Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/1205 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Investigation of pre-detection signal processing of pseudonoise communication signals in the presence of additive white gaussian noise and CW and bursty interference
Author: Mayk, Israel
View Online: njit-etd1985-009
(ix, 230 pages ~ 6.9 MB pdf)
Department: Department of Electrical Engineering
Degree: Doctor of Engineering Science
Program: Electrical Engineering
Document Type: Dissertation
Advisory Committee: Rosenstark, Sol (Committee chair)
Klapper, Jacob (Committee member)
Frank, Joseph (Committee member)
Tavantzis, John (Committee member)
Date: 1985
Keywords: Signal processing.
Availability: Unrestricted
Abstract:

By comparison to conventional communication systems, spread-spectrum systems are known to be less affected by interference because of their large dimensionality in signal space. Nevertheless, significant performance degradation is experienced when large interference exists in a few or even one signal coordinates. In this case, interference reduction techniques are also known to provide additional processing gain. A novel class of pseudonoise (PN) invariant algorithms is derived to reduce the impact of interference and restore much of the structure of PN signals received in the presence of interference and noise. A PN signal received by a pre-detection signal process (PDSP) implementing a PN invariant algorithm remains unchanged at the output. When an interference waveform is added to the PN signal, most of the DC bias as well as other smooth components of the interference may be significantly reduced at the output of the same PDSP. If n is the longest run in the PN sequence of maximal length N, and Ro is the chip rate, it is shown that the algorithms work well when the interference is sinusoidal with a frequency deviation from the carrier up to Ro/N. At such a low frequency deviation, the processing gain is observed to be relatively high and independent of the phase deviation. As the frequency deviation Increases to nRo/N, the performance of the spread-spectrum system decreases to the level that would have been obtained in the absence of the PDSP.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003