Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1228 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Application of the wavelet transform to biomedical signals
Author: Hauck, Karl O.
View Online: njit-etd1994-024
(xi, 108 pages ~ 5.6 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Master of Science
Program: Electrical Engineering
Document Type: Thesis
Advisory Committee: Reisman, Stanley S. (Committee chair)
Engler, Peter (Committee member)
Findley, Thomas W. (Committee member)
Date: 1994-01
Keywords: Wavelets
Signal processing--Digital techniques
Digital filters (Mathematics)
Availability: Unrestricted
Abstract:

The basic concepts and fundamentals of the wavelet signal representation were examined. The orthonormal wavelet was selected for this project after being compared to various types of wavelets. The orthonormal wavelet was chosen due to the equal time and frequency resolution exhibited in the wavelet coefficients. Programs were written in Matlab to implement the orthonormal wavelet in developing wavelet coefficients for a given signal. The programs include the conditions for an orthonormal wavelet in and which produce the wavelet filters g(n) and h(n). The wavelet filters were then incorporated into another program that applied Mallat's multiresolution algorithm for a given signal. The resulting wavelet coefficients were obtained and interpreted. The orthonormal wavelet was applied to various types of biomedical signals. The wavelet transform was applied to motor evoked potentials (MEPs) created cortical magnetic stimulation. The wavelet was also applied to evoked potentials (EPs) and to various types of EKG signals. The wavelet representation exposed new ways of observing biomedical signals by bringing out details and structures not present in the original waveforms.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003