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ABSTRACT

APPLICATION OF THE WAVELET
TRANSFORM TO BIOMEDICAL SIGNALS

by
Karl 0. Hauck

The basic concepts and fundamentals of the wavelet signal representation were

examined. The orthonormal wavelet was selected for this project after being compared to

various types of wavelets. The orthonormal wavelet was chosen due to the equal time and

frequency resolution exhibited in the wavelet coefficients. Programs were written in

Matlab to implement the orthonormal wavelet in developing wavelet coefficients for a

given signal. The programs include the conditions for an orthonormal wavelet in and

which produce the wavelet filters g(n) and h(n). The wavelet filters were then

incorporated into another program that applied Mallat's multiresolution algorithm for a

given signal. The resulting wavelet coefficients were obtained and interpreted. The

orthonormal wavelet was applied to various types of biomedical signals. The wavelet

transform was applied to motor evoked potentials (MEPs) created cortical magnetic

stimulation. The wavelet was also applied to evoked potentials (EPs) and to various types

of EKG signals. The wavelet representation exposed new ways of observing biomedical

signals by bringing out details and structures not present in the original waveforms.
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CHAPTER 1

WAVELETS

1.1 Introduction

The Fourier transform has been the most widely used mathematical tool for signal

analysis in science and engineering. Fourier methods allow the transformation of a signal

from the time to the frequency domain and enable one to view the properties and features

of the signal.

Recently, a new signal processing tool known as wavelets, has been developed.

The wavelet transform of a signal is a decomposition of the signal into a set of frequency

channels of equal bandwidth [1]. In signal processing terms, the wavelet is essentially an

ideal bandpass filter, allowing certain frequency components to pass through without

losing any signal information [3]. The bandpass filtering is performed by the successive

convolution of the signal with a highpass and lowpass filter, where the combination of the

filters produce the bandpass filter. Once these filters are applied, the different scales of the

signal, known as the wavelet coefficients, are then obtained.

Each of the different scales pertains to a specific frequency channel [2]. The

various scales of the signal bring out the details not present in the original signal. The

original signal might seem stationary and smooth but the wavelet representation of the

signal brings out components that are not apparent and even transient in nature. Unlike

the Fourier transform, the wavelet transform allows one to see the different frequency

properties of the signal in the time domain.

1.2 Basic Concepts and Transform Definitions

The wavelet representation of a signal is achieved by a family of functions that is created

by sweeping the wavelet along the time axis giving the wavelet a specific location in time.

1
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The basic analyzing wavelet is known as 1'(t) and the corresponding family of basis

functions (Appendix B.2) is defined by integer translations in the time domain [5] by

‘If(t)=T(t—k)	 kE Z	 (1.1)

where Z is an integer vector field (Appendix B.1). The space spanned (Appendix B.2) by

T(t) is

S = spank {T(t — k))	 (1.2)

For a given signal s(t), the elements of the space spanned by tlf(t) are related by

s(t) E SS 	 s(t) = Eak • tijk = Ea k .11 (t — k)	 (1.3)

where the space mentioned pertains to the frequency span of the wavelet filters [5]. The

wavelet transform previously described will be implemented in discrete translations,

decompostions, and interpretations. Therefore, the rest of this discussion and theory

developed will remain in the discrete time case.

The wavelet ¶(t) must next be modified by scaling the time variable to localize

the wavelet in scale and frequency and is denoted by

(t) = 2-P2 T (27-1 t — k) j,ke Z	 (1.4)

where j, also referred to as the dilation, is an integer measure of the scaling of the signal

for the j th scale, 2 -j/2 maintains the normalization for the resulting wavelet coefficient at

the different scales, and k locates the wavelet in time [5].

A set of wavelet expansion functions can be generated for any signal in the space

spanned by L2 (R)by

s(t)= Ea k .2--il2T(2-it—k)
	

(1.5)
j,k

or



where L2 (R) is the space of square-integral functions (Appendix C) and a j k are the

discrete wavelet transforms (DWT) of the signal s(t) for scale j. If the wavelets,Ψj,k (t),

form an orthonormal basis for the signal s(t), the DWT can be calculated by using inner

products (Appendix B.3) where

To fully understand the effect of the integer j, let us take the Fourier transform of

1.4 resulting in

From equation 1.8, it can be observed that as j increases one has a finer frequency

resolution of detail in the space of functions spanned by the wavelet function Ψj,k(t) given

in 1.4 [5]. It can also be seen from equation 1.4 that the time resolution decreases with j.

This is clearly shown in figure 1.2.1 which is a plot of time resolution verses frequency

resolution [2].

3

Figure 1.2.1 Plot of time verses frequency resolution
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MaBat [1] introduced this concept of multiresohition signal analysis and used it to

construct an orthonormal basis of wavelets. The following section will develop an

orthonormal wavelet basis and relate the wavelet representation directly to the changes in

scale. This section is based on the work of Mallat [1] and Daubechies [5].

1.3 Derivation of the Scaling and Wavelet Coefficients

A set of scaling functions in terms of an integer translation in time is derived as

o 	 = co(t — k) 	 (1.9)

The subspace L2 (R) spanned by these functions is defined as V° = spank (p k (t)}

(Appendix B.2). Let V° be the space of all the frequencies in the interval (-7c, it) [3]. The

set of functions that Banns an orthonormal basis (Appendix B.3) for V, is

sin
(00 — k) = sinc(t - k) =

( 7r(t — k))
	 k E Z.

g(t — k)
(1.10)

Next let V , be the space spanned by functions in the frequency interval (-27c, 27r) [3]. The

set of functions that forms an orthonormal basis for V 1 is

p(t — k)= Nri -sinc(t — k)= I 2 sin(tk))
Ir(t — k)

It can then be deduced that V° c V or that 170 is in the space spanned by

To develop a relationship between V° and V , we will call Wo the space that

spans the functions in the frequency band of (-27c, -7c) c (7c, 27c) which results in the

following relation.

V_1 = Vo 63) W„	 (1.12)

where ED denotes that the wavelet spanned by W, is the orthogonal complement of V in

Vo (Appendix B.4). In other words, V 1 is equivalent to Vo plus some added detail
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contained in Wo [2]. For resolution or signal details up to a scale 2-1, if Vo is the space of

functions with frequencies in the interval (-2-1π,2-1π), then

where Wo is the space of functions with the frequencies in the interval (-2-1+1π,-2-1π)

(2-1π,2-1+1 ) [2]. The relationship of the various subspaces can be seen from the following

expressions.

where V i is in the frequency space of (-2 -1+1 π, 0) v (0,2 -1+1 π) [2]. This is clearly shown in

figure 1.3.1.

Figure 1.3.1 Relation of various subspaces



•
7r(n I 2)

Arih(n) = 
sin( 7r(n I 2)) 

(1.17)

6

Essentially, the objective of the wavelet is to obtain the signal components in the

space spanned by Wo . The various levels of WI are the wavelet coefficients. To obtain the

wavelet coefficients, a wavelet that will span W must be constructed. This is achieved by

first noticing that the set of functions	 — k),k E Z} given by 1.10 form a basis for V° .

Therefore {9(t — k),k E Z) fOnaS a basis for V 1 . To obtain the upper half of the

spectrum of V 1 , which is V 0 , a lowpass filter, passing the lower half of the frequency

spanned, is applied with impulse response

The function co(t) can now be written as

9(t) = Eh(n) q)(2t-n) 	 (1.18)

where 9(t) is referred to as the scaling function because it produces an approximation in

Vi+, of the signal components in V. [3]. The sequence h(n) is a set of coefficients referred

to as the scaling coefficients. This sequence is a filter of finite length derived from the

conditions of orthonormality in [5]. Now to obtain the span of frequencies between the

various scales of the scaling function the wavelet coefficients are found.

The wavelet coefficients reside in the space spanned by the next narrower scaling

functions represented by W, [2]. The orthogonal complement W to Ili is obtained by

highpass filtering the upper half of the signals. The wavelet function can then be derived

in teiths of the scaling function by

(t) = E g(nW2t-n). 	 (1.19)

From the condition that the wavelets span the different spaces, the wavelet coefficients are

related to the scaling coefficients by
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g(n) = (-1)" h(N —1— n) 	 (1.20)

for the filter lengths of g(n) and h(n) equal to N. This relation is based on the

requirements of orthonormality in [1]. The process of obtaining the scaling and wavelet

coefficients from filters g(n) and h(n) is best described by figure 1.3.2 (facing 7).

The wavelet that will span all of the subspaces in WI is in the form

ijjk 	= 2 i12 T(2 -i t — k) 	 (1.21)

where 2' is the scaling of t, k is the time translation in t and 2j /2 maintains the

normalization for the wavelet. The set of functions formed from the scaling function

co k (t) and the wavelet function 	 k (t) spans the entire space of the signal denoted

bye (R). Therefore, any signal f(t) can be written in terms of the scaling and wavelet

coefficients [5] by

f(t) = Es(k)(0,(t)+E Ew0,041,,k(t)
	

(1.22)
14•.-co 	 J=1 k=-co

where S(k) are the scaling coefficients and W( j,k) are the wavelet coefficients for scales j.

Since these expansion functions form an orthonormal basis, the scaling coefficients can be

derived as inner products (Appendix B.3)

s(J)= (f (t),),(t))
	

(1.23)

and similarly for the wavelet coefficients we have

W(j ,k) = f (t),t j.1 (0). 	 (1.24)

The wavelet coefficients are called the discrete wavelet transform (DWT) of the signal f(t).

The wavelet coefficients are similar to the Fourier coefficients when taking the Fourier

transform of a signal.
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1.4 Signal Decomposition

The orthonormal wavelet used for the wavelet transform (WT) has been developed

according to the multiresolution signal analysis ideas presented by Mallat [2]. The

procedure implemented to perform the WT is known as the Mallat tree algorithm outlined

in figure 1.4.1 [2].

Figure 1.4.1 Mallat tree algorithm

The resulting W j s correspond to the wavelet coefficients and the Si s correspond

to the scaling coefficients. The scaling and wavelet coefficients at different levels of scale

j are be obtained by convolving the coefficients at scale j by the h(n) and g(n) filters and

then downsampling or taking every other term, which is represented by 1, [1].

Downsampling is required since the number of data points is doubled when convolving

one of the filters with the signal, where convolution is represented by the symbol *. The

convolution results in the coefficients at the next lower level. In other words, the scale j

coefficients are filtered by two finite digital filters with coefficients h(n) and g(n) which

after downsampling give the next lower level of scaling coefficients [3].

The levels or the scaling ofj refers to the amplitude of the signal's wavelet

coefficients, where 0.< j N and N is the length of h(n). For example, if the original

signal has an amplitude of 100 the first wavelet coefficient, j = 1, will have an amplitude

of 100* 2' or 50. Similarly, the second wavelet coefficient will have an amplitude of
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25 (100* 2 -2 ). It is also important to remember that the length of the filters is equal to the

number of wavelet coefficients obtained.

The two finite filters, h(n) and g(n), are an ideal lowpass filter and an ideal

highpass filter, respectively. The successive filtering ofboth filters to a given signal results

in a bandpass filter passing only the upper half of the spectrum (see figure 1.3.2). It is

important to remember that the change in scale and time translation is done simultaneously

while the frequency components of the signal are being bandpass filtered. This is all

performed by the two filters.

For example, a signal is given with frequencies in the range of 0-100 Hz, where the

original signal is represented by Si. The first scaling coefficient denoted by Si -1 contains

the frequency components from 0-50 Hz. Sj -1 is obtained by low pass filtering Si by h(n).

The first wavelet coefficient, WI, is obtained after high pass filtering Si by g(n) and

contains frequency components between 50-100 Hz. Similarly, the second scaling

coefficient, Si -2 , contains frequencies in the interval of 0-25 Hz and the second wavelet

coefficients contains frequencies in the range of 25-50 Hz. As you can see, this successive

filtering process continuously cuts the frequency spectrum in half and displays the upper

half of the spectrum in the wavelet coefficients. This shown in figures 1.4.1 and 1.3.2.

Also, zeroes must be inserted between the filter coefficients to set the length of the

filter to the length of the original signal. For example, if the length of h(n) is 10 and the

signal length is 100, 10 zeroes must be inserted between each coefficient of h(n). This

process of inserting zeroes between the filter coefficients is known as upsampling, which is

performed on the filters before each successive convolution. (for an elaboration on

upsampling and downsampling see Appendix A)

In detail, the Mallat tree algorithm is as follows:

1) The filter g(n) is upsampled to match the signal length.

2) High frequency components are then obtained by convolving the filter g(n) with the
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upper half of the spectrum of S.

3) The filter output is then downsampled to obtain the original signal length. The
resultant is the wavelet coefficient

4) The filter h(n) is upsampled to match the signal length.

5) S' is then low-pass filtered by h(n) to obtain the next signal level. The low

frequency components are obtained while preventing the upper half of the spectrum

from aliasing.

6) The filter output is then downsampled to obtain the original signal length.

The resultant is the next decomposition level with the scaling coefficient Si'.

7) The entire procedure is repeated. Si" is bandpass filtered to get the spectral contents

at frequencies which are one half the frequencies of the previous level. The frequency

bandwidth is relative to the maximum frequency of the original signal.

This process is shown in figure 1.3.2 for the first level of the wavelet decomposition of a

signal with relative bandwidth equal to 7c. This figure shows that the frequency spectrum

is cut in half for each level of the wavelet representation. The upper half of the spectrum

is the wavelet coefficient. This process is similar to the concept of the scaling function

where the scale is halved for each wavelet level. It is important to understand that when

convolving the signal with filters h(n) and g(n), both the scale of the signal in time and the

frequency is halved.

Also, the number of data points at the output of the system is the same as the

number at the input of the system. The number is first doubled by the two filters and is

then cut in half by the decimation back to the original length of the data sequence. This

means that there is no information lost and that the original signal can be completely

recovered [5]. This idea of not losing any information is the basic concepts behind QMF

filter bank theory [3].
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To calculate the scaling and wavelet coefficients the corresponding g(n) and h(n)

filter coefficients must be obtained. The filter coefficients were derived from the

conditions for orthonormal wavelets in [2] and 151 A program was written in Matlab and

used to calculate the g(n) and h(n) filter coefficients. This program along with the

program to perform the Mallat multiresolution algorithm to generate the wavelet

coefficients is listed in Appendix C.

1.5 A Comparison of Orthonormal to
Cubic B-Spline and Lemarie-Battle Wavelets

1.5.1 Introduction

Orthonormal wavelets were used primarily due to the equal localization of the wavelet

coefficients in both time and frequency. To demonstrate the effectiveness of the

orthonormal wavelet a comparison was made with the wavelet coefficients of two other

wavelets. The wavelets chosen were the Cubic B-Spline [15] and the Lemarie- Battle [16]

wavelet. The actual wavelets themselves were not calculated or displayed since it is the

filter sequences, h(n) and g(n), and the wavelet coefficients which are of interest.

1.5.2 Results and Discussion

A filter length of six was chosen for each of the wavelet filter sequences for demonstrative

purposes. The corresponding filter coefficients for the wavelets are displayed in table

1.5.1. Wavelet analysis was performed with each wavelet and applied to the waveform in

figure 1.5.1. This particular waveform was chosen because it clearly demonstrates the

properties of the wavelet such as time dilation and the changes in scale. The filters were

implemented using the Matlab program listed in Appendix C to obtain the wavelet

coefficients for the various levels of the wavelet representation.
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The first set of wavelet coefficients are displayed in figure 1.5.2. The orthonormal

wavelet coefficient in figure 1.5.2a is symmetrical and is apparently derived from the signal

in figure 1.5.1. Notice how the scale of the wavelet coefficient is dilated (compressed) in

time compared to the original signal. Similar results were obtained for the Lemarie-Battle

wavelet coefficient in figure 1.5.2b except that the time dilation is more compressed. The

Cubic B-Spline, in figure 1.5.2c, displayed the basic signal shape but also added

components which are repetitive and obviously obtained from the original signal.

The second set of wavelet coefficients are displayed in figure 1.5.3 (Note: wavelet

coefficients two through six are in Appendix D). First, it can be seen that the time dilation

orthonormal wavelet coefficient is becoming more compressed when compared to the first

wavelet coefficient. Also, higher frequency components of the signal are becoming

apparent. This agrees with the theory earlier presented in section 1.3 that as one

decreases the scale given by integer j, the time resolution is decreased while the frequency

resolution is increased . In this case, the first wavelet coefficient is represented by j = 1

with the second is represented by j = 2. Remember the scale is decreased as j increases.

Secondly, the orthonormal wavelet (figure 1.5.3a) maintains the basic form of the

original signal in the center with lobes at the end. The lobes are a result of the integer time

translations for each level of scale. The Lemarie-Battle wavelet coefficient (figure 1.5.3b)

does not separate the actual contents of the wavelet representation from the resulting side

lobes as well as the orthonormal wavelet. The side lobes are also not as attenuated as they

were for the orthonormal coefficient. The time resolution is also decreased.

Similar results were obtained for the Cubic B-Spline wavelet coefficient (figure

1.5.3c). The side lobes are not as attenuated and the time resolution is dramatically

decreased. The frequency components are not as apparent in this wavelet as they were for

the Lemarie-Battle and orthonormal wavelet coefficients. Also, the time translation is not

centered when compared to the coefficients of the other wavelets.



Table 1.5.1 Table of wavelet filters
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Figure 1.5.1 Waveform used for wavelet comparison



Figure 1.5.2 First set of wavelet coefficients
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The lower level wavelet coefficients 3 through 6 (figures 1.5.4 to 1.5.7,

respectively) exhibit similar results as in the first and second wavelet coefficients. It

becomes more apparent that the time dilation is increased dramatically for the Lemarie-

Battle and the Cubic B-Spline wavelet while the orthonormal wavelet maintains a better

time resolution. Also, the orthonormal wavelet brings out other frequency components

sooner.

The orthonormal representation brought out separate frequency components, or

the details of the signal, in the second wavelet coefficient and continued to do so for each

level of the representation. The Lemarie-Battle and Cubic B-Spline did not bring out the

details of the signal until the final level of the decomposition (figure 1.5.7).

1.5.3 Conclusion

It is apparent from the various levels of the wavelet coefficients that the orthonormal

wavelet has a better localization in time and frequency. This was not the case with the

Lemarie-Battle and Cubic B-Spline wavelets which generated larger side lobes and did not

exhibit an equal time and frequency localization. It is difficult to interpret the results for

the Lemarie-Battle and Cubic B-Spline since the time resolution is restricted to a very

small area along the time axis. It can be deduced that the Lemarie-Battle and Cubic B-

Spline wavelets do not contain the desired time and frequency resolution needed.

1.6 Scope of Thesis

The basic concepts and fundamentals of the wavelet signal representation have been

introduced. The theory and background presented provides an overview of the concepts

of wavelets. The objective of this paper was to gather the available theory and create a

method for observing the discrete wavelet transform of discrete time signals. The method

developed is based on Mallat's multiresolution tree algorithm. [3]



16

Programs to implement Mallat's algorithm were written in Matlab for discrete time

signals. The programs include the filters h(n) and g(n), which represent the orthonormal

wavelet created by Daubechies. [5] The program outputs are the wavelet coefficients

which are displayed along the original time axis. All programs are listed in Appendix C.

The orthonormal wavelet was applied to various types of bioelectric signals.

Chapter 2 is essentially the wavelet representation of recorded motor evoked potentials

(MEPs) created by a new method of stimulation known as magnetic stimulation. In

Chapter 3, the wavelet was applied to evoked potentials (EPs) and Chapter 4 involved

wavelet analysis of various EKG signals. The data used for the signals in Chapters 3 and 4

were simulated and not recorded from actual subject's as in Chapter 3.



CHAPTER 2

APPLICATION OF WAVELETS TO MOTOR EVOKED POTENTIALS

INDUCED BY CORTICAL MAGNETIC STIMULATION

2.1 Introduction

It is known that stimulation of the brain's motor cortex will create contractions of a

particular muscle group depending on the area of the brain that was excited. The motor

cortex is usually stimulated by electrical pulses via electrodes placed on the scalp. A new

method of cranial stimulation is achieved by applying a time-varying magnetic field to the

brain. This method of stimulation is known as cortical magnetic stimulation. Cortical

magnetic stimulation was performed on a subject where the quadricep muscles where

forced to contract. The electrical potentials resulting from the muscle contractions,

known as motor evoked potentials (MEP's), were recorded. The wavelet transform was

then performed on the recorded MEP signals and an interpretation was made.

2.2 Introduction to Cortical Magnetic Stimulation

Clinical neurophysiology has made significant progress in recent years. Considerable

interest has recently been given to the techniques of stimulation of the human brain. This

has occurred since scientists found that transcranial stimulation can be achieved by placing

electrodes on the scalp, resulting in stimulation of the motor cortex. The motor cortex

controls the movement of the body. Therefore by stimulating the brain a particular body

part will move depending on the area of the brain that is stimulated. Since this discovery,

electrical brain stimulation has been used in several clinical and neurological studies. The

main disadvantage of this technique is that the subject experiences pain from the current

flowing through the electrodes. [8] Recent experimentation has shown that the electrical

17
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activation of the motor cortex can be stimulated by an external magnetic field. This new

technique of cranial stimulation is known as cortical magnetic stimulation. [6]

The stimulator for cortical magnetic stimulation creates a potential that travels

through a coil that is placed on the scalp. The coil creates a time-varying magnetic field

inducing a current in the motor cortex. [7] One advantage of this technique is that the

subject under test experiences no pain. The patient may experience some fatigue and

occasional discomfort if the muscles in the neck or face are accidentally stimulated. [8]

Another very important advantage of magnetic verses electrical stimulation, is the ability

to reach regions of the cortex below the skull with little or no attenuation. In fact, the

resistance of the skull is one to two orders of magnitude greater than the resistance of soft

tissues. The stimuli generated by electrical pulses through electrodes are attenuated by the

skull. [7] Magnetic stimulation can also be applied to the nerves throughout the body (the

peripheral nervous system) as well.

2.3 Basic Principles of Cortical Magnetic Stimulation

Cranial nerves can be stimulated by an applied electrical current. Stimulating the brain

with either needle or surface electrodes is commonly performed. As mentioned

previously, electrical stimulation can also be induced by applying a magnetic field to the

region of interest. Energy is released from the stimulator and released through the coil

which is circular in shape and placed on the scalp. The basic laws of electromagnetism

state that a time-varying field will induce an electrical field in any specified loop within its

vicinity, where the original loop would be the stimulating coil and the induced loop is in

the brain. [8] According to Faradays law, whenever a magnetic field changes there is an

induced electrical field. [9] A stationary magnetic field does not induce an electrical field.

Therefore, a time-varying field is required.

The stimulator that creates the energy required for the magnetic field is the

Cadwell MES-10 Magnetic Stimulator. The stimulating coil is attached to the Cadwell
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which is responsible for creating the field. The coil creates a magnetic field with a focal

point so only a particular area of the brain will be stimulated while not stimulating other

areas. For peripheral stimulation, in the forearm for example, the induced current would

be in the forearm as shown in figure 2.11.

In order to create the required time varying field, the stimulator must contain a

network including a capacitor and an inductor. If the inductor and capacitor are

connected through a switch, the energy moves from the capacitor to the inductor creating

a large magnetic field. If the switch remains closed the energy is transferred between the

inductor and the capacitor until the energy is lost. Most of the energy is transferred

between components without any relative loss in the magnetic stimulator. [7] The

oscillation frequency of the L-C network is

The basic circuitry for the Cadwell MES-10 magnetic stimulator is shown in figure

2.3.2. The frequency for the Caldwell MES-10 is 3560 Hz with a period of 280 uS, and

3-4 oscillations occur before the switch is opened. [6] The power that the Cadwell MES-

10 distributes to stimulate has a maximum value of 2.2 tesla when stimulating at 100% of

Stimulating coil

Figure 2.3.1 Induced current resulting from peripheral magnetic stimulation
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its capacity. [6] Of course one can adjust the amount of stimulation by controlling the

percentage of the stimulator's output current. To create a difference in the electrical

potential in the nerve to generate muscle movement, the stimulus length must be 100-300

mS and the current density in the nerve must be 1-2 uC/cm2 . [7] The Cadwell MES-10

meets these required specifications.

The 2.2 tesla, 450 J of energy, is necessary since the brain is almost transparent to

the magnetic field. [6] The induced cranial current is 1/100,000 the size of the inducing

current in the coil. Also, the total energy delivered to the brain is approximately 0.1% of

the brain's metabolic rate. [6] Magnetic stimulation is performed world-wide and is

recognized and funded by organizations such as National Institutes of Health (NUT).

2.4 Results of Wavelet Analysis

Cortical magnetic stimulation was performed on two subjects where data containing motor

evoked potentials (MEPs) were recorded from the quadricep muscles on the subject's legs.

Figure 2.3.2 Stimluator circiut
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MEPs represent the electrical potentials created when a muscle contracts. There were

four channels and each was used to record a different region of the quadricep muscle.

Each channel was recorded using a sampling rate of 5 kHz which is low for measuring

MEPs. The usual sampling rate is 20 kHz, but 20 kHz is the maximum sampling rate

available for the equipment used. [6] Therefore the sampling rate had to be equally

distributed among the four separate channels. The original MEP wavefoifits are shown in

figures 2.4.1 and 2.4.2.

The equipment used to record the data was the Dantec EMG Counterpoint. This

device is able to detect the MEPs through surface electrodes connected to the Dantec's

input. The surface electrodes were placed externally on the skin. A conduction jel was

placed between the surface electrode and the subject's skin The jel is used to ensure that a

proper conduction of the MEPs is transferred to the electrode. [12] The data was then

collected on a computer connected to the output of the Dantec.

The magnetic stimulation was performed using the Cadwell MES-10. A figure

eight coil was used to trigger the stimulation of the MEPs. This coil was implemented due

to its ability to localize the focal point of the magnetic field responsible for stimulation. [7]

This ensures that the area of interest will be stimulated and other unrelated areas are not

stimulated. Other coils that are circular in shape do not produce a focal point as narrow as

the figure eight coil, sometimes resulting in stimulation of other muscles. [9]

The wavelet applied to the MEPs was an orthonormal wavelet with a filter length

of six. The values used for the corresponding h(n) and g(n) wavelet filters are in table

2.4.1. A filter length of six was used since the wavelet coefficients at scales lower than 2- 6

were basically redundant. No differences in the wavelet coefficients were found at scales

lower than 2-6 except for expected changes in the scale. The original MEP signals are in

figures 2.4.1a to 2.4.2b for channels 1 to 4, respectively. There are obvious differences

among the four signals. First, it must be noted that channel 2 is inverted with respect to

channels 1, 3 and 4 due to the electrode configuration used to record MEPs. Since the
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Table 2.4.1 Wavelet filters applied to MEPs

h(n) g(n)

0.2352 0.0249

0.5706 0.0604

0.3252 -0.0955

-0.0955 -0.3252

-0.0604 0.5706

0.0249 -0.2352

wavelet transform is displaying frequency components, the wavelet coefficients of channel

2 will not be inverted. Also, the basic shape and location of the peaks vary and the scale

for channels 1 and 2 are twenty times greater in magnitude than for channels 3 and 4.

Although channels 1 and 2 are not similar, channels 3 and 4 are obviously similar.

The first wavelet coefficients are shown in figures 2.4.3 and 2.4.4 (all wavelet

coefficients of MEPs are displayed in Appendix E). Interestingly, channels 1 and 4 obtain

very similar waveforms, though the scales and the original waveforms are different. One

can then speculate that the contents of the two signals, for a particular frequency region,

are the same. It is apparent that channel 3 contains some similarities to channel 4, such as

the basic shape of the waveform. Also, channel 2 has no similarities to any of the three

other channels. The lower levels of the wavelet represenatation must next be observed for

a complete analysis of the MEP waveforms.

The second wavelet coefficients of the wavelet representations are shown in

figures 2.4.5 and 2.4.6. It is obvious at this level that channels 3 and 4 are similar in

structure but are not exactly the same. Channels 1 contained no similarities to any of the
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Figure 2.4.1 Original MEP waveforms
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Figure 2.4.2 Original MEP waveforms
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three other channels. Similar results were observed for channel 2. The third level wavelet

coefficients shown in figures 2.4.7 and 2.4.8 were similar to the second set of wavelet

coefficients.

The fourth level wavelet coefficients are shown in figures 2.4.9 and 2.4.10.

Channels 1 and 2 were different from all the channels. The only channels that were

similar, and as a matter of fact were almost exactly the same, were channels 3 and 4.

Wavelet coefficients 5 and 6, shown in figures 2.4.11 through 2.4.14, are exactly the

same as the fourth level wavelet coefficients. From levels four through six there were no

changes in the waveforms.

Initially, channels 3 and 4 were the only channels that had similarities in the

original MEP waveforms with amplitude's 20 times lower than channels 1 and 2. The

original waveforms in channels 3 and 4 contained some similar flow or structure to the

peaks while there were differences in the amplitude and location of the various peaks

throughout the signal. As the levels of the wavelet representation were observed, the

lower scale wavelet coefficients for channels 3 and 4 were the same.

The wavelet representation brought out signal components not present in the

original signals. The wavelet basically extracted the essence of the MEP signals from all

four signals. This clearly shows the usefulness of the wavelet representation for bringing

out details that were not at first apparent.

2.5 Discussion

The results obtained proved the wavelet to be a successful tool for extracting signal

components throughout various level of the wavelet representation. The wavelet

coefficients brought out details of the signals that were not apparent. The wavelet even

brought out components that were the same as it did in channels 3 and 4. Although some

important results were found, the results are not conclusive. The available sampling rate

was 5 kHz per channel while 20 kHz was needed to meet the Nyquist sampling rate. The
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wavelet was still successful but for an accurate interpretation of the results a higher

sampling rate is definitely necessary.

All four recorded channels were above the threshold of the stimulation required to

generate a muscle contraction. The term threshold refers to the amount of electrical

stimulation present in the muscle required to generate a contraction. [6] In this case, the

initial stimulation was in the brain and the muscle of interest was the quadriceps. Quite

often, when the muscle of interest is stimulated the muscle does not contract. Even

though the muscle does not contract an MEP is generated which is very low in amplitude.

This MEP is said to be below threshold.

For future work it would be interesting to perform the wavelet transform to signals

at various levels of threshold and see if there are any similarities to the various levels of

the wavelet coefficients. This would then determine if MEPs generated by cortical

magnetic stimulation below threshold contain the same pertinent information as the MEPs

above threshold. Researchers do not include MEPs below threshold in their neurological

studies when performing cortical magnetic stimulation. This results in unnecessary or

wasted stimulations of the brain. If the wavelet analysis proves that there is similar

information for various levels ofthreshold, the number of unnecessary stimulations would

be greatly reduced. It would also be interesting to compare the wavelet coefficients of a

peripheral electrical stimulation with cortical magentic stimulation.

2.6 Conclusion

The wavelet representation of the motor evoked potentials provided some insight into the

contents of the signal components. It was shown that although the original signals

differed in the general shape of the waveform and in scale, there were similar components

that were brought out by the wavelet coefficients. The signals obtained were recorded at

a sampling rate lower than the required sampling rate so a complete and thorough

examination of the results could not be made. Although the sampling rate was inadequate,
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the wavelet transform still performed better than expected. Equipment with higher

available sampling rates is required to obtain improved results, especially if one wishes to

pursue the work developed here.



CHAPTER 3

APPLICATION OF THE WAVELET TRANSFORM TO EVOKED POTENTIALS

3.1 Introduction

Evoked potentials (EPs) are recorded signals from the nervous system indicative of the

nervous system's performance. [12] EP waveforms are recorded from the nerves by

placing surface electrodes over the neurological site of interest. As thousands of EPs are

generated a process known as signal averaging is performed and the EP waveform

emerges. [17] Once the EPs are obtained an evaluation of the characteristics of the

waveforms can be related to the performance of the nervous system. It will be shown that

the wavelet transform brings out structures that are similar between a single EP and signal

averaged EP.

3.2 Introduction to Evoked Potentials

Evoked potentials (EPs) provide a non-invasive way for obtaining information to evaluate

the function of the nervous system. Non-invasive procedures and corresponding results

are obtained externally verses internally and do not require the physician to enter the

subject's body. [17] EPs are achieved by stimulating a nerve or a group of nerves, and

recording the resultant waveforms at various points along the neurological pathways. The

information needed for a clinical diagnosis is embedded in the recorded waveforms. These

waveforms are due to the brain's reception of an applied external stimulus. [17]

EP testing is most commonly used for examining the somatic nervous system and

the central nervous system. The somatic nervous system consists of the nerves throughout

the body responsible for movement. The central nervous system (CNS) consists of the

brain and the spine and is the center of all neurological activity throughout the body. EP

28
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testing is performed to detect injuries, disorders and the development and maturation of

the nervous system.

3.3 Basic Principles of Evoked Potentials

There are several types of EPs that are used for testing a specific section of the nervous

system. The testing is performed to provide information on how the damaged or diseased

area of the nervous system is functioning. For example, to test the visual neurological

pathways, pattern-shift evoked potentials (PSEVPs) are recorded.

The stimulus for PSEVPs is a checkerboard or a strobe flashed in front of the

subject's eyes, at which time the brain waves are recorded. The information provided in

the resultant waveforms supply information on the nerves in the CNS responsible for sight.

Other types of EPs are brain auditory evoked potentials (BAEPs) used for investigation of

the cochlear nerve (hearing) and brain stem auditory pathways. Motor evoked potentials

(MEPs) evaluate the functioning of the central motor pathways responsible for movement,

and somatosensory evoked potentials (SEPs) for evaluation of the somatic nervous system

and CNS. [17]

EPs are generated in response to an invoked stimulus, where the stimulus varies

for the particular EP to be generated. BAEPs use a click for a stimulus since hearing is

involved, and EPs and SEPs use electrical stimulation to stimulate nerves throughout the

body. The stimulus, whether electrical, visual or audio, is controlled and created by an

electrical square wave of 100 to 200 microseconds in duration to generate a proper

response. The time span between stimulations is approximately 10 milliseconds to allow

for proper data collection. [17]

The evoked stimulus response is recorded from the nerves of interest via surface

electrodes placed externally on the scalp. A conduction jel is applied between the

electrode and the surface of the skin to reduce the electrode impedance at the surface of

the skin. An electrode impedance of 3,000 ohms is desired. [18] Some cases call for
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needle electrodes but this is not commonly practiced. The electrodes are placed on the

scalp according to the International 10-20 System of electrode placement. [17] This does

not guarantee that the electrodes on the scalp lie on specific brain structures, but ensures

different laboratories use the same sites for repeated testing. The 10-20 system is shown

in figure 3.3.1.

EPs must be amplified since the amplitude of the resultant waveforms is in the

range of 0.1 - 20 uV. Because of their low amplitudes and their mixture with normal

background brain waves, activity varies from twenty to several hundred microvolts in

amplitude. [12] The EPs waveforms must be amplified by approximately 100,000 to

500,000 times depending on the outcome for the particular type of testing performed. The

amount of amplification used also depends on the amplitude of the signal of interest and

the voltage handling capabilities of the analog to digital converters at the input of the data

Figure 3.3.1 International 10-20 System for electrode placement
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acquisition system. Once the data is obtained the EPs must be distinguishable from other

brain waves present.

Separation of EP waveforms from the other cranial electrical activity is

accomplished by a process known as signal averaging. [17] The brain's electrical response

to the stimulus is always at the same time interval after the stimulus. Other present brain

activity is not coupled to the stimulus and computers can extract the EP by searching for it

in the waveform by using the location of the stimulus as a reference point. The stimulus is

performed repetitively and the computer averages the new data for each successive

stimulus with the previously averaged results. This process is continuously performed

until the desired waveform becomes clear. Most EP testing requires 1000 signal averages

to obtain an accurate waveform. [17] SEP waveforms recorded from various sections of

the brain are shown in figure 3.3.2. The results were acquired using the 10-20 system and

utilized approximately 1000 signal averages.

Figure 3.3.2 Various SEP waveforms
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Signal averaging is an important aspect of EP testing and analysis since it allows

the original undetectable EPs to be displayed and evaluated. Wavelet analysis of EPs has

been given little attention by medical research since wavelets are relatively new. It will be

shown that wavelets provide a means for obtaining and examining EP structures.

3.4 Results and Discussion of Wavelet Analysis to Evoked Potentials

A length 12 orthonormal wavelet was applied to a single EP and the same EP signal

averaged 1000 times. A filter length of 12 was used since the wavelet coefficients did not

bring out the structure for the single EP until scales at a level of 2 -8 were reached. The

Matlab programs to calculate the h(n) and g(n) wavelet filter coefficients are listed in

Appendix C.

An EP was generated similar to the FZ-C2 SEP waveform in figure 3.3.2 using a

program written in Matlab listed in Appendix C. The shape of the single EP without any

background EEG is shown in figure 3.4.1. Notice that the EP is 0.06 units in amplitude.

Next, the signal in figure 3.4.1 was embedded in EEG background which is shown in

figure 3.4.2a. This signal represents an original EP waveform after amplification but prior

to any signal averaging. The EP was signal averaged 1000 times and is shown in figure

3.4.2b. Observe how the shape of the EP is brought out while the background brain

activity is reduced. All programs for EP simulation are in Appendix C. The wavelet

transform was then applied to both EPs once the EPs were generated.

The first level wavelet coefficients for both the single and signal averaged EP

waveforms are shown in figure 3.4.3. The wavelet coefficient of the single EP shown in

figure 3.4.3a does not bring out any structure of the EP waveform. However, the

structure of the EP is brought out in the first wavelet coefficient of the signal averaged EP

shown in figure 3.4.3b. The single EP only displays the background activity while the

signal averaged EP has a large hump. Similar results were obtained throughout the lower

levels of thewavelet representation, as shown in figure 3.4.4 for the second set of wavelet

PP"



33

Figure 3.4.1 EP without EEG background

coefficients. The structure of the EP is not displayed in the single EP waveform until the

lower levels of the wavelet representation are reached

This is clearly shown in the ninth level wavelet coefficients shown in figure 3.4.5.

The single EP signal (figure 3.4.5a) does not contain the waveform of the signal averaged

EP (figure 3.4.5b) but there is a definite relation of the structure brought out by the

wavelet. The single EP contains structure similar to the signal averaged EP. Following

the waveform of the signal averaged EP, there are smooth sections where the amplitude

increases and decreases. The peaks and valleys of the waves contain signal components

that are erratic and are obviously obtained from the background EEG. Following the

single EP in the same manner, there are sections of the waveform that are smooth and

erratic that line up with the components of the signal averaged EP. The different sections

of structures are due to the wavelet and not the EP.

The peak between data points 450 and 550 of figure 3.4.8 contains the information

of the EP. This EP is shifted and compressed due to the wavelet's decrease in time

resolution. The side lobes which are on both sides of the peak containing the EP

information are created by the wavelet. After closely examining the lowest wavelet

coefficients, there may be similar structures of the single EP related to the signal
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Figure 3.4.2 Original EP waveforms



Figure 3.4.3 First level of EP wavelet coefficients
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averaged EP by the amplitude of the peaks of the random structure in the single EP

wavelet coefficient. The random structures are obtained from the background EEG.

The infollnation of the EP (the single pulse without the background EEG)

envelopes the structures of the background EEG. The envelope is the EP pulse

components brought out by the wavelet with the background EEG contained within the

envelope. Figure 3.4.9a shows the twelfth wavelet coefficient of the EP pulse. Figure

3.4.9b contains the twelfth wavelet coefficient of the background EEG enveloped by the

EP pulse and figure 3.4.9c shows the twelfth wavelet coefficient of the background EEG

without the EP pulse. These figures display how the EP pulse structure is brought out by

enveloping the background EEG.

This can be compared to a radio signal where the envelope of the signal carries the

desired signal information within the envelope. In this case of EPs, the envelope is the

information, not what is contained within it. That is, the background EEG which does not

contain EP information, is contained in the envelope of the EP details brought out by the

wavelet.

3.5 Conclusion

The wavelet representation of EP waveforms provided a new tool for observing EP

structures. The EP structure of both the single and signal averaged EP waveform were

similar and were made apparent in the lower scales of the wavelet coefficients. The

wavelet brought out the -structure of the single EP waveform even though the amplitude of

the EP was small and embedded in the background brain waves. Although the EP pulse

details were brought out by the wavelet, there is still no clear relation between the wavelet

coefficients of the single EP and the signal averaged EP. There must be a more detailed

analysis of wavelets applied to signal averaged EPs for any evidence relating the wavelet

coefficients of single and signal averaged EPs.



CHAPTER 4

APPLICATION OF THE WAVELET TRANSFORM

TO THE ELECTROCARDIOGRAM

4.1 Introduction

The electrocardiogram (EKG) is a recording of the bioelectric potentials of the heart's

activity. EKG signals are easily recorded by placing electrodes on the surface of the skin

near the heart. Once the EKG is obtained, an interpretation of the waveforms can be

made by observing the location and amplitude of the peaks. An alternative method for

observing EKG signals can be achieved by applying the wavelet transform to the signal.

The wavelet coefficients are obtained and an evaluation of the different scales of the

wavelet representation can be made.

4.2 Introduction to the EKG

The EKG is a fascinating combination of biology, physics and electricity. The EKG is an

extremely important and informative measurement of the bioelectric potentials of the

function of the heart. The EKG is mostly used in diagnosis for the detection of disease

and damage done to the heart. The EKG is obtained by using an instrument known as the

electrocardiograph.

The electrocardiograph is the major diagnostic instrument of cardiac

electrophysiology. It is estimated that approximately 150 million standard 12-lead EKGs

are recorded annually. [11] The EKG is clearly a primary part of evaluation and

prevention of heart disease. This clearly shows the important role the EKG plays in

clinical diagnosis and any research performed to improve or create new ways of evaluating

bioelectric information.
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4.3 Basic Theory of the EKG

The heart is made up of cells just as any other organ in the body. The tissue of the heart is

composed of cells immersed in fluid. The cells are surrounded by a membrane through

which fluid that contains ions and molecules may pass in either direction. [12] The interior

of the cell has a negative potential with respect to the exterior. The potential difference

created is typically 70 mV. [12] Therefore cells in the resting state are electrically

polarized. [11] Muscle and nerve cells are 'unlike other cells since the transmembrane

potential depolarizes abruptly and then returns to its original resting value. [12] This

change in potential is produced by a movement of sodium and potassium ions across the

membrane, commonly referred to as the sodium-potassium pump. The return path for the

ions often involves the entire body which is the case for the cells in the heart. [11] The

electrical activity of the cells results in electric currents and electric fields throughout the

whole body. The skin has a natural resistance and therefore,

potential differences are formed on the skin due to the electric currents that the heart

creates. The resulting currents flowing through the skin can be readily measured, and

gives rise to the EKG.

The heart's activity is transmitted throughout the heart by specialized nerve fibers

which carry the electrical potentials that travel and create cardiac muscle movement. [11]

If there is any damage or disease of the heart's conduction system there will be

disturbances in the current pathways of the heart which will be displayed in the EKG.

These disturbances are usually quite large.

The EKG is essentially a record of the potential difference developed at the leads

that are placed on the skin, where the term "lead" refers to a particular arrangement of the

electrodes. Figure 4.3.1 shows a standard 3-lead configuration for an EKG recording.

Other EKG configuration's require a total of 12 electrodes, where six of the electrodes are

placed across the subject's chest. [20]
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Figure 4.3.1 Standard EKG lead configuration

Other EKG configuration's require a total of 12 electrodes, where six of the electrodes are

placed across the subject's chest. [201

An EKG of a normal heart beat is shown in figure 4.3.2. The corresponding peaks

and waves of the EKG are related to the function of the particular areas of the heart. The

relation between the heart and the EKG are as follows

P-wave: Results from the spread of excitation through the atria. The atria is the chamber

of the heart that receives blood from the veins and passes the blood on to the ventricles.

QRS Complex: Results from the excitation of the ventricles. The ventricles are

responsible for pumping the blood to the arteries carrying the blood away to the body.

T-wave: Results from the recovery of the cells in the ventricles.

Identifying the P, QRS and T waves is not always straight forward and obvious.

EKG diagnosis and evaluation rely solely on the identification of these waves, which is

sometimes difficult for a human as well as a computer. The observer usually searches for

changes in the size and shape of the waves and changes in the rhythm that can be periodic



or non-periodic. When the source of the problem is detected the physician can then

properly treat the patient's illness.
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Figure 4.3.2 Normal EKG pattern

Recent developments have been made in the science of EKG signal analysis. For

years researchers have observed the effects of heart disease in the time EKG waveform

and paid little or no attention to the frequency aspects of the EKG. But one must

understand that the properties that configure the EKG signal are created by the frequency

properties of the signal. Wavelets provide a tool for examining the EKG in the time

domain while separating the signal into its separate frequency components.

4.4 Results and Discussion of EKG Wavelet Analysis

An orthonormal wavelet of length 4 was applied to several EKG signals. The

corresponding h(n) and g(n) filters used for the wavelet representation are listed in table

4.4.1. A length 4 filter was used since the wavelet coefficients at scales lower than 2-4
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were basically redundant and at this time a proper evaluation of the signal contents could

not be made. The matlab programs for obtaining the filter coefficients are listed in

Appendix C.

The EKG signals were created using the Laerdal Medical Heartsim 2000. This

allowed the creation of different disorders and diseases of the heart without having to use

real subject's. The heart simulator was utilized since it was necessary to maintain a regular

pattern of heart beats for consistant wavelet results that can be easily detected. Real EKG

data is not consistant and was therefore not used. The sampling rate of all EKG signals

generated is 200 samples per second. This meets the Nyquist criterion since the highest

frequency component of the EKG is 100 Hz. [12]

Table 4.4.1 Wavelet filter coefficients

h(n) g(n)

0.3415 -0.0915

0.5915 -0.1585

0.1585 0.5915

-0.0915 -0.3415

The wavelet was first applied to a normal EKG signal shown in figure 4.4.1a. The

first four wavelet coefficient decompositions are shown in figures 4.4. lb to 4.4.4. The

first wavelet coefficient, figure 4.4.1b, is obviously obtained from an EKG signal and has

the basic shape of the EKG. This first decomposition level is similar to the original signal
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and one can easily see that this wavelet coefficient was obtained from an EKG signal. The

results were similar for the second wavelet coefficient shown in figure 4.4.2. This is not

the case with the remainder of the wavelet coefficients.

The next lower wavelet coefficients are not as distinctive as the first and second

wavelet coefficients. At first, the decomposition levels of the EKG signal seem to be

distorted, overlapping and repetitive. This distortion and overlapping of the EKG

components occurred primarily due to the nature of the wavelet itself resulting from the

time translations and dilations of the wavelet being applied to the signal. After looking

more closely at a particular region of the wavelet coefficients, the properties of the signal

become apparent. This is shown in figure 4.4.3b.

The largest spike of the normal EKG, the R wave peak, is predominant in the

original signal and is carried through the entire set of wavelet coefficients. This spike

appears in any level of the wavelet representation without having to zoom in on a

particular region of the signal. For example, the third wavelet coefficient in figure 4.4.3 a

seems chaotic and unrelated to the original EKG signal. One can easily see the R peaks,

but the rest of the signal components are not as obvious. Figure 4.4.3b concentrates on

the middle of the third wavelet coefficient and the R wave peak is observed along with

additional components that resemble the P, Q, S and T waves. Similar results were

observed for the fourth wavelet coefficient shown in figure 4.4.4.
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Figure 4.4.1 Normal EKG
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60 Hz noise is usually embedded in the EKG recoridngs. Noise is created by

bioinstruments and fluorescent lighting present in labs. [11] Even though noise can be

filtered it is interesting to see the effects the wavelet representation has on an EKG signal

with noise. 60 Hz noise was added to the normal EKG signal in figure 4.4.1a and is

shown in figure 4.4.5a. The wavelet transform was then applied to the EKG signal with

noise and is displayed in figure 4.4.5 a.

The first wavelet coefficient is displayed in figure 4.4.5b. It is obvious that this

signal is derived from an EKG signal. The EKG P, QRS and T waveforms are present

along with some signal components that are apparently noise. The second wavelet

coefficient is displayed in figure 4.4.6, with a zoomed in section of the second wavelet

coefficient in figure 4.4.6b. The EKG waveforms are present and the 60 Hz noise has

been filtered.

The sampling rate of the EKG is 200 Hz and the highest frequency component is

100 Hz. The first wavelet coefficient contained the frequency components in the range of

50 to 100 Hz. The second wavelet coefficient contains frequency components in the range

of 25 to 50 Hz. (This is a result of the wavelet's bandpass filtering feature applied to the

EKG signal.) Therefore, the noise was passed into the first wavelet coefficient and will

not be present in any lower wavelet coefficients. This is shown in figures 4.4.6 and 4.4.7

where there is no noise present but the EKG waveforms are present. There are also

changes in amplitude of the wavelet coefficients with noise when compared to the

amplitudes of the wavelet coefficients of the EKG without noise. Even though the scales

are slightly changed, the separate P, QRS and T waveforms can still be distinguished from

one another.
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Figure 4.4.5 Normal EKG with 60 Hz noise added
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The wavelet representation was also applied to irregular EKG signals. The first

irregularity is known as a multifocal premature ventricular contraction (PVC). PVCs are

created when the ventricles discharge independently from the rest of the heart. [12] This

is shown by the large broad spikes which are larger in amplitude and duration than the R

wave peaks.

This signal is displayed in figure 4.4.9a. The first wavelet and second wavelet

coefficients are in figures 4.4.9b and 4.4.10, respectively. The first and second wavelet

coefficients of this signal are apparently similar and contain the basic properties of the

original signal, such as where the R peaks and the PVCs occur. However, the lower

wavelet levels, 3 and 4, do not initially exhibit properties of the original EKG signal.

After zooming in on a section of the wavelet, the P,QRS, T and PVC waves of the

signal become apparent. This is shown in figure 4.4.10 for the third wavelet coefficient

and figure 4.4.11 for the fourth wavelet coefficient. The PVCs are still predominant

throughout the wavelet representation. This was expected since the PVCs are very large

in the original EKG signal.

The wavelet was also applied to an EKG signal containing an atrial fibrillation

(AFIB). Atrial fibrillation occurs due to rapid unsynchronized contractions of the atria

that prevent effective pumping of the blood to the ventricles. [12] This result is several

outstanding P waves throughout the EKG sequence. An EKG with AFIBs is shown in

figure 4.4.13a. The wavelet transform was applied and the resulting wavelet coefficients

are displayed in figures 4.4.13b through 4.4.16.

The R wave is still predominant throughout the various levels of the wavelet

representation. The EKG signal and added P wave components are apparent in the first

wavelet coefficient. The lower wavelet coefficients, 2 through 4 (figures 4.4.14-4.4.16),

also display the EKG and the additional P wave components in the closely examined

sections of the wavelet levels.



Figure 4.4.9 EKG with PVCs
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4.5 Conclusion

The wavelet representation of EKG signals provided a new means for observing

EKG waveforms. All signal components were carried through the various levels of the

wavelet coefficients. Differences in the rhythm and pattern of the EKG can be detected

for various disorders of the heart which were apparently brought out in the wavelet

coefficients. The wavelet also successfully filtered out noise present in the EKG without

distorting the resulting wavelet coefficients. Although the wavelet performed its task well,

this direct application of the wavelet is not ideal for diagnosis since irregularities of the

heart are very noticeable in the original signal without having to apply wavelets. Perhaps

the wavelet would best be applied to time-frequency analysis of the EKG such as EKG

spectrograms.



CHAPTER 5

CONCLUSION AND DISCUSSION

5.1 Discussion of Wavelet Transform Results

The wavelet transform proved to be a successful tool for interpreting MEP, EP and EKG

biomedical signals. Structures of these signals that were not at first apparent in the

original signal were exposed throughout the levels of the wavelet representation. This was

shown in the previous chapters of this paper.

The MEPs are a perfect example of how details not initially present are displayed.

The original MEP waveforms in channels 3 and 4, which were smaller in amplitude than

channels 1 and 2, contained similar waveforms but were obviously different in peak

location and amplitude. The similarities of channels 3 and 4 were shown in the very first

set of wavelet coefficients. As the levels of the wavelet coefficients decreased the fine

scale components of the signal were essentially the same. The MEP signals were recorded

at sampling rates lower than the Nyquist rate. Therefore a completely accurate

interpretation could not be made. The lower sampling rate did not affect the resulting

wavelet coefficients as would be expected. Wavelet coefficients 3 through 6 were the

same and differed only in amplitude. The reason for no variation in the wavelet

coefficients is assumed to be due to the low sampling rate.

The EKG was recorded at a proper sampling rate and the resultant wavelet

coefficients obviously differed from the MEP wavelet coefficients. The EKG clearly

exhibited the properties of wavelets such as time dilation and translation. This is clearly

shown by the "compressed" wavelet coefficients and the side lobes present at the ends of

the coefficients.

The lower wavelet coefficients still contained structures that were identified as

EKG waves (P, QRS and P waves) since the sampling rate was adequate. In other words,
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since there were enough data points in the original signal the details of the lower

coefficients contained enough data points to display the exposed components of the

waveforms. As the EKG wavelet coefficients decreased in level, the time resolution

decreased as there was an increase in frequency resolution. The MEP did not exhibit these

properties, such as the side lobes of the EKG, but still decreased in scale as expected.

Wavelets also brought out irregularities present in EKGs with disorders such as

the PVCs and AFIBs. The decomposition of these signal showed that the wavelet

transfers all waveform structures whether large or small in amplitude, relative to the

original signal. This is clearly demonstrated by the R waves which are obvious throughout

the entire decomposition. Even when the time axis is compressed, the R waves are still

predominant The PVCs and AFIBs were also predominant in scale and repetition which

were also exhibited at all levels. However, when concentrating on a particular region of

the wavelet coefficients the other signal components which were not as large or

predominant were still present and not outweighed, as one might speculate.

The wavelet analysis of the MEPs and EKGs were similar yet different. They were

similar due to the fact that structures not originally present were exposed, but were

different since the EKGs contained many waveforms and the MEPs contained only a few

peaks. The MEPs finer frequency components were not displayed as in the EKG. The

wavelet representation of the EP could be considered a combination of these two

properties.

The wavelet analysis of the single EP and signal averaged EP showed that there

was structure similar to both waveforms. The structures were defined by the background

brain waves (EEG waves) separated by smooth sections of the signals. The rises and

declines of the peaks in the signal averaged EP matched up with the sections of the single

EP that leveled off. These sections of structure is a result of the wavelet. After examining

the wavelet coefficients more closely, it was shown that the details of the EP pulse

exposed by the wavelet enveloped the background brain waves.
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The larger number of components were obviously the background brain waves

which were predominant in the single EP while the pulse was the predominant feature of

the signal averaged EP. Although the EP pulse was very small in amplitude in the single

EP, its structure was displayed throughout the lowest levels of the wavelet coefficients.

This correlates with the theory of wavelets presented. Recall that, the wavelet is

essentially a bandpass filter passing the lower frequency components to the next wavelet

level.

Noise (that is 60 Hz noise) was introduced into a normal EKG signal. The first

wavelet coefficient contained noise which was present but not as great in amplitude and

duration as in the original signal. The lower wavelet coefficients did not contain the noise.

This occurred since the highest frequency component of the EKG was 100 Hz. The first

wavelet coefficient contained the frequency components in the range of 50 to 100 Hz were

noise is present. The components in the frequency range of 0 to 50 Hz was lowp ass

filtered to obtain the next lower levels of coefficients.

Since the wavelet is a bandpass filter passing only the lower end frequency

components into the next wavelet level, the noise is not present in any levels except for

the first wavelet coefficient, Noise was not present in the lower wavelet coefficients, but

the amplitude of some components were slightly altered when compared to the EKG

without noise.

5.3 Future Prospects

The results and observations made provide an excellent background for future work in the

area of the application of wavelets to biomedical signal analysis. The biomedical signals

presented in this work gave new insight into the usefulness of wavelets.

The MEPs were recorded below the Nyquist sampling rate and wavelet

coefficients were still produced. In order to obtain accurate results, wavelet analysis of

MEPs must be performed with signals recorded at appropriate sampling rates. Also, the
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MEPs were recorded above threshold, where threshold is the minimum response of muscle

movement to generate an MEP. A promising study would be to determine if the wavelet

will bring out similar details for various levels of threshold. This would be beneficial since

researchers often ignore MEP wavefou*s which are below a set threshold. Perhaps there

is relevant information embedded in the wavelet coefficients throughout the different

levels of threshold.

Wavelet EP studies have been performed and there is proof that details in the

wavelet levels contain information that can be compared to injury-related changes in EP

results. [24] Wavelets are also implemented in filtering techniques of BAEPs. [23] EP

studies of wavelets could include developing a correlation between the structure of a

single EP with a signal averaged EP. This correlation could relate various EP wavefonns

to one another which in turn would lead to using wavelets for clinical evaluation. There

has not been any major findings in using wavelets for a direct approach in clinical

diagnosis.

Direct application of wavelets can be used to detect QRS complexes embedded in

abnormal events such as ischemia [21] and in the prediction of ventricular tachycardia.

[22] In some cases it may be beneficial to incorporate wavelet analysis with other signal

processing methods. For example, wavelets can be applied to EKGs for detecting

ventricular late potentials. Ventricular late potentials are considered markers for life-

threatening arrhythmias In this case, time frequency plots of the wavelet coefficients of a

single EKG heartbeat were used for detection of late potentials. [20] Perhaps, wavelet

analysis of single EKG pulses along with trains of EKG pulses can be incorporated using

the details of both for interpretation of abnormal events. Also, most of the observations

made are with the wavelet coefficients. Perhaps there is important information lying in the

scaling coefficients as well as in the wavelet coefficients.
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5.3 Conclusion

The wavelet proved to be a beneficial tool in biomedical signal analysis. The wavelet

representation of biomedical signals provided insight to the properties and structures of

signals not initially displayed. The levels of the wavelet coefficients brought out these

signal components and structures that were present in the original signals. The wavelet

transform also proved to perform adequately even if the sampling rate was lower than

required Nyquist sampling rate.

Dominant structures were carried through the levels of the wavelet coefficients.

The wavelet not only displayed the larger signal components but also displayed the signal

components that are less predominant Although the smaller waveform components were

not present in the resulting wavelet coefficients, the components appeared in general

structures which were distinguishable.

Wavelet analysis of biomedical signals must eventually lead to a clinical correlation

of the actual waveforms now used in clinical evaluations. Though there has been some

work done with wavelets, wavelets are a new aspect of signal analysis and are not as

commonly known as the Fourier transform. New methods of evaluating biomedical

signals must constantly be developed. Any work performed and results achieved in the

area of biomedical signal analysis will greatly benefit all.



APPENDIX A

ESSENTIALS OF ORTHONORMAL WAVELET FILTERS

An FIR filter with impulse response [ h(0), h(1)„ h(N-1)] is given. The

convolution of this filter with an infinite signal s(n) followed by decimation (subsampling

the result by 2 or taking every other term) corresponds to the matrix multiplication of the

signal s(n) by

Let us now assume that the impulse response and its shifted versions by even shifts form

an orthonormal set given by

where Z is an integer vector field.

The equivalent of A.2 in matrix notation is

where I is a unity matrix.

The projection of the original signal sequence s(n) onto the subspace spanned by

the rows of H is given by
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H* H • S. 	 (A.4)

The multiplication by H* corresponds to upsampling by two followed by convolution with

a filter having impulse response [h(N - 1), h(N - 2), • • • h(1), h(0)] which is the time

reversed impulse response of h(n).

N must be even in order for the set of {h(n - 2k), k E Z) to form an orthonormal

basis. If N were odd then h(n),h(n L — 1)) = h(0)h(L — 1) # 0 unless either h(0) or

h(L - 1) were 0. Let Y, be the space of P(Z) and V, the supspace of V 1 spanned by the

rows of H. Now let W0 equal the orthogonal complement of V, in V , represented by

V -1
	 (A.5)

Now the filter

g(n) = (-1)nh(L - 1 - n) 	 (A. 6)

and its even shifted versions form an orthonormal basis for W0 . This is shown by the

relation

h(N - 21), g(N -2k)) = 	 k,1 EZ. 	 (A.7)

In matrix notation the filter g(n) is represented by G. Due to the orthogonal relationship

between Wo and V, we have

H • G* = O. 	 (A.8)

Based on the orthonormalilty of h(n), g(n) also forms an orthonormal set denoted by

g.(AT — 21), g(N — 210) = Ski k, 1 EZ 	 (A 9)

and
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(A.10)G • G* = I.

The projection of the original sequence onto Wo is given by

G* G • S.

A complete projection of the orthonormal subspaces is obtained and results in

H* H + G*G = I.

(A.11)

(A.12)

Finally we can say that g(n) and h(n) form an orthonormal basis for the space spanned in

/2(Z).



APPENDIX B

LINEAR VECTOR SPACES AND ORMONORMAL PROPERTIES OF

VECTORS

111: Vector Subspaces [13], [14]

Let a set of vectors Xbe a subset of a vector space V over a field K, where K is the field of

scalars and the elements of K form an arbitrary vector field. If X is a subset of V the

following identities for the subspace X are:

(i)0EX(orX#0)

(ii)Xis closed under vector addition, or for every u, v E X, the sum u + v E X.

(iii) X is closed under scalar multiplication. For every u E X, k E K, the multiple

k •u EX

where E represents that the product k •u is contained in the vector space X For the vector

space S to be a subset of the vector space V, the following conditions must be met:

(i) The span S is a subspace of V which contains S.

(ii) IfXis a subspace of V containing S, then S c X.

B2: Linear Spans and Vector Bases [13], [14]

Let a given set of vectors in a field V be represented by v 1 ,v2„vn e V. Then any

vector in the form

+a2v2 + 	 +anvn . 	 (B.1)

is a linear combination of v„ v„ 	 ,vn .. The elements a, are contained in the vector field

K. The set of all linear combinations given by
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span ( , v2 , 	 , v,, ) 	 (B.2)

is called the linear span of the vector space V (v1 ,v2 „v„,). Also, for a given vector

space V, vectors u1 ,u2 ,	 ,u,, are said to span the vector space V if

V= span( u1 ,u2 , 	 ,un ) 	 (B.3)

For this to be true, there must exist scalars a„ a 2 „an such that

v=au1 +a2 u2 + 	 + anu„ 	 (B.4)

The vector V is then a linear combination of u1 ,u2 „u„.

In other words, for a given set S = {u 1 u2 • • --,u„} of vectors is a basis if every

vector v E V can be written as a linear combination of the basis vectors. A set S is a basis

of V if the following conditions hold:

(i) uo2 • • • •-,un are linearly independent.

ui.u2 •-• un span the space of V.

The vectors of V are linearly dependent over K if there exists a 1 , 	 E K, with not all

of the elements in K = 0, so that

a 1v1 + a2V2 +
	 anv„ = O. 	 (B.5)

If the vectors are not linearly dependent then they are linearly independent.

B3: Orthogonal and Orthonormal Bases [13], [14]

To begin creating an orthonormal vector space let vector space Vbe an inner product

space denoted by /,‘,1,), where the inner product (u,v) is equivalent to u(t)v(t) dt. The

vectors u, v E V are said to be orthogonal and u is said to be orthogonal to v if
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v) = 0	 (B.6)

The orthogonal relationship is symmetrical so that if u is orthogonal to v then, (v,u) = 0

and then v is orthogonal to u. This orthogonal relationship can also be expanded to the

entire set of vectors contained in a designated space. To create an orthogonal set of

vectors one can implement a procedure known as the Gram-Schmidt oithogonalization

process. Once an orthogonal set of vectors is obtained, an orthonormal set of vectors can

then be derived.

A set of vectors S, which is a subspace of V, is called orthogonal if each pair of

vectors in S are orthogonal, and S is called orthonorroal if each vector in S has unit length.

In other words, S= {ui,u2 • • • ••, tin } is orthogonal if

(uo vi ) =0 for i j	 (B.7)

and orthonormal if

K uovi ) =0 fori#j
	

(B.8)

(u,,v) = 1 for i =j. 	 (B.9)

To normalize an orthogonal set of vectors one must go through the process of multiplying

each vector in the vector set by the reciprocal of its length in order to transform the set

into an orthonormal set of vectors. A basis S of a vector space V is called an orthonormal

basis ifS is an orthogonal or an orthonormal set of vectors.
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B4: Orthogonal Complements [13], [14]

Let S be a subset of an inner product space V. The orthogonal complement of S, given by

SI, consists of the vectors in V which are orthogonal to every vector contained in S. The

vector u E S results in

= v € V: (v,u) = 0 for every u E S 	 (B.10)

For a given vector u in V, we have

u-1-= { v e V:(v,u)= 0 }
	

(B.I1)

where ul is all the vectors in V that are orthogonal to the given vector u.



APPENDIX C

MATLAB PROGRAMS

Cl: Calculation of Wavelet Filter Coefficients [5]

filters.m

N =L/2;

a=1;b=1;c=1;

h = [1 1];

for j = 1:N-1;

h = conv(h,[1 11);

a = -a*0.25*(j +N-1)/j;

b = conv(b,[1 -2 1]);

c = [0 c 0] + a*b;

end

q = sorts(roots(q));

h = conv(h, real(poly(c( 1:N- 1 ))));

h = h/sum(h);

h = [I];

LE length(h);

g = h(LE:- 1 : 1).*cos(pi*[0 :LE- 1]);

% L is the length of the wavelet filter sequence

% initialize the variables

% initialize factors of zeroes at -1

% generate polynomials for zeroes at -1

% generate the binomial coefficient of L

% generate variable values for L

% generate variable value for L

% factor L

% combine zeros at -1 and L for wavelet

% normalize the filter sequence

% LE equals the length of filter h

% calculate filters for scaling function

C2: Calculation of Wavelet Coefficients

wavecoef.m

k = data;

h = upsample(h, length(data)/length(h));

g = upsample(g, length(data)/length(h));

% enter signal to be seperated into
% wavelet coefficiients
% insert zeroes between filter coefficients of h

% insert zeroes between filter coefficients of g
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% obtain wavelet coefficients

% obtain scaling coefficients

% store resulting wavelet coefficients

% store final scaling coefficient to achieve

% signal reconstruction
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for T = 1:length(h)

w = dnasmple(conv(g,k));

s = dnasmple(conv(h,k));

W(:,T) = -w 1 ;

end

W(:,T + 1) = ki;

C3: Upsampling and Downsampling Subroutines [5]

upsample.m

function y = up sample(x,Z);

% inserts Z-1 zeros between each term in the row vector x

L = length(x);

y(:) = [x,zero s(1,L)] ;

Y Y. I ;

y = y(1:2*L-1);

dnsample.m

function y = dnsample(x)

% removes every other term in row vector x

L = length(x);

y = x(1:2:L);

C4: Evoked Potentials Simulation Program

evoked.m

% creates EPs and performs signal averaging

i = [0:1:999]; 	 % initialize 1000 data points
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k = 10 * (exp(-i160) - exp(i/59)); 	 % create original EP pulse

r = rangen(1000); 	 % add random background brain waves

H = [0];	 % initialize counter for signal averaging

for T = 1:1:1000; 	 % signal average 1000 times

H = r + H + k';	 % perform signal averaging by adding EP
% plus background brain waves

r = rangen(1000);	 % create new background to be added

end

H = H/1000;	 % normalize signal averaged results

rangen.m

function r = rangen(x)

% creates random background EEG for EPs

r = rand(x,1000);

r = r - mean(r);

% create new background EEG

% normalize background EEG
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Figure 2.4.5 Second level of MEP wavelet coefficients
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Figure 2.4.8 Third level of MEP wavelet coefficients
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Figure 2.4.9 Fourth level of MEP wavelet coefficients
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Figure 3.4.8 Twelfth level of EP wavelet coefficients
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Figure 4.4.2 Normal EKG
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Figure 4.4.3 Normal EKG
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Figure 4.4.7 Normal EKG with 60 Hz noise added
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Figure 4.4.10 EKG with PVCs
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Figure 4.4.12 EKG with PVCs
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Figure 4.4.13 EKG with AFIBs



104

Figure 4.4.14 EKG with AFIBs



Figure 4.4.15 EKG with AFIBs
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