial support.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Objective 	 1

1.2 Background 	 1

1.3 General System Descriptiom 	 2

2 SYSTEM HARDWARE DESCRIPTION 	 4

2.1 Linear Robot System 	 5

2.1.1 H-Module 	 5

2.1.2 M-Module 	 5

2.2 Position Sensing 	 7

2.2.1 Encoder Sensing 	 7

2.2.2 Encoder Interface Card 	 8

2.3 DSP System 	 11

2.3.1 The DSP Application Board 	 11

2.3.2 TMS320C31 Digital Signal Processor 	 12

2.4 Interface Circuitry 	 14

2.5 Adept MV8 Controller 	 16

2.5.1 System Processor 	 17

2.5.2 System 10 Module 	 17

2.5.3.Adept Graphics Module 	 17

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

2.5.4 Adept VME Motion Interface 	 17

2.5.5 Analog I/O Module 	 18

2.5.6 Disadvantages of the MV8 Controller 	 18

3 ROBOT DYNAMIC MODELING 	 18

3.1 Model Derivation for the Robot Module 	 18

3.1.1 Derivation of the DC Servomotor Model 	 18

3.1.2 Relation between Angular and Linear Parameters 	 20

3.1.3 State Space Model for the Robot Module 	 20

3.1.4 Transfer Function for the Robot Module 	 22

3.2 Model Parameter Measurement 	 23

3.3 Actual Model Parameter Measurements 	 25

4 INPUT SHAPING THEORY 	 27

4.1 Mathematical Analysis of Input Shaping 	 28

4.2 Frequency Domain Interpretation of Input Shaping 	 31

4.3 Implementation of Input Shaping on the Robot System 	 34

5 SOFTWARE 	 37

5.1 Introduction 	 37

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

5.2 C Library for the Dalanco Model 310B DSP Card 	 37

5.2.1 Description of Functions 	 38

5.2.2 Initialization 	 38

5.2.3 Analog Output 	 40

5.2.4 Analog Input 	 41

5.2.5 Sampling Rate Determination 	 42

5.2.6 Runtime Sampling Rate Determination 	 44

5.3 Control Programs for Robot Control 	 45

5.3.1 Control to a Fixed Setpoint 	 45

5.3.2 Input Shaping and Commanding the Robot over a Trajectory 	 48

5.4 Host Programs 	 50

5.5 Data Exchange between the PC and DSP Card 	 52

5.5.1 Starting the DSP on the DSP Card 	 52

5.5.2 Halting the DSP on the DSP Card 	 53

5.5.3 Transferring Data to and from the DSP Memory 	 53

5.5.4 Interrupt Communication between the PC and DSP 	 54

ix

TABLE OF CONTENTS
(Continued)

Chapter	 Page

6 Results I 	 55

6.1 Results for the ZV Shaper 	 55

6.2 Results for the ZVD Shaper 	 58

6.3 Results for the EI Shaper 	 61

6.4 Results for the Optimal Shaper 	 63

6.5 Results for the State Space Controller 	 66

7 Results II 	 70

7.1 Results for the ZV Shaper 	 71

7.2 Results for the ZVD Shaper 	 75

7.3 Results for the EI Shaper 	 79

7.4 Results for the Optimal Shaper 	 83

8 Conclusions and Future Directions 	 89

8.1 Conclusions 	 89

8.2 Future Directions 	 90

APPENDIX A Software 	 90

REFERENCES 	 115

LIST OF TABLES

Table Page

2.1 Specifications of H and M Modules 	 6

2.2 Motor and Encoder Specifications 	 6

2.3 TMS320C31 Key Specifications 	 12

3.1 Test Results for the X-Module 	 26

3.2 Test Results for the Y-Module 	 26

4.1 Shaper Parameters 36

5.1 Data Passing from the PC to the DSP 	 46

7.1 Maximum Deviation from Command Trajectory X-module 	 87

7.2 Maximum Deviation from Command Trajectory Y-module 	 87

7.3 Completion Time for one run along the Trajectory 	 87

xi

LIST OF FIGURES

Figure Page

1.1 A View of the Robot System 	 4

2.1 System Block Diagram 	 4

2.2 Encoder Card Block Diagram 	 10

2.3 Block Diagram for the DSP Board 	 12

2.4 Interface Circuit 	 15

3.1 Simplified model of DC Motor 	 20

3.2 Proportional Control 	 23

3.3 Step Response of under-damped second order system 	 24

4.1 Input Shaping Scheme 	 27

4.2 ZV Shaper 	 29

4.3 ZVD Shaper 	 32

4.4 EI Shaper 	 32

4.5 Root Locus of second order system 	 28

4.6 Pole Zero Cancellation in ZV Shaper 	 33

4.7 Pole Zero Cancellation in ZVD Shaper 	 33

4.8 Pole Zero Cancellation in EI Shaper 	 30

5.1 Word Format for the ADC Latch 	 39

5.2 Synchronization to TCLK 	 42

5.3 Successive Read and Write Events 	 43

5.4 Flowchart for the Control Program 	 47

xii

LIST OF FIGURES
(Continued)

Figure	 Page

5.5 Flowchart for the Host Program 	 51

6.1 Comparison of Simulation and actual run for ZV Shaper 	 55

6.2 ZV Shaper test run #1 	 56

6.3 ZV Shaper test run #2 	 57

6.4 ZV Shaper test run #3 	 57

6.5 ZV Shaper test run #4 	 58

6.6 ZVD Shaper test run #1 	 59

6.7 ZVD Shaper test run #2 	 59

6.8 ZVD Shaper test run #3 	 60

6.9 ZVD Shaper test run #4 	 60

6.10 ET Shaper test run #1 	 61

6.11 EI Shaper test run #2 	 62

6.12 EI Shaper test run #3 	 62

6.13 EI Shaper test run #4 	 63

6.14 Optimal Shaper test run #1 	 64

6.15 Optimal Shaper test run #2 	 64

6.16 Optimal Shaper test run #3 	 65

6.17 Optimal Shaper test run #4 	 65

6.18 State Controller test run #1 	 66

LIST OF FIGURES
(Continued)

Figure 	 Page

6.19 State Controller test run #2 	 67

6.20 State Controller test run #3 	 68

6.21 State Controller test run #4 	 69

7.1 Command Trajectory for the Robot 	 70

7.2 ZV Shaper test run #1 	 71

7.3 ZV Shaper test run #2 	 72

7.4 ZV Shaper test run #3 	 73

7.5 ZV Shaper test run #4 	 74

7.6 ZVD Shaper test run #1 	 75

7.7 ZVD Shaper test run #2 	 76

7.8 ZVD Shaper test run #3 	 77

7.9 ZVD Shaper test run #4 	 78

7.10 EI Shaper test run #1 	 79

7.11 EI Shaper test run #2 	 80

7.12 EI Shaper test run #3 	 81

7.13 El Shaper test run #4 	 82

7.14 Optimal Shaper test run #1 	 83

7.15 Optimal Shaper test run #2 	 84

7.16 Optimal Shaper test run #3 	 85

7.17 Optimal Shaper test run #4 	 86

xiv

CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to present the DSP based application of Input Shaping and

other control strategies to the motion control of a robot system, and to compare the

performance obtained by employing several strategies. Input Shaping is a feed-forward

strategy, involving preshaping of the input command to the robot system to remove the

residual vibration, and thereby enhance the performance of the system, without any

modification of the robot hardware. Input Shaping was applied to a two axis linear robot

system, to evaluate the comparative merits of the various Input Shaping strategies. The

following Input Shaping designs applied are Zero Vibration (ZV), Zero Vibration and

Derivative (ZVD), Extra Insensitive (EI), and Optimal Shaping. The performance of each

shaper is observed with regard to the Residual vibration, the effect of change of system

parameters on the cancellation is also observed. Specifically the robot performance for

varying load on the robot is observed. The performance of the shaping designs for both

short range and long range motion control is observed.

1.2 Background

Input Shaping is a member of the class of feedforward control strategies called command

shaping. This involves the modification of the command input to get the desired output

from the system. For any feedforward method, the most important requirement is that the

1

2

system be open loop stable. If this is not so, then the system must be first stabilized and

then Input Shaping may be applied. Input shaping is used to minimize the time required for

the motion of the robot, thus maximizing it's performance. The performance of the robot

for short range motion is examined for small steps, of the order of 5mm. For long range

motion the robot was commanded to move over a U-shaped trajectory. Performance is

compared to previous benchmarks available from the robot manufacturer.

1.3 General System Description

The experimental system consists of a two-axis Cartesian robot, an Adept VME based

controller, a DSP development system hosted in a standard IBM compatible Pentium

computer, and an encoder interface card, which also resides in the IBM PC. Some

additional interface circuitry (i.e. amplifiers, summers etc.) is also required. The linear

robot is a commercial robot system from Adept Inc., San Jose, CA. A block diagram of

the system is shown in Figure(2.l). The VME controller, is just used as a supervisory

system which is not involved in the actual control loop. The VME controller system is

simply used to shut down the robot in case of control loop failure. The Adept MV8 series

controller is given a range of error. If the robot module moves outside this range the

controller turns the power amplifiers off The position of the robot module is determined

by keeping track of the encoder a function performed by the encoder interface card. The

encoder interface card has four 24 bit counters and thus can keep track of four encoders,

however only two of them are used in our system, one for each axis. The position is

maintained by the counters and the counters are read off, to obtain the position of the

drive the axis motors. The DSP system is a development system from `Dalanco-Spry',

and has a TMS320C31 DSP running at 50MHz. The DSP board has ADCs, DACs and

also 128 K words of memory for code/data. The DSP provides the number crunching

power for the fast execution of control algorithms which is critical for the proper control

of the robot. Detailed description of the hardware follows in Chapter 2. Chapter 3 deals

with modeling the robot modules. Chapter 4 presents a mathematical analysis of input

shaping. Software description is presented in Ch 5. Chap. 6 deals with the application of

input shaping for small range motion control, while results for long range motion control

are presented in Chapter 7. The conclusions follow in Chap. 8, with some suggestions for

further enhancements.

3

Figure 1.1 A view of the system

CHAPTER 2

SYSTEM HARDWARE DESCRIPTION

This chapter is devoted to a discussion of the experimental hardware platform, which was

used for the testing and verification of the algorithms. The robot hardware is discussed

first, followed by the the encoder interface board, interface circuitry, and the DSP board.

The discussion is however restricted to the relevant details, a more complete description

of the apparatus is found in the references.

Two-axis
linear robot

VME Controller

Figure 2.1 System Block Diagram

4

5

2.1 Linear Robot System

The robot consists of two linear modules, a type H module and a smaller type M module

mounted on the type H module. The module basically is a precision ground ball-screw

drive mechanism, with linear guides for the slide. The screw is driven by an AC servo

motor. Each module also has sensors for detecting the positive or negative over-travel.

These sensors are constantly monitored by the VME based Adept MV8 controller, which

in the event of positive or negative overtravel shuts off the power to the robot to prevent

damage.

2.1.1 H-module

The H-module is the largest module in the series and offers the highest load handling

capability. Standard H-modules have stroke lengths from 300 mm to 1000 mm. Special

order stroke lengths from 1200 mm to 2000 mm are also available. The H-module consists

of a 20 mm pitch ball screw, with 25 mm linear guides and a 300 W motor. The H-module

is 180 mm wide and 90 mm high. The standard H-modules are supplied with direct-mount

motors, while extended stroke H-modules are supplied with side-mount motors. The H

modules are intended to carry the M, and other smaller modules. The H-module does not

have a holding brake and is intended for use in the horizontal plane only.

2.1.2 M-module

The M-module is a smaller module, with stroke lengths ranging from 250 mm to 950 mm

and special order stroke lengths from 1150 mm to 1550 mm. The M module also has a

20 mm pitch ball-screw but with a single 50 mm linear guide. The ball-screw is again

driven by a 300 W motor. The standard stroke modules are supplied with direct-mount

motors while the extended stroke modules are equipped with side-mount motors. The M-

module also does not have a holding brake and is intended for use in the horizontal plane

only. Some selected specifications of the modules are detailed in Table 2.1

Table 2.1 Specifications of H and M Modules.

r Module Stroke	 Max.	 Repeat- Ball	 Max.	 Motor	 Rated

Type	 (mm)	 Speed	 ability	 Screw	 Payload mount	 Thrust

(mm/sec)	 Pitch	 (kg)	 Force

(mm)	 (N)

H- 	 1000	 1200	 0.01	 20	 60	 Direct	 300

module

M-	 550	 1200	 0.01	 20	 60	 Direct	 300

module

Table 2.2 Motor and Encoder specifications

Motor	 300 W AC servo-motor

Position Feedback	 2000 lines/revolution

Maximum frequency: 150kHz.

Max. motor speed	 3600 r.p.m.

Power	 1170 VA max. (at max. torque.)

Single Phase 180-240 V

6

7

2.2 Position Sensing

For any control to be implemented the controller needs a measurement of the variable to

be controlled. The position of the robot is sensed by incremental encoders. The encoder

being a digital device, has very good noise immunity, and also is capable of the necessary

resolution.

2.2.1 Encoder Sensing

The encoders are mounted on the motor shaft driving the screw. The encoder is a rotary

encoder and actually measures the angular position of the shaft, however since the pitch of

the ball-screw is known, the encoder position is directly related to the position of the

slider. The encoder resolution is 2000 pulses per revolution. Now since the pitch of the

ball-screw is 1/50 meters, the linear resolution is 100,000 counts per meter. This is further

enhanced by using the quadrature mode thus giving 400 000 counts per meter. The

resolution is thus 2.5 microns. However the overall position accuracy is limited by the

mechanical precision of the ball-screw and other mechanical tolerances, giving a

repeatability of about 10 microns. The over-travel sensors located at the ends of the

modules give indication of the position of the module as well. At startup the module is

moved, slowly, toward the extreme position. The negative over-travel sensor then is used

to register the position of the module, as the zero position. This must be done since the

encoders are incremental, and to know the absolute position of the module it is necessary

to have some such auxiliary sensor, which senses the absolute position of the module.

8

As mentioned before the Adept MV8 Controller uses the overtravel sensors to ensure the

safety of the robot. However this may not be adequate in some cases. If the robot reaches

the end of the travel moving at a high velocity then the module inertia will cause the slider

to crash into the robot structure even if the power is disabled. The solution to this problem

is to have the VME controller monitor the position of the robot and cut power much

before the module reaches the extreme end, thus allowing the module time and distance to

slow down before reaching the end of the travel. This is easily accomplished since the

VME controller already is connected to the encoders, and constantly monitors the position

to detect motor stalling. By setting the error tolerance appropriately, the above action can

be achieved, protecting the robot from any damage. This is especially important on this

robot system since the user cannot react fast enough to the movement to manually stop

the robot from hitting the structure. The robot span is one meter or 400,000 counts. So if

the robot is restricted to the centre 0.5 meters, then the robot usually does not crash into

the structure. This is accomplished by setting the error tolerance of the Adept controller to

200,000 counts. Once the robot moves outside this zone, the power amplifiers are

disabled.

2.2.2 Encoder Interface Card

The position of the robot module (slider) is recorded by the counters on the encoder

interface card. A block diagram of the encoder interface board is shown in Figure (2.2).

The encoder board is basically a set of counters. The inputs are filtered by a digital filter

befor application to the counters. The digital filter has a programmable cut-off frequency,

9

enabling the selection of the optimum cut-off frequency, depending on the application. The

filtered inputs are applied to 24-bit counters. The filter clock is one of five juniper

selectable frequencies, ranging from 0.625 Mhz to 10Mhz. The sample clock frequency is

selected by setting jumper W23 to the correct position. An input signal level must be a

valid 'high' for four clock cycles, or be a valid 'low' for four clock cycles, in order to be

accepted as a legal 'high' or a low'. This action prevents noise pulses of a duration

shorter than (sample clock period)/4 from affecting the filter output. If the robot moves at

1.2 m/s then the maximum encoder rate is 480 000 pulses per sec. This means that the

clock frequency must be 4MHz or higher (0.5MHz * 4 clocks * 2) To find this consider

one pulse of the encoder corresponding to motion by one count. The phase A and B must

be in one state for four clock cycles and then in the other for four clock cycles so that both

the '1' and '0' levels are recognized as legal and are applied to the counter. In our

experimental system a setting of 5MHz was found satisfactory.

The lowest frequency compatible with the highest input rate expected gives the best noise

rejection while still ensuring the recording of data, and must be chosen with the utmost

care. For each encoder circuit Phase A, Phase B and Index inputs are provided. Jumper

options on the board allow the user to configure the inputs as single-ended TTL or

differential (giving the highest noise rejection). Individual connectors (9 pin) connect to

the encoders, and +5V and ground are available to power the encoder if necessary. The

counter outputs can be read off from the PC.

Figure 2.2 Encoder Card Block Diagram

The encoder interface board is capable of generating interrupts to the PC, however this

feature was not used in out system and will not be discussed here. Refer to the Tech80

handbook for more details. The card also includes the 'glue logic' necessary for the PC

bus interface. The glue logic consists of address decoding, and buffering, nessesary for

interfacing to the PC bus.

10

11

2.3 DSP System

2.3.1 The DSP Application Board

The DSP system used for this project was the `Dalanco-Spry' Data Acquisition and Signal

Processing Board - Model 310B. The DSP board has a Texas Instruments' TMS320C31

DSP chip running at 50MHz, a 12 bit DAC, a 14bit ADC with a four channel multiplexer,

and 128k words of memory. The memory on the DSP board is dual ported, i.e. it is

accessible at any time to the DSP as well as to the PC via the bus interface. The ADC and

the DAC are however accessible only to the DSP. Any data from the ADC and to the

DAC must pass through the C31. The DAC is capable of outputting at a maximum rate of

140kHz. The ADC has a maximum conversion rate of 300kHz. The voltage ranges for the

ADC and the DAC are +5V. A block diagram of the Dalanco-Spry Data Acquisition and

Signal Processing Board - Model 310B is shown in Figure (2.3). The DSP can be

programmed in 'C' as well as Assembly, and the DSP Development system is completely

compatible with the Texas Instruments Optimizing C compiler for the TMS320C31. It

was however necessary to create a couple of libraries so that all the coding could be done

in `C', with the user completely insulated from the architecture of the board. The DSP

application board also has a programmable gain amplifier that gives a software

programmable gain, ranging from 1 to 1000, facilitating the handling of signals with small

amplitudes. The gain to be used is output to the latch along with the channel number.

12

Figure 2.3 Block Diagram for the DSP Board

2.3.2 The TMS320C31 Digital Signal Processor

The TMS320C31 is a floating point, 32 bit DSP from Texas Instruments. The DSP has the

following key specifications:

Table 2.3 TMS320C31 Key specifications.

Cycle time, for single cycle execution	 40ns

Floating point processing speed 	 50MFLOPS

Instruction execution rate	 25MIPS.

13

The TMS320C3 I has, besides the CPU, a DMA controller, an instruction cache, RAM,

ROM, Serial port, Timers, etc. all integrated onto the chip. This translates into very high

performance for the user. The TMSC320C31 CPU consists of an ALU, a 32 bit barrel

shifter, a 32 bit multiplier, Auxiliary Register Arithmetic Units (ARAU s), and several

registers in it. The multiplier performs full 32 bit muliplications in just one cycle, and is

capable of operation in parallel with the other components of the CPU. The Arithmetic

and Logic Unit (ALU) performs single cycle operations on 32 bit integer, and 40 point

floating point data. The Auxiliary Register Arithmetic Units ARAU 0 and 1 generate

memory addresses in one cycle for the fast generation of memory addresses in the various

addressing modes. The CPU also includes 28 registers in a multiport register file, tightly

coupled to the CPU. These are used to store operands right in the CPU so that they are

available for the instructions without any access delay. The on chip RAM blocks 0 and 1,

are each 1K x 32 bits and the ROM is 4K x 32 bits. Each on chip memory block can

support two memory accesses in a single cycle. The instruction cache is 64 x 32 bits, i.e.

64 words large and maximizes the system throughput by caching the repeatedly accessed

code. The cache uses the Least Recently Used (LRU) strategy for updating the cache

memory from the main memory. The TMS320C31 has a full duplex bi-directional serial

port. The port can transfer data in 1,2,3 or 4 bytes per word. The port can also be

programmed in a synchronous mode where continuous transfers can be done, transmitting

many words of data without new synchronization pulses. The TMS320C3 I supports

integer and floating point data. Integer data types supported are 16 bit short, 32bit, both

signed and unsigned. The floating point data types are short, single precision and

14

extended-precision. The use Floating point operations to manipulate data is of very great

advantage, as the operations can be performed in a single cycle each, while freeing the

user of the great burden of implementing libraries to perform floating point operations.

The TMS320C31 has a 32 bit timer/counter that can be used for various purposes. The

timer can be driven off an internal clock, i.e. used as a timer, or an external signal may be

used to drive the timer, thus acting as a event counter. The timer can also generate an

interrupt to the CPU. The timer in the Dalanco Spry board is used to trigger the

conversions of the ADC. The TCLK pin is toggled to trigger the conversion. The ADC

performs the conversion and then sends the converted data to the TMS320C31 serial port.

Once the data is received the serial port may be read to retrieve the data.

2.4 Interface Circuitry

As noted previously the voltage levels output by the Digital to Analog Converter are

between ±5V. The servo-amplifiers are designed to receive an input of ±10V. So it is

necessary to have an amplifier for each axis together with the summing amplifier which

was achieved with just one operational amplifier per channel. A schematic of the interface

circuitry is shown in Figure(2.4).

Figure 2.4 Interface Circuit

The following calculations are done to select the components for the circuit.

When the voltage V2=0,

and when the voltage V 1 =0 we have

15

If we select R1=2R and R2= R3=R then

if we select

and

then we get

This gives the necessary gain of two for the DAC output while passing the VME output

through, with the servo command being the sum of the two. The circuit is powered with

±12V, since the outputs are expected to swing to ±10V. The supply must be well filtered,

although this is more significant at lower frequencies. The servo command is applied to

the power amplifiers which provide the necessary power and the voltage levels to drive the

motors.

2.5 Adept MV8 Controller

The Adept MV8 controller is built around the VME bus. It is a powerful and flexible

controller but has some disadvantages. The MV8 has upto 8 slots, of which five are

occupied by 6U modules. A brief description of these modules follows.

16

17

2.5.1 System Processor (030)

The 030 is a 68030 based CPU module, and provides all the processing power in the MV8

controller. The 030 is capable of functioning with four other CPU modules in a

multiprocessor configuration. The 030 also has a Motorola 68882 math coprocessor. The

030 module also has a pair of serial ports. Upto 8 MB of RAM can be installed on board

the 030. Any controller must have atleast one CPU module.

2.5.2 System I/O Module (SIO)

The SIO module provides a printer port, a floppy drive, a hard disk, and 20 potential free

I/O terminals. The floppy drive accepts a standard high-density 3.5" disk. The internal

hard disk has a capacity of 256MB.

2.5.3 Adept Graphics Module (VGB)

The VGB module supports a VGA compatible monitor. Besides this it also has the

keyboard and pointing device interfaces. The VGB module is also required for Adept A

series controllers.

2.5.4 Adept VME Motion Interface (VMI)

The Adept VME Motion Interface module is an integrated motion control module. Each

VMI module drives upto four servo amplifiers, and can also keep track of upto four

incremental encoders. Thus the module can be used to control upto four axes.

18

2.5.5 Analog 1/0 Module

The MO module has four output channels and upto 16 differential or 32 single ended

inputs. At any time all the inputs must be either single ended or differential, a combination

of the two is not allowed.

2.5.6 Disadvantages of the Adept MV8 Controller

The principal disadvantages of the Adept controller stem from the fact that all the

processing is done by the 030 module. This limits the processing power available to run

the control algorithms. This is further compounded by the lack of a compiler. This means

that any user programs on the MV8 are scripts and this drastically affects performance.

This effectively limits the control actions to the built in proportional, integral etc.

CHAPTER 3

ROBOT DYNAMIC MODELING

The dynamic model for the robot system is derived in this chapter. The practical

evaluation of the model is also discussed. The parameters of the system change as the

mass of the payload on the robot changes and these changes are also evaluated.

3.1 Model Derivation for the Robot Module

With the matching power amplifier for the motor, the robot module can be viewed as a

DC servo motor with an inertial load attached to it. Since the leadscrew is a ball-screw

mechanism the frictional effects are small and can be neglected. The mass on the slider can

be reflected onto the motor shaft as a rotational inertia. Thus the problem is reduced to

modeling the DC servo motor problem, and the translation of the linear quantities into the

angular quantities.

3.1.1 Derivation of the DC Servomotor Model (simplified)

A equivalent circuit for the DC servomotor is shown in Figure(3.1). The assumption L=0

is additionally justified by the construction of most DC servomotors, where the windings

are resistive in nature.

19

20

Figure 3.1 Simplified Model of DC Motor

By Kirchoff's law,

Va = is • R + Eb	 (3.1)

since

Eb K • é	 (3.2)

where e = angular position of motor shaft and 8 = angular velocity of the motor shaft.

(3.1) and (3.2) give

Va = ia • R + KO	 (3.3)

The motor torque is given by

T = K is 	 (3.4)

(3.3) and (3.4) give

(3.5)

Since T = JO, from (3.5) we have,

21

RJ
Va = —

K
• 0 +KO

Rearranging,

(3.6)

To convert (3.6) into state variable form, we choose the angular velocity and acceleration

as the state variables. The state variable form is then

(3.7)

3.1.2 Relation between the Angular and Linear Parameters

The position of the slider is directly dependent on the angular position of the leadscrew or

motor shaft. The pitch, 'n' is defined as the ratio of the linear distance traveled in one

rotation of the screw. So, if linear distance is denoted by x, then

therefore

3.1.3 State Space Model for the Linear Robot Module

Using this with eq. (3.7) we write the state-space model for the linear robot as

22

(3.8)

which is of the form 2 = Az + Bu, where

3.1.4 Transfer Function of the Linear Robot Module

Since we control the position, x, the output is x itself. From eq. (3.8) the transfer function

may be written ac

(3.9)

This is of the form

(3.10)

With these 'a' and 'b' in eq (3.10) we can rewrite eq. 3.8 as

(3.11)

Thus the robot module can be considered as a type one system, with poles at s= -a and at

the origin.

23

3.2 Model Parameter Measurement

With the transfer function of the robot module as described above, the module is not

BIBO stable. i.e. a bounded (finite) input does not produce a bounded output. Thus if we

apply a constant input to the motor, the position continues to increase. Of course since the

robot length is only of the order of a meter, the slider crashes into the robot structure in a

very short time. For any useful position control the module must be placed in a feedback

loop. For this it is necessary to know the parameters 'a' and 'b' in eq. (3.10). These

parameters are measured quite easily. The theoretical calculation of these parameters from

the mechanical dimensions etc and the motor parameters would on the other hand be more

complex, since it is necessary to either measure or obtain the values of several variables.

To obtain 'a' and 'b' a proportional loop is closed around the module as shown in Figure

(3.2).

Figure 3.2 Proportional Control

The transfer function of the closed loop system is

Thus the transfer function is (3.12)

24

This is in the standard form

(3.13)

Now if we subject this second order system to a step, if the system is under damped, (a

reasonable assumption since we set K, and also the friction in the robot module is small),

then we see the response shown in Figure(3.3)

Figure 3.3 Step Response of Underdamped Second Order System.

The overshoot Mp, and the damped period are given as

25

So the parameters 'a' and 'b' are obtained as follows :

(i) From the response get Mp and Td.

(ii) Calculate co n and

(iii) Comparing equations (3.12) and (3.13) we have

Thus the model for the robot is obtained by measuring the overshoot and the period of the

oscillations of the response.

3.3 Actual Model Parameter Measurements

Actual tests to determine the models for the robot modules were performed. The stepsize

used was 5 mm.

The test results are presented in table (3.1) and (3.2). Note that the actual numbers reflect

the transfer function for everything from the DAC to the encoder. This means that the

transfer function gets everything outside the controller, thus ensuring that all the gains etc.

accounted for in the transfer function. What remains is just the controller.

Table 3.1 Test results for the X module.

load	 Td	 Mp	 a	 b
(kg)	 (sec)
0	 0.1254	 0.799	 4.9308 e03	 7.1577
1	 0.1281	 0.793	 4.7268 e03	 7.2422
2	 0.1296	 0.786	 4.6199 e03	 7.4321
3	 0.1314	 0.781	 4.4956 e03	 7.5245
4	 0.1327	 0.768	 4.4118 e03	 7.9568
5	 0.1334	 0.763	 4.3671 e03	 8.1109

Table 3.2 Test results for the Y module.

load	 Td	 Mp	 a	 b
(kg)	 (sec)
0	 0.09653	 0.980	 1.6559 e04	 0.8372
1	 0.09758	 0.973	 1.6205 e04	 1.1220
2	 0.1013	 0.967	 1.5028 e04	 1.3247
3	 0.1073	 0.9635	 1.3403 e04	 1.3861
4	 0.1095	 0.9605	 1.2870 e04	 1.4722
5	 0.1125	 0.956 	 1.2193 e04	 1.5999

26

CHAPTER 4

INPUT SHAPING THEORY

Input Shaping is an open loop scheme which involves pre-shaping the actuator input such

that the oscillation is ended after the input has reached its final value. This is based on the

cancellation of the responses to a sequence of impulses. Input Shaping involves the

convolution of the input with a sequence of impulses of suitable amplitude and spaced

appropriately in time with the command input. For exact cancellation to occur the

amplitudes of the impulses and the delay must be designed properly and must also be

precise. Impulse amplitudes are a function of system damping while the delays depend on

the damping as well as the natural system frequency. This means that any input shaping

scheme must be designed with some robustness built in, otherwise there will not be an

exact cancellation of the impulse responses as the system parameters change with changes

in load, or friction etc. A input shaping scheme is illustrated in Figure(4.1).

Figure 4.1 Input Shaping Scheme

27

28

4.1 Mathematical Analysis of the Input Shaping Scheme

Here a brief mathematical overview of the input shaping scheme is presented. For the

analysis the two impulse case is considered. A linear system, may be modeled as first and

second order sections. Consider a second order section,

The unit impulse response of this system y(t) is

Let y1 be the response to impulse A 1 d(t-t 1) and y2 be the response to impulse A 2d(t-t2) .

Then the total response is

where

and

Let

and

Then the total response can be written as

Simplifying we can write

(for tr,>ti,t2).

Now y(t N) depends upon A1, A2, t1, t 2 We desire that there be no residual vibration. So if

we solve for A1, A2, t1, t2, then with t 1 = 0 we have

where

and

29

This is the Zero Vibration shaper. These parameters are shown in Figure (4.2).

Figure 4.2 ZV Shaper

Figure 4.3 ZVD Shaper

For both shapers t i = 0 and t 3= 2t2. for the ZVD Shaper

30

Figure 4.4 EI Shaper

For the EI shaper the curve fit formulae are

31

The principal advantage of the ZVD and El Shapers is incresed robustness. The ZV

Shaper has only two switch times and so is faster, but its performance deteriorates rapidly

if the natural frequency or the damping in the system change. The ZVD and EI Shapers

are more robust, but since they have three switches, they are slower, needing more time

for the output to settle to the reference value. If the system parameters are well defined

and do not vary significantly then the ZV shaper is the better choice. However if the

system parameters are subject to change, then the ZVD or the EI shaper is to be preferred.

To further understand the differing robustness of the these shapers, it is useful to look at

the frequency domain interpretaion.

4.2 Frequency Domain Interpretation of Input Shaping

The root locus of a second order system is as shown in Figure (4.5). The ZV Shaper

performs a pole zero cancellation as shown in Figure (4.6). Obviously if this cancellation is

not exact then there will be reidual vibration.

Figure 4.5 Root Locus of Second Order System

32

Figure 4.6 Pole Zero Cancellation in ZV Shaper .

33

The ZVD Shaper adds two zeros for each pole and so increased robustness is observed .

Figure 4.7 Pole Zero Cancellation in ZVD Shaper.

Figure 4.8 Pole Zero Cancellation in El Shaper.

34

As can be seen the EI Shaper will not have zero vibration for zero deviation of the system

parameters, but offers increased overall robustness.

4.3 Synthesis of New Optimal Shaper Designs

For the previous shaping methods (ZV, ZVD, EI), no special weighting is assigned to the

nominal plant parameters. In some cases we may have some knowledge of the statistical

nature of plant parameter variation, and it may be useful to incorporate this knowledge

into the shaper design to minimize the expected level of residual vibration. We consider

two types of distributions:

I. Uniform: The natural frequency co has the probability density function

and is assumed to be uniformly distributed in the interval [co y , cox].

2. Gaussian: The natural frequency co has the probability density function

where co o is the nominal frequency.

In both cases the objective is to derive an optimal shaper design that suitably balances the

performance and robustness. In EI shaper design, the robustness criterion has been the

maximisation of the frequency range while keeping the residual vibration to less than a

prespecified percentage (e.g. 5%). Variations in the damping coefficient can also be taken

35

into account by defining the joint probability density functions. This method has the

following advantages :

1. Frequency interval is selectable.

2. Frequency interval can be weighted (such as by a probability density function).

3. Robustness with respect to the damping factor variation is preserved.

4. Standard shaper designs such as ZVD and EI can be derived as special cases.

The optimal shaper is designed by performing 	 wing the nonlinear optimization of a performance

index rather than the solution of equations. The performance index may be defined as

where f is a joint probability density function and the optimisation variables are the switch

times, and the impulse amplitudes.

Alternatively a simpler performance index such as:

may be used along with a damping constraint to ensure the robustness of the solution with

respect to the damping variations.

4.4 Implementation of Input Shaping on the Robot System

From Tables 3.1 and 3.2 we obtain parameters for the X and Y modules. The system

parameters are used for the calculation of the shaper parameters. All shapers are designed

for a nominal load of 1 kg.

The Shapers were implemented with the parameters shown in Table (4 1).

Table 4.1 Shaper Parameters

Module Shaper Al	 A2	 A3	 T1	 T2	 T3

X	 ZV	 0.5582 0.4418 	 0 	 0.0949

Y	 ZV	 0.5199 0.4801	 0	 0.0489

X	 ZVD	 0.3116 0.4932 0.1952 0	 0.0949	 0.1898

Y	 ZVD	 0.2703 0.4992 0.2305 0	 0.0489	 0.0978

X	 El	 0.3299	 0.4612 0.2089 0	 0.0949	 0.1899

Y	 EI	 0.2845	 0.4722 0.2433 0	 0.0489	 0.0979

X	 Optimal	 0.4719	 0.1339 0.3942 0	 0.0139	 0.1002

Y	 Optimal	 0.2595	 0.4965 0.2440 0	 0.0513	 0.1026

36

CHAPTER 5

SOFTWARE

5.1 Introduction

Control algorithms for the robot were implemented in software. The software for this

project was developed completely in 'C', with the exception of some assembly language

embedded in C for implementing a C language interface library for the signal processing

card. The software programs in this project are run simultaneously on two platforms, the

DSP and the Pentium based IBM-compatible computer. The control algorithms were run

on the DSP, which calculated the actual command. The programs on the PC performed

the functions of data acquisition and supervisory functions. The position of the encoder is

read from the encoder interface card by the PC, which is then put into the memory of the

DSP by the PC. The DSP then accesses this position and then calculates the servo

command. The hardware interface to the encoder card and the DSP card is through the

PC-ISA bus. In this chapter the C language library is discussed first, so that the control

programs can be understood clearly. Following this the control programs are discussed,

and finally the host programs are described.

5.2 'C' Library for the Dalanco Model 310B Data Acquisition and
Signal Processing Card

The Dalanco Model D310 B Data Acquisition and Signal Processing card has four analog

input channels and two analog output channels. The programmers interface to these

analog inputs and outputs through assembly language, as suggested in the Dalanco Spry

37

38

User's Handbook is both time consuming and complex. This typically tends to complicate

the software development and the effort on part of the programmer has to be concentrated

on the program development rather than the development of the control algorithm or

other application at hand. It was therefore felt necessary to develop a C language library

which would encapsulate the entire card into a neat 'box', and frees the user from the need

to know any internal details or the need to spend time and effort to learn the assembler for

the DSP.

5.2.1 Description of the Functions Implemented

The following sections describe the three function calls which form the entire user

interface to the signal processing card. To make use of these calls it is necessary to include

the file 'd310bio.h' as a header at the start of the program.

5.2.2 Initialization

The Dalanco Board needs initialization at startup. The ADC connects to the serial port on

the DSP. So the serial port and timer must be set up, and also the latch on the Dalanco

Spry Board must be set up. For this the InitDSP() function is implemented. The function

call prototype is

void InitDSP(void);

The function begins by setting up a few pointers. The latch in the Dalanco Spry Board

contains the ADC channel number and the gain for the programmable gain amplifier

(PGA). This latch is set up, as a default, to set the ADC channel to 0 and a unity gain for

39

the programmable gain amplifier. These are just the defaults, by accessing the latch before

each conversion the user can set the gain for the PGA as well as set the channel. The

function ReadAdc takes care of the function of setting the channel. The word format for

the LATCH_VAL word is shown in Figure 5.1

Figure 5.1 Word Format for the ADC Latch

The bits g1 and go set the gain of the programmable gain amplifier (PGA),while the bits m1

and m0 set the channel for the ADC multiplexer. The PGA gain is set by the value of the

word g1g0 , i.e. 00=>1, 01=>10, 10=>100 and 11=>1000. The ADC channel gets set to the

value of the word m e mo, i.e. 00=0, 01=1, 10=2 and 11=3. The other bits in the

LATCH VAL are 'don't cares'. Following this the function now sets up the DSP chip

registers itself. The registers set up are the Timer registers, and the Serial port control

registers. In the C31 these are memory mapped. To do this a pointer is set up to the

register area which in the C31 is at 808000 16 and the values are written to the registers.

This sets up the DSP to ADC communication on the serial port. The ReadAdc and

WriteDAC functions can now be called, to perform analog I/O as desired.

40

5.2.3 Analog Output

The output to the analog channels is written via the DAC. The function call for this is

WriteDAC(.). The C prototype for this is

int WriteDAC(int value, int channel);

This outputs the value to the DAC channel specified. Since the DAC has two channels

legal values for channel are 0 and 1. The value passed as value may be in the range -2047

to 2047. If the value is greater than 2047 it is clamped off to 2047, and if less than -2047,

is also restricted to -2047. This clamping is done by the function WriteDAC and need not

be performed by the user. This is to avoid problems associated with 'roll over'. If the

value is greater than 2047, then it cannot be properly expressed in 12 bits and leads to

wrong interpretation of the value. This also ensures that the saturation associated with the

DAC output is properly reflected in the software. Thus if a value of 4096 is output to the

DAC with an intended output value of 10V, it gets clamped to 5V only, since the DAC

output is restricted to 5V. Similar clamping occurs on the negative side. The function

WriteDAC retains the value output to the DAC channel 0 and channel 1. For this reason

the declaration for channel value[] is prefixed with static. The reason for maintaining the

last value is that actually every time the DAC value is updated, both the DAC values are

to be written. In C, it is made to appear as if each DAC is written to separately. While this

is more convenient to use, it means that the function WriteDAC must know the value of

the other DAC previously written. If this value is not stored, then when one DAC is

written the other DAC output will be trashed. Clearly this would be unacceptable, and this

is overcome by storing the previously output values. So actually the function WriteDAC

41

always updates both the DACs, and effectively makes it appear as if only one DAC is

updated every time. The value for the DAC channel 1 must be put into the upper 16 bits,

i.e. right justified in the upper 16 bit word. This shifting is done, and then the values for

the two channels are 'OR'ed together and then output via the serial port. Obviously if both

the converters are to be updated, then it is more efficient to do so in one call and for this

another function call, WriteDACS(..) is available. This function call updates both the DAC

channels in one call. The prototype for this function is

int WriteDACS(int value0, int valuel);

The channels 0 and 1 are updated with the values value] and value2 . This is more

efficient if both the converters are to be updated. For instance in our work, the controller

writes both the servo commands by calling this function, two calls to WriteDAC are not

used.

5.2.4 Analog Input

To input analog values from the ADC the function ReadAdc() is called. The prototype for

this function is

int ReadAdc(int channel);

This reads the value from the ADC for the voltage applied on the specified channel. The

function returns values ranging from -2048 to 2047 for voltages ranging from -5V to 5V.

The integer data type 'int' on the C31 DSP is 32 bits, while the conversion result is 12

bits. The necessary sign extension is performed internally and the user does not need to

perform any such extension. To read from more than one channel multiple calls to

42

ReadAdc are necessary. Since the ADC on the card has four channels, legal values for

channel are from 0 to 3. If the voltage at the ADC input is to be calculated then the ADC

output is simply multiplied by the scaling factor 5/2047. The function begins by writing

the channel (and the default gain of unity) to the latch. Once the latch is set the function

waits for the conversion to be triggered by the TCLK0 pin toggling. This pin is the output

of the Timer 0. Whenever the count is complete the pin goes high, stays high for a clock

period and then goes low. This event is used for triggering the ADC in hardware. This

also is used to synchronize the software to a time source. The timer runs off the DSP

clock, in the timer mode, and its accuracy is determined by the DSP clock, which is very

good. This is the source of timing in all the control programs written with this library.

5.2.5 Sampling Rate Determination

To use the above function calls include the file `d310bio.h' at the start of the program.

The example program in Appendix A. shows a very basic example. Also it is necessary to

define the sampling rate for the system. This is done by defining the constant TIMPER0.

The functions WriteDAC and ReadAdc both wait for the falling edge of the TCLK signal

in the C31 DSP.

A sequence RWWRRW synchronizes up as

Figure 5.2 Synchronization to TCLK

43

This means that the sampling rate is determined by the value loaded into the Timer 0 of

the C31. Also since these functions wait for the falling edge, all the reads and writes get

synchronized to these falling edges. The Figure(5.2) shows a arbitrary sequence of reads

and writes as it would get executed. The function InitDSP puts TIMPER0 into the Timer

0 count register. The constant must be defined before the file d310bio.h is included, so

that the default value is not picked up. The value of TIMPER0 is calculated from the

formula

Sample Rate =	
System Clock

(TIMPER0)(numcalls)(8)

where System Clock=50MHz. The factor numcalls is the total number of calls to the

functions ReadAdc and WriteDAC in one execution of the control loop. This is to account

for the fact that both the ReadAdc and WriteDAC function wait for the falling edge of

TCLK. So, for example if TCLK has a frequency of lkHz, and if the control loop has one

ReadAdc and one WriteDAC, then the loop will run 500 times per second.

Figure 5.3 Successive Read and Write Events

44

The functions WriteDAC and WriteDACS must be distinguished with care. Refer

Figure(5.3). The writes WI and W2 are made using WriteDAC. The writes W3 and W4

are made with the function WriteDACS. Owing to the architecture of the board, such

paired writes may be made but paired reads are not possible. The functions thus isolate the

user from the unnecessary details of the board architecture but reflect the restrictions that

the architecture imposes on the operations to be performed. The sampling rate may also be

set dynamically as explained in the following section.

5.2.6 Runtime Sampling Rate Determination

As explained in the previous sub-section, the sampling rate is determined by the count in

the Timer 0 Period Register of the C31. This value is set up by InitDSP, but it can also be

altered within the program if the need arises. For this the memory mapped Timer Period

Register must be altered. This can be done very simply as follows:

int *period;

period=(int *)0x8008028;

*period=TIMER_PERIOD_DESIRED;

This changes the rate at which TCLK0 pulses and sets the rate for the reads and writes.

Note that if this is to be done repeatedly, e.g. to generate a rectangular wave (duty cycle

not 50%) at the output of the DAC, then for good accuracy it would be necessary to start

and stop the timer while this is done and also to synchronize the modifications with TCLK

itself.

45

5.3 Control Programs for Robot Control

5.3.1 Control to a Fixed Set Point

The Appendix A.2.1 lists the program for a ND controller for both the axes of the robot.

A flowchart for the program is shown in Figure (5.1). The DSP card is then initialized

first. This sets up the sampling rate. The sampling rate is set to 10kHz, with the

appropriate value of TIMPER0. The program then proceeds, getting the gains from the

memory. The host program places the gains in the memory as integers. The gain is input

by the host program, multiplied by 100 and then transferred to the DSP memory. The

memory locations 0x 1000 to 0x100A are used to store proportional, integral and

derivative gains, and also the positions. Note that the positions are at the start, and are

placed together with the flag. This allows the selective update of the positions and flag,

with just a single call to the function sendio (discussed later). Note that the data placement

must ensure efficiency so that the loop can run as fast as necessary. Table(5.1) shows the

data grouping used. The gains are obtained and divided by 100, to compensate for the

fact that the gains are multiplied by 100 by the host program. This scaling is adopted to

allow the transfer of numbers with two decimal places, though the actual transfer is of

integers. The transfer of floating point numbers is certainly possible but needs a more

complex conversion since the floating point formats used in the PC and the DSP are

different. This scaling avoids the need to do the conversion. Also these gains are set by the

user, and the scaling can always be increased to a factor of 10 4 or 106 if the need is felt.

46

Table 5.1 Data Passing from the PC to the DSP .

Memory location	 Data Parameter

0x1000	 X-position

0x1001	 Y-position

0)(1002	 Newdata Flag

0x1003	 X-Setpoint

0x1004	 Y-Setpoint

0x1005	 Kp(X)

0x1006	 Ki(X)

0x1007	 Kd(X)

0x1008	 Kp(Y)

0x1009	 Ki(Y)

0x100A	 Kd(Y)

The flag is used to signal that new position data has been written by the host. When the

positions are updated the host program on the PC sets this to 10, and whenever the

controller reads it, the value is changed to zero. This ensures that each time a fresh value

for the position is used. To ensure that the sampling rate is maintained, however, the host

program must update these memory locations fast enough.

Figure 5.4 Flowchart for the Control Program

47

48

Once the positions are read, a sign extension must be performed, since the encoder card

gives 24 bit positions, while the integers on the DSP are 32 bit. So for properly

interpreting the number the sign extension must be performed. For this the bit. B23 is

examined. Since this is the sign bit in the 24 bit word B23-B0, if this bit is a I then all other

higher order bits are set otherwise cleared. Following this the proportional, integral, and

the derivative commands are calculated for both the axes, the program updates both the

DACs with the command values, and loops to go over the same process once again. The

program for running a state controller proceeds on very similar lines and is listed in A.2.2.

The controller is a state-space controller with observer. Since only the position is

measured, while the velocity is also required, an observer is necessary. The program

implements the combined observer and controller. Since there is only one call to the

function WriteDACS in the entire loop the value for numcalls to be used in calculating

TIMPERO is I. The state controller parameters used are the discretized parameters, since

what runs is essentially the discrete time version of the state space controller.

5.3.2 Input Shaping and Commanding the Robot over a Trajectory

The DSP makes the implementation of Input Shaping particularly easy owing to two

properties of DSP based control. First since the DSP has a large memory, generating

delays is extremely straightforward. Second the high speed of the DSP makes it possible

to have very good time resolution, critical to the implementation of Input Shaping. Before

examining the program (listed in Appendix A.2.2) we make a note of the fact that

convolution with an impulse is basically just passing the signal through. If the impulse is

49

delayed in time then this corresponds to delaying the signal. So the ZV shaper for

example, is implemented as A1u(t)+A2 u(t-T2). The program in A.2.2 is a program to

command the robot over a trajectory while applying input shaping. This program uses a

fixed gain, and this is therefore defined at the beginning, along with the shaper amplitudes

for both the axes and the time delays, in samples. The strategy used to command the robot

over the trajectory is to generate a moving reference that travels along the desired

reference. To do this the path is divided into several steps. Each linear segment is a step.

To traverse the command path in both directions, six steps are required. For each step

there is a reference and the temporary reference is made to move towards the reference.

The temporary reference is applied to the shaper, which pre-shapes the command, and this

is then applied to the inner loop, in our case a proportional controller was used inside the

loop. To actually implement the delay a circular buffer is used. The latest input is placed in

the buffer and the index is incremented. The input in the location now pointed to by the

index is the oldest input, and is delayed by the time corresponding to the length of the

buffer. This is now combined with the present input, in the proportions given by A I and A2

and then used as the reference to the proportional control loop. The algorithm increments

the temporary reference toward the reference and once this is complete waits for the robot

module to reach the reference. Once this happens, the algorithm continues to the next

step, moving the robot over the next part of the command trajectory. The three impulse

shapers, such as the ZVD, El or the Optimal need two circular buffers, and three

coefficients A1,A2 and A3.

50

5.4 Host Programs

The PC performs supervisory functions such as starting the controller programs on the

DSP, loading the program into the DSP memory and also transfers the position from the

encoder interface card to the DSP card. Also the parameters such as the set-points,

proportional gain etc. are input at the start of the program from the user and placed in the

DSP memory. All these functions are performed by the host program. The host program

loads the DSP with the desired controller program. This is done by running the loader

load300 as an external command. This loads the specified control program e.g. the

proportional control program into the DSP memory. This eliminates the need to do so

manually. The host program then inputs any parameters such as gains etc. and transfers

them to the DSP memory. For this the link package, provided by Dalanco is used. After

this the DSP is started. The encoder card is read by calling functions from the libraries

provided by its manufacturer. The procedures for data exchange between the DSP card

and the PC are discussed in the next section, as is the interface to the encoder. The host

program assembles the parameters such as the gain, positions, flags etc. in an array of

'long integers', as per Table(5.1). Once these are put in place in the array the function

sendio(), which is part of the link package for the DSP board is called. This function call

transfers this array into the memory of the DSP which then accesses the parameters. The

program then moves into the main loop, reading from the encoder card and writing to the

DSP board. While running the loop, the program stores the positions of the modules in the

PC memory. Though not necessary for the functioning of the system, this is for recording

the movements of the module for analysis.

51

Figure 5.5 Flowchart for the Host Program

52

In the loop the host program checks for any keyboard activity by the user, and makes an

exit if any key is hit. Note however that this exit does not mean that the robot stops

moving. It abruptly cuts off control, and if any voltage is left on the DAC, the robot

module will crash. To avoid this the program calls up a utility to zero the servo

commands, also safeguard discussed in section 2.2.1 is used. Prior to exiting, the host

program stores the recorded trace of the module position in a disk file, as ASCII numbers.

This file can be loaded into a software package such as MATLAB or similar for analysis.

5.5 Data Exchange between the PC and the DSP Card

The data exchange between the DSP card and the host PC is accomplished by calling the

functions in the user library provided by the card manufacturer. For more detailed

information consult the users guide for the card.

5.5.1 Starting the DSP on the DSP Card

For starting the DSP the go320 function is called. The prototype is

go320(unsigned baseio)

baseio is the Base I0 Address of Model 310B, This function simply reads a byte from the

address (baseio+6). This causes the DSP to start execution of any loaded programs. The

hardware decodes the signal (IORD. Address 306). This simply means that if the address

306 is put on the PC ISA Bus, and the LORD line is asserted, this gets decoded by the

logic, which starts the DSP.

53

5.5.2 Halting the DSP on the DSP Card

For halting the DSP the h1t320 function is called. The prototype is

h1t320(unsigned baseio)

baseio is the Base I0 Address of Model 310B. This function reads a byte from the address

(baseio+7). This causes the DSP to be halted, process is similar to that described in 5.5.1.

5.5.3 Transferring Data to and from DSP Memory on the DSP card

sendio(long * x, unsigned length, long start, unsigned baseio)

recvio(long * x, unsigned length, long start, unsigned baseio)

x is array of 32 bit words

length is number of words in array X to send

start is source start address in Model 310 memory

baseio is the base 10 address of Model 310

sendio copies the array x into Model 310 memory starting at memory location start, while

recvio copies the Model 310 memory starting at memory location start into the array x.

These function first set up the address counter on the DSP board to the desired value. This

is done in two steps. First the 64K page value is output as a byte to the address

(baseio+6). Next the remaining 16 bits of the address are output to the address (basio+2)

to complete the address counter setup. Once this is done, the data at the memory location

pointed to by the address counter is read or written by two 16 bit read (or write)

operations to the address basio.

54

The address baseio is jumper selectable and in our system is set to 300 16 . The address

counter has an autoincrement feature. The address counter is incremented after each read

or write. This means that to write four words, only 10 writes are needed, instead of 16.

But this advantage is lost if multiple calls to sendio are made, requesting read or write of

only one word at a time. The reason for the note made in section 5.3.1 will now be clear.

By grouping together data properly only one address setup is needed to transfer the

position and flags, otherwise three calls to sendio would be wasting 10 operations.

5.5.4 Interrupt Communication between the PC and the DSP

The PC can send an interrupt to the DSP as well as the other way round. A read from the

address (baseio+5) will cause an INTO to be applied to the C31. For the DSP to interrupt

the PC, the XF0 pin is given a positive pulse by software. This will cause an interrupt to

the PC. The particular interrupt raised may be selected by setting jumpers J11 andJ12.

The PC must also set its PIC IMR (Interrupt Mask Register) and the Interrupt Service

Routine must be set up before generating an interrupt or else indeterminate operation may

occur.

CHAPTER 6

RESULTS I

This chapter presents the results for the short range motion control of the robot. The step

size was 10 mm for all runs.

6.1 Results for the ZV Shaper

A comparison of the Simulation and an actual run is presented in Figure (6.1). The

simulated (dotted trace) and actual run (solid trace) agree very closely. The actual run

shows some dead time, which is not seen in the simulation, and there is a very small error

in the final value, otherwise the two traces are identical

Figure 6.1 Comparison of simulation and actual run for ZV Shaper

55

56

The results for the ZV Shaper for short steps is shown in Figures (6.2) to (6.5). A small

step of 10mm was used as the command. The load on the robot was changed and the

motion was observed. The ZV Shaper is seen to be satisfactory near the nominal load of 1

kg and also for 0kg, but for larger deviations the performance is seen to deteriorate quite

rapidly.

Figure 6.2 ZV Shaper test run #1

Figure 6.3 ZV Shaper test run #2

57

Figure 6.4 ZV Shaper test run #3

58

Figure 6.5 ZV Shaper test run #4

It can be seen from Figure (6.5) that the overshoot is now approx 20%. Such performance

may not be acceptable in many cases, e.g. machine tool control, where the output is the

tool position and the overshoot can result in damage to the part being machined or tool

damage.

6.2 Results for the ZVD Shaper

The ZVD Shaper tests are shown in Figure (6.6) to (6.9). The ZVD shaper shows

increased robustness. The mismatch that occurs in the ZVD Shaper does not really show

up in this case as oscillation since the command is small and the effects of friction are more

pronounced. However the case with 5kg load shows some small overshoot.

Figure 6.6 ZVD Shaper test run #1

59

Figure 6.7 ZVD Shaper test run #2

Figure 6.8 ZVD Shaper test run #3

60

Figure 6.9 ZVD Shaper test run #4

61

6.3 Results for the El Shaper

The EI Shaper has the most robustness, and this can be seen from the complete abscence

of overshoot in all cases.

Figure 6.10 El Shaper test run #1

Figure 6.11 EI Shaper test run #2

62

Figure 6.12 El Shaper test run #3

63

Figure 6.13 El Shaper test run #4

The El shaper has tolerance toward the changes in the system parameters over a wider

range but its disadvantage is that it does not have zero residual vibration all over the range

over which it is designed to tolerate. It is characterised by 'humps' over this range. i.e. the

residual vibration curve has ripples.

6.4 Results for the Optimal Shaper

The results for the optimal shaper are shown in Figures (6.14) to (6.17).

Figure 6.14 Optimal Shaper test run #1

64

Figure 6.15 Optimal Shaper test run #2

Figure 6.16 Optimal Shaper test run #3

65

Figure 6.17 Optimal Shaper test run #4

66

6.5 Results for the State Space Controller

A state controller was also designed for controlling the robot position. The state controller

used is the discrete time version. Pole placement was used to design the controller. This

was used for moving the robot over short steps, once again 10mm. The responses with the

changing load on the robot are shown from Figure(6.18) to (6.21).

Figure 6.18 State Controller test run #1

Figure 6.19 State Controller test run #2

67

68

Figure 6.20 State Controller test run #3

The response with a 3kg load exhibits a pronounced transient as seen above.

69

Figure 6.21 State Controller test run #4

For a load of 5kg a transient and some residual oscillation is seen. Note however that the

state controller response time is of the order of 30msec, while with input shaping the

response time is of the order of 50msec with the ZV shaper, and 100msec with the ZVD,

EI and Optimal Shapers

CHAPTER 7

RESULTS H

Each shaper tested with short steps, in the last chapter was also used to command the

robot over a trajectory the results are presented in this chapter. Each test is presented with

a time history and an XY plot. The robot was commanded over a U shaped path, each of

the arms of the U being 25mm and the base 300mm. This trajectory is shown in Figure

(7.1).

Figure 7.1 Command Trajectory for the Robot

The XY plots in this chapter are deliberately plotted to a scale that is different on the X

and Y axes so that they can be seen well, since the X axis would otherwise be unduly

compressed. Also all module positions are in mm.

70

7.1 Results for the ZV Shaper

71

Figure 7.2 ZV Shaper test run #1

72

Figure 7.3 ZV Shaper test run #2

73

Figure 7.4 ZV Shaper test run #3

Figure 7.5 ZV Shaper test run #4

74

7.2 Results for the ZVD Shaper

75

Figure 7.6 ZVD Shaper test run #1

x ZVD Shaper 1 kg load

time sec

time sec

ZVD Shaper 1 kg load

76

X module position

Figure 7.7 ZVD Shaper test run #2

x ZVD Shaper 3 kg load

time sec

time sec

ZVD Shaper 3 kg load

77

X module position

Figure 7.8 ZVD Shaper test run #3

78

Figure 7.9 ZVD Shaper test run #4

7.3 Results for the ET Shaper

79

Figure 7.10 El Shaper test run #1

80

Figure 7.11 El Shaper test run #2

81

Figure 7.12 El Shaper test run#3

82

Figure 7.13 EI Shaper test run #4

7.4 Results for the Optimal Shaper

83

Figure 7.14 Optimal Shaper test run #1

84

Figure 7.15 Optimal Shaper test run #2

85

Figure 7.16 Optimal Shaper test run #3

86

Figure 7.17 Optimal Shaper test run #4

87

Table 7.1 Maximum Deviation from Command Trajectory X-module (in mm).

load
(k)

ZV ZVD EI Optimal

0 0.8 0.6 0.65 0.75

1 0.7 0.5 0.7 0.7
3 1.5 0.5 0.65 0.5
5 2.7 0.55 0.4 0.7

Table 7.2 Maximum Deviation from Command Trajectory Y-module (in mm).

load
(kg)

ZV ZVD El Optimal

0 1.6 1.2 2.5 2.0
1 2.2 1.2 2.5 2.0
3 5.5 3.1 2.2 2.1
5 5.5 3.5 2.5 2.2

As can be seen a lower maximum deviation leads to a tighter following of the command

trajectory.

Table 7.3 Completion time for one run along the trajectory(in sec)

load
(kg)

ZV ZVD El Optimal

0 0.87 1.16 1.2 1.18
1 0.82 1.18 1.1 1.16
3 0.90 1.18 1.1 1.16
5 0.95 1.18 1.2 1.15

Table 7.4 RMS errors for the Shaper Designs.

Load
(kg)

ZV ZVD El Optimal

0 132.5837 187.3340 239.2080 224.9403
1 291.2664 216.7372 306.7621 223.5067
3 732.0741 508.6997 279.6754 226.9504
5 938.3214 605.1436 370.8576 311.8987

CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

8.1 Conclusions

DSP based control of Robot Modules is demonstrated to enhance performance. DSP

based control enables the application of several advanced control strategies to the control

of the robot modules. Input Shaping is demonstrated as a feed forward strategy for

cancellation of residual oscillation. The effects of system parameter variation on the

cancellation are examined. The performance of the ZV Shaper is seen to deteriorate

rapidly with deviations in the plant parameters. ZVD, EI and Optimal Shapers are seen to

be more robust with respect to the system parameter variations, and the deterioration in

the performance is restricted. The ZVD, EI and Optimal Shaping strategies are more

robust, however they are slower. The ZV Shaper is the fastest, and if the system model is

very well known, would be the best fit. The Command Shaping is utilized to command

the robot over a U-shaped trajectory, and significant improvements in speed are obtained.

The overshoot for step responses is reduced from 75% to less than 5%, which is the worst

case including the plant parameter variation. For short steps, the State Controller gives

faster response. So if the desired motion is very small, the state controller is more efficient.

However for the longer ranges, the input shaping is found to be more efficient.

The robot is commanded to the trajectory and the maximum deviation from the command

path is restricted to less than 3% of the range with the EI Shaper, again including the plant

parameter variation.

88

89

8.2 Future Directions

The Input Shaping in this thesis was used with a simple proportional controller. This

resulted in significant steady state error. Since for most applications the steady state error

is not acceptable, a combination of Input Shaping and State Controller may be more

efficient. In such a solution an input shaping strategy can be used to get the module close

to the desired position and then the state controller is used to move to the exact position.

Such a solution would provide a combination of speed and accuracy. Also some

significant enhancements in the system structure are possible. In our present system the

encoder interface hardware is in the form of a separate PC add on card. This function may

be integrated into the DSP card. This would enable more efficient operation. This is

especially critical if the sampling rate is to be increased further, or more axes are to be

added. Currently the position sensing is by means of the encoder mounted onto the shaft

of the leadscrew. The position of the module is linked to the angular position of the

leadscrew, but this neglects the mechanical tolerances, and also the fact that such position

calculation is, in a sense, open loop. Thermal distortions of the robot module, for instance

would destroy the relationship. Some other forms of position sensing may be explored for

overcoming these effects.

APPENDIX A

SOFTWARE

This appendix contains all the listings for the software programs for the project. All the progrms

are not included, only the ones with greater significance are listed.

The following is the listing of the source for the 'C' user library for the Dalanco Model 310B.

/*

Sample Rate = (System Clock / 8) / TIMPERO

where System Clock = 50MHz

*/

#if !defined(TIMPER0)

#define TIMPER0 	 0x50

#endif

*define IOF AMASK 	 0x0E

#define IOF SET XF1_ 	 0x62

#define IOF_ RESET _XF1 0x22

#define CTRL 	 0x808000

#define TIMGB0CONHI 	 0x6

#define TIMGB0CONLO 	 0x2

#define TIMGB0START 	 0x3C1

#define TIMGB0STOP 	 0x381

#define TIMGB0RESTART 0x341

#define TIMGB1CONHI 	 0x6

#define TIMGB1CONLO 	 0x2

90

91

#define SERGLOBA 	 0x1d0144

#define SERGLOB0 	 Ox0C1d0144

#define SERPRTX0 	 0x111

*define SERPRTR0 	 0x111

#define SERTIM0 	 0x3CF

#define SERTIM0VAL 	 0x01

*define XVALUES 	 0x809800

#define LATCH VAL 	 0x0

#define LATCH AREA 	 0x0FFFFFF

#define HIMASK 	 0x0FFFF0000

void InitDsp(void)

{

int *p3,*p7;

p3=(int *)LATCH AREA;

p7=(int *)CTRL;

*p3=LATCHVAL;

* (p7+64)=SERGLOBA;

* (p7+70)=SERTIM0VAL;

* (p7+68)=SERTIM0;

* (p7+66)=SERPRTX0;

* (p7+67)=SERPRTR0;

* (p7+64)=SERGLOB0;

p3=0; 	 / InitDsp intialises the ADC channel to

Channel 0 (default) on Initialisation */

* (p7+0x64)=0x18;

* (p7+0x20)=0;

92

*(p7+0x28)=TIMPER0;

*(p7+0x20)=TIMGB0START;

}

int ReadAdc(int channel)

int *p3,*p7;

int i=0,adcvalue,x;

x=channel;

p3=(int *)LATCH AREA;

p7=(int *)CTRL;

p3=x; 	 / Set the ADC Input Channel */

while(((*(p7+0x20))&0x0800)==0);

/* Wait for TIM0(conversion start) to go HIGH */

while(((*(p7+0x20))&0x0800)!=0);

/* Wait for TIM0 (conversion start) to go LOW */

asm(" 	 OR 60H,IOF");/* Start oscillator to use

Serial Port */

while(((*(p7+64))&0x01)==0);/* Wait for reception of ADC

Data */

asm(" AND 0DFH,IOF"); 	 /* Turn Oscillator OFF to

reduce noise */

adcvalue=(*(p7+76)&0x0fff0); /* Retrieve the ADC data */

adcvalue=adcvalue>>4;

if((adcvalue&0x800)!=0) adcvalue=adcvalue I 0x0fffff000 ;

return(adcvalue);

}

int WriteDAC(int value,int channel)

int *p7;

static int channel value[2];

int s[2];

ReadAdc(1);

if((channel!=0)&&(channel!=1))

exit(1);

1

if(value>2047) value=2047;

if(value<-2047) value=-2047;

channel value[channel]=value;

s[0]=(channelvalue[0])&0x0fff;

s[1]=(channelvalue[1])&0x0fff;

asm(" NOP ");

asm(" NOP ");

s[1]=s[1]<<16;

asm(" NOP ");

asm(" NOP ");

value=s[0]ls[1];

p7=(int *)CTRL;

while(((*(p7+64))&0x02)==0);

*(p7+0x30)=TIMGB1CONLO;

asm(" NOP");

asm(" NOP");

93

*(p7+0x30)=TIMGB1CONHI;

*(p7+0x48)=value;

return(0);}

int WriteDACS(int value0,int valuel)

int *p7;

int s[2];

ReadAdc(1);

if(value0>2047) value0=2047;

if(value0<-2047) value0=-2047;

value0=value0&0x0fff;

valuel=valuel&0x0fff;

value0=(value1<<16)Ivalue0;

p7=(int *)CTRL;

while(((*(p7+64))&0x02)==0);

* (p7+0x30)=TIMGB1CONLO;

asm(" NOP");

asm(" NOP");

* (p7+0x30)=TIMGB1CONHI;

* (p7+0x48)=value0;

return(0);}

A.2 Control Programs for the Mode1310B

This section lists the control programs used for performing various control actions.

A.2.1 Listing of PROP.0

#define TIMPER0 625

94

95

#include"D310BIO.H"

void main()

int *p;

int positionl,setptl,first=0;

int position2,setpt2;

float Kpl,Kil,Kdl,ul,errorl,sum1=0.0,propl,integl,deriv1;

float lasterrorl;

float Kp2,Ki2,Kd2,u2,error2,sum2=0.0;

float prop2,integ2,deriv2,lasterror2;

InitDsp();

p=(int *)0x1000; /* Define a pointer to mem loc 1000H

setptl=*(p+3); 	 /* Get the setpoint from 1003H */

Kp 1=((float)(* (P+5)))/100.0;

/* Get the proportional gain from 1003H */

Ki1=((float)(*(p+6)) ,)/100.0;

/* Get the integral 	 gain from 1004H */

Kd1=((float)(*(p+7)))/100.0;

/* Get the derivative 	 gain from 1005H */

Kp2=((float)(*(p+8)))/100.0;

/* Get the proportional gain from 1006H */

Ki2=((float)(*(p+9)))/100.0;

/* Get the integral gain from 1007H */

Kd2=((float)(*(p+10)))/100.0;

/* Get the derivative 	 gain from 1008H */

setptl=*(p+3); 	 /* Get the setpoint from 1009H */

setpt2=*(p+4); 	 /* Get the setpoint from 100AH */

while(1)

while(*(p+2)!=10);

*(p+2)=0;

position1=*p;

if((positionl&0x00800000)!=0)

positionl=positionli0x0FF000000;

lasterrorl=errorl;

setpt1=*(p+3); 	 /* Get the setpoint from 1009H

errorl=setptl-positionl;

if(first==0)

lasterrorl=errorl;

1

suml=suml+errorl;

propl=errorl*Kpl;

integl=Kil*suml;

deriv1=Kd1*(errorl-lasterror1);

ul=propl+integl+deriv1;

ul=u1*0.0051175;

position2=*(p+1);

if((position2&0x00800000)!=0)

position2=position210x0FF000000;

lasterror2=error2;

96

97

setpt2=*(p+4); 	 /* Get the setpoint from 100AH */

error2=setpt2-position2;

if (first==0)

lasterror2=error2;

sum2=sum2+error2;

prop2=error2*Kp2;

integ2=Ki2*sum2;

deriv2=Kd2*(error2-lasterror2);

u2=prop2+integ2+deriv2;

u2=u2*0.0051175;

WriteDACS(u1,u2);

}}

A.2.2 Listing of SHAPE.0

/* ZV shaper */

*define TIMPER0 625

*define XPROP GAIN 50

*define PROP GAIN 50

*define xA1 0.5581

#define xA2 0.4419

*define XMAX 949

#define A1 0.5199

*define A2 0.4801

#define YMAX 499

#include"D310BIO.H"

#include"math.h"

void main()

long int *p,*dp;

float *x,*y;

long int xindex=0,yindex=0;

long int positionl,setptl,first=0,i;

long int position2,setpt2,step=0;

float f,ref,u,pos,tmpref,incr,xerr,yshaped,delayed;

float xf,xref,xu,xpos,xtmpref,xincr,xshaped,xdelayed;

float Kpx,Kp,err;

InitDsp();

Kpx=XPROPGAIN*0.0051175;

Kp=PROPGAIN*0.0051175;

p=(long int *)0x1000;

/* Define a pointer to mem loc 1000H 	 */

x= (float *)5000;

y= (float *)l0000;

for(i=0;i<5000;i++)

*(x+i)=0;

*(y+i)=0;

1

98

xtmpref=0;

tmpref =0;

while (1)

1

while(*(p+2)!=10);

*(p+2)=0;

position1=*(p+0);

/* Get X-axis position from 1000H */

position2=*(p+1);

/* Get Y-axis position from 1001H */

/* Do sign extension since the encoder board gives 24

position data and the DSP has ints 32 bits long. */

if((positionl&0x00800000)!=0)

positionl=position1I0x0FF000000;

if((position2&0x00800000)!=0)

position2=position2I0x0FF000000;

xpos= (float)positionl;

pos= (float)position2;

switch (step)

1

case 0: setpt1=-10000;

setpt2=0;

break;

99

case 1:

setpt1=-10000;

setpt2= 120000;

break;

case 2:

setpt1= 0;

setpt2= 120000;

break;

case 3: setpt1= -10000;

setpt2= 120000;

break;

case 4: setpt1= -10000;

setpt2= 0;

break;

case 5:

setpt1= 0;

setpt2= 0;

break;

default: setpt1=-10000;

setpt2=0;

ref= (float)setpt2;

xref= (float)setptl;

incr=70*(ref-pos)/abs(ref -pos);

xincr=70*(xref-xpos)/abs(xref -xpos);

if((abs(xtmpref-xref))>100) xtmpref=xtmpref+xincr;

100

101

if((abs(tmpref-ref)>100)) 	 tmpref= tmpref+ incr;

*(x+xindex)=xtmpref;

*(y+yindex)= tmpref;

xindex++;

yindex++;

if(xindex>=XMAX) xindex=0;

if(yindex>=YMAX) yindex=0;

xdelayed= *(x+xindex);

delayed = *(y+yindex);

xshaped=(xAl*xtmpref)+(xA2*xdelayed);

yshaped=(Al*tmpref)+(A2*delayed);

xerr=xshaped-xpos;

err=yshaped-pos;

xf=xerr*Kpx;

f=err*Kp;

u=f;

xu=xf;

WriteDACS((int)xu,(int)u);

if((abs((xref-xpos))<400.0) && (abs((ref-pos))<1000.0))

step++;

if(step>=6)

xref=xpos;

ref=pos;

}

iftstep>5)

{

step=5;

}

*(p+5)=step;

}

}

}

A.2.3 Listing of HOST.0 .

This program is used for running the program prop.c

/*

this program gets position from encoder lc

and sends it to c31 memory location 1000H

and also prints pos

*/

#include "te5312.h"

#include<stdio.h>

#include<stdlib.h>

#include<bios.h>

#include<dos.h>

#include<string.h>

#include<math.h>

#include<alloc.h>

#define BOARD 0

#define AXIS A 0

102

#define AXIS B 1

*define GLOBAL -1

// interrupt hook prototypes

static void te5312IndexAlert(short *psAxisNum);

static void te5312WrapAroundAlert(short *psAxisNum);

// interrupt counters

static unsigned short wCarryA, wCarryB;

static unsigned short wlndexA, wlndexB;

void main(int argc,char *argv[])

unsigned short wBoardAddr;

short sStatA, sStatB;

short sIRQNum;

float temp;

char a,c[10],command[80]="";

int run,status,*newdata;

FILE *fp;

long s[4],p[11],i,setptl,setpt2;

long samples=0,x,positionl,position2;

long far *mem;

struct time *tl,*t2;

clrscr();

t1=malloc(sizeof(struct time));

103

t2=malloc(sizeof(struct time));

mem=(long far *)farmalloc(50000L*sizeof(long));

fp=fopen("y.plt","wt");

printf("\nHosting the DSP program %s.c (MUST exist !

)\n\n\n",argv[1]);

strcat(command,"load300 ");

strcat(command,argv[1]);

strcat(command," ");

system(command);

printf("\nEnter data for AXIS 1 : \n\n\n");

printf("\nInput the setpt (xl):");

scanf("%ld",&setpt1);

p[3]=setptl;

printf("\nInput the proportional gain Kp (AXIS 1): ");

scanf("%f",&temp);

p[5]—(long)(temp*100);

printf("\nInput the integral gain Ki (AXIS l): ");

scanf("%f",&temp);

p[6]=(long)(temp*100);

printf("\nInput the derivative gain Kd (AXIS 1): ");

scanf("%f",&temp);

104

p[7]=(long)(temp*100);

printf("\nEnter data for AXIS 2 : \n\n\n");

printf("\nInput the setpoint (yl):");

scanf("%ld",&setpt2);

p[4]=setpt2;

printf("\nlnput the proportional gain Kp (AXIS 2): ");

scanf("%f",&temp);

p[8]=(long)(temp*100);

printf("\nlnput the integral gain Ki (AXIS 2): ");

scanf("%f",&temp);

p[9]=(long)(temp*100);

printf("\nlnput the derivative gain Kd (AXIS 2): ");

scanf("%f",&temp);

p[10]=(long)(temp*100);

sendio(p,11,0x10001,0x300);

wBoardAddr=0x20a;

sIRQNum=5;

// initialize the software

te5312InitSw();

105

// initialize the board

te5312InitBoard(wBoardAddr,4);

// zero the counters

te5312LoadCntr(GLOBAL, 0L);

// initialize interrupts

te5312InterruptHooks(te5312WrapAroundAl

te5312IndexAlert);

te5312EnableIRQ(BOARD, sIRQNum);

te5312IndexAlertOn(GLOBAL);

te5312WrapAroundAlertOn(GLOBAL);

i=0;

gettime(tl);

go320(0x300);

s [2]=10;

s[3]=setptl;

s[4]=setpt2;

while((samples<50000L)Wkbhit()== 0))

s[0]=te5312ReadCntr(AXIS_A);

s[1]=te5312ReadCntr(AXIS_B);

sendio(s,5,0x10001,0x300);

mem[samples++]=s[0];

106

ww:

hlt320(0x300);

gettime(t2);

system("z.bat");

for(i=0L;i<=samples;i++)

x=mem[i];

if((x&0x00800000)!=0) x=xl0x0FF000000;

fprintf(fp,"\n%ld",x);

1

printf("\n%d : %d : %d : %d",t1->ti_hour,tl->ti_min,tl -

>ti sec,t1->ti hund);

printf("\n%d : %d : %d : %d",t2->ti hour,t2->ti min,t2-

>ti sec,t2->ti hund);

fclose(fp);

printf("\n");

// disable interrupts before exiting program

te5312DisableIRQ();

1

void te5312WrapAroundAlert(short *psAxisNum)

switch(*psAxisNum)

{

case AXIS_A: wCarryA++; break;

107

case AXIS_B: wCarryB++; break;

}

1

void te5312IndexAlert(short *psAxisNum)

{

switch(*psAxisNum)

case AXIS A: wlndexA++; break;

case AXIS B: wlndexB++; break;

}

1

A.2.4 Listing of TRA.0 .

This program is used with the program shape.c

/*

this program gets position from encoder board

and sends it to c31 memory location 1000H

and also prints pos

*/

#include "te5312.h"

#include<stdio.h>

#include<stdlib.h>

#include<bios.h>

#include<dos.h>

#include<string.h>

#include<math.h>

108

#include<alloc.h>

#define BOARD 0

#define AXIS A 0

#define AXIS B 1

#define GLOBAL -1

// interrupt hook prototypes

static void te53l2lndexAlert(short *psAxisNum);

static void te5312WrapAroundAlert(short *psAxisNum)

// interrupt counters

static unsigned short wCarryA, wCarryB;

static unsigned short wlndexA, wlndexB;

void main(int argc,char *argv[])

{

unsigned short wBoardAddr;

short sStatA, sStatB;

short sIRQNum;

109

110

float temp;

char a,c[10],command[80]="";

int run,status,*newdata;

FILE *fpx,*fpy;

long

s[4]={0,0,0,0},p[11]={0,0,0,0,0,0,0,0,0,0,0},i,setpt 1 ,setpt 2 ,sam

ples=0,x,positionl,position2;

long *mem,*meml;

struct time *tl,*t2;

clrscr();

t1=malloc(sizeof(struct time));

t2=malloc(sizeof(struct time));

mem=(long far *)farmalloc(50000L*sizeof(long));

mem1=(long far *)farmalloc(50000L*sizeof(long));

fpx=fopen("x.plt","wt");

fpy=fopen("y.plt","wt");

printf("\nHosting the DSP program %s.c (MUST exist !

)\n\n\n",argv[1]);

strcat(command,"load300 ");

strcat(command,argv[1]);

strcat(command," ");

system(command);

sendio(p,11,0x10001,0x300);

wBoardAddr=0x20a;

sIRQNum=5;

// initialize the software

te5312InitSw();

// initialize the board

te5312InitBoard(wBoardAddr,4);

// zero the counters

te5312LoadCntr(GLOBAL, 0L);

// initialize interrupts

te5312InterruptHooks(te5312WrapAroundAlert,

te5312IndexAlert);

te5312EnableIRQ(BOARD, sIRQNum);

te5312IndexAlertOn(GLOBAL);

te5312WrapAroundAlertOn(GLOBAL);

i=0;

gettime(t1);

go320(0x300);

s[2]=10;

s[3]=setptl;

s[4]=setpt2;

while(kbhit()==0)

s[0]=te53l2ReadCntr(AXIS A);

s[1]=te5312ReadCntr(AXISB);

sendio(s,5,0x10001,0x300);

if ((i%10)==0)

mem[samples++]=s[0];

mem1[samples]=s[1];

if(samples>49999L) samples=49999L;

i++;

WW:

hlt320(0x300);

gettime(t2);

system("z.bat");

for(i=0L;i<=samples;i++)

x=mem[i];

if((x&0x00800000)!=0) x=xl0x0FF000000;

fprintf(fpx,"\n%ld",x);

112

}

for(i=0L;i<=samples;i++)

x=meml[i];

if((x&0x00800000)!=0) x=x10x0FF000000;

fprintf(fpy,"\n%ld",x);

1

fclose(fpx);

fclose(fpy);

printf("\n%d : %d : %d : %d",t1->ti hour,t1->ti r

>ti sec,t1->ti hund);

printf("\n%d : %d : %d : %d",t2->ti hour,t2->ti r

>ti sec,t2->ti hund);

printf("\n");

// disable interrupts before exiting program

te5312DisableIRQ();

1

void te5312WrapAroundAlert(short *psAxisNum)

switch(*psAxisNum)

114

case AXIS A: wCarryA++; break;

case AXIS B: wCarryB++; break;

1

1

void te5312IndexAlert(short *psAxisNum)

switch(*psAxisNum)

case AXIS A: wIndexA++; break;

case AXIS B: wlndexB++; break;

1

1

REFERENCES

1. Timothy N. Chang, Edwin Hou and Lucy Y. Pao. Input Shaper Designs for Minimizing
the Expected Level of Residual Vibration in Flexible Structures. Proceedings of
the 1997 American Control Conference, Albuquerque, NM, June 1997.

2. N. Singer and W. Seering. Preshaping Command Inputs to Reduce System Vibration.
ASME Journal of Dynamic Systems, Measurement and Control, 112(0,1990

3. W.J. Book. Controlled Motion in an Elastic World. ASME Journal of Dynamic
Systems, Measurement and Control, 115(2),1993

4. Dalanco Spry. Model 310 Data Acquisition and Signal Processing Board for the IBM
PC and Compatibles, 1993

5. Texas Instruments. TMS320C3x User's Guide, 1994

6. Texas Instruments. TMS320C3x Floating Point Optimizing C Compiler User's
Guide, 1995.

7. Texas Instruments. TMS320C3x Floating Point DSP Assembly Language Tools User's
Guide, 1995

8. Technology 80 Inc. Model 5312B 4-Axis Ouadrature Encoder- PC Technical
Reference, 1995.

9. Technology 80 Inc. Model 5312 Software Developer's Guide, 1995.

10. Adept Technology Inc. Adept MV Controller User's Guide, 1995.

11. Adept Technology Inc. Adept MV Controller Developer's Guide, 1995.

12. Adept Technology Inc. Adept Advanced Servo Library Reference Guide, 1995

115

	Copyright Warning & Restrictions
	Personal Info Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: System Hardware Description
	Chapter 3: Robot Dynamic Modeling
	Chapter 4: Input Shaping Theory
	Chapter 5: Software
	Chapter 6: Results I
	Chapter 7: Results II
	Chapter 8: Conclusions and Future Directions
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

