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ABSTRACT

Title of Dissertation: INVESTIGATION OF PRE-DETECTION SIGNAL PROCESSING 

OF PSEUDONOISE COMMUNICATION SIGNALS IN THE PRESENCE OF ADDITIVE WHITE 

GAUSSIAN NOISE AND CW AND BURSTY INTERFERENCE 

Israel Mayk, Doctor of Engineering Science, 1985 

Dissertation directed by: Dr. Solomon Rosenstark

Associate Professor 

Department of Electrical Engineering 

New Jersey Institute of Technology

By comparison to conventional communication systems, spread-spectrum 
systems are known to be less affected by interference because of their large 
dimensionality in signal space. Nevertheless, significant performance 
degradation is experienced when large interference exists in a few or even one 
signal coordinates. In this case, interference reduction techniques are also 
known to provide additional processing gain. A novel class of pseudonoise (PN) 
invariant algorithms is derived to reduce the impact of interference and restore 
much of the structure of PN signals received in the presence of interference and 
noise. A PN signal received by a pre-detection signal process (PDSP) 
implementing a PN invariant algorithm remains unchanged at the output. When 
an interference waveform is added to the PN signal, most of the DC bias as well 
as other smooth components of the interference may be significantly reduced at 
the output of the same PDSP. If n is the longest run in the PN sequence of 
maximal length N, and R0 is the chip rate, it is shown that the algorithms work 
well when the interference is sinusoidal with a frequency deviation from the 
carrier up to R0/N. At such a low frequency deviation, the processing gain is 
observed to be relatively high and Independent of the phase deviation. As the 
frequency deviation increases to nR0/N, the performance of the spread-spectrum 
system decreases to the level that would have been obtained in the absence of 
the PDSP.
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CHAPTER I

A PRE-DETECTION SIGNAL PROCESSING PROBLEM

1.1 Introduction

The communications of digital data through spread-spectrum systems has 

been studied extensively over the last forty years. The subject, however, 

continues to influence technological discoveries as well as theoretical 

developments. In practical applications digital data is communicated over 

inherently noisy channels which are corrupted by intentional or unintentional 

interference from other users or polluters. The noise and /or the interference 

may introduce digital errors and erasures. The type of noise has been known to 

vary with the type of channel under consideration. In space applications, the 

channel noise is predominantly additive white Gaussian noise (AWGN). In 

contrast, the noise which contributes to errors and erasures on telephone lines 

is known to be predominantly impulsive [1] . Due to the impulse response of 

telephone lines, high intensity bursts of short duration typically.occur at random 

statistically more frequently than bursts due to Gaussian noise. Fortunately, the 

inter-arrival time between bursts is long compared to typical burst durations. 

In terrestial radio applications, the noise is likely to include both AWGN and 

impulsive noise. Analysis of received signals is further complicated by 

jamming, multipath fading, and doppler degradations. To combat impulsive noise, 

and bursty and/or sinusoidal CW interference, the use of basic pseudonoise (PN) 

systems is investigated in conjunction with the possible application of a novel
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class of time domain pre-detection signal processes (PDSPs) designed to 

improve detection in a mix of noise and interference. It is shown that in the 

presence of Gaussian noise only, the amount of theoretical degradation in 

performance of a matched filter or correlative receiver, due to the insertion of a 

PDSP as an integral part of a PN system receiver, is insignificant and decreases 

rapidly with higher dimensionality of the PN signal space. In the presence of 

impulsive noise, bursty and/or sinusoidal CW interference mixed with AWGN, the 

amount of theoretical improvement due to the insertion of a PDSP preceding a 

matched filter or correlative receiver can be significant and increases as the 

dimensionality of the PN signal space increases as well as the average, slowly 

fluctuating, content of the interference increases.

1.2. Background

In a tutorial on the theory of spread spectrum communications, Pickholtz, 

et al. 12] define spread-spectrum as follows:

Spread-spectrum is a means of transmission in 
which the signal occupies a bandwidth in excess of the 
minimum necessary to send the information; the band 
spread is accomplished by means of a pseudorandom 
code which is independent of the data, and a 
synchronized reception with the code at the receiver is 
used for despreading and subsequent data recovery.

The underlined “pseudorandom" characterization of the code missing in the
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reference quoted is an important criterion which is implicitly understood by all 

who study spread-spectrum systems, but should have been included in a 

fundamental definition. In a monograph on the origin of spread-spectrum 

communication, Scholtz [3] identifies the basic signal characteristics of modern 

spread-spectrum systems as follows:

1) The carrier Is an unpredictable, or pseudorandom, 
wide-band signal.

2) The bandwidth of the carrier is much wider than the 
bandwidth of the data modulation.

3) Reception is accomplished by cross correlation of 
the received wide band carrier.

In this definition, strictly speaking, the carrier could not possibly be totally 

unpredictable since it must be known at the receiver. "Unpredictable” is not 

synonomous with “pseudorandom" which may be easy or hard to predict depending 

upon the pseudorandom code generator. While both definitions are consistent 

with each other, the fact that different wording Is used to describe the same 

class of communication techniques Implies that the theory of spread-spectrum 

system has not matured to provide a common set of terms and definitions as 

might be expected of a more established area of research.

More serious Issues exist when comparing performance among 

spread-spectrum systems. Typically, the processing gain Is used as a figure of 

merit. The processing gain in general communication theory is the ratio of the 

s1gnal-to-noise ratio at the output of the receiver (5NR0) to the signal-to-nolse 

ratio at the input of the receiver (SNRj). In the presence of interference,
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however, it is understood that the noise term in the SNR must include 

interference in addition to random noise. Some authors, therefore, use the term 

signal-to-interference ratio (SIR). To make matters worse, the definition of the 

spread-spectrum system processing gain has been limited by many researchers 

[4], [51, [6], to the ratio of the dimensionality of the pseudorandom coded symbol 

to the dlmensioallty of the data code. This ratio has also been dubbed by some as 

the “spreading factor”, it is the lack of commonly acceptable standard 

terminology which is believed to be, by this author, at the root of many 

misinterpretations of results among researchers and which may also contribute 

to the evolution of some of the myths attributed to spread-spectrum systems 17], 

[81

The lack of standard terminology in spread-spectrum is most likely due to 

the fact that many applications utilizing a wide variety of techniques have been 

identified for spread-spectrum systems and developed independently over a 

relatively short period of time. These include communications in interference 

environments, covert communications, multlple-access communications, 

identification, ranging and relative navigation.

Historically, it seems that the most important impetus to the development 

of spread-spectrum systems 1s the requirement to communicate in the presence 

of interference. Interference may be intentional in which case it is also referred 

to as jamming. Unintentional interference is sometimes referred to as 

self-jamming. The spreading of the minimum essential communication 

bandwidth by wideband pseudorandom code, however, is limited by the ability of
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technology to provide wider band components as well as frequency allocation for 

operational use of the spectrum resource. In operating within a limited 

spread-spectrum, interference effects are mitigated but continue to plague 

spread-spectrum systems. Other means, therefore, must be investigated to 

achieve greater processing gains beyond that afforded by basic spread-spectrum 

systems. Here again, many techniques have been proposed and investigated on an 

ad hoc basis [9H37J.

Since spread-spectrum systems are extremely complex systems, there are 

numerous implementation alternatives. Each alternative will have its own 

processing gain corresponding to each interference phenomenon. Even the 

insertion of a simple device such as a limiter may significantly affect the 

processing gain [38].

The aim of this dissertation is to investigate the basic properties common 

to random noise and pseudorandom noise, hereafter referred to as pseudonoise 

(PN), and to exploit these properties in rejecting or suppressing interference 

phenomena in spread-spectrum communications. The approach is to use digital 

signal processing in the time-domain to perform randomness-invariant or almost 

invariant operations which randomize and, thereby, reduce non-random 

interference. It is shown that such signal processing would have minimal or no 

impact upon the PN coded signal in the absence of interference. This type of 

filtering is robust since it is independent of the detailed interference structure. 

As a figure of merit, the processing gain for individually received symbols and 

subsymbols are used as the lowest common denominator for evaluation of 

performance.
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Detection of signals corrupted by random noise such as AWGN has been 

studied extensively and exhaustively by many researchers [39, p. 707]. This is 

true particularly for AWGN because AWGN lends itself to analytical analysis. 

This is also true because AWG-like noise is prevalent in many communication 

channels, if not as the primary then as a secondary source of noise. Therefore, in 

evaluating new techniques which process signals corrupted by any noise or 

interference phenomena, one cannot ignore AWGN as an important case. AWG-like 

noise many result in several ways. AWG-like noise may arise in benign 

environments due to thermal characteristics of the channel including some of the 

receiver components [40, p. 196]. In spread-spectrum systems, when subjected 

to tone interference or jamming, AWG-like noise may develop as a consequence 

of the PN despreading algorithm [2]. Broad-band jammers also transmit 

AWG-like noise of high power spectral density. It is important to remember that 

if interference were pure white random noise or broadband jamming with 

equivalent spectral density, the processing gain of spread-spectrum systems in 

general would be unity.

Detection of signals polluted by interference has also been studied 

extensively. The interest in such problems is derived from the reality of 

electromagnetic interference due to other communicators using the same 

frequency resource, electromagnetic impulses due to a variety of electrical 

phenomena, and Intentional acts of jamming. Typically the approach to 

investigating performance characteristics assumes specific forms of 

interference, such as single-tone continuous wave (CW), multi-tone, 

self-interference, broadband interference, partial-band interference,
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repeat-back interference, and electromechanical impulses. Similarly to the 

AWGN case, if a parametric model for the interference is known, one may design 

an optimum receiver. We note, however, that for arbitrarily fluctuating 

interference which is independent of the source, one cannot constrain the 

interference to the model. Invariably, when the actual interference deviates 

from the assumed interference, a significant performance deviation may result.

Reviewing the many types of filters designed to combat interference, 

parametric as well as non-parametric signal processing algorithms/ filters have 

been identified [9]. Consider, for example, the parametric class of adaptive 

filters. A model of the interference is predicted at each chip time interval using 

estimates from previous samples of the received waveform. Adaptation results 

from monitoring increasingly more samples to refine the interference model. 

Thus, adaptive filters self tune to subtract the best available interference 

estimate. Even for this class of sophisticated receivers, severe degradation may 

result when the statistics of the interference changes faster than the 

monitoring period. In contrast, non-parametric filters which are non-adaptive 

also perform signal processing which ascertains the parameters of any 

interference independently from one time period to the next. Filters in this 

class typically include transversal filters which may employ fast Fourier 

techniques to remove spectral components which are inconsistent with the 

power spectral density of the spread-spectrum signal [9]. In this dissertation, 

we propose a third class of noise suppression/rejection techniques which is 

independent of the interference parameters, i.e., no estimation of the 

interference parameters are required, parametric or non-parametric. Namely, 

pre-detection signal processing is performed upon the received wideband
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waveform to make it consistent with the randomness properties of the 

transmission. Inconsistencies with the randomness properies may be easily 

detected and may be used to declare erasures. Interference which is narrow 

band relative to the spread-spectrum may also be "corrected" by removing most 

of the non-conforming bias introduced by the interference.

1.3 EIlC^mmuDicatioD-Syatflais

The purpose of a PN communication system is two-fold: a) to reduce the 

reception probability of error Pe , in the presence of intentional and/or 

unintentional Interference {e.g., jamming) and b) to reduce the transmission 

probability of interception in the presence of noise. These objectives may be 

achieved simultaneously by introducing PN to modulate the RF signals in a 

variety of ways. By spreading the spectrum from narrow band to very wide band, 

the signal power spectral density is hidden In the omnipresent thermal noise. In 

addition, the signal space is expanded Into many more dimensions which are more 

likely to be orthogonal to a narrower band Interference.

Of the many different techniques utilizing PN in communication systems 

[ 3], two basic techniques, a) direct sequence (DS) and b) frequency hop (FH), have 

emerged as most commonly considered. Theoretically, both techniques achieve 

the same two-fold purpose mentioned above. Practically, however, 

technological limitations require trade-offs to be made which sometimes may 

even result in the merging of both techniques into a hybrid FH/DS architecture.
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An example of one important advantage of D5 is the feasibility of coherent 

modulation and detection which is well known to be more efficient than 

non-coherent modulation and detection [39}. An example of one important 

advantage of FH is the feasibility of implementing wider time-bandwidth 

products than currently possible with DS devices. This is accomplished by using 

many independent and/or programmable frequency synthesizers. In the following 

subsections, we discuss the basic design of DS, FH and FH/DS hybrid 

spread-spectrum systems which is necessary to provide the context for the 

results presented in this dissertation.

1.3.1 Direct sequencing (DS). Consider a basic direct sequence PN 

communication system as shown in Figure 1.3-1. A sample N-dimensional PN 

vector &, consisting of binary variable elements bs, i = 1... N, is used to generate 

a periodic bipolar PN rectangular waveform b(t). The transmission time duration 

of one period is given by T = N T0 . Tc is assumed to be the transmission time 

duration of a single PN variable element which is commonly referred to as a chip. 

The source data binary symbol, such as a 'O' or a T  , is of transmission time 

duration Tb . Typically, Tb < T for a variety of reasons [41]. Long PN codes are 

required to minimize the predictability of the PN sequence being used. The 

processing gain in the presence of narrowband interference, however, is 

maximized when Tb = T . For simplicity, we assume that once the length of the 

PN code has been established to meet the predictability criterion, the data rate 

may be adjusted such that Tb= T , to minimize the interference. Expressed in 

terms of N time-orthogonal unit rectangular pulse functions q^t), i «= I... N, of
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transmission time duration T0, for one period T, b(t) is given by

N N
b(t) = g  bj qj(t) = g  bj q [t-(i-1 )TC] (1 -1)

where

and

bj = + b where b > 0, (1-2)

q/tt)«*q[t-(M>T0], 1-1 ... N, (1-3)

q(t) ■ I , when 0 < t < T0, (I-4a )

q(t) ® 0, otherwise. ( I -4b)

The set of functions ( qj(t), M ...N ) form a complete set of time-orthogonal basis 

functions spanning the entire time interval T. Therefore, the scalar products

< q^t),qj(t) > ■
fH-OO

q,<t)q /t)d t = Tc6 y for 1, j= 1 ...N. (1 -5)
LOO

Similarly, consider a sample data message vector u of dimension J. It may be 

used to generate a bipolar source data waveform

<j j  >
u(t) » Uj p /t)  ■ Uj p lt - ( j-1 )T] (1 -6)

where
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(1-7)

p j(t) = p(t-(j-1)T), j=1 ...J, ( 1- 8 )

p(t) = 1, when 0 < t < T, (1-9a)

and

p (t)» 0, otherwise. (I-9b)

The set of functions { p /t), J -1 ..J) also form a complete set of time-orthogonal 

basis functions, spanning the entire time interval T.

The waveforms u(t) and b(t) may be mixed directly, as shown In Figure 

1.3-1, to produce a direct sequence signal waveform

J N
s(t) « u(t)b(t) (1-10)

The signal waveform s(t) then modulates a single carrier

z(t) = cos( « 0t + e0 ), ( 1 - 1 1 )

where <*>0 is the angular frequency and 0O is the phase of the carrier. The 

resulting coherently transmitted waveform
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x(t) -  s(t) z(t). 0 -1 2 )

The transmitted waveform x(t) is attenuated by propagation phenomena and 

corrupted by random noise N(t) and interference I(t). The received waveform 

y(t) is mixed with a local phase locked oscillator z(t+A tz) in order to remove the 

carrier and produce a wideband baseband signal r(t). The wideband baseband 

signal r(t) is subsequently correlated with a synchronized replica of the PN 

waveform b(t+Atc), which spreads the interference and despreads the data 

symbol signal, resulting in a “sufficient statistic" for a symbol decision. With 

perfect synchronization of the carrier and the PN sequence, the time offsets A tz 

and A t0 are expected to vanish. In this dissertation we shall assume this to be 

the case.

I(t)

u(t) S(t) 1 x(t)

b(t)

z(t)

DEMOD

N(t)

Figure 1.3-1. A Basic DS PN Communication System
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1.3.2 Frequency hooping (FH). Consider a basic frequency hopping PN 

communication system as shown in Figure 1.3-2. A sample N-dimensional PN 

vector a , consisting of unipolar binary variable elements at, 1 = 1... N, Is used to 

generate a periodic set of pseudorandom numbers a(i), consisting of n = log2(N+1) 

digits. Since a(i) » a(1+N), the transmission time duration associated with one 

period is given by T = N Tc . Tc Is assumed to be the transmission time duration 

associated with a single PN number a(i), which is also commonly referred to as 

a chip. The number a(1) is used to select and/or program one of M < N frequency 

synthesizers available at the transmitter and the receiver. The frequency 

selected is then activated as the carrier of the source data waveform. We 

assume that the source data symbol a j  Is binary, such as a ’O’ or a T  , and is of 

transmission time duration, Tb . Typically, Tb « T since long PN codes are 

required to minimize the predictability of the PN sequence being used. The 

processing gain in the presence of partial band interference, however, is 

dependent predominantly upon M and should be independent of N. We assume that 

once the length of the PN code has been established to meet the predictability 

criterion, the frequency hops are uniformly distributed to minimize the 

interference. The number a(i), therefore, corresponds to the m*1 frequency 

synthesizer or carrier zm(t), which is modulated directly by a bipolar source data 

waveform u(t), for T0 units of time. Typically,

(1-13)
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where com Is the angular frequency and 0 m is the phase of the carrier.

If the time duration of a source data symbol Tb < Tc , then the frequency 

hops occur only once per one or more symbols. This is known as slow hopping. 

For a message with J symbols and one hop per message, the transmitted 

waveform

If the time duration of a source data symbol Tb » T0 , then many frequency hops 

occur per symbol. This is known as fast hopping. For a message with J symbols 

and N hops per symbol the transmitted waveform

The sample N-dimenslonal PN vector a , consisting of unipolar binary variable 

elements a{ , i ■ I... N, may also be used to generate a periodic bipolar PN 

rectangular waveform ba(t), as in (1-1), and psuedo-randomize the source data 

prior to mixing with the selected carrier. For a message with J symbols and N 

hops per symbol the transmitted waveform is modified to

j
x(t) = A Y  Uj zm(t) q[t-(J-1 )T0] . 

j=t
(1-14)

J  N
(1-15)

J N
(1-16)
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At the receiver, the received waveform y(t) consists of an attenuated x(t) 

corrupted by random noise N(t) and Interference l(t). y(t) Is mixed with the local 

oscillator zJt+At0) selected by the current hop number a(i*Ai) to produce a 

narrowband or a wideband baseband signal corresponding to slow hopping or fast 

hopping, respectively. Both the hop number offset Ai and the carrier activation 

time offset At0 are expected to vanish if the current hop number at the receiver 

is synchronized with the transmitted hop. If required, the baseband signal r(t) 

may be mixed with a synchronized replica of the PN waveform b^t+Atc). The 

resulting waveform v(t) is then processed by conventional detection techniques 

appropriate to the modulation format [40, p. 5621.

I(t)fl(l)
innniim

2m(t)

uCtjJLs(t) t  x ( t ) d u n u m )\  Vtt)
H nM B K aM flM S K - DEMOD

N(t)

Figure 1.3-2. A Basic FH PN Communication System
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1.3.3 FH/D5 hybrid systems. A hybrid system results when features from both 

DS and FH systems are integrated into one system. The salient characteristic is 

the use of two independent PN variable vectors, a and b . I* is used to spread the 

source data waveform u(t) with a periodic direct sequence [bk , k = 1... K ]. a is 

used to select from or "frequency hop" to different carriers zm(t). Within this 

class of systems various techniques exist, ranging from situations in which the 

period of the PN for direct sequence is totally contained within each hop as given 

by

J N K
x(t) = A V  £  £ \ i j  bkq[t-(k-1 )Tbl zm(t) q [t-(i-1 )TJ , (1-17)

j =1 i=1 k=l

to situations in which their clocks are identical. A basic FH/D5 PN hybrid 

system is shown in Figure 1.3-3. As for all communication systems, the 

transmitted waveform x(t) is attenuated by propagation losses and corrupted by 

random noise N(t) and interference l(t). The received waveform y(t) is mixed 

with the local oscillators zm(t), switched by the PN FH generator replica to 

remove the carrier and produce a baseband signal r(t). The DS signal s(t), 

embedded in the baseband signal r(t), is subsequently correlated with a replica 

of the PN waveform b(t), which spreads the interference and despreads the 

source data signal u(t), to produce the waveform v(t). A conventional 

demodulation process will then result in a "sufficient statistic" for a symbol 

decision.
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Kt)

u(t) s ( t ) T  x (t)
DEMOD

a ( i+Ai )
n i i i i i i i i i i

Zm(t+At2)

N(t)

Figure 1.3-3. A Basic D5/FH Hybrid PN Communication System 

1.4 Statement of the Problem

As discussed in the background, when compared to conventional systems, 

PN systems attempt to satisfy the much more demanding requirements of 

achieving a) low probability of interception Pj « 1, in the presence of 

sophisticated radiometers and b) low probability of error Pe« 1, in the presence 

of interference. In addition, the PN system must perform comparably as well as 

conventional systems in the presence of random noise. Given the basic design of 

PN systems, can we enhance the design to improve both performance measures? 

If not, can we improve in one area and not degrade the performance in the other 

area? Tradeoffs between the optimal solutions to these two problems depend 

upon the assigned objective-risk function which must include the relative 

importance between Pj and Pe . The design parameters are constrained by the 

source data symbol signal transmission time, available bandwidth and power
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parameters which may also be adjusted within limits. By increasing the source 

data symbol signal transmission time or power, we may decrease Pe at the 

expense of P j. By increasing the bandwidth, both requirements for Pf and Pe may 

be achieved.

Given a basic PN system with a time-bandwidth-power constraint, a class 

of robust pre-detection digital signal processing (PDSP) algorithms is proposed 

as one way to enhance receiver performance in typical interference environments 

with minimum degradation of performance in random noise environments and no 

degradation in P j. Conversely, if in the absence of a PDSP algorithm, the 

maximum tolerated Pe is achieved with the basic available interference 

suppression processing gain margin, the introduction of a PDSP algorithm may 

significantly increase the processing gain which may then be readjusted to 

enhance Pj by the lowering of the data symbol signal transmission time and/or 

power requirements.

1 .4. 1 Suppression of Continuous Wave (CW) Interference. Consider the basic DS 

PN coherent PSK system shown in Figure 1.4-1. One figure of merit for the 

reduction in the impact of an interfering signal upon reception is the processing 

gain (PG). The PG is usually defined as the ratio given by

PG -  SNRout /  SNRjn (1-18)

where 5NRjn denotes the ratio of the signal power to the sum or the interference
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and notse power at the receiver input, and SNR^ denotes the ratio of the signal 

power to the sum of the interference and noise power at the output of the 

despreader which may be measured at the input to the conventional demodulator. 

As noted by other authors, [4, p. 348], [42, p. 140], the PG of a PN system is 

highly sensitive to the parameters of both modulation and interference 

waveforms, and therefore should only be used in the context of specific system

design parameters subjected to interference of a specific structure and

statisical properties. It should not be used to compare performances between 

different types of spread spectrum systems. For example, the PG of a basic 

coherent P5K D5 PN system in the presence of a single frequency CW interference 

is critically dependent upon the phase relationship between the carrier and the 

interference which is assumed to be tuned to the signal carrier. For a phase 

relationship between the carrier and Interference which is constant during the 

entire PN sequence, it was shown by Levitt [6] that

PGfl = (Rc /Rb) cos'2 U 6k ) (1-19)

where Rb = 1/Tb , Rc = 1/T0 , and A0k is the phase difference between the PN 

carrier and the interference tone. The fact that the PG has such a wide range 

given by

(R0/RbX P G < «  (1-20)

provides the challenge to search for robust signal processing techniques which
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may reduce this range by increasing the worst case PG.

I(t)

u(t) s(t) t  x ( t ) T y ( t ) l r ( t )  v(t)

b(t)

z(t)

N(t)

Figure 1.4-1. A Basic Coherent P5K DS PN Communication System

1.4.2 The mathematical framework and scope. Referring to Figure 1.4-1 

selection of hypothesis H0 or H, depends upon the sufficient statistic

1(T) v (t) dt

Since

and

therefore,

v(t) = r(t)b (t+A t0),

r ( t )  = y (t)z(t+A t2),

v (t) = y (t)z(t+A tz )b(t+Atc).

, the 

1- 2 1 )

1- 22 )

1-23)

1-24)
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The input to the receiver is given by

y(t) = Ax(t) + l(t) + N (t), (1-25)

where A is the received amplitude of the transmitted waveform

x(t) = s(t) z(t) = u(t)b(t)z(t). (1-26)

Using (1-23) through (1-26), the output of the carrier mixer is given by

We assume coherent detection with perfect synchronization between the carrier 

and local oscillator , i.e. Atz -  0. Furthermore, we assume that the RF is 

filtered out of r’(t) by passing it through a low pass filter (LPF) of bandwidth 

R0= l /T 0 . The wideband baseband signal r(t) = LPF[r‘(t)l may be written, 

therefore, as the sum of three terms, /  e.

r‘(t) = I Au(t)b(t)z(t) + !(t) + N(t) ] z(t+Atz) . (1-27)

r(t) -  rg(t) + r^t) + r ^ t ) . (1-28)

The first contribution to r(t) is due to the signal and is given by

rg(t) -  LPFt Au(t)b(t)z2(t)] = jA s(t). (1-29)

The second contribution to r(t) is due to the interference and is given by
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r j( t )» LPFtKt)z(t)] = 1(t). (1-30)

The third contribution to r(t) Is due to the random noise and Is given by

r^ t) = LPF[N(t)z(t)] = n (t). (1-31)

We also assume coherent detection with perfect synchronization between the 

modulating sample PN vector and receiver replica, i.e. A t0 = 0 . In addition, let 

the magnitude of the PN waveform b = 1. Since [b(t)]2 = 1, mixing r(t) with b(t), 

we obtain

v(t) = ±Au(t) + Kt)b(t) + n(t)b(t). (1 -32)

Note that v(t) is also the sum of three terms, r. e.

v(t) -  Vg(t) + V j(t) ♦ v^t), (1 -33)

where the first contribution to v(t) is due to the signal and is given by

Vg(t) = ^Au(t), (1-34)

the second contribution is due to the interference and is given by

Vj(t) = i ( t ) b ( t ) , (1-35)
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and the third contribution is due to the random noise and is given by

v^t) -  n(t)b(t). (1-36)

The sufficient statistic is, therefore, also the sum of three terms given by

1(T) -  lg(T) + 1,(T) + l^T) (1-37)

where

»T *T *T
w o  * Vg(t) dt, li(T) * vrft) dt, and lrfT) = v^Odt. (1

t 0 *0 0

The BP5K signal contribution. Of the many coherent data modulation 

techniques which exist, binary phase shift keying (BPSK) [ 40, p. 552 ] is very 

commonly used. Compared to other coherent modulation techniques such as 

minimum shift keying (MSK) [40, p. 556] , or quadriphase shift keying (QPSK) 

[40, p. 570], BPSK is the simplest to analyze as well as to implement. Other 

modulation formats, however, may be used when the slgnal-to-nolse is high or 

when spectral efficiency is of concern. For BPSK signals, the source data 

waveform is given by

u(t) -  +1 for a T  (1 -39a)

u(t)= -1 for a 'O’. (1-39b)
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Using (1 -38 ) and (1 -39),

1g(T) = ±iA u(t) dt = ±4AT. (1-40)

Note that the contribution of the signal to 1(T) is unaffected by the PN vector. 

For the remainder of this dissertation we shall consider only the BPSK 

modulation format.

The sinale-tone CW interference contribution. For a single-tone CW 

interference, the waveform at the input to the receiver is given by

l(t) = oc cos( o>kt + 0k) (1-41)

where or is the interference amplitude, o>k is the constant angular frequency and 

0k is an arbitrary but constant phase. Using (1 -30) and (1 -41), (1 -35) becomes

Vj(t) = Or LPF[cos( w kt + 0k) cos( C0 ot + 0O)] b ( t ) . (1 -42)

Let <|»k = cokt + 0k, and = <*>0t + 0O. Using the trigonometric identity

cos( <|/k )cos( i|>0) -  £cos( <|/k -  <J>0 ) ♦ £cos( 4»k ♦ ^0), (1 -43)

(1 -42) becomes
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v^t) » £c*b(t)LPF[cos[(a>k -  -  0O)]+ cos[(tok + wo)t+(0k + 0,,)]] (1 -44)

Assuming that o>k » oo0 , the sum frequency component of Vj(t) will be greatly 

attenuated by the receiver wideband baseband LPF . Ignoring the sum frequency 

term,

V j(t)» £<*b(t)cos( A<okt + A0k ) (1 -45)

where

A o k = cok -  (a) 0 and A0k = 0k -  0O. ( I -46)

Using the trigonometric identity for the cosine of the sum of two angles, (1-45) 

may be rewritten as

Vj(t) = £ab(t)[cos(Aokt)cos(A0k ) -  sin(Atokt)sin(A0k )]. (1 -47)

Note that Vj(t) may contribute constructively or destructively depending upon the 

sign of relative to the dominant inphase or quadrature interference term in 

(1-47). The contribution of the interference to the sufficient statistic 1(T) , 

therefore, also consists of an inphase component given by

L0 = |  a  cos(A0k) I0 (1-48)

and a quadrature component given by



Ls *  £ a  sin(A0 k) ls , (1-49)

where

(1-50) 

(1-51)

Consider the following special cases:

a) A6ok = 0 , and A0k = ^ti , ^  lj(T )= 0 .

b) Ao>k » 0 , and Ic n 0 , => lj(T) ° 0 .

If we define SNR^ = ( 1s(T) /  [1i(T)+ l^T)])2 , then using (1-18), note that PG = «  

when a) and b) hold and when the random noise power is negligible compared to 

the interference power. When

and

lc *  fb(t)cos(Ao>kt)  d t ,
Jo

Is *  fb(t)sin(Ao»>kt ) d t . 
JO

c) Ao>k ** 0 , and Ao>kT ~ 0 ,

lj(T) ~ ^QrCOS(A0k)
»T
b(t)dt.

0
(1-52)

For a PN vector with N+ ® N- , the integral vanishes and lj(T) ~ 0. For a PN vector
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with N+ = N" ± 1, however,

lj(T) ~ i  ^(arT/N)cos(Aek), (1-53)

and, hence,

(1-54)

Since SNR* = (A /a )2 when the random noise power Is negligible compared to the 

interference power, PG > N2 when c) holds. Note that this is a factor of N 

better than reported by other authors for the case where the PN period, T, is 

much longer than the symbol decision period, Tb

To obtain the average of PG which is E[PG], consider an interference only 

environment, in which 1(T)» lgj(T) = ls(T) + li(T). Therefore,

l(T) *  ±^AT + j*cos(AGk) b(t)dt
»T

(1-55)
[0

The normalized sufficient statistic is given by

»T
1|(T)« ±1 + (or/AjcosUe^r1 b(t)dt.

Jo
(1-56)

Note that if the period of b(t) deviates from T, the integral of b(t) may cause the



28

interference to significantly degrade the PG and affect the binary decision. This 

phenomenon is discussed by Levitt [6] and Singh [41]. We shall assume, 

therefore, that the period of b(t) is T which results in

1,(1) *  1 1 + (ar/NA)cos(A0k) . (1 -57)

Since the interference is independent of the source, we assume that A0k(t) is a 

slowly varying random process defined by samples A0k(tj) which are essentially 

constant within (j-1 )T < t < jT , j = 1 ... J , but are uniformly distributed between 

tt and - t t  when sampled every j *  symbol. Averaging over A0k , the following 

statistical results are obtained:

E[1,(T)) = ±1 depending upon whether a 'O' or a T  is transmitted,

and

Var[l,(T)3 = E[( 1,(T) -  ± 1 )2 ] = E[( (a/NA)cos(A0k) )2 ] = ±(a/NA)2.

It follows that the average SNR^ associated with 1(T) is given by

< SNRout > = { E[lj(T)] )2/ [  Varied)]} -  2N2(A /a )2 (1 -58)

Since SNRj, = (A /a )2 , the average processing gain is given by <PG> = 2N2.

The.,Random .Noise..Contribution. Consider, finally, the random noise term l^T), 

given by (1-38). Recall that n(t) = LPF[ N(t) z(t) ] where N(t) is a stationary



29

white Gaussian noise process of zero-mean, and power spectral density 

S^f) = ^N0. The autocorrelation of N(t), therefore is given by

Rrft,.t2 ) = ^  t S^f)} = ±N0 S( t r t2 ), (1-59)

where denotes the Inverse Fourier transform. Since z(t) is a zero-mean unit 

amplitude sinusoid, N(t)z(t) is also a stationary white Gaussian noise process of 

zero-mean, and power spectral density S ^ f)  = £N0. Thus, the autocorrelation of 

N(t)z(t) is similarly given by

RNz(ti,t2 ) = r 11 Sj^f)) = ±N06( t , - t2 ). (1-60)

Since the process n(t) is the output of low-pass filtering of a white zero-mean

Gaussian process, n(t) is no longer white but it is still zero-mean Gaussian with

power spectral density

Sn( f )» iN 0 forlfl < fbj (1 -6 la)

Sn(f)= 0  forlfl > fb, (1-61b)

where fb= 1/Tbis the lowpass filter cutoff frequency. The autocorrelation of 

n(t), therefore, is given by

Rn(t,,t2 ) = { 5n(f)} = |N0sin[2TTfb( t , - t2 )]/[tt( t , - t2 )], (1 -62)
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and the variance of n(t) is given by (<rn)2 = Rn(0) = N0fb = N0 /  Tb Since the b(t) is 

an independent almost zero-mean binary psuedo-random process, the process 

v^Ct) ■ n(t)b(t) is also expected to be an almost zero-mean Gaussian process 

equivalent to n(t). It follows then from the definition of a Gaussian process that 

the integration output 1|/T) is a sample value of the zero mean Gaussian random 

variable l^T). The variance of 1,/T) is given by

(<rN )2 = Var[ IrfT)] -  E[ ( I^T) -  E[ IhCT)]}2] = E[ l^T)2} (1 -63)

(crN)2 «= E[ n(t,)n(t2)b(t,)b(t2)dt, dt2] (1-64)

(<rN)2 = Rn(t,, t2)dt, dt2 (1-65)

Since n(t) is is band limited, if it is sampled at twice the highest frequency fb, 

the autocorrelation function vanishes at these sample points, i.e.

where

Rn( i/2 fb, j /2 fb ) -  5 u(orn)2 = 6 yRn(0) (1-66)

= ^uNofb = SgN0/ T b for any integer 1, J,

<5|j - 1 for i -  j and <5y -  0 for i *  j.



31

Assuming that sampling occurs at the Nyquist rate, integration of (1-65) yields

Note that, as expected, no processing gain is possible for PN systems in which 

the interference may be neglected and the random noise Is dominant.

1.4.3 The nre-detection signal process(PD5P). Consider the insertion of a signal 

process, B, as shown in Figure 1.4-2. The input to 2) is given by r(t), which is 

the received wide-band baseband waveform output of the RF LPF. The output of 

B  w ill then continue into the PN correlator which consists of the PN mixer and 

integrator. The selection of hypothesis H0 or H? will now depend upon a new 

sufficient statistic given by

<o>,)2 = N0T . (1-67)

*T
£(t) - i?(t)dt ( 1- 68 )

where

vit) = p(t)b(t+Atc) (1-69)

and

p (t)a i&[r(t)]. (1-70)

The PDSP, therefore, is completely characterized by the operator B[ 1
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Kt)

2(t)

u(t) S(t) X(t)

Z(t+At,)

u(t> r(n p(t) 'u(t)

b(t) btt+Atc)

N(t)

Figure 1.4-2. A Basic Coherent PSK DS PN Communication System 

with a PDSP 3) Inserted

Assuming perfect synchronization as before, /  e. Atz = Atc = 0,

v(t) * £>[rg(t) + rj(t) + r^t)] b (t). (1-71)

Thus, 2> operates on the sum of three terms. If 2) operated individually upon 

each of the three terms In the sum, we would have

Ps(t) = 2>[rg(t)], p!<t) = -01^(0], and p^Ct) = ^ [ r^ t ) ] . (1-72)

The ideal output of S>, therefore, would be given by

Ps(t) = rg(t), pj(t) = 0 ,  and p^(t) = r ^ t ) . ( I -73)
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The first term implies that the source data signal is passed undistorted. The 

second term implies that the interference is totally rejected. Finally, the third 

term implies that the noise is undistorted as required for optimum detection.

Unfortunately, the contribution of each waveform to the total waveform 

cannot be isolated. Nevertheless, if spectral characteristics or other properties 

are known to be dominant in one waveform and not in the others, one may design 

a signal process analogous to a matched filter to detect those characteristics 

and suppress them if associated with the interference, or enhance them if 

associated with the desired signal. For the PN BP5K communications in the 

presence of sinusoidal CW interference and AWGN as previously described, we 

have

T?(t) = 2>IjAstt) + iarCOS(A<A>kt+A0k) + n(t)] b(t). (1 -74)

Comparing v(t) and i?(t), the individual contributions of the signal, the

interference and the random noise can no longer be explicitly decoupled since in 

general S) may be non-linear, i.e. for any two real functions,

2>[f(t) + g(t)l *  &[f(t)l ♦ £lg(t)l. (1 -75)

Noting, however, that the desired signal is wideband PN coded with 

characteristics similar to random noise, interference rejection filters have been 

designed by others to notch out strong spectral components which are

non-random. In this dissertation we investigate the use of the randomness
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properties as a complementary technique to detect and suppress non-random 

interference.

The problem may now be stated more concisely as follows:

Given a basic PN system, find 3) such that when oc2 2> crN2 ,

PGb  > PGta

or equivalently

pe t a <pe|a-

When or2 « crN2 ,

P6b  ~ PGb '

or equivalently

pe b * pe \ $ >

where i) is the identity operator.

In this dissertation, the discussion of the PDSP S> will be limited in its 

application to the basic DS PN coherent BP5K system depicted in Figure 1.4-2. 

Extentions to other types of implementations of PN systems are suggested for 

future work.

(1-76)

(1-77)

(1-78)

(1-79)
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1.5 Disseclation-Qiiilme

The problem of searching for possible enhancements to the receiver 

structure of spread spectrum systems is by no means complete. In this thesis, 

however, the results achieved thus far which show significant improvements in 

robustness and simplicity of design are motivated and analyzed. Given the 

complexity of spread spectrum systems and the non-linear nature of the 

algorithms which were derived from the structure of PN signals, most of the 

analysis was carried out using a computer-aided-design tool developed as part of 

this effort. Initially, a primitive spread spectrum simulator was built, including 

modules for data sources, PN modulators, noise generators, interference 

generators and PN receiver correlators. Subsequently, experiments were 

conducted to check various hypotheses, some of which are discussed in the 

appropriate sections.

Chapter I provides the introduction and background to the statement of the 

problem. Following a discussion of basic spread-spectrum techniques, the key 

issue of interference suppression beyond the capability of basic 

spread-spectrum systems is formulated mathematically, motivating the 

importance of pre-detection signal processing.

Chapter II Introduces the randomness properties most often associated 

with PN coded signals. First we investigate the probabalistic manifestation of 

the randomness properties of random noise and prove their invariance to certain 

signal processes which are said to preserve the randomness properties.
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Subsequently, we investigate the deterministic manifestations of the 

randomness properties of pseudonoise and show their transparency to the same 

randomness invariant transformations.

Chapter Hi is devoted to detection in the presence of Gaussian noise. Many 

communication systems utilize optimum binary detection for decisions in the 

presence of identically and independently distributed noise. Using signal space 

formulation, we derive the form of the sufficient statistic for optimum binary 

detection in the presence of non-identical and independently distributed noise 

and show that, as expected, the means and variances are identical for 

conventional and spread-spectrum communication systems. Since a priori 

knowledge of the noise parameters is most likely not available at the receiver, a 

decision rule which conditions the optimum binary decision on the outcome of 

many suboptimum decisions is described.

Chapter IV is concerned with the impact of interference on the optimum 

binary decision. Here we introduce the vector processing gain using signal space 

formulation and use it to evaluate the relative performance of four PDSPs which 

are also described, it is observed that improvements in processing gain of the 

PDSPs are not directly related to improvement in the overall processing gain of 

the spread-spectrum system. Numerous simulation results are shown to provide 

significant insight into the dependence of the processing gain upon both signal 

and interference waveform structure.

Appendix A includes some useful relations for the normal curve. In this
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dissertation, probabilities of error are given in terms of the Q-function. The 

Q-function is plotted to provide the reader with an appreciation for its 

convexity. Moreover, the Q-function is related to other error functions which are 

often found in the literature.

Appendix B includes a listing of a program which may be used to 

demonstrate the utility of a selected PDSP in reducing a specific interference 

vector. Typical sample waveform inputs and outputs are shown in Appendix D 

corresponding to the narrative statistical inputs and outputs provided in 

Appendix C.

The contribution of this paper to communications includes:

(a) a novel class of pre-detection signal processes useful in reducing 

the impact of often encountered interference phenomena;

(b) a hybrid analog/digital decision logic which may be optimized for 

the binary error-erasure channel in the presence of non-identically 

and independently distributed noise phenomena;

(c) a greater insight into the randomness properties of random noise 

in contrast to the "randomness” properties of pseudonoise;

(d) a framework for designing and evaluating many other 

interference suppression techniques.



CHAPTER II

THE RANDOMNESS PROPERTIES

2.1 Introduction

Random variables n* ,i = 1... N, may be obtained by uniformly sampling a 

random process n(t). The random variables may be fully characterized by a 

probability function for discrete random variables or by a density function for 

continuous random variables. When sampling a random process, one may define 

as many properties of the process as the number of different types of 

experiments which one may choose to conduct. Typically, one may perform a 

series of Bernoulli experiments or trials to determine whether or not a given 

observation is consistent with or matches a given criterion or a set of criteria. 

The random variables associated with the sequence of such outcomes are known 

to be binominally distributed 1431. Many random experiments identify the set of 

outcomes fl, the events of interest £, and the probability P on £ . Consider, 

however, the design of an experiment in which a success outcome A = A means 

that the observations are random and a failure outcome A = Not(A) means that 

the observations are non-random. The random variables associated with such an 

experiment are also blnominally distributed and after one or more iterations 

should converge to the degree of randomness inherent in the initial property for 

which randomness was of interest. If R(A) is the relative frequency of observing 

random events A, according to Borel's law of large numbers [43],
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P( I R(A)- P(A) I > € ] -* 0 , as N -♦ °o (2-1)

where N is the number of independent and identical trials undertaken for the 

experiment and P(A) is the probability that £ is indeed random. Thus, if £ is 

random, P(A = A} = 1.

For any random variable n , if one has a priori knowledge of its 

distribution, then one may design an experiment which tests for the degree to 

which any sequence of observations C nj, i=1... N } is consistent with any one of 

the moments of n . The easiest moment to test for consistency is the zeroth 

moment whose test statistic is simply the sample mean. Sufficient statistics 

associated with other moments may also be used but involve more computational 

complexity. Another type of test is to consider the ratio of the autocorrelation 

to the crosscorrelation. If the samples are Independent, this ratio should be 

large relative to the sample mean. Given a mean, one may consider testing for 

the various distribution of runs in sample sequences where a run is defined as a 

sequence of consecutive samples which do not cross the mean. Many different 

run properties may be defined, such as the length of runs, the number of runs, and 

the number of runs of a particular length and a given polarity. In addition, one 

may test for similar properties associated with the mean level crossing.

In communication systems, the key to performing a test is to keep it 

simple yet reliable and robust. In this chapter, we discuss several properties of 

random processes which may be effective in testing for randomness of a wide 

variety of random processes found in communication systems.
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2.2 Properties of Noise Vectors

Pseudonoise (PN) is a set of multi-dimentional, deterministic vectors 

which simulate statisical properties of multi-dimensional random variable noise 

vectors. In this section the properties of real random noise are explored. 

Consider a time interval of duration T consisting of N subintervals, called chips, 

of duration Tc. For each chip, define a unit rectangular function,

given by

where,

and

q,<t), M...N (2-2)

qj(t) -  q (t-(i-l)T ), M  ... N (2-3)

q(t)=1, when 0 < t < T o (2-4a)

q(t) = 0, otherwise. (2-4b)

The set of functions { qj(t), i=1...N 1 form a complete set of time-orthogonal basis 

functions spanning the entire time interval T with scalar products given by

< qj(t),qj(t) > -
rt-oo

q,<t)q/t)dt = TC6 U for i,J= 1 ...N. (2-5)
0-00

Consider the stochastic noise process n(t) over the entire time interval T. The 

sample function of n(t) within the i**1 chip interval is denoted
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and is given by

Equivalently,

and

Thus,

Hj(t), M ...N (2-6)

n,<t) = n(t)qj(t), i=1...N . (2-7)

njU)»n(t), when ( i - 1 )TC < t < iTc (2-8a)

n;(t) = 0 , otherwise. (2 - 6 b)

N
n(t) = nj(t). (2-9)

The projection sample of n(t) unto the 1th chip Interval is given by

N rt-oo
n, = <n(t),q^t)> = nj(t)q|(t)dt fori=l...N. (2-10)

J=l <1-00

Using (2-3) ,(2-5), and (2-7),

pjT■*c
n,= n(t)dt for 1=1...N. (2 - 1 1 )

[H)TC

The samples n*. i=l...N, are, therefore, real random events, corresponding to N 

jointly distributed continuous random variables rij , i=I...N, with individual 

probability density function (pdf) Pn.( nj), i=l...N. For an arbitrary function g(Oj) 

the expected value of g(np is evaluated by
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E[ g<nj> ] =
l»+oo

9^ni)  pn5 n«) dni • (2 - 12)
-oo

The random variables nj , I ■ 1... N , form an N-dimensional random variable 

noise vector n given by

n » ( n , , n2 , n3 , ..., n j , ..., nN). (2-13)

It is assumed that random variables 1=1...N, are mutually independent but not 

necessarily identically distributed random variables derived from nj(t) which is 

produced by the stochastic noise process. Denote the mean of n8 by j i j . It is 

defined as the expected value of nj and hence it is also the first moment of nj 

with respect to the zero. Thus,

P+OO
Ui = E[ Rj J» nj PRj( nj) dnj (2-14)

-oo

The variance or the square of the standard deviation of nj is the second moment 

of hj with respect to the mean and is given by

(o-j )2 -  Var{ ^  ] ■ E[ (nj -  pn J2) = E[ (nj)2 ]. (2-15)

Consider a random sample noise vector of n given by

D = ( ,  n2 , n3 ,..., ^ ,..., n^). (2-16)
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The random sample noise vector sum, given by

LN = n, + n2 + n3 + ... + nt + ... + nN (2-17)

is also a random event of the random variable given by

Ln = n, + n2 + n3 + ... + nj+ ... + nN . (2-18)

The expected value of LN is given by

N N
U n "  E [ L N l = £ E [ n i ] - 2 ^ .  ( 2 H 9 )

i=1 i=1

Since nj,i -  1... N are mutually independent, they are uncorrelated and, therefore, 

the variance of LN can be easily shown to be given by

N N
(crN)2  -  Varl LN1 ■ E[ (LN - )2 1 -  JT E[ (n} -  i2] -  (crj ) 2  . (2-20)

In the remainder of this thesis, it is assumed that nj, i -  1 ...N are symmetrically 

distributed about Uj = 0. Therefore, uN=0.
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2.2.1 The polarity property. Given n , the outcome defined by the sign of a

sample may be considered to result from a Bernoulli experiment in which the

outcomes are either positive or negative. The N-dimensional sample vector may 

be considered as a sequence of N consecutive Bernoulli trials. By grouping all 

combinations of outcomes of the same sign into a single sample set, we obtain 

two sample sets of outcomes,

= { ri|I n{> Oand i=0... N+) (2 -2 la)

and

M  = { nf I nj < 0  and iaO... N"J. (2 - 2 lb)

£> and M  are subsets of the set of N outcomes given by

such that N = N" + N+. (2-22)

N+ and N~ are sample events of the integer random variables N+ and N~ , 

respectively. N+ may range from 0 to N while N" may range from N to 0 

correspondingly. Observations of many such sets for large N reveal the 

important property that there exists a high probability for an approximate 

balance in the outcome of the sign of the samples, i.e.

or equivalently,

N"« jN 

E[ N+1 = El W ] = 5N .

(2-23)

(2-24)
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Proof. The elements i»j , 1 ■ 1... N are zero mean continuous random variates with 

probability density functions given by Pn.[ nt ]. Since a positive event n(= nj> 0

is as equally likely as a negative event nj= nj< 0 , the probability of a given sign 

event is given by

PnJn^O] = P„.[ n* < 0 J = 5 . (2-25)

This is analogous to the probabilities of tossing an ideal coin repeatedly and 

independently N times where N+ /  W may represent the number of heads/tails 

respectively. Therefore, M+ and N" are binomially distributed with probabilities 

that N4 = k, k = O...N given by

PI N4 - k ]  = ( | ) % >k (2-26)

where CNfk denotes the binomial coefficient given by

CN>k = n !/[k !(n -k )!l (2-27)

Using (2-25), the means of N+ and N" are identical and are given by

E( N+ ] = E[ W ] = N Pn.[ n, > 0 ] = N P„.[ n, > 0 ] = , (2-28)

and the variances of N+ and W are also identical and are given by
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l<r„]2= Varl N+ ] = Varl N" ] = . (2-29)

For any given noise vector of length N, therefore, there is a high probability that

N+~ NT. QED

For large N, it can be easily shown that Pi N* -  k ] becomes Gaussian about the 

mean given in (2-28). As a numerical interpretation, when

N = 100, E[ Nf ] = 50 , <rM = 5. (2-30)

Based upon the Gaussian approximation, approximately 6 8 % of the noise vectors 

will have

1 N+- N" I < 10 . (2-31)

The equality of means given by (2-28) may be also derived without the use of the

binomial distribution. In a sequence of N samples, consider the random variable 

given by

b; = besgn(nj), (2-32)

i.e.

bj= +b if the 1th trial is positive, (2-33a)

and

bi= -b if the i^1 trial is negative. (2-33b)
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Using (2-25)
E[ bj] -  (b) Pn|[ nj> 0 ] + <-b) P^l n,< 0 ] »0. (2-34)

Let

Sb° (2-35)
i:

Equivalently,

5b *(b)N+ + (-b)N" = b(W+ - N"). (2-36)

Using (2-34) and (2-35), and the equivalency of interchanging the mean of the 

sum of random variables with the sum of the means of the random variables,

Therefore, in agreement with (2-28), E[ N+1 = E[ W] = £N.

2.2.2 The zero-crossing property. Consider the transformation of the 

N-dimensional random variable vector n into an N-dlmensional random variable 

vector k which depicts the change in sign from one sample of nj to next sample 

of nj+i • A non-transition in sign is referred to as a non-zero crossing, an 

upward transition is referred to as a positive zero crossing, and a downward 

transition Is referred to as a negative zero crossing. The resulting

(2-37)

Similarly, using (2-36),

E[ 5bl =E[ b(N+ - m i *  b(E[ N+] -  E[ N1)= 0. (2-38)
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zero crossings random variable vector Is given by

x  = (K i , k2 i X j , - ,  »N). (2-39)

The random variables Xj are functions of the random variables Hj and ni+1 and are 

given by

X* = 5 [sgn(nw) -  sgn(nj)] for 1=1... N -1 (2-40a)

and

xN = £lsgn(n,) -  sgn(nN)] (2-40b)

where

sgn(i>j) » i»j /! fij J. (2-41)

Note that the random variables xt are ternary variables of a symmetrically 

distributed zero mean noise process. A random sample zero-crossings vector of 

X is given by

X “ ( x , , x 2 , x3 j ..., X| , . . . ,  x n ) .  (2-42)

Consider any pair of consecutive samples nj and n„.j. The outcome Xj can be either

a - 1 , 0 ,  or +1 . By grouping all the same outcomes in x into a single sample set,

three sample sets of outcomes result corresponding to each type of outcome. 

Namely,
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56+ a {Xjl Xj> Oand1=1... X+}, (2-43a)

56" = { Xj I Xj < 0 and 1=1... X I (2-43b)

and

56°= ( Xj| Xj = 0 and 1-1... X°). (2-43c)

56+, 5 6 and 56° are subsets of the set of N outcomes given by

56 = 56" + 56° ♦ 56+ such that N= X" + X° + X+ (2-44)

The Integers X", X° and X+ are sample events of the Interdependent Integer 

random variables X", X° and X+, respectively. X° may range from 0 to N while 

X4 = X+ + X" may range from N to 0 for even N or from N-l to 0 for odd N, 

correspondingly, X* must be even. Observations of many such sets with large N 

reveal the Important property that there exists a high probability for an

approximate balance between the number of outcomes of non-zero crossings X°

and the number of outcomes of zero crossings X4, and in addition, there exists an 

exact balance between the number of outcomes of positive zero crossings X+ and 

the number of outcomes of negative zero crossings X", i.e.

X+-X"“ |Xi « iX ° .  (2-45)

Proof. The elements hj are zero mean continuous random variates with
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probability density functions given by Pn .(n j) . The elements Xjare also zero mean 

but discrete random variates with probability functions given by P«(Xj). The 

probability that a non zero crossing will occur is given by

PMj(0) « Pt Xj= 0 ] -  P[ Hi < 0, ni+1 < 01 + P[ nj > 0, nj+, > 0 ], (2-45)

the probability that a negative zero crossing will occur is given by

PKj( - 1) » Pi xj = -1 ] = P[ fii > 0, ni+1 < 0 ], (2-47)

and the probability that a positive zero crossing will occur is given by

PXj(+1) = PI Xj = +1 ] = P[ < 0, ni+, > 01. (2-48)

The probability that any zero crossing will occur is given by

PK.(± 1) = PI Xi = +1 ] + PI Xj = -1 ] = P[ x, = ± 1 ] -  PI X j   ̂0 3. (2-49)

Since nj is independent of nj for all i* j  and using (2-25)

PI n} < 0, nj+) < 0 ]» PI nj < 0 ] PI ni+1 < 0 ] = £ . (2-50a)

Similarly,

Pi n, > 0, ni+, > 01 = PI nj > 01 PI ni+, > 01 = i , (2-50b)
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P[ nj > 0, ni+1 < 0 ] = PI n, > 0 ] P[ nu1 < 0 ] = $ , (2-50c)

and

P[ nf < 0, ni+1 > 0 ] = P[ n{ , 0 ] P[ ni+1 > 0 ] = £ , (2-50d)

A zero crossing event, Xj ^ 0, therefore, is as equally likely as a 

non-zero crossing event, x} = 0. Thus,

The zero crossing N dimensional random variable sample vector may, therefore, 

be considered as a sequence of N consecutive Bernoulli trials for which the 

outcome is either a zero crossing or a non-zero crossing with probabilities given 

by (50). Similarly to N+ and N“, X4 and X° are also binomially distributed with 

probabilities that X = k. k = 0...N given by

where CNk is the binomial coefficient defined in (2-27). Since the means of X4 

and X° are identical, we obtain

P [ X j * O l  - P l X j - 0 1 - J . (2-51)

P[X = k ] = (f)NCNjkj forX = Xi orX° (2-52)

E[ X* ] = E[ X° ] = N P[ x *  0 ] = N P[ Xj = 0 ] = (2-53)

and the variances of X4 and X° are also identical and are given by
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[ o'* ]2= Var[ X1 ] = Varl X° ] = *N. (2-54)

For any given noise vector of length N, therefore, there is a high probability that

X4*  X°. QED

It remains to prove that X+ » X". Consider the i^ chip. A transition in 

sign will affect both the i-1 and the i+1 zero crossing samples. Only two types 

of effects are possible: a) when a transition occurs within a run, a pair of equal 

and opposite zero crossings are generated or b) when a transition occurs at a 

boundary of a run, the zero crossing propagates without creating any additional 

ones. For each positive zero crossing created, therefore, there must exist a 

corresponding negative zero crossing. QED

For large N, it can be easily shown that P[ X = k ] becomes Gaussian about 

the mean given in (2-53). As a numerical interpretation, when

N = 100, E[ X ] = 50 , 0 8  = 5. (2-55)

Based upon the Gaussian approximation, approximately 6 8 % of the noise vectors, 

will have

IK— X°| < 10. (2-56)
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2.2.3 The autocorrelation property. Consider a sample N-dimensional random 

noise vector a • The sample perodic/cyclic autocorrelation is given by

N
RN* = E n*nw< ijk = 1... N. (2-57)

i=1

RNk are samples of the independent random variables RNk which form an 

N-dimensional random variable vector given by

* ( Wn,0 * Rn,1 - ••• > RN,io •••» Rn.n-1 ) (2-58)

Observations of many samples of Bn for large N display the interrelationship 

among the sample vector elements given by

rn,o *  Rr̂ k tor k = 1... N-l (2-59a)

where

rn,o = En = ( a ‘D ) (2-59b)

R̂ 0  is called the (self) energy of the sample vector n since it is equal, within a

constant of proportionality, to the energy of the stochastic process n(t) given by

ln(t)]2 d t . (2-60)
0

R^k, for k a 1 ... N -1, is called the cross energy of the sample vector a •
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Proof. Consider an arbitrary stochastic noise process n(t) specified by the joint 

density function of the random variable vector n( t  ) obtained by sampling n(t) at 

any finite set of time instants { t j ), i = 1 ... N. The samples n(tj), from the 

ensemble of waveforms which correspond to t (, are defined as the samples of the 

random variable n(tj). Thus,

a(t) = { n (t,), n(t2 ) n(tj) n(tN) ]. (2-61)

The instantaneous samples also form an N-fold sample process vector given by

n(t) = { n (t,), n(t2 ),..., ntt,),..., n(tN)}. (2-62)

The autocorrelation of the stochastic process n(t) is defined as

Rn(tj, t2) - E[ n(t,) n(t2) l . (2-63)

For a wide-sense stationary white noise process, the double-sided power 

spectral density is given by

Su,(f)=4N0 . (2-64)

Using the Wiener-Khintchine relations, the autocorrelation is given by the 

inverse Fourier transform of S J f), /. e.
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Rn(tj, t2) = S J f) expC-j2T7f(t2-t, )}df = ^N0 6 (t, -  t2). (2-65)
0 -0 0

The two-valued nature of Rn(t1f t2) portrays the ultimate in randomness which is 

, obviously, only approximated by RNjk. If we subdivide the time interval T into 

N equal subintervals Tc , then the i01 sample may be associated with the 

stochastic process within the i**1 subinterval such that the sample waveform is 

given by

Comparing (2-66) with (2-8), nj(t) = n(ts) and nj may be obtained by integration 

of n(tj). Interchanging summation and averaging

n(tj) = n(t) when 0-1)To< t-,= t < iT0 (2 - 6 6 a)

and

n(tj) ° 0 otherwise. (2 - 6 6 b)

N N
(2-67)

Using (2-11) and (2-66),

n r1Tc Ki+k)T0 

r  f E[ n(tj )dtj n(tj+k)dtkk ] } .  
^  J(i-1)TC «(i+k-1)Tc

(2- 68)

Interchanging averaging and integration,
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N

Using (2-65)

i=l

M

iTc 
dt, 

(i-1)TcJ

f(i+k)Tc 
dt*, El n(tj )n(t^k) ] ). 

(i+k-1)Tc
(2-69)

i=i

iTc 
dt, 

( i - D V

f(i+k)Tc
dt»k aN0 6 (tj -  tj+k)).

(i+k-1 )T0

(2-70)

Integrating over dt„.k, yields

N
El RNjk ] - £ (

■1T„
dt, (jN ,,) )  = T when k=0 

( i - l)Tc
(2 -7 1 a)

and

E l% J  = 0 when k*0. QED. (2 -71b)

Recall from (2-59) that R^o is the scalar product of a with itself. 

Moreover, ft, are independent zero mean Gaussian variates with non-identical 

standard deviations o*j. Therefore, the mean of R^o is given by

M- - a i ^ l . E I E H l . a n * !  (2-72)

■ % o - « £ < " <  >2 j ’ £ E [ ( n >>2 i ° £ ( f f i  )2 ° <ffN)2 <2_73)
i=l i=l i=l

Comparing (2-73) with (2-7 la)

o'n3 V  2NoT (2-74)



and for nj which are independently and identically distributed (i.i.d.),

57

O 'i -  CF -  y f  2 ^ 0  "i"o- (2-75)

It is interesting to evaluate the variance of R^q • it is given by 

( % o  )2 “  0  (R"-°  ■ % o ,Zl ■ 0  (Hm-° , 2 1 '  ( % o )2

But

(2-76)

(2-77)

Interchanging summation and averaging,

N N

Et(Rr<,o>2 1 = 5 ] E l(n ( )4 1 » 2 Y  E [(n , )2 ( n , ) 2 1
l * J1=1

(2-78)

Since
a (n, )4 ] -  3(0-, )4 and E[ (n, )2 ] = ( c ,  )2 , (2-79)

and

(% o )2 1  (o*i) 4 + 2 Z  (^ i )2 ( ^ j ) 2  a
i=l

we obtain
N

i=l

(2-80)

(2-81)

Similarly, the standard deviation of RNjk for k*0 is given by
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< ° V 2 = 2 i > i > 4 - <2~82>
i=1

Using (2 -7 lb), (2-80), (2-81) and (2-82), the ratio of the difference between 

Ur̂ q and u ^ k and the spread about or Is given by

% o  /0 ,fH k = (<rN)2 / [ 2 T * <<rt)4 ) ,/2  • <2_83)
i=1

The fact that this ratio is monotonically increasing with N is readily manifested 

when njare i.i.d., i.e. o' = <r, for i » 1... N. For this case,

( 2 - 8 4 )

2.2.4 The run properties. Consider an N-fold random variable noise vector f t . It

is a sequence of random variables n,# i=l ... N, whose conditional probability is

given by

P«( n| I n j) = P» »̂ ( Oj, n j) /  Pn ( Oj).  (2-85)
• • J J

Assuming that the random variables n*, 1=1 ... N are mutually independent, then 

(2-85) reduces to

P|»j ,i»j( Oj, n j) = PnX Pj) Pn.( n j ). (2 - 8 6 )
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In sampling n , we observe groupings of consecutive samples of the same 

polarity. Such groupings are refered to as “runs". Runs may develop as a purely 

random phenomenon, as a result of filtering which introduces correlation 

between the output samples, or as a result of mixing or superposition of the 

random variable noise vector with a deterministic signal vector. We shall refer 

to runs resulting from correlated samples as "bursts". In this section, however, 

we consider runs which evolve in a purely random fashion. A run of length k, 

k = 1... N may start with n, and persist with sample n ^ , , i = 1... N and j  = 1... k. 

By definition, the samples n ^  and n ^  are of opposite polarity.

Given a random noise vector f t , as in (2-13), consider its transformation 

into an L-dimensional vector 1 such that the elements lj represent the sign and 

length of run i . Note that 1 is an integer vector such that

Let m+k, k = 1... N denote the number of positive runs of length k which may be 

found in Q . Let m ^, k -  1... N denote the number of negative runs of length k 

which may be found in q . The total number of runs of either sign and of length k 

is given by

L
(2-87)

ro*k = m+k * m-k • (2- 88)

Consider all runs in any given sample sequence n . Observations of many 

samples of ft for large N reveal the following important randomness properties:
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a) The number of runs of length k and same polarity is approximately 

equal to the number of runs of the same length and opposite polarity. This 

approximation is expressed by

m+k~m-k • (2-89)

b) The number of runs of length k to be found with high probability is 

given by

m±k*N(£)k . (2-90)

c) The longest run to be found with high probability is of length n given by

n » log2 (N). (2-91)

Proof. The run properties of the random noise vector & are preserved by its 

transformation into the N-dimensional random vector ft given by

ft = ( Di, t>2 , t>3,..., 1>i, ..., I)n) (2-92)

where b( was defined In (2-32). Without loss in generality, let b = 1, then

bj-sgrtfni).  (2-93)

Since fij is a zero mean random variable, the probability that bj = +1 is given by
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P[ bj= +1 ] = Pi llj> 0 ] = 5  . (2-94)

Similarly, the probability that b(“ -1 is given by

P[ b,= -1 1 = P[ iij< 0 ] = £ . (2-95)

It follows that in general for b(= ±1,

P[ bj-bj]  -  J . (2-96)

Since n, is statlsically Independent or nj for i* j, b. Is also statislcally 

independent of bj for i*j. Hence, the pair-wise joint probability function for bj 

and bj is given by

P[ bj= bj, bj= b j] = P[ bj= bj] P[ bj= bj] = ± . (2-97)

A new run may start with any n j, i = 1... N . The probability that a run which 

starts at Rj will terminate at n{ is given by

P[bj* bj+f] = P[bt= -1 I bk1=+l JPEbjt,* +1] + P[bj= +11 b^= -l]P[bw -  -11. (2-98)

Using Bayes' rule, the independence property given in (2-96) and (2-95)

P [bj= bjl bj= bj ] = PE bj = bj] = (2 -9 9 )
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Using (2-99) in (2-98)

P t b i ^ W .  (2-100)

The N-dimensional random variable noise vector may be considered as a Bernoulli 

experiment in which the two outcomes are b j* bi+1 or bj= b ,̂. In N trials the 

expected number of runs of unit length is given by

E[ m±1 ] -  |N . (2-101)

The probability that a unit run will occur and be positive is given by

P[lj= + 1 ]= P[bi=+H bj+1=-1 ]P[bw =-1 ] = £. (2-102)

Similarly, the probability that a unit run will occur and be negative is given by

P[lj=-1]= P[bi=-l |bM =+1 ]P[bw =+1 ] = f  (2-103)

Thus, since P[lj = +1 ] -  P[lj= -1 ],

E[ m+1 ] = E[ m_, ] = £E[ m4l ] = ±N. (2-104)

A run which starts with any nj may continue with ni+1 with probability 

given by
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P[t>i= bw ] = 1- Plbj* bw ] = i  . (2-105)

Again, consider the random variable b{ as a Bernoulli experiment in which the 

two outcomes are bj* bw or bj= b^. Given N trials, the expected number of runs 

of length k > 1 is

N
El Z m*k1 = P[bi “ bw IN = JN . (2-106)

k=2

The probability that a multi-unit run will occur and be positive is given by

P[ lj> +1 ] = P[b| =+l| bn.k = -1 JPlbj+k = -1 ] = i  (2-107)

Similarly, the probability that a multi-unit run will occur and be negative is 

given by

P[l j< -1]=  P lb , - - l |b Wc-+1 M b ^ - t l  ]»^. (2-108)

Thus, since P[lj> +1 ] = P[lj< - I ],

N N N
E[ V  m+k 1 = E[ V  ] = jE[ V  mtk ] = ±N. (2-109)

k=2 k^2 r=4

In (2-104) it was proved that a balance exists between m+) and m_,. In (2-109) 

such a balance is seen to exist with respect to the sum of all the multi-unit
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runs. To prove that in general E[m+k ] = ], consider the Bernoulli experiment

with the two outcomes given by lj = ±k and lj *  ±k. Using Bayes' rule and the 

statistical independence of bj and bj for i*j ,  the probability !j= ±k is given by

k
P[lj= ±k] = P[bj= b^  = bj+2= .= t>i+k-i * ] -  P lb ^ 3 - 1] J”|  P lb^j.^ +1] +

j=i

k
P[b^k= + 1 ] fJ p[bi+j.,= - l ] .  (2-110)

Recall that P[bj= bj] = £ for i = 1... N. Using this fact in (2-110) yields

P[li=±k] = ( £ ) k . (2-111)

Note that

P[l,= ±k] = P[lj= +k] + P[lj= -k], (2-112)

Comparing (2-110) with (2-112),

k
P[lj= +k] = P fb^  = -13 f7  Prbi+j-i = +1J = ( ^ ^  (2 -113)

j=»
and

k
P ! l i= -k ]=  P[bHk  ̂ ♦ 111""[ P[bi.i.t = - 1 ] = ( |  )k" ' . (2 -1 1 4 )

j=i
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Note that this result is independent of N. A run may start anywhere in the 

sample noise vector n. If it starts or persists at i = N , it may continue 

cyclically with i = 1 .

To finalize the proof of (2-89) and (2-90), denote the probability of the 

outcome lj = +k as p and the probability of the outcome l j *  ±k as q = 1 -  p . 

Therefore,

The random variable m4k is binomially distributed with a mean given by

p= ( 5  )k, and q = I -  ( 5  )k . (2-115)

E[ mlk ] = Np = N ( 5  )k . (2-116)

Similarly, we obtain

E[ m+k ] = E[ ] = £Np = N ( £ )k_1. (2-117)

The variance of mlk is given by

Var[ ] = Npq “ N (( i  )k - ( J )2k}. (2-118)

For k > 4 ,

Var[ m,k ]«  N(  ̂ )k . (2-119)

Since m4k > 0, note that both El m4k ] and Varl mlk ] decrease with increasing k. 

To derive the longest k which may be found with high probability in an N-fold
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sample of a random noise vector, we require that

E[mlkl=  I = N ( i ) k. (2- 120)

Taking the logarithm to the base 2, (2-91) Is readily obtained. QED

2.3 Noise Invariance Transformations

Consider functions or transformations of the N-dimenslonal random noise 

vector n . Denote such transformations by JP ( a ) Define flfj as a member of a 

class of J f , such that } preserves the randomness properties discussed above. 

The new M-dimensional random noise vector is given by

Consider the transformations defined below:

Jf o =* every sample of n is multiplied by an arbitrary constant.

Proof. JV*0 is a linear operation. The output of any linear operation upon a 

Gaussian process Is always Gaussian. Since preserves the Independence 

between samples and the zero-mean of the process, the randomness properties 

are preserved. QED

( a ) = ( n1, n2 , n3 ,..., n*,..., nM ). (2 - 121)
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Jfy =» every sample of n is reduced by the sample average of n. 

Proof. The sample average of n is a random variable given by

N
a n =(i / n) T  n,

Since An is the linear sum of zero-mean Gaussian variables, it 

zero-mean Gaussian variable. The transformed random variable

n1 = n, -  An

is the difference between two zero-mean Gaussian variables. Hence 

retains the Gaussian nature of the input process. The extent to 

transformed samples are independent is obtained by considering

E[ n1 nJ ] = E[ (n, -  AN)( nj - A „)] = E[ n, i» j ] -  2E[ n, A„ 1 -  E[ < AN J2] . 

Recall that E[ d, nj 1 - (cTj)26 y , therefore,

E[ni nj] = (o'i )26 y -(2 /N )(c ri)2 + (1/N)2£  (o-j)2 .

(2- 122) 

is also a

(2-123)

JP, also 

which the

(2-124)

(2-125)

For n, which are i.i.d.,
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E[ni n j] = E[ni nj ]-(1 /N )(< r i ) 2 . (126)

For large N, therefore, the samples transformed by become independent as 

required. QED

Jf2 => every run of length 1; > n = loĝ jN is nullified or reduced by the 

sample average of the run.

Proof. The sample average of a run which starts with n( and persists for k 

samples is given by

At = ( 1 /k ) 2 'y H (2-127)
j=l

Ak is the linear sum of independent random variables which are all of the same 

polarity. The expected value of Ak is given by

k
E[ Ak ] =( 1 /k) E[ n^j., ] (2-128)

where, depending upon the polarity of the run,

|*fO O

n P„(n) dn = (oTj)/ V 1 / 2 t t  , (2-129)
o

and
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Varl nkj ., ] =

T+OO
(n- E[ nj+j., ] ) 2 Pn(n) dn = i ^ ) 2 (1-1 /rr). (2-130)
o

Only the random samples which belong to runs of length k > n will be affected. 

The samples which are averaged are given by

n14-*-1 = -  Ak for k, M...N, 11,1 > n. (2-131)

The samples which are nullified are given by

ni+j-’ = 0 for j= 1... k, i=1...N, lljl > n. (2-132)

Otherwise,

ni+> ’ = n ^ ,  for j=l... k, i=l...N, lljl < n. (2-133)

Recall that the probability for a run of length k to occur in n is given by

E[mlk] = N(£)k with Var[ mtk ] = N ( (£)k - ( i ) * ). (2-134)

When a long run does occur, It only affects k/N of the samples. The remainder of 

the samples remain zero-mean, uncorrelated and Gaussian. The polarity and 

zero-crossing properties are unaffected since E[m+kl = E lm ^]. Furthermore, 

since m±k is binomially distributed, the tail end of the distribution will be cut 

off and redistributed within previous uncertainties in Elm^] derived for k < n .
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Hence to a good approximation, the run properties will also be preserved by Jf2 ■ 

The periodic autocorrelation property will also be preserved on the average since 

any correlation introduced by Jf2 on1y affect: the runs which occur with low 

probability. QED

< # 3  => n is shortened by removing a single sample from every run.

Proof. Since E[m+k] = Elnul, the removal of a single sample from every run 

results in a new random variable vector which on the average has M = ^N 

dimensions. Since the start of a new run within n is totally random, the 

samples eliminated by JV*3  are also random, thereby preserving all of the 

randomness properties which are based upon the independence between 

zero-mean samples of the input n • QED

2.4 Properties of PN Vectors

Having Investigated the salient properties of random noise in the previous 

section, the extent to which these properties are simulated by pseudo-random 

noise is discussed in this section. PN has been the subject of extensive 

investigations by Golomb [44], Golay [45], Gold [46], Welti [47] and many others. 

The most widely known and used N-dlmenslonal PN vectors are binary unipolar 

PN sequences of length N

a  = ( 3 j, 92, 83, ..., ..., aN), (2-135)
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where

3j = 0 or a; a*0. (2- 136)

A sample PN vector of a  is given by

a = ( a,, a2, 3 3 , a;,..., a )̂ (2-137)

which may be generated by a variety of feedback shift registers (FBSR). The 

general structure of an n-stage FBSR is shown in Figure 2.4-1.

j i-------------------------------------- n-stages--------------------------------- ► j

Figure 2.4-1. An n-5tage Feedback Shift Register (FBSR)

For the purpose of this dissertation, the advantages and disadvantages of various 

ways of generating PN are irrelevant. What is important, however, is the degree 

to which the random noise properties are satisfied. We shall consider the 

simplest class of PN generated by maximal length FBSRs. Two implementations
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are illustrated. A 3-stage FBSR which corresponds to the generating polynomial 

given by G(x) = x3 + x + 1 is shown in Figure 2.4-2. A 7-stage FBSR which 

corresponds to the generating polynomial given by 

G(x) = x7 + x6 + x4 + x + 1 is shown in Figure 2.4-3.

H-N=7-^-N=7 -H
10100111010011 -

|4-N=7 -H4-N=7 -H
11010011101001 -

—» 3 H-N=7 -H«-N=?-H 
. 11101001110100-*

4-------------------

Figure 2.4-2. A 3-Stage Binary Maximal Length FBSR Corresponding 

to the Generating Polynomial G(x) = x3 + x + 1

Figure 2.4-3. A 7-Stage Binary Maximal Length FBSR Corresponding 

to the Generating Polynomial G(x) -  x7 + x6 + x4 + x + 1
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Consider an n-stage FBSR in a non-zero initial state. When clocked at a

rate

Rc = (Tc )_1, (2-138)

there are at most

N = 2n-1 (2-139)

unique states which may be found over a time interval T -  N Tc . A PN sample 

vector is generated by tapping at the output of any of the n stages as shown in 

Figure 2.4-2. At t > T+ Tc , the states repeat in the same order and hence the 

sequence formed by the elements of the PN vector is periodic every N elements.

2.4.1 The polarity property. In binary notation, let the variable aj= a denote a 

T ,  and the variable aj = 0 denote a ‘O'. Using the transformation

bj = 2aj -  a (2-140)

we may remove most of the DC component inherent in a , to obtain a binary 

bipolar PN vector given by

where

b = ( b , , b2 , b3 , , b j , ..., bH) 

bj = -a when af = 0

(2-141) 

(2-142)
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and

bj = +a when aj = a . (2-143)

Thus, the sample PN Vector of H Is denoted by

b = ( ty, b2 , b3 , ..., b j,..., bN) . (2-144)

By grouping all the same outcomes bj, i = 1... N of a maximal length PN sequence 

into a single sample set, we obtain two sample sets of outcomes

IP = { bjl bj> 0 and i=1... N+} (2-145)

and

M =  C bjl bj< 0 and i=1... N1. (2-146)

SP and M  are subsets of the set of N outcomes given by

J f = P  + M  such that N = N “ +N+ (2-147)

For any b generated by a PN generator of maximal length N

N+ = N“ + 1 (2-148)

and for large N

N+»N -»£N . (2-149)
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Note that comparing (2-149) with (2-23), the polarity property of PN is in 

agreement with the polarity property defined for purely random noise.

Proof. Consider the sample PN vector of b obtained by tapping the last stage of 

the BFSR. The variable elements bj represent the last binary digit of odd or even 

states with bj = +a denoting a T  and bj = -a denoting a 'O'. In a maximal length PN 

sequence, the generator generates each of the possible states exactly once 

within each period N. The unique set of states of the FBSR, therefore, represent 

the set of integers from 1 to N. Since the all-zero state is excluded, the number 

of odd states always exceeds the number of even states by exactly 1. Since N is 

odd and N+ + NT = N , N+ = NT + 1. QED

2.4.2 The Zero Crossing Property. Consider the transformation of the 

N-dimensional PN variable vector b into an N-dimensional PN variable vector x 

depicting the change in sign from one sample of bj to next sample of b M. Recall 

that a non-transition in sign is referred to as a non-zero crossing, an upward 

transition is referred to as a positive zero crossing, and a downward transition 

is referred to as a negative zero crossing. The resulting zero crossings PN 

variable vector is given by

X = ( x ,  , x 2 . * 3 .  •••. Xi— . x M>. ( 2-150)

The PN variables Xj are functions of the PN variables bj and bj+j and are given by

Xj = ^sgnfbj+j) -  sgn(bj)] for i=1... N -1 (2-151)
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and

* n = ilsgn(b,) -  sgn(bN)]. (2 -152)

Note that the PN variables Xj are ternary variables of a symmetrically

distributed zero mean PN process. A PN sample zero crossings vector of x is

given by

X “ ( x , , x 2 , x3 l ..., X j , ..., xN ). ( 2 -1 5 3 )

Consider any pair of consecutive samples bj and b^ . The outcome x, can be

either -1, 0, or +1. By grouping all the same outcomes in x into a single sample

set, three sample sets of outcomes result, corresponding to each type of 

outcome. Namely,

3S+ = ( x j  Xj> 0 and i=l... X+], (2-154)

5S" -  ( Xj I Xj < 0 and i= 1... X“}, (2-155)

and

X °  = C xj I Kj = 0 and 1= l ... X0}. (2-156)

5S+, ffir, and are subsets of the set of N outcomes given by

X  = Hr + 96° + X + such that N = X“ + X° ♦ X+. (2-157)
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The integers, X", X° and X+, are completely determined by the PN generator. 

Observations of any N-dlmentional vector output from a maximal length PN 

generator result in the important randomness property that there exists an 

almost exact balance between the number of outcomes of non-zero crossings X° 

and the number of outcomes of zero crossings X4 = X" + X + . Since there must be 

an exact balance between the number of outcomes of positive zero crossings X+ 

and the number of outcomes of negative zero crossings X", it follows that

X+ = X -=iX4=4(X° + 1). (2-158)

Proof. The sample PN vector bj and the N-l vectors bj , Is*j formed by 

cyclically shifting the elements of bj, form a multiplicative Abelian group [44, p. 

44] with respect to binary vector multiplication. Consider the vector

bk = ( bj)( bj). (2-159)

The vector bk is therefore also a sample PN vector in which the element bk > 0 

indicates that the corresponding elements bj and bj are of the same polarity and 

the element bk < 0 Indicates that the corresponding elements bj and bj are of 

different polarity. If bj is a single cyclic shift of b j , then the element bk > 0, 

indicates a non-zero crossing and the element bk < 0, indicates a zero crossing 

between elements bj and bw.

Let X°denote the number of non-zero crossings in bj; let X+ denote the
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number of positive zero crossings in bj; and let >C denote the number of negative 

zero crossings in b j. Recall, however, that from the polarity property of any 

maximal length PN sample vector defined by (2-141), N+ = N" + 1. The non-zero 

crossings belong to and the zero crossings belong to M . For { Jb f , i = 1... N } 

to form an Abelian group under multiplication, all elements must be multiplied 

by -1. Hence, NT = N+ + 1. This is a result of the isomorphism with the 

corresponding Abelian group under addition in which the identity element under 

addition, a 'O', corresponds to the Identity element under multiplication which is 

a T  . Therefore, X* = X° +1. Since X4 is even, each zero crossing of one 

polarity must be followed by a zero crossing of the opposite polarity. Therefore, 

X+ = X- = | X 4 = |(X °  + 1). QED

2.4.3 The autocorrelation property. Consider a sample N-dimensional PN binary 

vector bj with elements b( and a new sample N-dimensional PN binary vector 

bj+k with elements bj+k , obtained by cyclically shifting the elements of bj by 

kT0, k=l... N . The periodic/cyclic autocorrelation of bj is given by

N
i,k = l . . .N .  (2-160)

i=1

Observations of any N-dimensional vector output from a maximal length PN 

generator result in a two-valued autocorrelation given by
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Rm,o  ̂RN,k  ̂~ i (2-161)

where

r n,o  = Eb = ( (2-162)

and

RN,k = ~a2 fork = 1... N-1. (2-163)

Note that Eb is called the energy of b .

Proof. When b( and are of the same polarity, the summation element

bj^bjbj+k represents an agreement. When bj and bj+k are of the opposite

polarity, the summation element bj = bjb^ represents a disagreement. The

autocorrelation, therefore, is simply proportional to the difference between the 

number of disagreements ND and the number of agreements Nfl, i.e.

Rrtk -  -a^Nc -  Nfl) (2-164)

When k-0, ND -  0 and Nfl -  N. Therefore,

(2-165)

When k*0, the product element bj = bjb»k in (2-160) is also elements of an 

Abelian sample N-dimensional PN binary vector kj with N+ = Nfl and N- = ND . 

Recall that for an Abelian group under multiplication N"= N+ + 1 which yields,
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ND+Nfl = N and ND-N fl = 1. (2-166)

Therefore,

RN|k = -a2 for k = 1... N. (2-167)

For large N, Na2 » -a2 and hence, RN>0 » RN,k for k = 1... N -1 . QED

From the point of view that PN has a two-valued autocorrelation property, it is 

said to be consistent with the autocorrelation property of random noise.

2.4.4 The run properties. Consider a sample N-dimensional PN vector b. It can 

be shown by enumerating all the possibilities [44, p. 43] that the total number of 

successive occurrences of a given polarity called runs, is given by

n
B= Z mik = 2(n_1) = 5(N+D (2-168)

k=l

where mlk is the total number of runs of any polarity and length k, and n is the 

number of stages in the generator FBSR. For k < n-2,

mjk = 2<1 1 *) = (£)“ [I(N ♦ 1)]« ( i ) k |N. (2 -169)

Recall that for random noise, E[ mlk J ■ (£)kN. Comparing with (2-169), random 

noise is expected to have twice as many runs of length k as PN. From that point 

of view, the run distribution of PN is inconsistent with random noise. Consider, 

however, the ratio (m4k)/(mlkjti ) » 2 . This ratio is identical to the comparable 

ratio for random noise, f.e. E[ m±k ] /  E[ mlkll ]. For large N, in both random
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noise and PN there exist approximately two runs of length k for each run of 

length k+1. For random noise, the exceptions are stochastic, but for PN the 

exception exists on a regular basis only for k * n, in which case only one run of 

the opposite polarity and length k -  n-1 is generated. As indicated by the limit 

of the summation in (2-168), the maximum run length is given by n. Recall that 

for a maximal length sequence, N = 2n -1 where n is the degree of the PN 

generator. Therefore,

n = log2 (N +1), (2-170)

which for large N is in good agreement with the longest likely run previously 

derived for random noise. In this regard, another important distinction between 

random noise and PN should be noted. In PN, the probability that a run of length 

k > n will occur is zero whereas in random noise such probabilities are not high 

but may be significant.

2.5 PN Invariance Transformations

Consider functions or transformations of the N-dimensional PN vector b . 

Denote such transformations by ( b ). Define as a member of a class of 

such that preserves the randomness properties discussed in the preceeding 

sections. The new M-dimensional random noise vector is given by

( b ) = ( b ' , b2 , b3 , b ' , bM ). (2-171)
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Consider the transformations identical to those defined for random noise. The 

preservation of the randomness properties is proved for the following 

transformations:

JFa =» every sample of b is multiplied by an arbitrary constant.

Proof. JV®0 is a linear operation performed independently on each PN variable 

element such that b‘ = Abj. For A > 0, the polarities of the samples are not 

changed and therefore their zero crossings and run distributions remain 

unaffected. For A < 0, the polarities of the samples are all inverted thereby also 

preserving the original balance between N+ and N". Inverting the polarities of 

individual samples inverts the runs and thereby inverts the zero crossings. Since 

there are equal numbers of positive and negative runs, the run distribution 

remains unaffected with the minor exception of the two longest runs. The output 

autocorrelation is now amplified by A2 for k=0... N regardless of the sign of A. 

The two-valued nature of the output autocorrelation, therefore, remains 

unchanged. QED

Jfy =* every sample of b is reduced by the sample average of b.

Proof. The sample average of b is a random variable given by

N
(2-172)
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The transformed random variable is given by

b' = bj -  AN. (2-173)

Since AN « a, sgn( b ') = sgn( b j) . Thus, each variable element of the output

vector retains the polarity of the input variable element. Therefore, the

polarity, zero crossing, and run properties remain unchanged. The effect of 

upon the autocorrelation property can be seen by evaluating the autocorrelation 

of the output vector given by

N N

R N,k = Y. b*bi+k = Z  (bi" a /N )(b i+k -  3/N) = RNjk -  a2/N. (2-174)
i=l i=l

For large N the two-valued nature of the autocorrelation of the input PN vector 

given by RNjk is preserved. QED

# 2  => Every run of length lt > n = log2N is nullified or reduced by the 

sample average of the run.

Proof. Since there are no runs of length k > n in a sample of a maximal length PN 

vector b1 = b j. Since the input vector satisfies the randomness properties, the 

output vector which is identical to the input vector must also satisfy the same 

randomness properties. QED
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< ^ 3  =* b is shortend by removing a single sample from every run.

Proof. Since there are equal number of positive and negative runs, the removal 

of a single sample from every run preserves the polarity property. The required 

run distribution is retained since all one-unit runs are eliminated, all two-unit 

runs become one-unit runs, all three-unit runs become two-unit runs and so on 

until the n-unit run becomes an (n-l)-unit run. Hence, the new run distribution 

satisfies the requirement of a PN sequence generated by a maximal length FB5R 

with n-1 stages. Since there are an equal number of positive and negative runs 

in the output vector, It Is easy to rearrange the runs without losing their 

zero crossings as shown in Figure 2.5-1. The output vector with shifted runs has 

the same run distribution as required for a PN sequence. Since it is a PN 

sequence which may have been generated by a FBSR with n-1 stages, the 

autocorrelation property is also preserved. QED
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CHAPTER III

DETECTION.JN THE PRESENGE-QLAW6M

3.1 Introduction

To understand the performance of a communication system in the presence 

of both noise and interference and how it is affected by the introduction of 

additional signal processing, it is important to investigate detection in the 

presence of noise without interference as a baseline. In this chapter we 

investigate a variety of decision rules applicable to Gaussian noise which we 

will be able to modify or complement when non-random interference is also 

present. When communicating in AWGN environments, it is well known that the 

optimum detection of any independent symbol signal structure which is of 

duration T may be achieved by receivers of the matched filter type, or 

equivalently of the correlator type [39]. We assume that the symbols are binary, 

equlprobable and represented by any simplex waveform such as Binary Phase 

Shift Keying (BPSK), or bipolar. Optimum detection in more general

communication systems requires more complexity such as additional matched 

filters or correlators and biases [4, p. 212]. Nevertheless, given the same ratio 

of signal energy to noise power spectral density (Eb/N0), performance of the 

optimum detection depends only upon the relative distance of the signals in 

signal space and is independent of the symbol signal structure. Different 

modulation forms, e.g. orthogonal, and different receivers, e.g. non-coherent or
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partially coherent, will produce different expressions for their dependency upon 

Eb/N0, but no other parameter need be considered. We shall, therefore, restrict 

our discussion to the binary, equiprobable, simplex waveforms because in a high 

noise environment they provide the best performance for given Et/N0 [39, p. 245]. 

More importantly, however, binary, equiprobable, simplex waveforms provide the 

simplest point of departure for discussing the signal processing concepts and 

algorithms under investigation. Generalizing these concepts and algorithms in 

the context of more complex communication systems may only obscure the 

fundamental nature of the research and is considered beyond the scope of any 

rigorous discussion in this dissertation.

The problem of optimum detection is simplified when analysis is 

performed In signal space, where signal waveforms are represented by signal 

vectors using an orthogonal or orthonormal basis [39, p.225]. We Investigated, 

therefore, signal processing algorithms which may be considered as operators in 

signal space. As such, the signal space operators are Independent of the 

modulation scheme and if found suitable in one modulation scheme these 

operators should be applied to other modulation schemes. It should be noted that 

we would not expect any new signal processing algorithm, linear or non-linear, 

which precedes or replaces the optimum receiver to result in any processing gain 

in AWGN. On the contrary, since the optimum receiver yields the best 

performance in AWGN, we would expect some performance degradation to result 

if the optimum receiver is altered in any structural way. It Is important to note 

that AWGN may not be the only mechanism to corrupt the symbol signal. Since
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AW6N is omni-present, however, any processing loss in an environment of only 

AWGN should be minor and more than compensated by the processing gain to be 

derived in the presence of non-AWGN environments or mixed noise-interference 

environments.

3.2 Signal Space Formulation

Consider the received wideband baseband waveform r(t) which is the sum 

of the PN-coded source data waveform ^As(t) and the random noise process 

time sample n(t) given by (1-29) and (1-31), respectively. Each symbol In a 

message may be represented in signal space using a complete set of 

time-orthogonal unit-rectangular basis function [qft) , i = 1... N) defined in (1-3). 

Generally the message alphabet symbol set is given by 

(a  | a = 0 ^ ,0 , , , . . . , For a binary symbol set M = 2, and we might

have o 0 = ’0‘ and o, = T . For a message of J bits, the bit signal variable 

vector in signal space at the receiver is denoted Sj • When a ’O' is assumed to be 

received, then the j *  bit signal vector received is §j = Sq , otherwise , gj = .

Since the discussion in this chapter applies to any one of the bits in the 

message, we drop the first index which designates which bit in the message is 

received, for example, §.j * §. In an N-dimenslonal signal space, we project the 

received bit waveform onto the signal space coordinates to obtain the received 

signal vector given by

§.= ( b|, b2, ..., b,, ..., b )̂ (3-1)
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where bj denotes the received signal variable projection in the 1th chip time 

interval T0 . Thus, when the source a generates the message a 0, the received 

signal sample vector is given by

3o= ( boj, bo2 , ..., boj,..., b(^). (3-2)

In contrast, when the source a generates the message «,,, the received signal 

sample vector received is given by

§1“ ( bjj, bj2, -  , b jj,..., b,N). (3-3)

We assume that (§©, £i) is a simplex signal set. To attain minimum energy 

signals the components of Sq should be antipodal to corresponding components of 

£,, therefore, we require that

b0i -  -bM = ±b (3-4)

and

< t>0, J2 = <b„ J2 = b2 , (3-5)

where

b > 0 and i = 1... N. (3-6)

We shall refer to a communication system as a DC system when the symbol data

is not modulated by a PN generator. In contrast, we shall refer to a
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communication system as a PN system when the symbol data is modulated by a 

PN generator. For a PN system, we shall also assume that the number of 

dimensions In signal space N also corresponds to the period of the PN sequence. 

Without loss of generality, given a DC system we have

b0i = -b and b1( = +b, 1= 1... N, (3-7)

and given a PN system we have

b, = ±b, (3-8)

depending upon the source a and the phase interval 1 of the PN generator.

In an AWGN environment, projecting the noise process onto the signal 

space coordinates, we obtain the relevant noise random variable vector given by

n = (n ,,n 2 n, nN), (3-9)

where n(are Independent, zero mean Gausstan random variables with probability 

density function (pdf)

p( n, = n,) = N(0,or,) = (1/V^n <r,)exp( -|n ,2 /  a ,2 ). (3-10)

For the j**1 bit interval the relevant noise sample vector ft « Hj and for the Ith chip 

In that bit n4 = njj.
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Hypothesize that a ‘O' was transmitted many times using the basic vector 

communication system shown in Figure 3.2-1. This hypothesis is denoted Hq .

(a) Vector Representation

a{p[ ]}

ReceiverTransmitter

(b) N-Dlmenslonal Signal Space Decomposition

Figure 3.2-1. A Basic Vector Communication System in the Presence of 

Noise
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The received sampled data random variable vector Is given by

£= ( l*j, ?2 , -  > 1*1, ..., rN), (3-11)

where

t = v & (3-12)

and equivalently,

r, = b0i+ n( . (3-13)

Hypothesizing that Instead of a ‘0‘, a T  was also transmitted many times and 

denoting this hypothesis as H,. the received data random variable vector Is now

given by

The vector communication system described above Is applicable to either DC or 

PN systems and may be considered as an N-dlmenslonal diversity system as 

shown In Figure 3 .2 -1b.

3.3 TheJ1nacyJ..1Kg11hQpd Ratio  .Test (BLEED

Assuming that the binary symbols are equiprobable and that the cost of

C °S , + I1 (3-14)

and equivalently,

ri »b„+ n , . (3-15)
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making a mistake In favor of either symbol Is Independent of the symbol, the 

binary decisions are typically based upon the result of the maximum likelihood 

statistic 1(T) or C(T) obtained at the output of the matched filter or correlator as 

shown In Figures 1.4-1 and 1 .4 -2 . In this section we derive the functional form 

of the sufficient statistic which Is applicable to either a DC or a PN system. We 

assume that the relevant noise is zero-mean, Gaussian, Independent from chip to 

chip, and with variances which may not be necessarily Identical. Such situations 

may exist in practical systems where Gausslan-llke broad-band interference may 

be turned on and off. The Joint pdf of the received vector components under H, Is 

defined by

p(L = C.I H,) A P(ri = r|, r 2 !B r2, ..., Pi = r , , ..., rN = rN| H ,). (3-16)

The Joint pdf of the noise vector components under H, is given by 

p( ft= L~ £ , ) = p( ni = T| -  bn, 112 = r2 -  b12,..., fij = r,-bn,..., = r^ -  b ^ ). (3-17)

We observe that

p(L = ClH, ) = p(ft=C-S|)- (3-18)

Similarly, the joint pdf of the received vector components under H0 is defined as
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P( £ -  £ I H0) 4  p(n = r,, r2 -  r2, .... r ,» r (,.. . ,  rN = rN IH0) . (3-19)

The joint pdf of the noise vector components under H0 is given by

P(H = £- V  = Ptai = H -  boi, n2 = r2 -  bo2, ..., n( = r( -  b0i,..., nN = rN - b^), (3-20)

and, therefore,

p(£ = £ l H0 ) = p(n= £ " V -  (3-21)

Since n f Is Independent of nj for 1*j and any i, J=1... N . under hypothesis Hk 

(where k=0,1), the joint pdf of all r, is simply the product of the marginal pdfs 

of individual r , . Thus,

p( £ = £ I Hk) 4  P(r, = r u r 2 = r2, ..., r, = r,, .. . ,  rN » rN I \ \ )  = (3-22)

p( = rj -  bm )p( n2 = r2 -  b ^ )... p( nf = rs -  b ^ )... p( = rN - ),

or more compactly

where

N
P ( £  = £|H k) = f ] p (  Dj = Tj -  bkj) , 

i=l
(3-23)
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PC Of = Tj -  bk, ) = ( 1/V ^ tt cr,)exp-( £( r, -  bk, )2 /  cr,2 ). (3-24)

The likelihood ratio, denoted by A(n), provides for a numerical comparison 

between the two hypotheses in the form of the ratio of the pdfs defined as 

follows

A(c)AP(C = C lH j)/p (E  = ElH0 ). (3*25)

Invoking the AWGN assumption,

N N
A(t) -  ( f |  p( n, = r ( -  b1f) )/(J"| p( n, = r, - b0i)). (3-26)

Using the minimum probability of error criterion [48, p, 48], 11 kelihood-ratio 

processors (LRPs) will compute A(n) obtained during each symbol decision time 

interval T and compare it to a likelihood ratio test (LRT) threshold denoted by p. 

Thus

if A(c) > U then H,, otherwise Hq. (3-27)

The output of the LRP, <\, will depend upon the decision rule designed into the 

processor logic. The LRT threshold for a MAP LRP is given by

(3-28)
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The LRT threshold for a ML LRP is obtained when

Plao] = P [a ,] = f  (3-29)

Therefore,

1. (3-30)

Thus, the MAP LRP is the optimum processor which minimizes the average

overall probability of error Pe , i.e. if am is sent, it will set

<2k ■ a m if and only if P[ am ] ® p( £= £ I ] is a maximum for m = k . (3-31)

In the discussion that follows we assume that

PI 0 m] = 5  for m = 0 , 1, (3-32)

consequently, we w ill consider only the ML LRP.

Substitution of (3-24) into (3-26) results in a LR which is applicable to 

both DC and PN systems as follows:

N N
A(C) -  f["I exp-{ £( r, -  b,, )2 /  o',2 ) /  ( |~[ exp-t £( r, -  b0, )2 /  <r,2 ). (3-33) 

i=1 i=1

Multiplying the numerator and denominator of (3-33) each by the factor
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N

( n  e*P“ l J( ri ■ Poi )2 /  O'j2 ). (3-34)
i-l

we obtain
N

A(£) = { J~|exp{ { { ( Tj - b0i )2 • ( I~i -  b,i )2 ] /o-j2 ). (3-35)

Using (3-5), the numerator In each of the exponential factors in (3-35) becomes

linear and is given by

( r| - b0j )2 - ( r , -  bn J2 = 2 n ( b,j -  b0j). (3-36)

Due to the monotonicity of logarithmic operations, taking the natural logarithm 

of A(c) cannot affect the outcome of the LRT. We, therefore, define the 

logarithmic LR (LLR) given by

C(r) 4  InA(c), (3-37)

and a LRT equivalent to (3-27) given by

if ^ r )  > 0 then Hj, otherwise H<> (3-38)

As a consequence of (3-37), the noise vector components imbedded in the

received vector components contribute to the binary decision problem in an 

additive fashion given by
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N
U O - T  a,r, (3-39)

where
aj = ( b|j -  b0| ) /  ( <r|2 ) .

Note that 6(c) constitutes a sufficient statistic since It Includes all of the 

relevant data needed for a decision. Note that t o  is a linear combination of N 

samples r} of the random variables r t which are jointly distributed and 

mutually Independent. Hence, t o  is also a sample of the random variable t o  

whose mean is given by

N
E[ t o ]  = E [g  a,r, ]. (3-40)

Assuming that the noise is stationary, we may interchange the summation and 

averaging in (3-40) to obtain
N

E (to ]  = g  ajElr,]. (3-41)

Similarly we find the variance of £ ( e )  to be given by

N N
Varf t o  1 = E[ ( t o -  E[ to J )2! = ^  a,2 Var [ r, ] = a,2 <r,2 (3-42)

But
a,2 = ( bf | -  b0i )2 erf4 = 4b2tri‘4 ,

and therefore,
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N
Varl t o  ] = 4b2g  a r 2 = crN2 (3-43)

Thus, the variance of 8(r) is independent of the hypotheses Hk and is the same 

for a DC or a PN system.

For DC systems, let t o  = ^ ( e). we may now simplify (3-39) since using

(3-7),

( bn - b0i) = +2b. (3-44)

Hence

N

e A(E ) = 2 b( X ri /(ari)2 }- (3' 45)
j=1

Given the hypothesis H, in which a T  is assumed to have been transmitted, then 

E[ r, ] = b , and the expected value of t fi(r) is given by

N
E ltto l = 2b2 V  o r 2 » aN. (3-46)

t?\

For PN systems, let t o  = We cannot simplify (3-39), as for DC 

systems, since is now pseudorandom, /  e. from (3-8)

a|= ( bf) -  b0j)/cTi2 = ±2b/<r,2 depending on i . (3-47)
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Hence,
N

te ®  = T.  M b ,, - b0l ) / (o-j)2 (3-48)
i=1

Given H,, we may nevertheless obtain E[ ^g(n)]. Note that Ef r, ] = -b, when

b,i= -b and Ef rs J = +b, when b,, = + b . Hence the product at E( r, 3 is always 

positive resulting in

Similarly, given H0 we find that E[£fl(c)3» El i^ r )  3 » -aN.

For noise which is i.i.d. <r, = tr for 1 = 1... N . Therefore, (3-49) simplifies

to

The equality of the expected values and variances of and Is

significant in that it proves that at least from a decision theoretic point of view 

the decision regions of the DC and PN systems are equivalent and hence they 

should perform equally well. In addition we note that for random noise which is

i.i.d. as well as non-i.i.d., o-N2 = 2aN Independently of the power of either the 

signal or the noise. The dependence upon the power of the signal and the noise

(3-49)

aN = 2b2 N/er2 , (3-50)

and similarly

<rN2 = 4b2 N/cr2 . (3-51)
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occurs in both <rN2 and aN as the same ratio of the signal and noise parameters. 

Therefore, by measuring aN we automatically obtain its standard deviation crN. 

In practical systems, one may not have a /vwvknowledge of the crx. In spread 

spectrum systems, however, it may be possible to estimate o^by assuming that 

the chips in the neighborhood of i are i.i.d. and by using the sample variance in 

place of o',.

3.3.1 The logarithmic BLRT in a low noise environment. Consider the 

transmission of a symbol through either a DC or a PN system. Given the same 

noise vector, in general, ^ (c ) *  £b(c) since different weights are applied to the 

same noise sample by each type of system. In a low noise environment, however, 

we would expect their difference to be negligible. More concisely we state the 

following theorem:

THEOREM i: In the limit as the noise becomes negligible in the mean square 

sense, the difference between the LLR of a DC system and that of a PN system 

also becomes negligible in the mean square sense, i.e.

efl(£)*eB(£). (3-52)

Proof. Consider the ratio given by

r  = V(V ar[ etc) ])/ IEI C(r) ]

Using (3-43) and (3-49),

(3-53)
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r=<rN/ a N» {b2^ V r 2 ) " 1/2 . (3-54)

The dependence on the key variables may be seen more readily for noise which Is

I.i.d. where we use (3-50) and (3-51) to obtain

r -c r A /N b 2 . (3-55)

Since in the limit as the noise becomes negligible in the mean square sense, 

Var[ 0 | ] = o-|2 -* 0 forcing r  -* 0 . But from (3-53) we must also have that 

Var[&(r) ] -> 0 and since Ur) = &fl(r) or C(e ) = CgCr), 6fl( c ) « ^ (r). QED

Intuitively, THEOREM l may be motivated also by the fact that as the 

slgnal-to-noise ratio increases, the LLR begins to lose its randomness and 

becomes more and more deterministic within experimental error.

3.3.2 The logarithmic BLRT in a high noise environment. Consider the same 

transmision experiment as above. Namely, given the same noise vector, a symbol 

is transmitted through either a DC or a PN system. In a high noise environment, 

on the average, we would expect the difference between the two possible LLRs to 

be significant. This fact is expressed by the following theorem:

THEOREM 2: In the limit as the noise becomes dominant in the mean square 

sense, the difference between the LLR of a DC system and that of a PN system 

also becomes significant in the mean square sense increasing in proportion to 

the variance of the LLR.
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Proof. The difference LLR is defined by 6d(D = M D  " M l). Consider the 

ratio given by

r D= V(VarI e D(c) ])/ |E[ t ( r )  ]| . (3-56)

Using (3-45) and (3-48),
N

eD(c )= |J  (aB - a ft) r t (3-57)

where

aBi= ^ ii “ *>oi anc* afti= 2b /tr2 .

Since M D  is a linear combination of the r , , 1 = I...N , samples of the random 

variables r, which are jointly distributed and mutually independent,

N
Var[tD(£)J =^T (aB -  aR )2 Varlr, J (3-58)

Expanding the coefficient in the summation,

(aB -  afl )2 » irf4 (b^ -  boi -  2b )2 » 8b2 (1 -sgn bi^crf4 , 

and since Var{r( ] ■ a ? ,
N

VarliD(£)] = £ j 8b2 (l-sgnbJj)<rf2 . (3-59)

Note that ( I -sgn bj,) Is 0 when b|} is positive and 2 when bn is negative. Hence 

only the negative signal chips in the PN sequence contribute to Varl£0(L)l. Since
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the functional dependence of Var[£D(r)] is analogous to that of Var[£(r)l, r D is 

proportional to o-j and hence for high power noise, a x -* o° , r D -* °° and

The dependence on the key variables may be seen more readily for noise 

which is i.i.d. Since for one period of the PN sequence, b,j is positive for (N+1 )/2  

chips and negative for (N-1 )/2 chips, we may simplify (3-59) to obtain

3.4 Errors in Additive White Gaussian Noise (AWGN).

In making binary decisions, four transition probabilities are possible as 

shown in Figure 3.4-1. The probability P [T |T ] corresponds to the probability of 

correctly choosing hypothesis H, when a T  was indeed transmitted. The 

probability Pl'OTV] corresponds to the probability of incorrectly choosing 

hypothesis H0 when a T  was transmitted. Similarly, the probability P['0T0‘] 

corresponds to the probability of correctly choosing hypothesis H0 when a 'O’ 

was indeed transmitted. Finally, the probability P['1T0'] corresponds to the 

probability of incorrectly choosing hypothesis H, when a O’ was transmitted. 

Using the maximum likelihood ratio processor, the optimum decision was shown

therefore Var[lD(r)] -* °° QED

Var[€D(r)] =4b2(N -l)tr2

r D =* o' v^H/(bN) ~ r  .

(3-60)

(3-61)
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Pl'OTO*]

Figure 3.4-1. The Binary Error Channel Model

to depend upon the outcome of the sufficient statistic £ (r ) . Since €(r) is a linear 

combination of Gaussian variates, it is also a Gaussian variate. If a T  is 

transmitted, the mean is given by a^ -  aN and the variance -  crN. If a 'O' is 

transmitted, the mean is given by a0N = -aN and the variance &m = trN. The two 

Gaussian variates corresponding to the transmission of a T  and a O’ are shown 

in Figure 3.4-2. Using the definition of the Q-function discussed in Appendix A,

Decision
Threshold

PCITO’J

Figure 3.4-2. The Suflcient Statistic Probability Density Functions 

in the Presence of Gaussian Noise
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the transition probabilities are given by

P ['1 |*1] = P [e(r) > o r n  = l-Q la ^ /o ^}, (3-62)

Pl'OT 11 = P[ e<r) < or 11 = Q{ a1N/c r1N], (3-63)

Pl'OTOl = P[ €<r) < OI’OI = 1 -Q{ acts /o-QN), (3-64)

P[* 1T01 = P[ Ur) > 01*01 = Q( aoM / trow). (3-65)

For a binary symmetric channel am = -aw  = aN and = crN and therefore,

p n r n  - pcotoi = i -q{ <3_66>

PC 1101 = PC 1T01 = Q( aN /<rN). (3-67)

The total probability of error is given by

Pe = PC01 PC 1T01+ PC 11 Pt'OT 11 (3-68)

For equiprobable a priori transmition probabilities, i.e. PC 11 = Pl'Ol = | , we 

obtain
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Pe -  Q{ 3(4 /  On ) . (3-69)

For noise which is 1.1.&,

Pe =Q(\/Nb2/  o'2 ). (3-70)

Assuming a BPSK signal of amplitude b, the energy per chip is given by Ec ■ £b2T0 

and the energy per bit Eb = NEC. For band limited Gaussian noise a2 = N0TC . 

Hence, we also arrive at the well known result [39, p.250]

In the previous section it was shown that in general, the LLR, 6(r), will 

differ for the same symbol when the same noise sample vector is added to either 

a DC or a PN system. As stated previously, the difference is due to the different 

weights assigned to the same noise components by each type of system. It is 

therefore possible for one noise vector to cause an error in one type of system 

and not in the other. We illustrate this graphically in Figure 3.4-3. Although 

typically the number of chips in a PN sequence is N » 1, graphically, this is seen 

in a two-dimensional abstraction as well. For the DC system, a T  is 

represented by the dotted circle located at (+b,+b) and a ‘O' by a blank circle 

located at (-b,-b). In the PN system a T  is represented by the dotted square 

located at (+b,-b), and a 'O' by a blank square located at (-b,+b). Note that an error 

results for the DC system transmitting a T  when the noise vector is found in the 

region defined by the FDH-wedge. That same noise vector would also result

Pe =Q(v/2Eb /  N„) (3-71)
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Figure 3.4-3. A 2-D Abstraction of Error Regions in DC and PN Systems.

in a PN system error since the noise vector would be found in the region defined 

by the GOJ-wedge. If, on the other hand, the noise vector in the DC (PN) system 

transmitting a T  is found in the vicinity of (~b,0), it would cause an error in the 

DC (PN) system but not in the PN (DC) system.

To reconcile the fact that it is possible for one noise vector to cause an 

error in one type of system and not in the other with the fact that both types of 

systems have identical performance, we state the following:

COROLLARY: For each noise vector which causes an error in a DC system 

and not in the PN system, there exists an equiprobable noise vector which causes 

an error in the PN system and not in the DC system.
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Proof. Consider the noise vector consisting of a set of discrete GRVs. (A 

similar argument can be made using continuous GRVs, replacing discrete 

probabilities by the probability density function). Assume that there exists a

noise vector sample which causes an error with probability Pfl.ln the PN system.

This same noise vector sample, however, does not cause an error in the DC 

system. Similarly there exists a noise vector sample which causes an error with 

probability PB, in the DC system and not in the PN system. In addition, there are

noise vector samples which cause errors in both types of systems with 

probability Pc.. Since the overall performance is independent of which system is

utilized, the total probability of error in each system must be equal. Thus,

Since individual Pft,and PB. must uniquely be consistent with the same Gaussian 

probability distribution function, (3-72) can be satistfied if and only if Pfl. and 

PB. can be arranged in a one-to-one mapping as ordered pairs ( Pfij, PB.) such that

(3-72)

Therefore,

I V Z ' V (3-73)

QED
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3.5 Erasures in AWON

Given an AWGN vector, the optimum detection requires correlation over 

the entire received vector to obtain a sufficient statistic with the most signal 

energy. This can be readily seen from (3-70). Unfortunately, the requisite 

integration (or summation) process removes vital information concerning the 

quality of the signal. In a high noise environment, it may be more costly to make 

a wrong decision than to postpone making a decision. The action of postponing a 

decision or ignoring available data in the detection and decision process defines 

an erasure. In this section we investigate the performance of the binary 

error-erasure channel (BE^), as shown in Figure 3.5-1, subject to different 

decision methods. Since erasures are detected at the expense of both optimum 

binary correct and Incorrect decisions, the optimum decision rule will depend 

upon the relative costs of errors and erasures, utilizing Bayes’ criterion.

Pl’OTO’l
O'

€

Figure 3 .5 -1. The Binary Error-Erasure Channel Model
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There are many ways to detect erasures. While Bayes' criterion provides 

for the optimization of the three decision regions, the method by which we may 

parameterize their boundary is, to a large extent, at our disposal. In AWGN, one 

may categorize the methods of detecting erasures into two major classes. 

Erasures of class I are analog and typically are parameterized by an analog 

threshold. Erasures of class II are digital and are typically parameterized by the 

number of subdecisions used to make the final decision. A hybrid decision logic 

is also possible in which case both analog and digital logics are used to arrive 

the final decision. Typically, class I erasures are declared if the output of the 

correlator does not exceed a minimum erasure threshold above or below the 

optimum binary detection threshold, depending on which symbol is being 

detected. Bayes' rule may then be used to determine the optimum erasure 

threshold [49] . Such threshold-dependent schemes, however, are not robust 

since their performance is critically sensitive to small perturbations in the 

threshold calibration. Alternative schemes which produce class II erasures 

should be considered. If we segment the received signal vector into two or more 

subvectors which then undergo a separate correlation detection, also known as a 

hard decision, class II erasures may be declared depending upon the decision 

logic which utilizes the outcome of the optimum binary decision as well as the 

suboptimal sub-binary decisions and their weights. The number of subvectors 

considered will be limited, depending upon the feasibility of added correlation 

circuitry. As an illustration, consider segmenting the signal space into two 

subspaces. Since N is odd for a PN sequence, one subspace has |(N+1) dimensions 

and the other has £(N -l) dimensions. For large N, this difference becomes 

insignificant. A 2-D abstraction of such a subdivision is shown in Figure 3.5-2.



112

Figure 3.5-2. A 2-D Abstraction of Errors and Erasure Regions In PN Systems

If we assume that a T  was transmitted, using the optimum binary 

decision rule, any c detected to the "right" of the multl-dlmentional optimum 

binary threshold represented by the DH-llne is correctly received as a T .  

Otherwise, It 1s Incorrectly received as a ’O’. Class I erasure detection schemes 

provide for a multi-dimensional optimum erasure threshold represented by a 

line parallel to the DH-llne either to the right or to the left of the DH-llne 

depending upon whether a ’ 1' or a 'O’ was transmitted. Class I erasures therefore, 

occur for any c detected In the multi-dimensional region depicted between the 

DH-line and the parallel line representing the multi-dimensional optimum 

erasure threshold. Class II erasure detection schemes provide for an optimum 

multi-dimensional erasure region depicted by octants 1, 2, 5 and 6. Any c 

falling Into the region depicted by octant 7 and 8 Is correctly received as a T  

and any c detected In the region depicted by octant 3 and A Is Incorectly received 

as a ’O’ . Since PN systems are N-dimenslonal, where typically N » l ,  one
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may optimize the erasure decision using the metric defined as the number of 

independent dimensions D which may disagree with the overall optimum binary 

decision. By definition D *  N . Such a complete disagreement is impossible. This 

is easily illustrated by considering Figure 3.5-2 . Moreover, when D *  0 , the 

BE^ is reduced to the BEC. Therefore,

We note that as D increases, less erasures are detected resulting in more binary 

decisions.

How performance of various decision logics is enhanced by detecting 

erasures as well as errors may be evaluated in the context of the binary 

error-erasure symmetric channel (BE2SC). Let Pe denote the probability of error, 

P€ denote the probability of erasure, and Pc denote the probability of correct 

reception. Referring to Figure 3.5-1 and assuming that the channel is 

symmetric, we have

1< D < N-1. (3-74)

p. -  pnro*] - p r o r n , (3-75)

P€ = P [ T M  = PLOT €'] (3-76)

and

P0 = P lT IT l  = P fo ro i (3-77)

Since these disjoint events span the entire probability space, no other
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independent event is possible so we must have

Pe+ P€+ Pc = I- (3-78)

3.5.1 Analog signal detection. For a PN sequence of length N, let e denote the 

analog erasure threshold factor. Let fy^r) represent the sample sufficient 

statistic obtained by correlating the received vector £ with the replica of Si • 

Therefore, assuming H,, = alN= aN, and assuming H0, E[Cn(e)] = a ^  = -aN.

Irrespective of either hypotheses, recall that <rN denotes the standard deviation 

of tf/£). To parameterize the erasure decision region, define € as a small 

positive constant given by 0 < e < 1. In the simplest case there exist eight 

possible outcomes in a transmission experiment. These are delineated as 

follows:

When

transmitting a ' I ' and 0 < < catN, (3-79)

and when

transmitting a *0’ and 0 > 6ĵ £) > e a ^ , (3-80)

the otherwise optimum binary correct decision is converted into an '€’ .

When

transmitting a * r  and 6^£) > caw, (3-81)
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the correct decision Is In favor of a T  .

When

transmitting a'O' and ^ l)<€6 on, 

the correct decision is In favor of a ’O’ .

When

transmitting a ’O’ and 0 < ^(c) < ,

and when

transmitting a ’ 1 ’ and 0 > ^(n) > €0on , 

the otherwise optimum binary error Is converted into an ‘c’ .

When

transmitting a ’O' and ,

as in the BSC case, an error is made in deciding a T , and when

transmitting a T  and < c a ^ ,

also as in the BEC case, the decision Is made Incorrectly in favor of a *0’

(3-82)

(3-83)

(3-84)

(3-85)

(3-86)
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Using the above decision rule, since the LLRs are GRVs, It Is straight 

forward to evaluate the probabilities identified in (75M77). Namely,

Pe -  Pl‘0T 11 -  PI lift)  < eaoM p 11 (3-87)

= Q(af/1+€ )/trN),

P€ = Pl'CIT] = PI €aoN < Crfc) < catilT] (3-88)

= Q{a (̂ 1-€)/<rN) -Q{a^1+€)/<rN),

and

P0 -  PI' 1T 11“ PI e^c) > ca* IT ] (3-89)

= 1-PG-P € = 1 -  Q{an(l-€)/crN}.

Note that In the limit as c -♦ 0, the BE^C is reduced to the BESC as a special 

case In which

Pe = Q(aN /o rN), (3-90)

P£“ 0, (3-91)

and

P0 = 1-Pe= 1 -Q(aN/<rN}. (3-92)
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3.5.2 Analog/ digital hybrid signal detection. Given a PN sequence of length N 

which undergoes digital signal processing, we may choose to make hard decisions 

with respect to groups of chips which span the PN sequence and consider various 

decision rules which utilize the subdecisions to obtain an optimum decision for 

the channel under consideration. As a first example, consider subdecisions with 

respect to each chip In the sequence. We must obtain the sufficient statistic for

Individual chips, f.e. ̂ (n )  where i = 1...N . In addition to the N chip LLRs, we

also compute the bit LLR €N(£ ) . Let ani = E[ t,,(£) ] = ati when a T  is 

transmitted and let a0n = El £h(£> J ■ -an when a 'O’ is transmitted. The 

variance of £„(£) denoted as tr,/2 is also computed analogously o-N . Thus, 

analogously to (3-43) and (3-49), we find that

a1t, = +2b2 (1 /tr ,)2 = a1( , (3-93)

aoii= " aiii = ati (3-94)

and

o',,2 = (2b)2 (I/o r,)2 (3-95)

To parameterize the erasure region, define 6 as a small positive constant 

given by 0 < 6 < 1 . In addition, define N+ and N_ as positive integers constrained 

by N+ + N_ = N , where when correlating with a ’ V , N+ is the number of €,,(£:) in a 

sign agreement with £N(£), and N_ is the number of £n(£) in a sign disagreement 

with &n(£). in the simplest case, therefore, there exist ten possible outcomes In 

a transmission experiment. These are delineated as follows:
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When

transmitting a T  and £^£)>0 and 0<N +<6N, (3-96)

the otherwise optimum binary correct decision is converted into an '€’ . When

transmitting a T  and &^(c)>0 and N+ >5N, (3-97)

the correct decision is the same correct decision which would result from the 

optimum binary minimum error criterion.

In contrast, when

transmitting a T  and and 0 iN +<6N , (3-98)

the otherwise optimum binary error is converted into an V  , and when

transmitting a '1* and ^ c ) > 0  and (3-99)

£
as in the Ej£C case, an error is made in deciding a 1 r . Finally, when

transmitting a T  and 6^£)<0 and N+>6N, (3-100)

also as in the BESC case, a ‘O’ is decided upon incorrectly. The other five 

outcomes are obtained in a similar fashion when transmitting a ’O’.
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Using the above decision rule, the following joint probability distribution 

function must be evaluated to obtain its performance as a function of 6 :

Pe = Pl'OT r] = P[ M 0  < 0, N+ > 8H IT ] (3-101)

= Pi* 1 TO1] = P[ Mn> > 0, N+ > 5N l O*]

P€ = P[’€’ IT ]  = P( M u) < 0. N+ < <5N P1 •] (3-102)

= P le^r)>0, N+<5N IT ]

= P[’€’ I 0*] = P[ 1^0  > 0, N+ < 6H TO1]

= PI M n><0,N+<6N 1*0]

Pc “ PI' 1T 13 = PI M e) > 0, N+ > 5N P1'] (3-103)

= PfOTO’] = P[ M O  < 0, N+ > 6H 1*0]

Note that in the limit as 6 -* £ , the BE2SC characterized by (101 H I 03) is again 

reduced to the BESC as a special case in which (90M92) becomes applicable. To 

obtain numerical results for the above expressions, note that it is nessecary to 

compute the integration of the joint density function of the two partially 

correlatedLLRs, €1 ,<e)and M e )-



Optimum binary detection (OBD) and single chiP decisionsJSCDI Given a 

PN sequence of length N received in an 1.1.d. AWGN environment, the errors 

produced in making hard decisions on individual chips of constant energy Ec are 

binomially distributed. The probability of exactly N" errors in the sequence of N 

chips is given by

; >C(N,N-) P [1 lT p (1 -P [H T ])NV  (3-104)

The probability of exactly N+ correct chip decisions in the sequence of N chips is

given by

P[N +|N] = C(N,N+) P[ I +l* 1 'F  (1 -  PI 11’ 1 *])rr. (3-105)

where C(N,N*) is the binomial coefficient given by

C(N,Ni ) = (1/Ni !)N!/(N-N±)l,

P[ IT  1’] is the optimum binary probability of a single chip error given by

P[11T] -  Qfan,/<r„} = Qfb/o-}, (3-106)

and P f lT r j  is the optimum binary probability of a single chip being correct

given by

06
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Note that

and

Therefore,

and

P H 1 T ]=  1 -Q{b/<r). (3-107)

N = N“+N+ , (3-108)

N+ -  N+when £f|(r) > 0 , (3-109)

N+ = N_ when 6j/n) < 0 ,  (3-110)

N- = N+w henVn)<0 (3-111)

N" = N_when€«(£)> 0 . (3-112)

N
PIN* > 6N|' 1*] = Y . PlN±lNi (3" 113)

N*=6N

N
P[N± > 6N|'I’] = £  P[N±|N]. (3-114)

N*=6N

The probabilities given by (3-113 )-(3 -114), however, Include a mix of errors and 

erasures as well as binary correct decisions. The only degenerate cases In which 

performance for the optimum binary decision based upon ^ c )  will always agree 

with (3 -1 13M 3-114) occur when N = 1 or N+ = N, i.e. 6=1. The former situation
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does not apply to PN sequences. In the latter case, where N is large, the 

correlation between C^e) and N± Is expected to be reduced as N± is reduced since

there is more opportunity for the amplitudes of the samples to counter any 

imbalance of agreements with 6^ e) . The most conservative decision which can 

be made using the N subdecisions in conjunction with the optimum binary 

decision Is to accept only unanimous decisions. Using (3-101 M 3-103) and the 

fact that the N subdecisions are Independent of each other, we obtain the 

following result:

Pe = P [^ D < 0 ,  N+ = N ] (3-115)

N N
Qfb/crj}

Po= P l W > 0 ,  N+ = N] (3-116)

N
p[n +=nitj = n p n - 1 t ] = nn-Qfo/o-j}]

1=1 1=1

ri N
P€ “ 1 -  Pe - P0 = I -  n w  " f l 11 "Q{b/<riH • (3~1 1 7)

1=1 1=1

To illustrate the conservative nature of this decision rule, assume that the noise 

Is i.I.d.. The fraction of optimum binary errors discarded is given by

Fe = 1 -  [Q(b/ cr|}]N /Q(VNb/ctj) (3-118)
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Similarly, the fraction of optimum binary correct decisions discarded is given by

F0= 1 -  [1 -  QCb/trj)]N/[1 -  Qh/Nb /<r,)]. (3-119)

In general, unfortunately, less conservative decisions, i.e. 6 < 1, cannot be 

computed analytically because C^c) is only partially correlated to Nt , requiring 

the computation of multiply convolved Gaussian tail functions which must then 

be used to calculate the joint probability functions Identified in 

(3-101 M3-103).

OBD and multi-chip decisions (MCD). Given a PN sequence of length N, we 

may choose to subdivide it into independent groups of chips, called n-tuples, 

which will be used to make optimum binary subdecisions. These subdecisions 

may then be used in the decision rule to determine if the signal quality is good 

enough to make a binary decision. Otherwise, there is sufficient disagreement 

among the subdecisions and the optimum binary decision to justify an erasure. 

Let n denote the length of the n-tuples, and let Nn denote the number of 

independent n-tuples considered. For convenience, let n = n. As n increases, Nn 

decreases. If n does not divide evenly into N, we are left with an m-tuple such 

that m<n. We may choose to ignore the subdecision based upon the m-tuple, or 

appropriately weigh the m-tuple decision relative to other n-tuple decisions. In 

the following discussion, we choose to Ignore the odd m-tuple. Therefore, we 

have



124

2<Nn <Nf (3-120)

1 < n < ± (N -l) (3-121)

and

N_ + N+ = Nn. (3-122)

Note that Nn Is the Integer portion of N/n, i. e. Nn = (N/nJ.

Let P[ n " | T ) denote the optimum binary probability of an n-tuple error, 

and let P[ n+ I T  ] denote the optimum binary probability of an n-tuple being 

correct. These probabilities are given by

Analogously to the discussion in the previous section for n°l, in the more 

general case for n given by (3-121), the most conservative decision which can be 

made using the Nn subdecisions in conjunction with the optimum binary decision 

is to accept only unanimous decisions, i.e. N+ = Nn . Using (3-101M 3-103) and 

the fact that the N subdecisions are Independent of each other, we obtain the 

following result:

PlnlT] = Q{ an/crn) (3-123)

PlnlT] = I -  Q( an/<rn). (3-124)
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Pe ° PI e (̂£) < 0, N+ = Nn ] (3-125)

l\,
£  PI N-> N„r I ' ] » j lP l  n-1 • I ' ] -  f |Q l a„/<rni)

1=1 i=1

Pc = P[ e^(r)>0,N+ = Nn] (3-126)

% %
; P[N+= Nn|T ] = PJPl n+ 1 T  ] -  J^J[1-Q{ 3n/ ^ ni)]

p € = 1 - P e- P 0*  1 - n Q { a " / * n i ) - n i 1 ' Q t a n / < r n i l l -  ( 3 - 1 2 7 )
i=l i=1

Assuming that the AWGN is i.i.d., the fraction of optimum binary errors discarded 

is given by

Fe~ 1 -  [Q( an/cTnJ^/Ql aN/<rN) . (3-128)

Similarly, the fraction of optimum binary correct decisions discarded is given by

Fc~ 1 -[1  -Q[an/<rn)F/U -  Q{ aN/<rN}J . (3-129)

The approximate equality in the expressions above is due to the possibility that

m *  0 in which case the m-tuple will contribute to a negligible decorrelation
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between the and N+ ■ Nn . For this general hybrid signal detection, as for 

the case n=1, less conservative decisions, i.e. 6 < 1, cannot be computed 

analytically because ^ e )  is only partially correlated to Nt . This requires the 

computation of multiply convolved Gaussian tail functions which must then be 

used to calculate the joint probability functions identified in (3-101 M3-103).



CHAPTER IV

DETECTION IN THE PRESENCE OF INTERFERENCE AND NOISE 

4.1 Introductiflp

Interference may be distinguished from noise by its non-random 

properties. For example, as we have seen, the power of the noise is typically 

continuous in time and uniformly distributed over the band of interest. The 

power of interference, on the other hand, may be bursty and/or concentrated or 

restricted to selective spectral components or bands [50] . The on-off or 

high/low pulsing and spectral structuring of interference into one or more tones 

or narrowbands in comb-like arrangements, may cause severe degradations in 

performance with much less interference power than would be required if the 

interference were reduced to a broadband noise-like process. This may be easily 

verified by considering the signal space. The concentration of interference 

power in a few time-orthogonal or frequency-orthogonal coordinates in which 

the signal may be found may significantly affect the matched filter or correlator 

output and thereby result in a high probability of error. Such a coincidence of the 

interference projection into a few signal space coordinates need only occur at a 

rate slightly higher than the minimum bit error rate requirement in order to 

result in unacceptable performance. This is especially true in analog systems 

which integrate the contribution of each signal coordinate in an analog fashion. 

Such interference effects may be mitigated by digital techniques which limit the 

amount of received signal energy to be correlated. We see that in the presence of
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high power interference the fact that digital detection techniques are 

suboptimal in the presence of only AWGN becomes less important.

The process of detection of digital data in the presence of interference 

and noise may be divided into three major parts: a) the detection of the 

presence of interference, b) the rejection or suppression of the interference and 

c) the detection of digital data based upon the residual waveform. Depending 

upon the interference and the source data waveform, several situations may 

arise. In one situation, it may be possible to detect the presence of interference 

but not be able to isolate and reject it without significant distortion of the 

source data waveform. In such a situation it may be better to erase the affected 

portion of the received waveform and perform the detection on the basis of any 

unerased segments. Such erasures may be applicable either in the time domain 

in the presence of a strong but short pulse interference, or in the frequency 

domain in the presence of strong but narrowband CW interference. In another 

situation, it may be possible to detect the presence of interference and to 

isolate and reject it without significant distortion of the source data waveform. 

In such a situation it may be better to perform the detection on the basis of the 

entire received waveform. Such rejection or suppression may also be applicable 

either in the time domain in the presence of a strong but short pulse interference 

or in the frequency domain in the presence of strong but narrowband CW 

interference. The case in which the interference is noise-like, i.e. constant in 

the time and frequency domains, is best handled by optimum binary detection as 

for AWGN, since the noise present in every signal coordinate is added 

non-coherently whereas the source data variables are added coherently.
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In this chapter we discuss, in general, the processing gain of 

pre-detection signal processing algorithms designed to detect, erase and/or 

suppress or reject non-random interference in the presence of desired PN 

modulated source data waveforms. More specifically, we also describe a novel 

class of pre-detection signal processing algorithms £>, which is based upon the 

randomness properties of both random noise and PN waveforms. The algorithms 

are first demonstrated in the presence of interference only and subsequently in 

the presence of both interference and AWGN. The main concept underlying this 

class of interference suppression techniques is to test for a given randomness 

property. If that property is violated, then an interference burst is detected and 

isolated. Subsequently, the non-random content of the burst is then estimated 

and suppressed to yield a processing gain which will vary with the Interference, 

noise and algorithmic parameters.

4.2 The Vector Communication System with Interference and Noise

Consider the received wideband baseband waveform r(t) which is the sum 

of the PN-coded source data waveform ^Asft), the interference waveform i ( t ) , 

and the random noise process time sample n(t) given by (1-29), (1-30) and 

(1-31), respectively. For a message of J bits, these waveforms may be 

represented as vectors in message space. Let the complete set of 

time-orthogonal unit-rectangular basis functions { p j(t) , j = 1... J } be defined 

for a message as in (1 -8 ). Similarly, for the j^ b it transmission of duration T, 

these waveforms may be represented as vectors in signal space. Let the 

complete set of time-orthogonal unit-rectangular basis functions [ q^t), i =1...N]
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be defined for a bit as in (1 -3 ). The relevant bit sample vector is given by

—j =  ̂ k j i» b j2, bj3 ,.. . ,  b jj,.. . ,  bjN). (4-1)

The relevant interference sample vector is given by

ij = ( 1 j! * ’ j2 . * J3 > -  * * ji * -  . * jN ) •

The relevant noise sample vector is given by

fij ■ ( h j j , nj 2 , nj3 , . . . ,  njj, . . . ,  njN ) . (4-3)

The relevant received sample vector is given by

Cj = f r j< - Pj 2  • Pj 3 ..........r J i  r JN ) - M - 4 )

where

or equivalently

£, -  Sj *  i j  ♦ ttj ( 4 -5 )

rjt -  bjj *  1 ji *  n j , . (4 -6 )

The resulting vector communication system of interest is shown in Figure 4-1.
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(a) Vector Representation

a
- j - Transmitter

s
-4-

r
-4—

{ P[ ^ 'j ]}
n

Receiver
a

-4—

{ < V j }

(b) N-Dimensional Signal Space Decomposition

{ }
{P[

Figure 4.2-1. A Basic Vector Communication System in the Presence of 

Noise and Interference.
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The received signal projection in the i®* chip interval Tc of the j®1 bit 

interval T is given by

r H - o o

b.. = 1aU JI 2 s(t) p /t) qj(t) dt = |A
i»t
Uj b( dt = ±|ATC (4-7 )

tj.i-i

where

tjji = (j - 1 )T + iTc and tJjW = (j- l)T  + <i-1)T0 . (4-8)

In Chapter ill, recall that bjj = +b. Hence, b =» ^ATg . Moreover, since 

s (t)« u(t)b(t) where u(t) is constant during each j^tim e interval T, and assuming 

that T = Tb * N Tc , then the sample sequence ( b^} Is a complete (positive or 

negative) PN sequence (depending upon whether a T  or a ‘O' is transmitted) 

which obeys the randomness properties discussed in chapter II.

The received interference sample which is relevant to the 1th signal 

coordinate of the bit is given by the projection of the interference waveform 

onto the same signal coordinate given by

[l+oo

’j i = i(t) pj(t) q^t) dt
<J-oo

i(t) dt 

tj.i-1

(4-9)

Similarly, the received noise sample which is relevant to the 1th signal 

coordinate of the j^ b it is given by the projection of the interference waveform 

onto the same signal coordinate given by



To differentiate between the hypothesis H0 that a 'O' was transmitted and 

the hypothesis H, that a T  was transmitted let Sj = s^ given H0 and Sj = Sj, given 

H j. Therefore, Sjo = -s^ . Similarly, bjj = bjoi given H0 and bjj = b^j given Hj, 

consequently, bj0j = -  bj1f.

We may now apply the above signal space formulation to assess the impact 

on performance given a specific interference waveform. As an example, 

consider a CW interference given by (1-41) with interference-to-signal 

amplitude ratio of (ct/A) = 30 , interference-to-signal frequency deviation given 

by Afk = 1/T where T = N Tc is the period of the PN signal consisting of N = 127 

chips of unit amplitude. The duration of each chip is also assumed to be 

normalized, i.e. T0= 1. For random noise which is i.i.d. with cr = ( | ) i ,  using 

(3-50), the expected value of the sufficient statistic 1(T) is simply given by the 

autocorrelation of the PN sequence /  e.,

aN = E[ 1(T) 1 = [ b , b ] = 127.

In the presence of interference 1(T) is biased by an additional term given by 

h(T) = [ i  , b ] which is shown in Figure 4.2-1 to contribute constructively as 

well as destructively depending upon the interference-to-signal phase difference 

AGk. In the presence of Interference and noise, different error-rate performance
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will result depending upon A0k. For a given A0k , the interference bias is fixed 

and the shifted distributions of the sufficient statistics (for and H0) are 

shown in Figure 4.2-2. Using (3-68) and the Q-function defined in Appendix A, 

we readily obtain

Pe -  £Q{ [aN + IjOT, A 6 k )]/<rN } + |Q{[aN-lj<T, A 0 k )]/crN } .  (4-11)

Because of the convexity of the Q-function, for large interference,

Pe ~ 5Q{ laN -  h(T, A 0k )]/<*>, } .  (4 -1 2 )

400(U
I  300

o. 200  
£
< 100 
c
S 0 
f  100
o 2 0 0  o

-300
■ i  i  i  |  i  i — r— i — i— i — i— |— i— i— i — |— i— i— i— |— i— i — i — |— i— i— i— j— i — i— i—

16 32 48 64 80 96 112 
Phase index i : = 1.8852+2rr(i/N)

Figure 4.2-2. Example Mean Sufficient Statistic 1(T) = I i  + h , b ] In the 

Presence of Off-tone ( Afk= 1/T ) CW Interference as a Function of A0k

i(t) = 30cos(2rtt/T + A0k) , b(t) = ± 1
N = 127

AwGN Decision 
Threshold
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Threshold Bias

p r c m  pc r m

Figure 4.2-3. The Impact of Interference on the Sufficient Statistic 

for Binary Decisions in a Gaussian Noise Environment

4.3 The Processing Gain of Pre-detection Signal Processes

The processing gain is a figure of merit often used to compare the relative 

performance of different processes for a given input. It is the ratio of the 

slgnal-to-noise ratio SNR0 at the output of a given process to the signal to noise 

ratio SNRjat the input of the process. In general, given a time varying input, the 

processing gain will also be time dependent. Typically, given a waveform r(t) 

which includes a signal waveform rg(t), an interference waveform rj(t), and a 

stationary noise process sample waveform r^t), the SNR is computed in terms of 

the time averaged signal power, S(r(t)J = <rs2(t)>, the time-averaged interference 

power, l{r(t)} = and the time averaged noise power, T){r(t)} » <r2^ t)> .

Thus, 5NR{r(t)} = S{r(t)} / (  l{r(t)} + T)tr(t)J ). Note that this assumes that the 

interference and noise are uncorrelated. Generally, even if the noise and 

interference were uncorrelated, due to the finite time over which averaging is
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performed, some correlation will result. When averaging over a finite time 

duration, and when the interference and noise are inherently correlated we 

define In(r(t)} = < (r(t) -  rj(t ) ] 2 > = < trj(t) + r j*t ) } 2 >. More generally, therefore, 

SNRtr(t)) = S{r(t)) / (  In{r(t)}).

Similarly, if p(t) is the output waveform to a process 2>[ ] for which r(t) 

was input, i.e. p(t) ■ £[r(t)] , then the SNR is computed as above with p(t) 

replacing r(t). The processing gain of 2)[ ] , therefore, is given by

PG{ p(t) -  2>[r(t)]} -  SNR{p(t)}/ SNR(Kt)}

-  flnCr<t)) / l n[p(t)}][ Stp(t)} /SCr(t))]. (4-13)

Consider 5NR{r(t)}, for the bit interval T. Let

S = S(Kt)} = ej (rs(t)}/T1 (4-14)

where ej{rg(t)) is the received signal waveform energy which also denotes the 

bit energy Eb. For the j *  bit, therefore,

pJT
ejfrrft)) ■ (5 A)2

n f t ji
s /W d t = (£A)2£  I <Ujb|)?dt -  (£A)2 NTc = Nb2/T 0. (4-15) 

(j-DT

Since T = NTC,
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S ** (5A)2 . (4-16)

As an alternative, consider the formulation of signal power in vector 

space. The vector product which defines the signal sample energy for the j^ b it  

is given by

N
ejta) = ( s a )j -  y  (b|i)2 = Nb2 = (±A)2TTC = eJ{rs(t))Tc = ST Tc . (4-17)

Recall that the signal contribution to the sufficient statistic is given by 

ls(T) = ±5 AT. For the bit, it is the output of the correlator at time t = jT . If 

this output is maintained for jT < t < (j+1)T, then lg(T) is a constant signal for 

the duration of the j+ 1st bit. Its energy, therefore, is given by

pO+1)T r JT

e jd s ) = ls2(T)dt= 1s2(T)T - vg(t)dt
cjT .« (j-DT '

T * (^A)2 T3  = Nejts) T= S T3. (4-18)

Thus, by measuring the signal sample energy we also obtain the average signal 

power and the contribution of the signal to the sufficient statistic.

Averaging the noise over the j **1 bit interval T , let

T){r(t)) = ejlr^tW/T, (4-19)
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where ejlr^t)} is the received noise sample waveform energy. For the j * 1 the bit, 

therefore,

J  rfj'
ejtrN(t)J =

N
n/t)dt =

U-DT

(nj j(t))2d t. 

tJ»-i

(4-20)

The expected value of ejlr^t)) is given by

E[ ejlrtft)]] -  E[
^  N [*ji N rtJ‘
nj2(t)dt 1= E [ T (n j^u j^u El (nj ,<t))2 Jdt. (4-21)

V o t  l= * tji-, tji-i

For unlimited AWGN, E[ (nj^t))2 1 ■ i N ^ t t - t ) . Therefore,

N
E te . t r r f t ) ) ] -  V ^ N „  = iN „N .

i=J

For band limited AWGN, however, E[ (nj j(t))2 ] = Rn(0) = N0 /  T. Therefore,

N
E le jlr^ t))]- £ jN 0/N = N0 .

(4-22)

(4-23 )

Therefore, the expected value of the noise power is given by

E[ T)(r(t)) ]= Elejtr^tJJl/T = |N0/  T0 for AWGN. (4-24a) 

E[ T|Cr<t)) ]= E[ej(rrft)}]/T = N0/  T for LPFlAWGNJ. (4-24b)

and
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In the absence of interference, for AWGN

ElSNRtr(t))] = 5 /  E[ r\[r(t)} ] = S T0 /  ( £N0) = 2ej(rs(t))/(N N0) . (4-25a)

Similarly, for band limited AWGN

E[SNR{r(t)J] = 5 /  E[ T)[r(t)J 1 = S T / N0 = ej{rg(t)}/ N0. (4-25b)

As an alternative to the waveform SNR, consider the formulation of noise

power in vector space. The vector product which defines the noise sample energy 

for the j**1 bit is given by

ejtoJ = ( n-n )j = ^  <nji  >2 = Rmo • (4-26)
i=1

For unlimited AWGN, E[ (nj ft))2 ] = jN ^ ( t - t ' ) . Using (2-69)

E[ ej{ n ]] = £N0T. (4-27)

For band limited AWGN, E[ (nj j(t))2 ] = Rn(0) = NQ /  T. Using (2-69) again

E[ ej{ n 33 = N0 TC . (4-28)
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Recall that the noise contribution to the sufficient statistic is given by 

1n(T) as defined by ( 1-38). For the j**1 bit, it is the output of the correlator at 

time t = jT. If this output is maintained for jT < t < (j+1)T, then l^T) is a 

constant signal for the duration of the j+ 1st bit. Its energy, therefore, is given 

by

ej(W  =

P(j+1)T 

lN2(T)dt= 1n2(T)T = 

jT

rjT
2 pjT

v^Odt T = n(t)b(t)dt
k <(j-OT k (a- DT

T . (4-29)

The expected value of e j t y  Is given by

E[ e j{y ] = TE[
’ N ptJ' 2

N
2

N

O'
 

1 * 
“ nj,<t)dt

t iu i  ■

] =TE[ ] = TEE
£  R j i> i

]. (4-30)

Assuming that njj is a zero mean Gaussian with variance o'2 and b - ± l ,  n'jj is 

also a zero mean Gausssian with the same variance. Since n’j* is Independent of 

n'jk foranyfck,

E[ ejlWJ =T £  E[ < n 'j(«  -  TE[ R'„>0 J -  T f  «r,2 .
i=1 i=1

(4-31)

Assuming that n*jj are i.i.d. with variance er2 = N0T0 ,

E[ e j fy j  « N0T2 . (4-32)

Then in the absence of interference we have at the output of the correlator
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E[SNR{ 1N}] = e j t y  /  E[ e^l*) ] = S T / N0 = ejtrrft))/ N„. (4-33)

Thus, by measuring the noise sample energy, we also obtain the average noise 

power and the contribution of the noise to the sufficient statistic.

Finally, consider averaging the interference over the j *  bit interval T.

Thus

I{r(t)J = ejfr^OJ/T, (4-34)

where ej{rj(t)} Is the received interference waveform energy. For the the bit, 

therefore,

ej (r^t)} = i j^ O d t = 

(j-D

N ptJi
IjfttW t 

tjw

(4-35)

In signal space, the vector product which defines the interference sample 

energy for the j 01 bit is given by

ptj ‘
i

tji-f

iji(t)dt (4-36)

Note that unlike the signal and noise case, there is no general relationship 

between ejtr^t)] and ejtU . Depending upon the Interference waveform, ejlr^t)] 

may be larger or smaller than ejCD . Note also that It Is possible for ejtl) =0
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and i *  0, whereas ej{rj(t)} = 0 only when there Is no interference, i.e. 1 = 0.

Recall that the interference contribution to the sufficient statistic is 

given by l^ T ). For the j*1 bit, it is the output of the correlator at time t = jT. If 

this output is maintained for jT < t < (j+ 1 )T, then lj(T) is a constant interference 

waveform for the duration of the j+ 1st bit. Its energy is given by

pti+DT JT

ejtli) - l ^ d t  -  l^TjT = v^tjdt
K
jT (j- OT '

(4-37)

But Vj(t) = i(t)b(t), therefore,

ejdj)
JT
i(t)b(t)dt

Ci-DT
T = f r ' i . (4-38)

Given the three types of measures of signal energy identified above, we 

may formulate three types of sample SNRs and PGs which may be of interest 

when processing the j 01 bit. The waveform sample SNR of r(t) is given by

SNRj,(r(t)} = ejtr^t))/ e /r fO -r^ t)} . (4-39)

The vector sample SNR of £ is given by

SNR j2{£) = ejls)/ ejlc-aJ. (4-40)
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The statistic sample SNR of r is given by

5NRj3tr} = ejtrs}/ ejlr-rs). (4-41)

The waveform sample PG of p(t) = £[r(t)} was previously defined in (4-13). To

distinguish it from other PGs let PGjj(p(t) = £>lr(t)D -  PG{p(t) -  &lr(t)]). It may

also be rewritten as

PGjilp(t) = £>[r(t)]} = SNRj,{p(t)} /  SNRjj{r(t))

-  [ej(^[s(t)11 /ej(s}][ej(r(t)-s(t)}/ ej( 2>[r(t)-s(t)]}. (4-42)

Analogously, the vector sample PG is given by

PGj2(ft = £>lcJ} -  S N R /  SNRjzCe)

= [e j(S)taD /  e j(s)lle j{E-s) /  ej{ £>[£-sU. (4-43)

Similarly, the statistic sample PG is given by

PGjjtp - 2>lr]] = SNRjsfp) /  SNRjjfr]

= [ej(^[s])/ej(s)][ej(r-s}/ ej{ 0[r-s]}. (4-44)
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The overall sample PG of a spread-spectrum system is most correctly 

obtained using PGj3 . This is evident from the functional form of the SNRs, i.e. 

the functional form of the SNR prior to the PN correlator is the only one which 

corresponds to that of the SNR at the output of the PN correlator. If we insert a 

PDSP, to assess the overall PG we should calculate PG^fKT) = 6[i2>[r]]}, where 

(5[ ] is the pre-detection correlation process. As an example, consider a basic PN 

D5 BPSK communications, i.e. without S>[ ] as shown in Figure 1.4-1, in the 

presence of a single tone CW interference which is on-tune (Aook = 0) and in 

phase (Ao>k = 0) with respect to the signal carrier. The sample PG is given by

PGjsU = Ctrl) = SNRjstl) /  SNR^rl

= [ejtefsU/ejtsJHejti)/ eji m .  (4-45)

Since the PN correlator is assumed not to distort the signal, ej{(2[s]] = N2ej{s}. 

For this case of interference i(t) = therefore, ej{i} = T(^*T)2 . Moreover, 

since ej{<5tiU =■ e ^ }  and from (1 -54), l! = (£<*T/N), we have ej{ (3[iD = T(£orT/N)2. 

Therefore, PG^tl = Girl) » N4 . The fact that this result shows a processing gain 

which is a factor of N2 higher than in (1-54) is easily explained by recalling that 

when the signal is spread at the transmitter we have a processing loss of N2. 

Thus, the overall processing gain is only N2
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4.4 Interference Suppression Using the Randomness Properties

The spreading of the interference energy by the PN mixer occurs 

independently of the interference waveform structure. If we could reduce 

(suppress or reject) the interference prior to the PN mixing, the PN mixer will 

simply spread whatever reduced interference energy is received by it. In the 

following sections we explore the processing gain of a class of pre-detection 

signal processes (PDSPs) which are placed prior to the PN mixer. This class of 

PDSPs is distinguished by invoking the noise and PN invariant properties 

discussed in Chapter II. The figure of merit used to evaluate the performance of 

such PDSPs is the sample vector PG, y  = PG^lfi = & [d ) . y  is the jth outcome 

of the random variabe y  which is sampled periodically every T units of time, y  

a y  is random not only because of the random noise but also because the 

interference is likely to vary from symbol to symbol. It is suggested that it 

would be meaningless to calculate the overall PG of a spread spectrum system 

without first considering the density function of PG of which y  is a factor. The 

next level of processing gain, derived from the error-erasure detection 

correction processing, may then be computed or bounded utilizing the processing 

gain at pre-detection.

Consider the PDSP 2) inserted at baseband immediately preceding the PN 

mixer as shown in Figure 1.4-2. Assuming that a T  is transmitted, the input 

sample signal energy is given by
N

(4-46)
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The input sample noise and interference combined energy is given by

e„= £ > r M 2 ■ <4-47)
i=1

The input sample vector SNR(r), therefore, may be written as

£ i = e b/ e h . (4-48)

At the output of the output sample signal energy is given by

N
£>[eb] = £<£>[bi])2 . (4-49)

i=1

Let ft = S> tbj ] and pt = S> [rj ]. The output sample interference and noise energy 

is given by
N

= E ( P i ' & )2 ( 4 ' 5 0 )i=1

or alternatively, we could measure

N
^ ' [ e jn J - T ^ In - b i ] ) 2 . (4-51)

This alternative is stated only as a possibility which will not be used herein. In 

general i^Ie* ] *  £'[e J  . Since ^[e„ ] is most analogous to eh , it is used to 

measure the residual interference-noise energy at the output of £)[ ]. The
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output sample vector 5NR{g) may be written as

£o = 0[eb]/£>[e*I. (4-52)

From the above it follows that the sample vector processing gain for the PDSP S> 

is given by

y  = £0 / £ i  • 6 9 * / S A 9 d  (4 -5 3 )

where

5 = £>[eb ] /eb (4-54)

defines the signal distortion factor.

4.4.1 The randomness invariant erasure algorithm. A strong non-random 

additive interference is expected to destroy the randomness introducd into the 

received vector by the AWGN and the PN coded signal. A randomness invariant 

erasure algorithm is defined as a signal process which tests for consistency of a 

given sample N-dimensional vector with the randomness properties. If any 

section of the vector exceeds a given threshold of a randomness test, that

section is erased (zeroed) and thereby excluded from contributing to the PN

correlation. Any one or combination of randomness properties may be invoked in 

a test for a given bit. One may test for excessive imbalance of the polarity or 

zero crossings. One may test for large deviations from the two-valued nature of 

the autocorrelation function. Finally , one may test for consistency with the run 

properties. When interference is known to be bursty, it may extend for a short
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time Tj relative to the bit interval T, i.e. Tj < T. in cases where sufficient 

processing gain remains for the rest of the bit interval T - T j , it may be more 

efficient to detect, locate and simply erase or ignore the received vector 

components located within Tj . Of the many different tests for randomness 

which may be devised, the polarity, zero crossing and run lengths are found to be 

most useful. In particular, recall that in an N-dimensional PN sequence, the 

longest run expected is given by n = log^N+l). The probability that a run of 

length k > n+1 will occur in random noise was shown to be given simply by 

P[1 = k] = (A)k . For k > 7, P[1 « 8] *  4X1Q-3 and P[1 = 8]~ 1 x 10"6. Hence for a 

sequence with N -  127, as a rough estimate the signal-to-noise ratio used to 

calculate the optimum binary decision will be reduced by 8/127 or approximately 

6% once every 256 bits and by 20/127 or 16% once every million bits. If, due to 

AWGN only, two runs occur with k > 7, they will occur with probabilities less 

than (|>15 . When a run of length k > 7 occurs due to AWGN only, the burst 

detected is a false alarm. As may be ascertained from the numerical examples 

such a false alarm may have a negligible effect upon the bit error rate especially 

at low slgnal-to-nolse ratio where the convexity of the error function changes 

negligibly given 5-10% loss in processing gain. Therefore, in this simple 

algorithm any sample which Is associated with a run lj of length k > 1 = n+1 will 

be first detected and then erased.

Consider as an example a bursty (on-off keyed) CW tone interference with 

carrier frequency at or near the signal carrier frequency, i.e. A<*>k < 2fln/T. The 

burst detection algorithm will detect bursts of duration Tj > nTc. If the
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interference remains on for most or all of T, then the entire received vector will 

be erased unless an appropriate step is taken to inhibit erasures as required. The 

interference may not be detected when the frequency offset Aook > 2rfn/T, since 

the interference may then force all runs to be shorter than n.

When calculating the sample processing gain, the received variable 

elements which are erased must be excluded In the summation of the output. If 

we group all received sample elements which belong to runs of length 1 or 

greater into one subset B = trk I rk e 1, > 1, k = 1... N, 1 = 1... N], then the subset 

NOTB = trj I Tj c lj < 1, j = 1... N, i = 1... N] includes only sample elements which 

belong to runs shorter than 1. Note that if NOT B = 4>, then £ 0 is indeterminant. 

Otherwise, since, pj = £ [  r j]  = r j and pk = £)[ r k] = 0

4.4.2 The randomness invariant average algorithm. When the interference is 

continuous and sinusoidal consisting of either a single tone or narrowband 

waveform whose highest frequency is offset frorn the source data signal carrier 

by A<ok < 2Tfn/T , then the relatively high level of DC which results at baseband 

may be detected by the burst detection algorithm as described in the previous 

section. Recall that for PN sequences of maximal length N , the randomness 

properties are preserved by averaging over the entire sequence. As a first 

example let Ao>k » 0. The interference in this case is manifested as a DC term 

given by i(t) = T^cosA0k , where A0k is the relative phase between the source

N N
(4-55)
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data carrier and the interference carrier. Assuming that iarcosA0k » 5 A, where 

A is the received signal amplitude, the interference may be detected over the 

entire bit interval T. Rather than declaring an erasure, as with the previous 

algorithm, it is possible to remove (reject) the entire DC bias of £. Since most 

of the DC bias inherent in £ is due to the interference, a significant processing 

gain may result. The DC bias removed from every sample within this totally 

bursty symbol is given by

N
r e - d / N ^ n . (4-56)

Therefore, pf = r( -  rB . In general, every vector £ may be decomposed into two 

parts: a DC bias constant vector given by £b and a zero-mean vector £fl. Thus 

L= Co + Eb • Similarly, we may decompose the signal vector s = b = b̂  + be, the 

interference vector i  = la + Vq and the noise vector n = Qa + Qs. Note that 

r8 = ^ 8 + l8 + nBand£ft = b fl+ ja  + Da- In the absence of noise, or equivalently 

when the noise is negligible, i.e. n * 0  , and when i ( t ) a |acosA0k, then i  = le 

where the elements of le, ije“ 'b = (To)iacosA0k for i ■ 1... N. If we assume 

that p ~ ba then 6 ~ I and pj» 0j. Therefore, S> le J  ~ 0 and y  ~ ° ° .

More generally, when 1/T < Afk < n/T, more than one burst is most likely 

to result. In this case we average independently over each detected burst. 

Averaging over short bursts of lengths k > n may also result in significant 

processing gain achievable within the burst since there are many more short runs 

in a PN sequence than longer runs. Recall that in a PN sequence of maximal
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length N and degree n, there is only one run of length n and one run of length n-1 

whereas there are runs of length one and runs of length 2. By removing 

the average or DC bias within a burst we not only remove the DC bias 

corresponding to i(t) but also to s(t). The increase in the processing gain due to 

the removal of the DC bias of the interference, however, should more than 

compensate for the signal distortion expressed by S.

To assess the possible losses due to short term averaging, i.e. within a 

burst, we introduce the notion of a burst processing gain y B . Assume that a 

burst has been detected beginning with chip i = j and ending with chip i « k > j , 

where k-j > 1. Analogously to the sample vector processing gain, the processing 

gain for this burst is given by

(4-57)

where

(4-58)

pi = bj -  (k -j+ 1 )■’ j ]  bm = bj -  biB (4-59)
m = j

and the signal distortion factor relevent to the burst is given by

(4 -6 0 )



Note that within a burst, the averaging process is linear 

zero-sample mean interference within the burst as

k>j

t j  = i r ( k - j + 1 ) '15 ] i m  = 'i - i ® .
m=j

and the zero-sample mean random noise within the burst as

k>jj
1?, = n,- (k -j+ 1 r 15 Znm = nt - n iB, 

m=j

then, within the burst only, pj = t j  + Vj and r iB * biB + ijB +

p ,-p i= t i + vt and r , -b i = t j + iiB+ n,,

we obtain
k > j  k > J

7 B  = 5 B [ £ ( t j  + h B + n j ) 2 ] / { V ( t j +  V j  )2 ]

If we can neglect the noise relative to the interference, then

r B sfiB f ^ i  + iiB)2 ]/[ ^ (  t , ) 2 ].
k>j '=J i=j

Since £ (  t j ) = 0, 
i=j

. If we define the 

(4-61)

(4-62)

niB . Since

(4-63) 

I . (4-64)

(4-65)
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Note that corresponding to an on-tune, single tone CW interferes /  e. when 

k-j+1 = N and Lj * 0 for all i = the overall processing gain of the spread 

spectrum system results in y  = y B = <» for an arbitrary phase A6 k . In practical 

situations, however, y  is finite due to the presence of finite noise. 

Nevertheless, we may conclude that with this algorithm the processing gain 

increases as the per bit DC bias in the received baseband interference waveform 

is increased.

44.3 The randomness invariant piece-wise average algorithm. In the previous 

section we have seen how short term averaging affects the processing gain. The 

burst processing gain is greater than unity provided the DC bias of the 

interference in the burst is higher than the DC bias of the PN sequence in the 

burst. This result may be easily generalized to smaller sections into which one 

may choose to partition the burst. Using the same burst detection algorithm, the 

burst is subdivided into equal or almost equal sections of length ls* l  where 1 is 

the minimum burst threshold.

To assess the possible losses due to short term averaging, i.e. within a 

burst section, we introduce the notion of a burst section processing gain y L. Let 

us assume that a burst has been detected and subdivided into L sections where 1 

< L < (k-j+1 )/l . Consider the section beginning with chip i = j and ending with 

chip i = k > j , where k-j > I . In a manner analogous to the sample burst 

processing gain, we conclude that the processing gain for this burst section is 

given by



154

k>
I
i=j '=J

7 i -  «L [ ll<  r, -  b| )J 1/1T  ( Pi -  A  )2 1 (4-70)

where
k>j

pi = r i - (k - j+ l) -12 r m= r i - r iL , (4-71)
m=j

and

Pi = bj- (k-j+1)"’ ^  bm = bj -  biL, (4-72)
m=j

and the signal distortion factor relevant to the burst section is given by

k)j k>j
«L“[2 (Pi)Zl/1Z.(bi)21 ( 4 " 7 3 )

Note that now within a burst section the averaging process is linear. If 

we define the zero-sample mean interference within the burst section as

k>j
Lj " 1j“ ( k - j + i r ’ j l  1m = i | “ tiL. <4 " 7 4 )

m=j

and the zero-sample mean random noise within the burst section as

ipji
v, = nj -  (k -j+1 r 1 nm = nj -  niL, (4-75)

then, within the burst section only, pj = p,+ Lj + and rjL = biL ♦ liL + niL. 
Since
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p j- 0*= tj+  Tj and n -b i= i,j + i iL+ ^  , (4-76)

we obtain
k>j k>j

y L«fiL[ T ( t ,  ♦ 1 i i . * n l )2 ) / l £ <  C i  + V j  )2 ] .  ( 4 - 7 7 )

i=j '=j

If we can neglect the noise relative to the interference, then

k>j k>j
^ M B ^ ) 2 ] / ! ^ , ) 2 ]. (4-78)

l= j  i= j

k>j
Since J ] ( t j )  = 0,

»=j

y L* f iL[(k -j*l)(l|L)2 * |^ ( i - i ) 2 l / I ^ U , ) 2]. (4-79)

Similarly to burst averaging, burst section averaging will result in 

desirable processing gain, provided the DC content of the interference exceeds 

that of the PN waveform within the section. Overall this algorithm is expected 

to outperform the burst averaging algorithm since it provides a better 

approximation of the interference in the vicinity of the samples being averaged. 

This becomes more important as the frequency of the interference drifts away 

from the center frequency of the signal carrier. The greater distortion factor 

associated with this algorithm due to the shorter term averaging, when 

compared with the burst averaging algorithm, is mitigated by the fact that 

approximately half the runs in the PN vector are of lengths 1 and 2.
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4.4.4 The randomness invariant Piece-wise linear average correction algorithm. 

Much of the need which may exist with the previous correction algorithms to 

adapt the burst averaging interval depending upon the interference, may be 

removed by interpolating the approximate shape of the interference waveform 

and removing the piece-wise smoothed contributions which are insensitive to 

the PN fluctuations. The previous correction algorithms were based upon the 

general zero order decomposition of any vector into two parts: a DC bias and a 

zero-mean vector or subvector. In general, however, any vector or subvector may 

be decomposed into the sum of a DC bias vector, a linear bias vector and a 

residual zero-mean vector. In low noise environments, quadratic and higher 

order decompositions may also be possible. Due to the zero crossing randomness, 

both the DC bias and the linear part of both random noise and PN-coded vectors 

are expected to be negligible over most burst sections. This algorithm, 

therefore, is based upon the general first order decomposition of the received 

vector carried out on a burst section by burst section. Again, as before, runs 

which exceed the minimum burst threshold 1 are declared to be bursts. The 

burst is then subdivided into sections for each of which a local average Is 

obtained.

To assess the possible losses due to short term averaging, i.e. within a 

burst section, we use the burst section processing gain y L given by (4-57). 

Consider two adjacent burst sections L and M . Let riL and riM be the local 

averages associated with section L and M respectively. The slope obtained 

between these burst section averages is simply ArLM -  (riM -  r iL)/l , where 1 is 

the length of the burst section used. With section L starting at chip j  in the PN
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sequence, the DC bias is r j L which is the linearly interpolated magnitude at the 

J* chip. The output magnitude is therefore given by

P i  =  T j  -  A r L M  ( i- j+ 1 ) - rJL (4-80)

and

p, » bf -  <i-j+1) -  bjL (4-81)

where aV i * im '  biL) / l , and the signal distortion factor relevant to the burst 

section is given by (4-73).

Note that now within a burst section the averaging process is linear. If 

we define the zero-mean sample interference within the burst section as

= l , -A iLM<l-J+l> -ljL , (4-82)

and the zero-mean sample random noise within the burst section as

v, = n( -  A V i (1-j+ 1) -  nJL, (4-83)

then, within the burst section only, pi = 8 + vx and r .̂ = bj. ♦ 1 ̂  + n^ and

a*"lm * Abu  ̂+ a 'lm + . Since

Pi-p ,=  i/j+T?i and r j -b j  = 4,j + 1  ̂+ a '^ U -J + I )  + n, , (4-84)
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we obtain

n
Joj loj

= SL [ j j i  i , j  + I j L  + A'lm « - j+ 0  + H j )2 ]/[ + V j  ) 2 ] . ( 4 - 8 5 )

i=j I=j

If we can neglect the noise relative to the interference, then

k>j kxj
y L = SL[ £ U i  + IjL+ a \_m ( i_J+)) )2 J / I ^  ( kj)2 ] » (4-86)

i=J '=J

or

( 4 , | ) 2 3 , ( 4 - 8 7 )7 l

'=j '=j

where
k>j

]l  ~ J /  jjL + ^ l m  (i-j+ o )2 1 .  ( 4 - 8 8 )

i= j

Similarly to burst section averaging, this algorithm will result in 

desirable processing gain provided the combined DC and linear content of the 

Interference magnitude exceeds that of the PN waveform within the section. 

Overall, this algorithm is expected to outperform the burst section averaging 

algorithm since it provides a better approximation of the interference in the 

vicinity of the samples being processed. This becomes more important as the 

frequency of the Interference drifts away from the center frequency of the 

signal carrier. The greater distortion factor associated with this algorithm due 

to the shorter term averaging when compared with the burst section averaging 

algorithm Is mitigated by the fact that approximately half the zero crossings in 

the PN vector are of lengths 1 and 2.



159

4.5 Simulated PDSPs Performance Results

To test the performance of the PDSPs discussed, we undertook to simulate 

the algorithms and compare their absolute as well as relative performance given 

a specific PN coded signal b(t), a specific interference wave form i(t) and 

pseudorandomly generated Gaussian noise n(t). Many more experiments may be 

conducted than can possibly be reported herein. In this section, therefore, we 

shall only provide illustrative results. More general analytical derivation of the 

results is impractical due to the inherently non-linear nature of the algorithms. 

For the results reported in this section, b(t) is a bipolar PN waveform with 

amplitude b = ±1. The length of the bit interval is normalized to N chips where N 

is a complete period of the PN sequence generated by the 7-stage FBSR shown in 

Figure 2.4-3. The general form of the interference investigated is given by

i(t) = ({a)cos(2TTfat)cos{2TTAfkt + 0sin(2TTfmt) + A0k}.

This general waveform for the Interference allows the investigation of AM, FM 

and AM/PM types of Interferences where f a is an AM modulation frequency, fm is 

an FM modulation frequency, and p Is the FM modulation Index. Afk and A0k are 

the frequency and phase difference between the Interference CW tone and the 

signal carrier given by (1-46). For the specific results reported herein, we 

assume that f a ,p and fm are all zero., /  e. we have a single Interfering tone. The 

characteristic parameters measured for any sample vector are provided in 

Table 4-1 for the sample PN vector, off-tone (Afk=1/T, A9k =1/T) interference
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sample and Gaussian noise sample (cr = 10). Eb is given by (4-46), Er_b is given 

by (4-47), i  is given by (4-48), S is given by (4-54) and y  is given by (4-53).

Cr is the vector correlation of the given vector with b . ji and tr are the sample

Parameter b i n b + i b + n b + i+  n

Eb 127 - - 127 127 127
Er-b - 6449 13784 6449 13784 19067

e - - - .020 .0092 .0067
6 - - - J 1 1
7 - - - 1 1 1
Cr 127 93 -172 220 -45 48

M 0 0 -1 0 -1 -1
cr 1 7 10 7 10 12
NVN" 64/63 65/62 55/72 67/60 57/70 67/60
C+/C~ 32/32 1/1 28/29 3/3 31/32 20/20
BVB“ 32/32 1/1 29/29 3/3 32/32 20/20
T 16/16 0/0 14/10 0/2 19/14 10/8
•2' 8/8 0/0 7/6 1/0 5/6 2/5
T 4/4 0/0 5/6 1/0 5/7 5/2
'4* 2/2 0/0 3 /4 0/0 2/3 1/1
•5’ 1/1 0 /0 0/2 0/0 1/1 0/1
■6' 0/1 0 /0 0/1 0/0 0/1 0/1
T 1/0 0/0 0/0 0/0 0/0 0/0
‘8' 0/0 0/0 0/0 0/0 0/0 0/0
'9* 0/0 0/0 0/0 0/0 0/0 0/1
‘10' 0/0 0/0 0/0 0/0 1/0 1/0

Table 4-1. Characteristic Parameters of Example PN Vector b , 
Off-tone CW Interference Vector!, and Gaussian Noise Vectorn 
and their Linear Combinations
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mean and standard deviation. The total number of positive /negative samples Is 

given by N+ /  N“, respectively. The total number of positive/negative 

zero-crossings is given by C + /  C , respectively. The total number of positive 

/negative runs or bursts is given by B+ /  B“ , respectively. Similarly, the total 

numbers of positive /negative runs of length 1-10 are also shown in rows T  -  

'10'.

A comparison of the four PDSPs described in Section 4.4 is provided in 

Table 4-2. PD5P FI corresponds to the randomness invariant erasure algorithm; 

PDSP F2 corresponds to the randomness invariant average algorithm; PD5P F3 

corresponds to the randomness invariant piece-wise average algorithm; and 

finally, PDSP F4 corresponds to the randomness invariant piece-wise 

linear-average algorithm. We compared these four algorithms as a function of 

the standard deviation of the noise cr using an off-tone CW interence with 

<*/A= 30, Afk = l/T , and A0k =1.8852 rads. As can be readily seen, PDSP F4 

outperforms the other PDSPs at low Gaussian noise environments. As the power 

of the random noise increases, the performance advantage decreases. As 

expected, PDSP F1 does poorly even at low noise levels since the interference is 

not bursty.

Having determined the superiority of PDSP F4 to combat this type of 

interference, we continued to investigate its performance in the absence of 

random noise, or eqivalently in a high interference-to-noise power ratio 

environment.
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cr y^(dB) Stb + L + n,b ]/(2{£!)[b  + i+  n ,bJ] r e

i 13.7 -151/ 1 5
2 2.5 -129/9 5
3 .5 -125/ 3 4
4 1.8 -90/-53 1
5 2.1 -164/-23 4
6 .34 -48/-26 1
7 3.1 -167/-48 3
8 -2.7 -182/ -67 3
9 .46 -309/ -65 5

10 -.01 -310/-36 7

Table 4-2a. The Sample PG of PDSPs FI and the Impact upon the 
Sufficient Statistic as a Function of the Noise Standard Deviation cr

cr y#(dB) e(b + j_+ n ,b } /e [  a tb  + i + n .b j ]  yg

1 8.0 -151/32 9
2 8.2 -129/36 8
3 7.7 -125/61 15
4 — —

5 8.2 -164/52 15
6 7.6 -48/104 58
7 8.6 -167/66 23
8 6.6 -182/-77 2
9 6.5 -309/-32 8
10 6.2 -310/-87 4

Table 4-2b. The Sample PG of PDSPs F2 and the Impact upon the
Sufficient Statistic as a Function of the Noise Standard Deviation cr
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<T 72<dB ) 6 [b  + ]_+ Q Jb } / e [ £ ) [ b  + i +  n J bJ} r e

1 15.7 -151/37 10
2 16.5 -129/82 32
3 14.7 -125/65 17
4 11.3 -90/89 33
5 10.4 -164/13 7
6 10.4 -48/68 9
7 9.8 -167/26 8
8 7.3 -182/-38 4
9 7.1 -309/-90 4
10 6.1 -310/-100 7

Table 4-2c. The Sample PG of PDSPs F3 and the Impact upon the 
Sufficient Statistic as a Function of the Noise Standard Deviation cr

cr 7£><dB) G{b + l_+ Q . f i J / G { £ ) [ b  + i +  n , b ] ) r e

0 23.9 -137/88 46
i 21.3 -151/67 21
2 19.1 -129/95 64
3 16.5 -125/92 52
4 13.4 -90/107 118
5 11.4 -164/44 12
6 11.5 -48/118 378
7 10.6 -167/21 8
8 7.6 -182/-23 4
9 7.6 -309/-70 5
10 6.3 -310/—103 4

Table 4-2d. The Sample PG of PDSPs F4 and the Impact upon the
Sufficient Statistic as a Function of the Noise Standard Deviation cr
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Using the same off-tone interference waveform, we first varied a /A  
while keeping Afk = 1/T and A6k =1.8852 rads. These results are summarized in 
Table 4-3. Note that the processing gain of the PDSP denoted by y ^  saturates

rather quickly whereas the processing gain of the whole PN system denoted by
r e = t ^ t f e  + i + n , b ) - e i b , £ » ) ) / ( e t  0 U + i + o l , b j } - e { 2 > [ b i , y  d i 2

continues to vary.

a /b r ^ (d B ) S tb  + i b ) / e { £ > [ b  + i b 3 ) r e

5 19.1 83/109 6
10 19.3 39/94 7
15 19.2 -5/185 5
20 23.0 -49/89 21
25 23.0 -93/83 25
30 23.9 -137/88 46
35 23.9 -182/85 54
40 23.9 -226/81 58
43 23.9 -270/78 66
50 23.9 -314/74 69
55 23.9 -358/70 72
60 23.9 -402/67 78
65 23.9 -446/63 80
70 23.9 -490/60 85
75 23.9 -534/56 87
BO 23.9 -578/53 91
85 23.9 -622/49 92
90 23.9 -666/46 95
95 23.9 -910/42 149

100 23.9 -754/39 100
105 23.9 -799/35 102
115 23.9 -887/28 104
120 23.9 -931/24 106
125 23.9 -975/21 108
130 23.9 -1019/17 109
135 23.9 -1063/14 111
140 23.9 -1107/10 111
145 23.9 -1151/7 113
150 23.9 -1195/3 114

Table 4-3. The Sample PG of PDSP F4 and the Impact upon the
Sufficient Statistic as a Function of the Amplitude Ratio oc/b
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Then we varied A0k while keeping ct/A -  30 and Afk -  1/T . These results 

are summarized in Table 4 -4 .

Phase Index 1 y^ d B ) et +1, b) /  ©{ b + 1, b j) r e

0 23.9 -137/88 46
i 23.0 -145/79 32
2 23.4 -151/72 26
3 23.7 -158/82 40
4 22.8 -164/90 62
5 21.1 -170/85 50
6 20.3 -175/68 26
7 20.4 -180/68 27
8 19.5 -185/51 17
9 30.4 -189/101 148

10 29.5 -193/99 131
1! 29.7 -196/101 154
12 29.7 -199/102 170
13 ' 28.4 -202/112 481
14 29.2 -204/113 559
15 29.4 -206/135 1732
16 29.8 -208/125 28056
17 29.6 -209/130 12544
18 29.4 -209/133 3136
19 29.2 -210/132 4543
20 28.3 -209/128 112896
21 29.2 -209/99 144
22 29.5 -208/100 154
23 27.0 -206/91 86
24 27.7 -205/103 191
25 27.8 -202/105 224

Table 4-4. The Sample PG of PDSP F4 and the Impact upon the 
Sufficient Statistic as a Function of the Relative Phase Index 
1 = N(A0k-  1.8852)/2/n (1 = 1 corresponds to A0k = 2 ' )
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Finally, we vary Afk while keeping ex/A = 30 and A9k =1.8852 rads. These 

results are summarized in Table 4-5 .

Afk 7£>(dB) G(!i+Lb)/(5{£)[tL + il23) re

.004 25.5 224/135 147

.008 23.9 -137/88 46

.012 18.1 154/175 0.3

.016 11.0 -124/106 143

.020 11.2 34/118 107

.024 5.9 -235/77 52

.028 6.4 233/101 17

.032 7.4 -137/7 5

.036 7.2 -51/245 2

.040 7.2 410/141 409

.044 7.1 225/141 49

.048 6.8 -234/-40 5

.052 8.0 63/245 0.3

.056 5.6 384/57 13

.060 1.1 439/411 1

.064 0 18/18 1

.068 0 228/228 1

.072 0 20/20 1

.076 0 -170/-170 1

.080 0 325/325 1

Table 4-5. The Sample PG of PDSP F4 and the Impact upon the 
Sufficient Statistic as a Function of the Relative Frequency Afk
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4.6 Performance Degradation In AWGN due to PDSP

The probability of occurrence of a run of length k was derived in (2-111) 

to be P[ 1 j = ±k 1 = Q )k . Using (2 -116), the expected number of runs of length k in 

a sequence of N chips is given by E[ m )k . Note that for k > n = log2 N ,

E[ m lk ] < 1 . Hence, for k > n , E[ m tk ] is also the probability of finding a single 

run of length k in a sequence of N chips, /. e.

Pi k = k] = E[ m lk ] = N ( i )k . (4-89)

Since the probability of finding a second run of length k is independent of the 

probability of finding the first run of length k, the joint probability

P[ k, = k,, k2 *■ k2 ] * N (£)ki {%)*2 . (4-90)

As a numerical example, let N * 128, n = 7, k ,» 8 and k2 = 8, then P[ k = k] = { and 

P[ k, = 8, k2 = 8 ] * 1 / 5 12 < 5x 1 O'3 . For kj = 9 and k2 ■ 8, then P[ k = k] = £ and 

P[k, = 9, k2 = 8 ] = 1/1024 < IxlO"3 . Since the burst detection algorithm looks 

for runs of length k > 1 where 1 is the selected minimum burst length threshold, 

only runs of length k need be considered.

For an N-dimensional vector detected in AWGN only environment, the 

probability of error for optimum binary decisions is given by
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Pe = Pe(N)=Q(aN/< rN}. (4-67)

If L is the number of chips erased due to the burst detection algorithm and the 

optimum binary decision is based upon M = N -  L remaining chips, then

Knowing the probability that L or M will occur , i e. P[ L = L] , the total 

probability that no burst will occur is given by

n

Therefore, the total probability of error is given by

N
P . = P[ L = 0] Pe + £  P IL = U Q( aM /  <rM ) (4-93)

L=k

where P[ L = 0] = P[L < 1 ] is the probability that no runs of length k > n are 

detected and P[L * L] is the probability that any combination of one or more runs 

of length k > n are detected and erased. Note that the summation represents 

performance degradation in the presence of AWGN. To estimate the degradation, 

note that

Pe(M)=Q( aM /  o*M). (4-91)

(4-92)

P[L = L]~P[K = L] = N(£)l . (4-94)
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Let L -  n -  m , then the total probability of error with the PDSP inserted may be 

approximated by

N-n
P’e ~ Q[3n /  O'jsj} + (5)™  Ql /  Cm ) . (4-95)

m=1

Considering the numerical examples given above and the convexity of the 

Q-function, it is observed that (4-95) is a tight lower bound for P‘e . Note that 

this performance may be significantly improved by conducting a second test 

which checks for the consistency of the detected long bursts with the 

randomness properties. If found to be consistent, the test would inhibit erasures 

of such runs. The definition of an algorithm to implement such a test is 

suggested for future investigation.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

Having investigated typical interference and noise phenomena in basic PN 

communication systems has lead to the definition and design of a novel class of 

non-parametric pre-detection signal processes which have been shown to have 

important interference rejection properties. The observed results and areas 

for future investigations are presented repectively in the following two 

sections.

5.2 Conclusions

The PDSPs discussed in this dissertation form a class of non-parametric 

interference reduction filters which are easily implementable in VLSI circuitry. 

Theoretically, the novel class of PDSPs described provide for an infinite 

processing gain in rejecting narrowband/CW interference which occurs at the 

carrier frequency with an arbitrary phase and arbitrary amplitude. The 

processing gain is reduced as the frequencies of the interferers deviate from 

the carrier. The PDSPs described are almost transparent to random noise and 

performance degradation for detection in the presence of random noise when 

compared to a matched filter reactor was shown to be insignificant. When 

compared to other non-parametric and parametric interference
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rejection/suppression filters, the novel class of PDSPs described are 

computationally significantly less complex. Experimental simulation results 

show that the overall processing gain of the PN communication system is 

non-linearly dependent upon the processing gain of the PDSP inserted.

5.3 Recommendations

The theoretical framework, coupled with experimental simulation of the 

concepts and techniques described in this dissertation, provide the foundation 

for future investigations of similar nature. Due to the non-linear nature of the 

algorithms, many more experiments should be undertaken to optimize the 

parameters identified and decide when to invoke each algorithm. Additional 

enhancements may be undertaken to provide higher processing gain at higher 

signal-to-interference frequency deviations. Decision rules which make use of 

run properties other than the longest run property may prove to be useful. 

Additional investigations which compare the peformance of this class of 

interference rejection filters with other filters identified in the references 

should also provide additional insight. The algorithms described may also be 

easily extended to applications in which long PN sequences are used. Finally, it 

is recommended that when the impact of interference rejection filters is 

investigated, in addition to processing gain and probability of error results, 

sample output signal waveforms be obtained and documented to provide 

additional insight into the interference rejection mechanism.



APPENDIX A

FUNCTIONS DEFINED FOR THE NQRMALCURVE

In this Appendix several definitions and relations in connection with 

Gaussian noise which are often referenced in the main body of this dissertation 

are provided for convenience. A univariate Gaussian random variable, n, is 

characterized by two parameters: a) its expected value, E[n], known also as its 

mean jj and b) its variance, Var[n], known also as the square of its standard 

deviation, cr. These parameters may be derived from the probability density 

function (pdf) of n, given by

P„(n) = (1 /(v ^ c rjje x p -t^ n  -  ji)2/t r 2 ) -«> < n < +«», (A-1)

where n is a real number sample event of n. Therefore, one can easily confirm 

that

!>teo
Eln] A

and

n P„(n) dn = jj (A-2)

Var[n] A E[(n -  jj)2] = (n - jj)2 Pn(n) dn = tr2. (A-3)
—©o

When checking for consistency of numerical results, it is useful to verify the

accuracy of the relations given by
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(A-4a)

and

o' P„(jJ± o') *  0.242

o' Pn(jJ+2oO *  0.0539.

(A-4b)

(A-4c)

The probability distribution function (PDF) of n is given by

F„(a) = Pjn < a] =
a
P„(n) dn. (A-5)

Similarly to (A-4), we may check for the consistency of parameters of an 

allegedly Gaussian random variable using the properties of (A-5) given by

F„(ji) = 0.5 (A-6a)

Fn(|J -  o ' ) - 0.159 (A-6b)

and

Fn(ji + o') » 0.841

Fn(ji + x) + F„(p - x) = 1

(A-6c)

(A-6d)

For oe, a real number, it is often convenient to define and tabulate a

universal function (Q-function), Q(oe), given by
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pfoo

Q(or) = (1/\/2Tr) exp-{ £p2 ] dp. (A—7)
Of

It can be shown, therefore, that

Fn(a)= 1 -  Q{(a -  j j i ) /cr]. (A-8)

and the probability that a, < n < a2 is given by

P[ a, < n < a2 ] = Fn(a2) -  Fn(a,) = Q[(a, -  \iV&) -  Q[(a2 -  jj)/<r}. (A-9)

The Q-function is plotted in Figure A-1 for both small and large arguments using 

approximations provided by Abramowitz and Stegan [51, p. 297].

To complement Q(a), two other universal functions and their complements 

have been defined and tabulated. Unfortunately, both of these functions have 

been dubbed as error functions. To avoid confusion, they are distinguished by a 

subscript. Many authors [52, p. 64] like to define the function

erf, ( a )  = 5 -  erfc, ( o r )  =  (1 / > / 2t t ) exp-[5P2 ]dp. (A 10)
o

Other authors[51, p. 297] find it convenient to define and tabulate the function
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|s(x)| <3x10

Figure A -l. The Q-Function: (a) Small Arguments; (b) Large Arguments
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©rf2 (of) = 1 -  erfc^ct) = (2/ \ / tt)

Note that

exp-{ p2 ] dp. 
o

erf,(«>) = where as erf2(“ ) = 1. 

Using (A-5), (A -10) and (A -11), when a > p, we obtain

Fn(a) = i  + erf, ((a -  \x)/ar}

or

-  1 -  erfc, {(a -

When a < ji, we obtain

Fn(a) =  ̂-  erf, (la -  jj|/cr}

= erfc, t|a -|ij/tr). 

Similarly, when a > jj, we obtain

F„(a) = £ + £erf2 (-y/^a -  p)/«r).

or _
-  1 -  Jerfc2 {\/|(a  " p)/®'}.

When a < jj, we obtain

F„(a)= 5  -  2 ® ^ 2  “ P^ ̂

or
-  £erfc2 (v^la -
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(A -11) 

(A -12)

(A-13a) 

(A-13b) 

(A-13c) 

(A-13d)

(A-14a) 

(A-14b) 

(A-14c) 

(A -14d)
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Using (A-7), (A -10), and (A -11), when a > jj, we obtain

Q{(a -  = erfc,{(a -  p)/<r) (A-15a)

= Jerfc2 [-/5 (a  ~ p)/*)-  ( A - 15b)

Similarly, when a < ji, we obtain

Q{(a -  jj)/c r )=  1 - erfcj Ha -  \ i \ / tr} (A -15c)

or _
= 1 -  ^er f c2 -  p|/<r}. (A-15d)

The relationships among the various cumulative probabilities are shown 

graphically in Figure A-2.

HilW.

Figure A-2. The Normal Probability Density Function



APPENDIX B

RANDOMNESS INVARIANT ALGORITHMS DEMONSTRATION 

COMPUTER PROGRAM LISTING

The algorithms simulating the PDSPs discussed in this dissertation are 

provided below in the context of a computer-aided design tool demonstration 

program. The program may, therefore, be used to undertake any further tests of 

the algorithms presented herein. In addition, i t  is intended to provide the 

framework for obtaining interactive results for various other waveforms which 

may be of interest and to compare and evaluate other interference suppression 

techniques which may be of interest as well. The listing is provided in Microsoft 

Basic Version 2.0 which has been coded and tested using the Apple Macintosh 

personal computer system.

Arrays used to generate the N-dimensional PN vector

p8(i)-Degree of the ith non-zero term of the irreducible prim itive 
polynomial generating the PN vector 

f8(i)-Binary state of the ith feedback tap of the n^-stage FBSR 
s8(i)-Binary state of the ith stage of the n^-stage FBSR

DIM p*(20),f*(20), s%(20)

t(i)-tim e base,
b(i)-N-dimensionl PN mixed source signal vector, 
i(i)-lnterference projection vector, 
n(i)-AWGN projection vector, r(i)-Received vector, 
d(i)-Distorted (by PDSP) N-dimensionl PN signal vector,
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DIM t( 126),b( 128),i( 128),n( 128),r( 128),x( 128),y( 128),cr( 128),d( 128)

Arrays used to accummulate run sta tis tic  
bu(i)- number of positive runs of length i 
bd(i)- number of negative runs of length i 
b t(i)- number of positive/negative runs of length i

DIM bu(10),bd(10),bt(10)

Clear the screen. Use n^-stage maximal length FBSR to generate PN vector 
of period m8

Start:CLS:nS>=7:m8=2,'n5S-1

Set up screen plotting parameters. Screen is 512x342 pixels

xo= 100:yo= 150:xl = 100:yl=40:Xh=356:yh=260:l j=4:li=2:Xj=8:yj = 10:xi=4:yi=2
xd=(xh-xl)/xj:yd=(yh-yl)/yj:ex= 1 :ey= 1
xb=0:xt= 128:xs=(xt-xb)/xj:xg=xd/xs:x$=,,Time,,:xtab=26

Generate the time base in PN chip units, Tc

FOR i&=0 TO m&+1
t(i*)= i* :x (i*)= t( i* )*xg  

NEXT \%

Option to generate an N-dimensional PN mixed, binary T  source signal vector

Gen.b.LOCATE 1,1 :INPUT/'Generate PN signal? Enter y or n: ",ei$:G0SUB clear 1 
IF ei$="n" THEN Xgen.b 
a=1:Signa1$="b(t)"
LOCATE 1,1:INPUT;“Change parameters? Enter y or n: ",ei$:G0SUB clearl 
IF ei$="n" THEN Calc.b
LOCATE 1,1:INPUT;“Amplitude: ";a:INPUT;"Name PN Signal: ";Signal$
GOSUB clearl .GOSUB clear2

Ca1c.b:RESTORE :
LOCATE 1,I:LPR!NT TAB( 14);"Generating PN signal named Signal$
LPRINT TAB(14);"PN signal amplitude is M;a
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Initia lize the PN generator irreducible prim itive polynomial

DATA 0,7,6,4,1,0,0,0 ' g(x) = x7 + x6 + x4 + x +1

Initialize the feedback taps and in itia l state of the nJ£~stage FBSR

FOR i8>=0 TO n£
READ pSS(i5E):fJ6(iX)=0:s*(1S)=1 

NEXT \%

Generate the output unipolar PN vector

FOR i&=0 TO m%*\ 
b(1S)=0 

NEXT \%
FOR 138=1 TO n%

IF p*(i*)<>0 THEN f»(pJg(1Jg))=1 
IF p&(i%)=0 THEN f*(p *(i*))= 0  

NEXT IS
FOR i*=1 TO m& 

b(1X)=sX(1):k1X=0 
FOR k*=1 TO n%

k 1S=k1 8+s£(k£)*f!?(k£):IF k 1J8=2 THEN k 1 %=0 
NEXT kX
FOR kX=1 TO nX-1

sS(nS-kS+ D=s£(nS-kS)
NEXT k% 
sX(l)=klX 

NEXT \%

Transform the PN vector from unipolar to bipolar.
Mix PN vector with T  rectangular source signal vector 
to generate an N-dimensional PN mixed, source signal vector
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FOR i*=1 TO m*
IF b(i*)=OTHENb(iS)=-1 
b(i&)=a*b(i&)

NEXT i *
b(m*+l)=b(l):b(0)=b(m*+l)

Xgen.b:GOSUB clearl

Option to load an N-dimensional source signal vector 
previously generated and stored

Load.biOCATE 1.,1:INPUT;"Load signal? Enter y or n",ei$:GOSUB clearl 
IF ei$="n" THEN Xload.b
LOCATE 1,l:INPUT;"Which signal file?",file$:GOSLIB clearl 
LPRINT TAB(14);“Loading PN signal named ";Signal$;" from file  ";File$ 
OPEN T ,*1 ,file$ ,512 
FOR i8=0 TO m*

INPUT *1,b(1S)
NEXT \%
CLOSE *  1 

Xload.b:GOSUB clearl

Option to plot the current N-dimensional source signal vector

Plot.b.-LOCATE I, l:INPUT;"plot signal? Enter y or n",ei$.GOSUB clearl 
IF ei$="n" THEN Xplot.b
LPRINT TAB( 14);"Plotting the PN signal named “;Signal$
LOCATE 1,1:INPUT;"Clearscreen? Enter y or n“,ei$:GOSUB clearl 
IF ei$="y" THEN CLS 
yb=-10:yt= 10
LOCATE 1,1: PRINT"? max = ";yt:INPUT;"Change V max? Enter *
(0 retains current value)",ei.GOSUB clearl:GOSUB clear2 
IF e io  0 THEN yt=ei 
IFeioOTHEN yb=-ei
ys=(yt-yb)/yj:yg=yd/ys:y$="Amplitude":ytab=4 
FOR i&= 1 TO 

y(i£)=b(i8)*yg 
NEXT i *
IF ei$="y” THEN GOSUB plotxy 
CALL MOVETO(xo+x(1)-1,yo)



182

CALL LINET0(xo+x(1)-1,yo-y(1))
FOR i5B=1 TO mJB-1

CALL LINETO(xo+x(i8)+1 ,yo-y(i£))
CALL LINETO(xo+x(i8)+1 ,yo-y(i&+1))

NEXT IX
LOCATE 1,1:1 NPUT;"P1 ot Figure # is",FigNo$:GOSUB clearl 
LPRINT TAB(14);"Signa1 ”;Signal$;” is Plotted in Figure D-";FigNo$

Xplot.b:

Option to store the current N-dimensional source signal vector

Store.b:LOCATE IJMNPUT/Store signal? Enter y or n",ei$:GOSUB clearl 
IF ei$="n” THEN Xstore.b
LOCATE 1,1:INPUTj"Which file?",fi1e$:GOSUB clearl
LOCATE 1,1:PRINT“Storing the PN signal named";Signal$;" in ";File$
OPEN “o",# t,File$,512 
FOR iX=0 TO m%

WRITE* 1,b(iX)
NEXT iX 
CLOSE*1 

Xstore.b:

Option to collect statistics on N-dimentionel source signal vector

Stat.b:LOCATE 1,1 :INPUT;’Signal Statistics? Enter y or n",ei$:GOSUB clearl 
IF ei$=“n“ THEN Xstat.b
LPRINT TAB(14);"Calculating sta tistics for “;Signal$
CALL stat(bO)

Xstat.b:

Option to generate or load a new N-dimensional source signal vector

LOCATE 1 , l:INPUT;"lterate signal generation? Enter y or n“,ei$:GOSUB clearl 
IF ei$="y" THEN Gen.b

End signal generation, loading, plotting, storing and sta tis tic
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Option to generate an N-dimensional projection of unmodulated/modulated 
CW/bursty interference vector.

Gen.i:
LOCATE 1,1:INPUT;"Generate interference? Enter y or n",ei$:GOSUB clearl
IF ei$=un" THEN Xgen.i
INPUT;'The interference name is ",lnter$
i 1 *= 1 :i2JB=m5S+1 :ai=30:fa=0:fi=.008*:fmi=0:fm=.008*:pi = 1.8852*
FOR 158 = 0 TO m8:i(i&)=0:NEXT ii8
LOCATE 2,1:PRINT " Burst start(1-126),,;i Burst end(2-127)";i28 
PRINT"lnterference amplitude ai=";ai 
PRINT" frequency fi= ”; f i; “ phase, pi=”;pi 
PRINT "AM frequency fa = ”;fa
PRINT “ FM modulation index fmi = ";fmi;" FM frequency fm = ";fm:G0SUB 
clearl
LOCATE 1,1 :INPUT;"Change parameters? Enter y or n",ei$:GOSUB clearl 
IF ei$="n" THEN Calc.i
LOCATE 1,1 :INPUT;"Burst start( 1 -126) i 151 ”;i 158:INPUT;"Burst end(2-127) i 2% 
";i2SS:G0SUB clearl
LOCATE 1,1:INPUT;"Interference amplitude ai”;ai
LOCATE 1,l:INPUT;"frequency f i" ;f i
LOCATE 1,1:1NPUT;"phase“;pi:GOSUB clearl
LOCATE 1,1:INPUT;"AM frequency fa";fa:GOSUB clearl
LOCATE 1,1:INPUT;“FM frequency fm ";fm:INPUT;”FM modulation index fmi
";fmi:GOSUB clearl

Calc.iiOCATE 1,1 :LPRINT TAB(14);"Generating interference named “; lnter$ 
LPRINT TAB(14);"Burst start< 1 -126)";i 158;" Burst end(2-127)";i258 
LPRINT TAB(14);"lnterference amplitude ai=";ai;“ frequency fi= “;fi 
LPRINT TAB(14);"phase pi=";pi;“ AM frequency fa = ";fa 
LPRINT TAB(14);"FM modulation index fmi = ";fm i;“ FM frequency fm = 
";fm:GOSUB clearl
LOCATE l,1:PRINT”Generating interference":GOSUB clear2 
p2=2*3.14159*
FOR i58=i!58TO \2%

i(iS)=ai*(C0S(p2*fa*t(i^)))*C0S(p2*fi*t(i%)+fmi*C0S(p2*fm*t(iS))+pi) 
NEXT i%

Xgen.i:
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Option to load an N-dimensional interference vector, 
previously generated and stored

Load.iiOCATE 1,1 :INPUT;"Load interference? Enter y or n",ei$:G0SU6 clearl

IF ei$="n" THEN Xload.i
LOCATE 1,1:INPUT;"Which interference file?",file$:GOSUB clearl 
LOCATE l,l:PRINT“Loading interference ";inter$;" on file  named ";file$ 
OPEN T ‘,* l,file$ ,512  
FOR i&=0 TO m£

INPUT *1,i(iS )
NEXT UK 
CLOSE *1 

Xload.i:

Option to plot the current N-Dimensionel interference vector

Plot.i:LOCATE 1,1:INPUT;"Plot interference? Enter y or n",ei$:GOSUB clearl 
IF ei$="n" THEN Xplot.i
LOCATE 1,1:LPRINT TAB(14);"Plotting the interference named ";lnter$ 
LOCATE 1,1:INPUT;"Clear screen? Enter y or n",ei$:GOSUB clearl 
IF ei$="y" THEN CLS 
yb=-20:yt=20
LOCATE 1,1:PRINT”Y max = ";yt:INPUT;"Change Y max? Enter *
(0 retains current value)",ei:GOSUB clearl:GOSUB clear2 
IF e io  OTHEN yt=ei 
IF e io  0 THEN yb=-ei
ys=(yt-yb)/yj:yg=yd/ys:y$=“Amplitude":ytab=4 
FOR 18=1 TO m* 

y(i5g)=i(i£)*yg 
NEXT \%
IF ei$="y" THEN GOSUB Plotxy 
CALL MOVETO(xo+x(1),yo-y(D)
FOR \%=] TO

CALL LINETO(xo+x(iS>),yo-y(i&))
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NEXT \%
LOCATE 1,1:1NPUT;“P1 ot Figure *  is",FigNo$:GOSUB clearl 
LPRINT TAB( 14);"Interference ";lnter$;" is Plotted in Figure D-M;FigNo$ 

Xplot.i:

Option to store an N-dimensional interference vector, 
previously generated or loaded

Store.i:LOCATE 1,l:INPUT;"Store interference? Enter y or n",ei$:G0SUB clearl 
IF ei$=“r»“ THEN Xstore.i
LOCATE 1,1:INPUT," Which interference file?",file$:GOSUB clearl 
LOCATE 1,1:PRINT"Storing interference named ";lnter$;" in file  “;File$
OPEN "o" *1,F11e$,512 
FOR i$=0 TO m%

WRITE* 1,i(1JB)
NEXT \%
CLOSE*1 

Xstore.i:

Option to collect sta tistics on N-dimentional interference vector

Stat.i:LOCATE 1,1:INPUTInterference Statistics? Enter y or n“,ei$:GOSUB clearl 
IF ei$=MnMTHEN Xstat.i
LOCATE l,1:LPRINTTAB(14);Talcul8tfng statis tics for ";lnter$
CALL stat(iO)

Xstat.i:

LOCATE 1,1 -.INPUT/'Iterate interference generation? Enter y or n“,ei$:GOSUB 
clearl
IF ei$="y" THEN Gen.i

Option to generate or load a new N-dimensional projection of the relevant 
noise vector

Gen.niOCATE 1,1:INPUT;"Generate noise? Enter y or n",ei$:GOSUB clearl 
Noise$="n(t)":IF ei$="n"THEN Xgen.n
n=0:sn=1:L0CATE 2,1 PRINT "Noise mean, n=";n;"Noise standard deviation";sn 
LOCATE 1,1:INPUT;"Change parameters? Enter y or n",ei$:G0SUB clearl 
IF ei$="n" THEN Calc.n
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LOCATE 1,1 : INPUT,"Mean",n: INPUT/’Standard deviation";sn:GOSUB clearl:GOSUB 
clear2
INPUT;"The noise name is ",Noise$

Calc.n:LOCATE 1,1 .LPRINT TAB(14);"Genereting noise named ";Noise$:RANDOMIZE 
TIMER
LPRINT TAB(14);''Noise mean, n=";n;M Noise standard deviation";sn 
FOR i*=1 TO m&+1 STEP 2

Gauss:UU=2*RND-1 :vv=2*RND-1 :ss=uu*2+vv*2 
IF ss>= 1 THEN Gauss
qq=uu*SQR(-2*L0G(ss)/ss):rr=vv*SQR(-2*L0G(ss)/ss) 
n(i£)=n+qq*sn:n(i£+1 )=n+rr*sn 

NEXT i *
Xgen.n:

Option to load an N-dimensional noise vector 
previously generated and stored

Load.niOCATE 1,1:INPUTj"Load noise? Enter y or n",ei$:G0SUB clearl 
IF ei$=”n" THEN Xload.n
LOCATE 1,1 :INPUT;"Which File?",file$:GOSUB clearl 
LOCATE 1,1:PRINT"Loading file  named ";f11e$
LPRINT TAB( 14),"Loading file  named ”;file$;" for noise ";Noise$
OPEN T,*1,f11e$,512 
FOR iJ5=0 TO m8 

INPUT # 1,n(i*)
NEXT \%
CLOSE *1 

Xload.n:

Option to plot the current N-Dimensional noise vector

Plot.n.LOCATE 1,1:INPUT;"Plot noise? Enter y or n",ei$:G0SUB clearl 
IF ei$="n" THEN Xplot.n
LOCATE 1,1 :LPRINT TAB(14);"Plotting the noise named ";Noise$
LOCATE 1,1:1 NPUT;“C1 ear screen? Enter y or n",ei$:GOSUB clearl
IF ei$="y" THEN CLS
yb=-20:yt=20
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LOCATE U:PRINT"V max = "jytilNPUT/Change Y max? Enter *
(0 retains current value^e^GOSUB clearl:G0SUB clear2 
IF e io  0 THEN yt=ei 
IF e io  0 THEN yb=-ei
ys=(yt-yb)/yj:yg=yd/ys:y$="Amplitude":ytab=4 
FOR i58=l TO 

y(i£)=n(i£)*yg 
NEXT i%
IF ei$="y" THEN GOSUB Plotxy 
FOR iJ?=i TO m%

CALL M0VET0(xo+x(i8),yo)
CALL LINETO(xo+x(i8),yo-y(i8))

NEXT 18
LOCATE 1,1:1 NPUTj"Plot Figure *  isu/igNo$:G0SUB clearl 
LPRINT TAB(14);"Noise ";Noise$;‘' is Plotted in Figure D-";FigNo$

Kplot.n:

Option to store the current N-dimensional noise vector

Store.n.LOCATE 1 J:INPUT;"Store noise? Enter y or n",ei$:G0SUB clearl 
IF ei$="n" THEN Xstore.n
LOCATE 1 J:INPUT;“Which noise file ? ‘ ,file$:GOSUB clearl 
LOCATE 1 J:PRINTMStoring Noise named "jNoiseS;" on file  “;File$
OPEN V *1 ,fi1e$,512 
FOR i8=0 TO m%

WRITE*1,n(i8)
NEXT \%
CLOSE*1 

Xstore.n:

Option to collect sta tis tics on N-dimentional noise vector

Stat.niOCATE 1,1 :INPUT/'Noise Statistics? Enter y or n",ei$:G0SUB clearl 
IF ei$="n" THEN Xstat.n
LOCATE 1,l:LPRINTTAB(14);"Calculating statistics for ";Noise$
CALL stat(n())

Xstat.n:

LOCATE 1 J:INPUT;"lter8te noise generation? Enter y or n",ei$:G0SUB clearl
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IF ei$="y" THEN Gen.n 

Restart:

Option to generate or load a new N-dimensional received vector at baseband 
Option 1: Pure signal reception, free of interference and noise 
Option 2: Pure interference reception, signal not transmitted 
Option 3: Pure noise reception, signal not transmitted 
Option 4: Signal and interference are free of noise 
Option 5: Signal and Noise are received without interference 
Option 6: Interference and noise, signal not transmitted 
Option 7: Signal is received corrupted by interference and noise

Gen.nLOCATE l,l:INPUT;"Generate received vector? Enter y or n",ei$:GOSUB clearl 
IF ei$="n" THEN Xgen.r
INPUT /'Receive 1:b, 2:i, 3:n, 4:b+i, 5:b+n, 6:i+n, 7:b+i+n? Enter 1-7",ei5S:GOSUB 
clearl
INPUT/'Received Signal Components Designation is",Total$:GOSUB clearl 
IF ei&<1 OR ei%>7 THEN Gen.r

Calc.nLOCATE 1,1 PRINT "Generating the received PDSP input signal"; 
ei£;":";Totel$
LPRINT TAB( 14);"Generating the received PDSP input signal ";ei£;":";Total$ 
Newr=0 
FOR \%= \ TO 

d(i8)=b(iS»)
IF eiJS=1 THEN r(ii?)=b(i£)
IF ei£=2THEN r(i$)=i(i5&)
IF ei&=3 THEN r(i!S)=n(i5g)
IF ei8=4THEN r(i5g)=b(i5S)+i(i£)
IF ei5S=5 THEN r(i8)=b(iiS)+n(i$)
IF ei&=6 THEN r(i8)=i(i8)+n(i8)
IF ei%=7 THEN r(i%)=b(i%)+i(i%)+n(i%)

NEXT i%
Xgen.r:
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Option to load an N-dimensionel received PDSP input vector 
previously generated and stored

Load.r.LOCATE 1,1:INPUT;"Load received PDSP input vector?
Enter y or n",ei$:G0SUB clearl 
IF ei$="n" THEN Xload.r 
Newr=0
LOCATE 1,1 .•INPUT;"Which file?",Total$:GOSUB clearl 
LOCATE 1,l:PRINT"Loading file  named ";Total$
OPEN T,*1,Total$,512 
FOR iS>=0 TO m%

INPUT 
NEXT i *
CLOSE *1 

Xload.r:

Option to plot the current N-Dimensional received PDSP input'vector

Plot.nLOCATE 1,1:1 NPUT;*‘plot received PDSP input vector?
Enter y or n“,ei$:G0SUB clearl 
IF ei$=',n" THEN Xplot.r
LOCATE 1,1 :LPRINT TAB(14);"Plotting the received PDSP input signal ”;Total$ 
LOCATE 1,l:INPUT;”Clear screen? Enter y or n",ei$:G0SUB clearl 
IF ei$="y" THEN CLS 
yb=-30:yt=30
LOCATE 1,1:PRINT"Y max = ",yt:INPUT;"Change Y max? Enter *
(0 retains current value)",ei:GOSUB clear 1:G0SUB clear2 
IF e io  0 THEN yt=ei 
IF e io  0 THEN yb=-ei
ys=(yt-yb)/yj:yg=yd/ys:y$=,,Amplitude":ytab=4 
FOR i*=1 TO m£ 

y(i5S)=r(i£)*yg 
NEXT
IF ei$="y” THEN GOSUB Plotxy 
CALL MOVETO(xo+x( 1 )-1 ,yo)
CALL LINETO(xo+x( 1)-1 ,yo-y( 1))
FOR 1X=1 TO rnSM

CALL LINETO(xo+x(iJB)+1,yo-y(iS))
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CALL LINETO(xo+x(i$)+1,yo-y(i&+1))
NEXT i£
LOCATE 1,1:INPUT;"Plot Figure *  is",FigNo$:60SUB clearl 
LPRINT TAB(14);“Received PDSP input ";Total$;” is plotted in Figure D-“;FigNo$ 

Xplot.r:

Option to store the current N-dimensional PDSP input vector

Store.r.LOCATE 1,1 .INPUT,"Store PDSP input signal?
Enter y or n",ei$:GOSUB clearl 
IF ei$="n” THEN Xstore.r
LOCATE 1,1:INPUT;"Which PDSP input file?",File$:GOSUB clearl 
LOCATE 1,1:PR!NT"Storing PDSF received signal named ";Total$;" in f ile  ";File$ 
OPEN ”o",*1,File$,512 
FOR i%=0 TO m£

WRITE* 1,r(i$)
NEXT \%
CLOSE*1 

Xstore.r:

Option to collect statistics on N-dimentional received signal vector

Stat.r:LOCATE 1,1:INPUT;"Received signal Statistics?
Enter y or n",ei$:GOSUB clearl 
IF ei$="n" THEN Xstat.r
LOCATE 1,1:LPRINTTAB( M iscalculating statistics for ";"lnput "+Total$
CALL stet(rO)

Xstat.r:

IF Newr>0 THEN Detect.b

Compute the sample vector signal-to-noise ratio (SNR) input, 
before any Pre-detection signal processing (PDSP)

Eb- Energy of the source signal vector 
Erb-Energy of the noise + interference vector.
SNRi-PDSP algorithm SNR input

SNRi:Eb=0:Erb=0
FOR iJB=1 TO m&:Eb=Eb+b(i&)*b(i8):Erb=Erb+(r(i8>)-b(iS>))*(r(i8)-b(iS)):NEXTi&
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IF Erb>0 THEN snri=Eb/Erb ELSE snri=0
LOCATE 2J:PRINT“input bit energy “;Eb;“ Other energy ";Erb;
" SNRi 10*L0G(snri)/L0G( 10)
LPRINT TAB(14);"input bit energy ";Eb;" Other energy ";Erb;
“ SNRi 10*L0G(snri)/L0G( 10)
LOCATE 1J:PRINT“Correlating ”;Total$; "with signal replica"

Crb-Correlation of PDSP input with signal replica

crb=0
FOR i5S=1 TO m%

crb=crb+r(i8)*b(i£)
NEXT )%
Iter8>=0 ‘Number of iterations through PDSP 

Option to perform Pre-detection Signal Processing

Detect.b:LOCATE 1 J:INPUT;"Detect bursts? Enter y or n“,ei$:GOSUB clear2 
IF ei$="n" THEN Xdetect.b 
Newr=l:lter5?=lter^+1

Option to select any one of five PDSP algorithms which detect runs 
of length 1 or longer called anomalous runs or bursts 

Suboption 0: Keep received vector intact 
Suboption 1: Erase anomalous runs from signal 
Suboption 2: Remove the average component of anomalous runs 
Suboption 3: Remove the average component of sections of 

anomalous runs 
Suboption 4: Remove the section-linear moving average 

component of anomalous runs 
Suboption 5: Remove the subsection-linear moving average component of 

anomalous runs

Filter.b:LOCATE 1 J:INPUT;"Filter bursts? Enter f i l te r *  0-5“,f^:G0SUB clearl 
IF f5?<0 OR f5S>5 THEN Filter.b
LOCATE I J:INPUT;"Clear screen? Enter y or n",ei$:GOSUB clearl 
CLS:IF ei$="y" THEN CLS
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Initia lize the burst detection parameters 
h- run polarity decision threshold 
]%- maximum length of normal run expected 
mb-number of bursts encountered in the received vector 
nb-a flag set to indicate a burst (anomalous run)

LOCATE 1,1: PRlNT’Signal processing using PDSP F";f&;" Iteration *  ";lter5B 
LPRINT TAB(l4);"Signal processing using PDSP Iteration *  M;lterS
h=0:l&=8:mb=0:nb=0:f b=0 
FOR iJ?=1 TO mS-1

IF(r(i*)>h) AND (r(i£+1 )>h) THEN nb=nb+1 
IF(r(i*)<h) AND (r(1*+1 )<h) THEN nb=nb-1 
IF(r(i*)<h) AND (r(i*+1)>h) AND (fb=0)THEN nb=0 
IF(r(iS)>h) AND (r(iSS+1)<h) AND (fb=0)THEN nb=0 
IF(nb>lJM) OR (nb<-l*+1) AND (fb=0)THEN a£=i5g-ABS(nb)+1 
IF(ift<> 1) AND (nb>ix-1) OR (nb<-18+1 )THEN fb= 1 
IF(r(1*)<h) AND (rf1S+1)>h) AND (fb=1)THEN nb=0 
IF(r(iJ6)>h) AND (r(1S+1)<h) AND (fb=1)THEN nb=0 
IF(nb=0) AND (fb= l) THEN PRINT q% ;\— polarity burst— >";i*
IF (nb=0) AND (fb= 1) AND (fSoO)THEN CALL levela(d(),(a*),(i*))
IF (nb=0) AND (fb= 1) AND (fSoO)THEN CALL levela(r(),(a*),(iS))
IF (nb=0) AND (fb= 1) THEN mb=mb+1 
IF nb=0 THEN fb=0 

NEXT S%
a%=mJg-ABS(nb)
IF fb=1 THEN PRINT aJS;"<— polarity burst— >",m%
IF fb=1 AND (f?S>0)THEN CALL levela(d(),(a*),(m*))
IF fb=1 AND (f8>0)THEN CALL levela(r(),(aJg),(mS))
IF fb=1 THEN mb=mb+1

Compute the sample vector signal-to-noise ratio (SNR) output, after 
Pre-detection signal processing (PDSP)

Ed- Energy of the source signal vector distorted by the PDSP 
Erd-Energy of the output noise + interference vector.
SNRo-PDSP algorithm SNR output

SNRo:Ed=0:Erd=0
FOR iJR=1 TO m5K:Ed=Ed+d(i8)*d(ia>):Erd=Erd+(r(iJB)-d(i5&))*(r(ift)-d(iS>)):NEXTi8; 
IF Erd>0 THEN snro=Ed/Erd ELSE snro=0
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LOCATE 3,1:PRINT"output b it energy ”;Ed;" other energy 
Erd;" SNRo 10*LOG(snro)/LOG( 10)
LPRINT TAB(14);"0utput b it energy ";Ed;" Other energy 
Erd;" SNRo 10*L0G(snro)/L0G( 10)

Computing the sample processing distortion factor, processing g8in of PDSP 
Pd- Processing distortion factor of PDSP 
Pg-Processing gain of the PDSP

pd=0:IF Eb>0 THEN pd=Ed/Eb 
pg=0:IF snri>0 THEN pg=pd*snro/snri 
PRINT"Processed";mb;n bursts. Sample PD = ";pd;
“ Sample P6 = 10*L0G(pg)/L0G( 10)
LPRINT TAB(14);',Processed“;mb;" bursts. Sample PD = ";pd;“ Sample PG =

10*LQG(pg)/L0G( 10)
LOCATE 1 J:PRINT"Correlating ";Tota1; "with signal replica"

Computing the overall Processing gain
Cfb- the PDSP total output sample correlation w ith PN replica
Cdb- the PDSP distorted signal output sample correlation with PN replica
Cd - Correlation distortion factor
Cg - Overall correlation processing gain

Cfb=0
FOR i8>=1 TO mJB 

Cfb=Cfb+r(i£)*b(i8)
NEXT 1*
LOCATE 1,1:PRINT"Corre1ating processed";Signel$; "w ith signal replica”
Cdb=0
FOR i*=1 TO mJK

Cdb=Cdb+d(i£)*b(i&)
NEXT i%
Cd=0:IF Eb>0 THEN Cd=Cdb/Eb
Cg=0:IF ABS(Cfb-Cdb)>0 THEN Cg=(Cd*(Crb-Eb)/(Cfb-Cdb))*2
LOCATE 5, l:PRINT"Sample Crb = ";Crb;" Sample Cdb = ";Cdb;" Sample Cfb =
";Cfb
PRINT"Sample Cd = “;Cd;" Sample Cg = ";Cg
LPRINT TAB(14);"Sample Crb = ";Crb;" Sample Cdb = ";Cdb;" Sample Cfb = ";Cfb 
LPRINT TAB(14);"Sample Cd = ";Cd;" Sample Cg = ”;Cg
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Option to plot the current N-Dimensional received PDSP output vector

Plot.f:LOCATE 1,1:INPUT;"plot filtered vector? Enter y or n”,ei$:G0SUB clearl 
IF ei$="n" THEN Xplot.f
LOCATE 1,1:LPRINT TAB(14);"P1otting the filtered received signal ";Total$ 
LOCATE 1,1:INPUT;"Clear screen? Enter y or n",ei$:GOSUB clearl 
IF ei$="y" THEN CLS 
yb=-30:yt=30
LOCATE 1,1:PRINT"Y max = “;yt:INPUT;"Change Y max? Enter *(0  retains 
current value)",ei:GOSUB clearl:GOSUB clear2 
IF e io  0 THEN yt=ei 
IF e io  0 THEN yb=-ei
ys=(yt-yb)/yj:yg=yd/ys:y$="Amplitude":ytab=4 
FOR i&=t TO 

y(i8)=r(i£)*yg 
NEXT 1*
IF ei$="y“ THEN GOSUB Plotxy 
CALL MOVETO(xo+x( 1)-1 ,yo)
CALL LINETO(xo+x( 1)- 1,yo-y( 1))
FOR i£=1 TO m *- l

CALL LINETO(xo+x(i&)+1 ,yo-y(i&))
CALL LINETO(xo+x(iJB)+1 ,yo-y(i8+1))

NEXT i *
LOCATE 1,1:INPUT;"Plot Figure *  is”,FigNo$:GOSUB clearl 
LPRINT TAB(14);"Received PDSP output ";Total$;
" is plotted in Figure D-“;FigNo$

Xplot.f:

Option to plot the current N-Dimensional PDSP distorted signal vector

Plot.diLOCATE 1,1 :INPUT;"plot output signal vector? Enter y or n",ei$:GOSUB 
clearl
IF ei$="n" THEN Xplot.d
LOCATE 1,1:LPRINT TAB(14);"Plotting the PN output signal named 
"/'processed "+Signal$
LOCATE 1,l:INPUT;"Clear screen? Enter y or n",ei$:GOSUB clearl
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IF ei$="y" THEN CLS 
yb=-30:yt=30
LOCATE 1,1:PRINT"Y max = ",yt:INPUT;"Change Y max? Enter *
(0 retains current value)",ei:GOSUB clearl:GOSUB clear2 
IF eio 0 THEN yt=ei 
IF eio 0 THEN yb=-ei
ys=(yt-yb)/yj:yg=yd/ys:y$="Amplitude":ytab=4 
FOR iJB=1 TO mX 

y(iJ6)=d(iX)*yg 
NEXT iX
IF ei$="y" THEN GOSUB Plotxy 
CALL M0VET0(xo+x( 1)-1 ,yo)
CALL LINETO(xo+x( 1)-1 ,yo-y( 1))
FOR iX=1 TO mX-1

CALL LINETG(xo+x(iX)+1,yo-y(iX))
CALL LINETO(xo+x(iX)+1 ,yo-y(iX+1))

NEXT IX
LOCATE 1,1:INPUT;“Plot Figure *  is",FigNo$:GOSUB clearl 
LPRINT TAB(14);"distorted signal ";Signal$;“ is plotted in Figure D-";FigNo$ 

Xplot.d:

Option to store the current N-dimensional PDSP output vector

Store.fiOCATE 1,1:INPUT;“Store PDSP output signal? Enter y or n",ei$
GOSUB clearl 
IF ei$="n" THEN Xstore.f
LOCATE 1,1:INPUT;"Which PDSP output signal file?",file$:GOSUB clearl 
LOCATE 1,l:PRINT"Storing PDSP output signal named “;Total$;" in file 
“;File$
OPEN "o” *1,file$,512 
FOR iX=0 TO mX 

WRITE* 1,r(1X)
NEXT iX 
CLOSE*1 

Xstore.f:
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Option to collect statistics on N-dimentional PDSP output signal vector

Stat.fiOCATE 1J:INPUT;"PDSP output signal Statistics?
Enter y or n'\ei$:GOSUB clearl 
IF ei$="n" THEN Xstat.f
LOCATE U  -.LPRINT TAB(14);"Ca1culating statistics for 
"Processed "+Total$
CALL stat(rO)

Xstat.f:

Option to collect statistics on N-dimentional PDSP distorted signal 
vector

Stat.dlOCATE l,1:INPUT;"Distorted signal Statistics?
Enter y or n'̂ eiSiGOSUB clearl 
IF ei$=un" THEN Xstat.d
LOCATE 1,1:LPRINTTAB(1 ^"Calculating statistics for 
"Processed “+Signal$
CALL stat(d())

Xstat.d:

LOCATE 1 J:INPUT;"lterate burst detection? Enter y or n”,ei$:GOSUBclear1 
LOCATE 1 ,1:LPRINT"End of PDSP F";fS8;" Iteration *  "jlter*
IF ei$="y" THEN Detect.b 

Xdetect.b:GOSUB clearl

LOCATE 1J:INPUT;"Iterate received vector generation? Enter y or 
n",ei$:GOSUB clearl 
IF ei$=“y“ THEN Gen.r

Cr.biOCATE 1 J:INPUT;"Correlation with shifted source replica? Enter y or 
n“,ei$:GOSUB clearl 
IF ei$="n” THEN Xcr.b
LOCATE l,l:INPUTj"Max1mum source replica shift? Enter 0-126",l&GOSUB 
clearl
IF 18>mJM THEN Xcr.b
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LOCATE 1,1: PRINT "Sit and relax, the correlation function is being generated” 
FOR k8=0 TO 18

FOR i8=1 TO m8-k8 
y(i8+k8)=b(i8)

NEXT 18
FOR i8=m8-k8+1 TO m8 

j8=i8-(m8-k8) 
y(j8)=b(i8)

NEXT i8 
cr(k8)=0

FOR 18=1 TO m8
cr(k8)=cr(k8)+r(i8)*y(i8)

NEXT i8 
NEXT k8 

Xcr.b:GOSUB clearl

Cr.i:LOCATE i,1:INPUT;"Correlation with shifted interference? Enter y or 
n",ei$:GOSUB clearl 
IF ei$="n" THEN Xcr.i
LOCATE 1,1:INPUT;"Maximum source replica shift? Enter 0-126M,l8:G0SUB 
clearl
IF 18>m8-l THEN Xcr.i
LOCATE 1,1: PRINT "Sit and relax, the correlation function is being generated" 
LOCATE t,!:PRINT"Genereting interference":GOSUB cle8r2 
p2=2*3.14159*
FOR k8=0 TO m8

pik = pi+(k8)*p2/m8 
FOR i8=1TO m8
y(i8)=ai*(C0S(p2*fa*t(i8)))*C0S(p2*fi*t(i8)+fmi*C0S(p2*fm*t(i8))+pik) 
NEXT i8
‘FOR 18=1 TO m8
’y(i8)=y(i8)+b(i8) include only if correlating with interference+signal 
'NEXT i8 

cr(k8)=0
FOR 18=1 TO m8

cr(k8)=cr(k8)+y(i8)*b(18)
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INPUT *1,cr(i8)
NEXT i *
CLOSE *  1 

Xload.cr:

Option to plot the current N-Dimensional correlation vector

Plot.cr.LOCATE 1,1:INPUT;"Plot correlation function? Enter y or n",ei$:GOSUB 
clearl
IF ei$="n“ THEN Xplot.cr
LOCATE 1,1 .LPRINT TAB( !4);"P1otting the correlation ";Cor$
Minmax.cr:il= 1 :ih= 1 :crl=cr(0):crh=cr(0)
FOR i8=1 TO m8

IF cr(i%)<crl THEN il=i&
IF cr(i8)<crl THEN crl=cr(i£)
IF cr(i%)>crh THEN ih=?8 
IF cr(i8)>crh THEN crh=cr(i£)

NEXT i%
IF ABS(crl)>ABS(crh) THEN yt=ABS(crl)
IF ABS(crl)<ABS(crh) THEN yt=ABS(crh) 
yb=-yt
LOCATE 1,1:PRINT“Y max = ”;yt: INPUT;"Change Y max? Enter *(0 retains 
current value)",ei:GOSUB clear 1:60SUB clear2 
IF eio 0 THEN yt=ei 
IF eio 0 THEN yb=-ei
LOCATE 1,1:INPUT;"Cleer screen? Enter y or n",ei$:GOSUB clearl 
ys=(yt-yb)/yj:yg=yd/ys:y$="Correlation”:ytab=3 
IF ei$="y" THEN CLS 
FOR i£=1 TO m8 

y(1%)=cr(iS)*yg 
NEXT \%
IF ei$="y" THEN GOSUB Plotxy 
CALL MOVETO(xo+x(0),yo-y(0))
FOR i£=1 TO 158

CALL LINETO(xo+x(i8),yo-y(i8))
NEXT \%
LOCATE 1,1:1 NPUT;"Plot Figure *  is",FigNo$:GOSUB clearl 
LPRINT TAB(14);"Correlation ";Cor$;M is plotted in Figure D-";FigNo$ 

Xplot.cr:
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Option to store the current N-dimensional correlation vector

Store.crlOCATE 1 ,1:INPUT/'Store correlation? Enter y or n",ei$:GQSUB clearl 
IF ei$=”n" THEN Xstore.cr
LOCATE 1,1:INPUT/'Which file?",file$:GOSUB clearl 
LOCATE 1,l:PRINT"Storing correlation in file named ";file$
OPEN ”o",*1,file$,512 
FOR i£=0 TO m8 

WRITE* 1,cr(iS)
NEXT 1*
CLOSE*1 

Xstore.cr:

Option to collect statistics on correlation vector

Stat.criOCATE 1,1:INPUT/'Correlation Statistics? Enter y or n",ei$:GOSUB clearl 
IF ei$="n"THEN Xstat.cr
LOCATE 1J:LPRINTTAB( Miscalculating statistics for ";Cor$
CALL stat(crO)

Xstat.cr:

FinishiOCATE 1,1:INPUT/'Start, Transmit, Interfer,Noise,Receive,Filter, End, or 
Quit? Enter s,r,f, e, or q“,ei$:GOSUB clearl 
IF ei$=V THEN Start 
IF ei$="t" THEN Gen.b 
IF ei$="i" THEN Gen.i 
IF ei$=”n" THEN Gen.n 
IF ei$="r“ THEN Gen.r 
IF ei$="f" THEN Detect.b 
IF ei$=“e" THEN END 
IF ei$="q" THEN SYSTEM 

END

Subroutine to clear the first line of the screen for a new prompt

clearl: LOCATE 1,1 
PRINT"

RETURN
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Subroutine to clear the second line of the screen for a new prompt

clear2: LOCATE 2,1 
PRINT"

RETURN
Subroutine to perform Burst(Anomalous Run) Signal Processing 

Level 1: Erase burst
Level 2: Remove the average component of the entire burst 
Level 3: Remove the average component of each burst section 
Level 4: Remove the piecewise linear smoothing fit between burst 

sections
level 5: Remove the piecewise linear smoothing fit between burst 

subsections
Note : A burst section is chosen here to correspond to the minimum

length , IX , of an anomalous run detected between time samples, 
aX and bX.

SUB levele(r(1),aX,bX)STATIC 
SHARED fX,h,lX 

ON fX GOTO Level 1,Level2,Level3,Level4,levels

Level 1:'Erase the entire burst 
FOR iX=aX TO bX 

r(iX)=h 
NEXT IX 

EXIT SUB

Level2:'Remove the Dc component of the entire burst 
r=0:n=bX-aX+1 
FOR iX=aX TO bX 

r=r+r(iX)
NEXT iX 
r=r/n
FOR iX=aX TO bX 

r(iX)=r(iX)-r 
NEXT IX 

EXIT SUB
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Level3:' Remove the Dc component of each burst section 
m=INT((b8-a8+1)/18) 
jl8=a8:‘ First m-1 sections
FOR 18=1 TO m-1 

j 28=j 18+18-1 
r=0
FOR j8=j18T0 j28 

r=r+r(j8)
NEXT j8  
r=r/18
FOR j8 = j!8 T 0  j28 

r(j8)=r(j8)-r 
NEXT )% 
j 18=j28+1 

NEXT 18
r=0:' Final section
FOR j8=j 18 TO b8 

r=r+r(j8)
NEXT j8  

r=r/(b8-j 18+1)
FOR j8 = jl8 T 0  b8 

r(j8)=r(j8)-r 
NEXT j8  

EXIT SUB

Level4:' Piecewise linear smoothing using 1 
m=INT((b8-a8+1)/18)
IF m<2 THEN Leve12 
j 18=a8:' First section
j28=j 18+18-1 

r1=0
FOR j8=j 18 TO j28
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r1=r1+r(j8)
NEXT j8  
r1=r1/18:ri=0 

FOR i8=2 TO m 
j38=j28+1 
j48=j38+18-1 
r2=0
FOR j8=j38 TO j48 

r2=r2+r(j8)
NEXT )%
r2=r2/18:s 12=(r2-r 1 )/18 
FOR j8=j 18 TO ]28

r(j8)=r(j8)-s 12 *(j8 -j 18)-ri 
NEXT )%
j 18=j38:j28=j48:r1 =r2:ri=ri+s 12*18 

NEXT 18

Final section

FOR j8=j38 TO b8
r(j8 )= r(j8 )-s !2*(j8 -j18 )-ri 

NEXT j8  
GOTO level3
LevelS:' Piecewise linear smoothing over 1/2

12=18/2:m=INT((b8-a8+1 )/12)
IF m<2 THEN Level2

j 18=a8:' First section
j28=j 18+12-1
r1=0
FOR j8=j 18 TO j28  

r1=r1+r(j8)
NEXT )% 
r1=r1/l8:ri=0 

FOR i8=2 TO m 
j 38=j 28+1 
j48=j38+12-1 
r2=0
FOR j8=j38T0 j48



r2=r2+r(j8)
NEXT j8
r2=r2/12:s12=(r2-r1)/12 
FOR j8=j 18 TO j28

r(j8)=r(j8)-s12*(j8-j18)-ri 
NEXT j8
j 18=j38:j28=j48:rl=r2:ri=ri+s12*]2 

NEXT 18

Final section

FOR j8=j38 TO b8
r(j8)=r(j8)-s12*(j8-j18)-ri 

NEXT j8  
GOTO level3

END SUB

SUB stat(r(1))STATIC
SHARED m8,n8,b(),bu(),bd(),bt()

Option to compute statistical properties of the PDSP received sample 
vector output.

il-location of sample lowest value of received vector, 
ih-location of sample highest value of received vector, 
rl-sample lowest value of received vector, 
rh-sample highest value of received vector, 
r- sample average value of received vector, 
ar-sample average of absolute value of received vector, 
er-sample energy of received vector, 
vr- sample variance of received vector, 
sr- sample standard deviation of received vector, 
pr-sample power of received vector.

LOCATE 1J:PRINT"calculating statistics" 
liinmax.r.i 1 = 1 :i h= 1 :rl=r( 1 ):rh=r( 1)
FOR i8=2 TO m8

IF r(i8)<rl THEN il=i8 
IF r(i8)<rl THEN rl=r(i8)
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IF r(i8)>rh THEN ih=i8 
IF r(i8)>rh THEN rh=r(i8)

NEXT i8
PRINT "Highest r = ";rh;" at ";ih;". Lowest r = ";rl;" at ";il
LPRINT TAB(14);"Highest r = ";rh;“ at ";ih;". Lowest r = at ";il
Average.r:r=0
Avrgabs.r:ar=0
FOR 18=1 TO m8

r=r+r(i8):ar=ar+ABS(r(i8))
NEXT 18

r=r/m8:ar=ar/m8 
Energy.r:er=0 
Variance.r.vr=0 
FOR 1 TO m8

er=er+r(i8)A2:vr=vr+(r(i8)-r)A2 
NEXT i8
Power.r:pr=er/m8:vr=vr/m8:sr=SQR(vr)

nu-sample number of positive polarity 
nd-sample number of negative polarity 
cu-sample number of positive zero-crossing 
cd-sample number of negative zero-crossing 
bu-sample number of positive runs 
bd-sample number of negative runs 
bt-sample number of all runs
fg- flag identifying the start and sign of the current run

Polarity.r:nu=0:nd=0 
Crossing.r:cu=0:cd=0 
6urst.r:bu=0:bd=0 
IF r(l)>=0 THEN fg= 1 
IF r( 1 )<0 THEN fg=-1 
FOR i8=1 TO 10

bu(?8)=0:bd(i8)=0:bt(?8)=0 
NEXT i8
'Count polarity and crossings 
FOR 18=1 TO m8

IF (fg= 1) AND (r(i8)<0) THEN cd=cd+1 
IF (fg=-1) AND (K18)>0) THEN cu=cu+1
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IF r(iX)<0 THEN fg= -1 
IF r(iX)>0 THEN fg=1 
IF r(iX)<0 THEN nd=nd+1 
IF r(iX)>0 THEN nu=nu+1 

NEXT i%
’Determine start of new burst 
j=0
FOR iX=1 TO nX

IF r(iX)>0 AND r(mX)<0 THEN j=-iX  
IF r(iX)<0 AND r(mX)>0 THEN j=iX 
IF j<>0 THEN kX=ABS(j)
IF j<>0 THEN New.burst 

NEXT IX 
kX=1
New.burst:’Count bursts by polarity and length 
IF r(kX)>0 THEN pbX=1 
IF r(kX)<0 THEN nbX=1 
FOR iX=kX+1 TO mX

IF r(iX)>0 AND r ( iX -1 )>0 THEN pb8=pbX+1 
IF r(iX)<0 AND r ( iX -1 )<0 THEN nbX=nbX+1 
IF r(iX)>0 AND r( IX -1 )<0 THEN bd=bd+1 
IF r(iX)>0 AND r(iX-1)<0 AND nbX<11 THEN bd(nbX)=bd(nbX)+1 
IF r(iX)>0 AND r ( iX -1 )<0 THEN pbX= 1 
IF r(iX)<0 AND r(iX-1)>0 THEN bu=bu+1 
IF r(iX)<0 AND r(iX-t)>0 AND pbX<11 THEN bu(pbX)=bu(pbX)+1 
IF r(iX)<0 AND r(iX-1)>0 THEN nbX=1 

NEXT iX
’Process last burst
IF r( 1 )>0 AND r(mX)>0 THEN pbX=pbX+kX-1
IF r( 1 )<0 AND r(mX)<0 THEN nbX=nbX+kX-1
IF r(kX)>0 AND r(m8)<0 THEN bd=bd+1
IF r(kX)>0 AND r(mX)<0 AND nbX<11 THEN bd(nbX)=bd(nbX)+1
IF r(kX)<0 AND r(mX)>0 THEN bu=bu+1
IF r(kX)<0 AND r(mX)>0 AND pbXcll THEN bu(pbX)=bu(pbX)+1
FOR iX=1 TO 10

bt(iX)=bu(iX)+bd(iX)
NEXT iX 
bt=bu+bd
'Correlating with signal replica
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cr=0
FOR i*=1 TO m% 

cr=cr+r(i&)*b(i&)
NEXT i5S
LOCATE 1,1 :INPUT;"Clear screen? Enter y or n",ei$:GOSUB clear 1 
IF ei$="y" THEN CLS 
CALL TEXTFACE(4)
PRINT SPC(8);" ‘N’ 'C‘ ‘B’ T  '2' '31 ' 4  '5‘ '6' T  ‘8* •9" 10‘"
CALL TEXTFACE(O):
PRINT SPC(8);" (+)
PRINT
USING"#* * ”;nu;cu;bu;
bu( I );bu(2);bu(3);bu(4);bu(5);bu(6);bu(7);bu(8);bu(9);bu( 10)
CALL TEXTFACE(4)
PRINT SPC(8);“ (-)
PRINT USING’ ^^^";nd;cd;bd;
bd( I );bd(2);bd(3);bd(4);bd(5);bd(6);bd(7);bd(8);bd(9);bd( 10)
PRINT SPC(8),"Average St. Dv. Energy Power Correlation"
CALL TEXTFACE(O):
LOCATE 7,2:PRINT USING " * * * * * * * * #*";r;sr;er;pr;cr
LPRINT
LPRINT
TAB( 18);"____________________________________________________ "
LPRINT TAB(18);vector$;
LPRINT TAB(26);" 'N' 'C' ’B' T  '2 ' T  ' 4  '5' '6’ T  '8‘ ,9 "1 0 - 
LPRINT TAB(18);”(+)
LPRINT USIN6,,-****";nu;cu;bu;
bu( 1 );bu(2);bu(3);bu(4);bu(5);bu(6);bu(7);bu(8);bu(9);bu( 10)
LPRINT TAB(18);“(-)
LPRINT USING"****";nd;cd;bd;
bd( 1 );bd(2);bd(3);bd(4);bd(5);bd(6);bd(7);bd(6);bd(9);bd( 10)
LPRINT TAB( 18);" Average St. Dv. Energy Power Correlation" 
LPRINT TAB( 19);
LPRINT USING ,,* * * ####****";r;s r;e r;p r;c r 
LPRINT

TAB( 18);"______________________________________________________ "
END SUB 
END



APPENDIX C

INVARIANT ALGORITHMS DEMONSTRATION 

STATISTICAL RESULTS

In this Appendix, we provide a sample output using the demonstration 

program listed in Appendix B. The definition of each of the parameters shown is 

given in Appendix B. The plotted Figures are given in Appendix D. In the 

following narrative, PDSP FI refers to the randomness invariant erasure 

algorithm, PDSP F2 refers to the randomness invariant average algorithm, 

PDSP F3 refers to the randomness invariant piece-wise average algorithm, and 

finally, PDSP F4 refers to the randomness Invariant p1ece-w1se linear-average 

correction algorithm.

Generat ing PN s igna l  named b<t )
PN signa l  ampl i tude is  1 
P l o t t i n g  the PN s igna l  named b<t>
Signal  b ( t )  is  P l o t t e d  in Figure D- l  
C a l c u la t in g  s t a t i s t i c s  -for b< t )
Highest  r =  1 a t  1 . Lowest r =  -1 a t  2

'N ' ' C ' 'B ' ' 1 ' ' 2 ' ' 3 '  ' 4 ' ' 5 ' ' 6 '  ' 7 ' /g/ MO"
< 0  64 32 32 16 8 4 2 1 0 1 0 0 0
< - )  63 32 32 16 8 4 2 1 1 0 0 0 0

Average St . Dv ■ Energy Power C o r r e l a t  i on
0 1 127 1 127
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Genera t ing  in t e r f e r e n c e  named i < t )
Burs t  s t a r t < l - 1 2 4 )  1 Burst  end<2-127> 128
I n t e r f e r e n c e  ampli tude ai  = 30 frequency  f i =  .008
phase p i=  1 .8 852  AM frequency f a  = 0
FM modula t ion index fmi = 0  FM f requency fm = .008
P l o t t i n g  the i n t e r f e r e n c e  named i < t )
I n t e r f e r e n c e  i < t )  is  P l o t t e d  in F igure  D-2 
C a l c u l a t i n g  s t a t i s t i c s  f o r  i ( t )
Highest  r = 29.99071 a t  87 . Lowest r = -30  a t  25

' N ' ' C ' ' B ' '  1 ' ' 2 ' ' 3 '  ' 4 ' ' 5 ' ' 6 '  ' 7 ' ' S '  ' 9 '  ' I Q '
< + > 42 1 1 0 0 0 0 0 0 0 0 0 0
< - )  45 1 1 0 0 0 0 0 0 0 0 0 0

Average St . D v . Energy Power C o r r e l a t  i on
-0 21 54511 445 -244

Loading f i l e  named nOl f o r  noise n < t )
P l o t t i n g  the noise named n < t )
Noise n<t> is  P l o t t e d  in F ig ure  D-3 
C a l c u l a t i n g  s t a t i s t i c s  f o r  n<t>
Highest  r = 2 .155245  a t  75 . Lowest r = - 2 . 1 9 2 4 7 9  at  5

'N ' ' C ' ' B ' " I " ' 2 ' ' 3 '  ' 4 ' ' 5 ' ' 6 '  ' 7 ' ' 8 '  ' 9 '  ' 1 0 '
< + > 71 34 35 18 7 5 2 2 1 0 0 0 0
< - ) 54 35 35 20 11 3 0 1 0 0 0 0 0

Average St . Dv. Energy Power C o r r e l a t  i on
0 1 104 1 -14

Genera t in g  the re c e iv e d  PDSP input  s ig na l  7 : r <t ) = b < t ) + i ( t ) + n < t ) 
P l o t t i n g  the re c e iv e d  PDSP input  s igna l  r ( t ) = b ( t ) + i <t ) + n ( t )
Received PDSP input  r < t ) = b < t > + i <t ) + n < t )  is p l o t t e d  in F ig u re  D-4 
C a l c u l a t i n g  s t a t i s t i c s  f o r  In put  r < t ) = b ( t ) + i ( t ) + n < t )
Highest  r  = 32 .23127  a t  83 . Lowest r = - 3 2 .3 9 1 2 5  a t  24

'N ' ' C ' ' B ' ' 1 ' ' 2 ' ' 3 '  ' 4 ' ' 5 ' ' 6 '  ' 7 ' ' 8 '  ' 9 '  ' 1 0 '
( + ) 41 1 1 0 0 0 0 0 0 0 0 0 0
<- ) 44 1 1 0 0 0 0 0 0 0 0 0 0

Average St . D v . Energy Power C o r r e l a t  i on
-0 21 54433 444 -151

input  b i t  energy 127 Other energy 57042 .7  SNRi - 2 4 . 5 2 5 4 9
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Signal  p rocess ing  using PDSP F 1 I t e r a t i o n  # 1
Output b i t  energy 1 Other energy .1477754 SNRo 8 .30397?
Processed 3 b u r s t s .  Sample PD = 7 .8 740 1 6E -03  Sample PG = 13 .79143
Sample Crb = - 1 5 1 .2 5 8 3  Sample Cdb = 1 Sample C-fb = 1.384416
Sample Cd = 7.874016E-O3  Sample Cg = 32 .4853
P l o t t i n g  the f i l t e r e d  re c e iv e d  s igna l  r <t > = b < t > + i < t ) + n < t )
Received PDSP o utput  r < t ) = b < t ) + i < t )+ n < t>  is  p l o t t e d  in F ig ure  D-5 
P l o t t i n g  the PN output  s ignal  named processed b<t>
Processed s igna l  b < t )  is  p l o t t e d  in F ig u re  D-5 
C a l c u l a t i n g  s t a t i s t i c s  -for Processed r ( t ) = b < t ) + i <t ) + n < t )
Highest  r  =  1.38441(5 a t  57 . Lowest r =  0 at  1

/ N/ ' C ' ' B ' ' 1 '  ' 2 ' ' 3 "  ' 4 ' ' 5 ' ' 6 '  ' 7 ' ' Q '  ' 9 '  ' 1 0 '
< + > 1 0 0 0 0 0 0 0 0 0 0 0 0
<-> 0 0 0 0 0 0 0 0 0 0 0 0 0

Average S t . Dv. Energy Power C orre l  at  i oi
0 0 2 0 1

C a l c u l a t i n g  s t a t i s t i c s  f o r  Processed b ( t )
Highest  r  =  1 a t  57 . Lowest r  = 0 a t  1

'N ' ' C ' ' B ' ' 1 ' ' 2 ' ' 3 '  ' 4 ' ' 5 ' ' 6 '  ' 7 ' ' 8 '  ' 9 '  ' 1 0 '
< + ) 1 0 0 0 0 0 0 0 0 0 0 0 0
<-> 0 0 0 0 0 0 0 0 0 0 0 0 0

Average S t . Dv. Energy Power Correl  at  i oi
0 0 1 0 1

End of PDSP F 1 I t e r a t i o n  # 1
G enera t ing  i n t e r f e r e n c e  named I < t )
Burst  s t a r t (1 -12(5) 16 Burst  end<2-127> 64
I n t e r f e r e n c e  am pli tude a i =  30 f req uency  f i =  .008
phase p i=  1 .8852  AM frequency  f a  = 0
FM modula t ion  index fmi = 0  FM frequency  fm = 0
C a l c u l a t i n g  s t a t i s t i c s  f o r  I ( t )
Highest  r  = 11.40008  a t  64 . Lowest r =  -30  a t  25

' N ' ' C ' ' B ' '  1' ' 2 ' ' 3 '  ' 4 ' ' 5 ' ' 6 '  ' 7 ' ' 8 '  ' 9 '  ' 1 0 '
< + ) 8 1 0 0 0 0 0 0 0 0 0 0 0
<-> 41 1 1 0 0 0 0 0 0 0 0 0 0

Average St . Dv .i Energy Power C o r r e l a t  i on
- 6 12 22400 176 74
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G en era t in g  the re c e iv e d  PDSP input  s ignal  7 : R < t ) = b ( t ) + I ( t > + n < t )  
C a l c u l a t i n g  s t a t i s t i c s  -for In put  R < t )= b < t )  + I < t ) + n < t )
H ighest  r  = 11 .85187 a t  64 . Lowest r =  - 3 2 . 3 9 1 2 5  a t  26

'N ' ' C ' ' B ' " I "  ' 2 ' ' 3 '  ' 4 ' ' 5 ' ' 6 '  ' 7 ' ' 8 '  ' 9 ' ' 1 0 '
< + ) 51 21 22 11 5 2 1 2 0 0 0 0 1
< - )  76 22 22 12 6 1 2 0 0 0 0 0 0

Average St . Dv . Energy Power C o r r e l a t  i on
- 6 12 22493 177 187

input  b i t  energy 127 Other energy 22245 .4 8  SNRi -2 2 .4 3 4 3 8
Signal  processing  using PDSP F 1 I t e r a t i o n  It 1
Output  b i t  energy 77 Other energy 6 3 .30408  SNRo .8505901
Processed 2 b u r s t s .  Sample PD = .6062992 Sample PG = 21.11184
Sample Crb = 187.1388  Sample Cdb = 77 Sample Cfb = 75 .34483
Sample Cd = .6062992 Sample Cg = 485.2838
P l o t t i n g  the f i l t e r e d  r e c e iv e d  s ig n a l  R < t ) = b < t ) +1<t ) + n < t )
Received PDSP output  R < t ) = b < t ) + I ( t ) + n ( t )  is  p l o t t e d  in F igure D-6 
End of  PDSP F 1 I t e r a t i o n  # 1
Genera t in g  i n t e r f e r e n c e  named i < t )
Burst  s t a r t ( 1 -126)  1 Burst  end<2-127)  128
I n t e r f e r e n c e  ampli tude a i =  30 frequency  f i =  .008
phase p i =  1 .8852 AM f requency  f a  = 0
FM modula t ion index fmi = 0  FM frequency  fm = .008
G en era t in g  the re c e i v e d  PDSP input  s ignal  7 : r <t ) = b < t ) + i <t ) + n < t )
input  b i t  energy 127 Other energy 57062 .7  SNRi - 2 6 . 5 2 5 4 9
S ignal  process ing using PDSP F 2 I t e r a t i o n  # 1
Output b i t  energy 124 .7285  Other energy 8815 .5 57  SNRo -1 8 .4 9 2 8 4
Processed 3 b u r s t s .  Sample PD = .9821142 Sample PG = 7.954265
Sample Crb = - 1 5 1 . 2 5 8 3  Sample Cdb = 124 .7 2 86  Sample Cfb = 32 .26596
Sample Cd = .9821147 Sample Cg = 8 .735518
P l o t t i n g  the f i l t e r e d  r e c e iv e d  s igna l  r < t ) = b < t ) + i < t ) + n < t )
Received  PDSP output  r < t ) = b < t ) + i < t ) + n < t )  is  p l o t t e d  in F igure  D-7 
C a l c u l a t i n g  s t a t i s t i c s  f o r  Processed r <t ) = b < t >+ i <t ) + n < t )
H ighest  r  = 19.57347 a t  56 . Lowest r = -19 .5 980 1  at  58

'N ' ' C ' ' B ' ' 1 ' ' 2 ' ' 3 '  ' 4 ' ' 5 ' ' 6 '  ' 7 ' CD V ' 1 0 '
< + ) 64 3 4 0 0 0 0 1 0 0 0 1 0
< - )  63 4 4 0 0 0 0 1 0 0 0 0 0

Average S t . Dv . Energy Power C o r r e l a t  i on
0 8 8755 69 32
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End of  PDSP F 2 I t e r a t i o n  # 1
Signal  p rocess ing  using PDSP F 2 I t e r a t i o n  # 2
Output  b i t  energy 122 .6108 Other energy 2545 .659  SNRo -13 .17271
Processed 6 b u r s t s .  Sample PD = .9654397 Sample PG = 13 .20002
Sample Crb = -1 5 1 .2 5 8 3  Sample Cdb = 122 .535 Sample Cfb = 22 .50014
Sample Cd = .9648424 Sample Cg = 7.202888
P l o t t i n g  the - f i l t e r e d  r e c e iv e d  s igna l  r  < t )=b<  t ) + i  < t  )+n(  t )
Received PDSP outp ut  r <t ) = b < t ) + i <t ) + n < t ) is p l o t t e d  in F ig ure  D-8  
C a l c u l a t i n g  s t a t i s t i c s  -for Processed r < t ) = b ( t )  +i <t ) + n ( t )
Highest  r = 12 .86227  a t  1 . Lowest r = -11 .5 5 8 9 1  at  58

' N ' ' C ' ' B ' ' 1 ' ' 2 ' ' 3 '  ' 4 ' ' 5 ' ' 6 '  ' 7 ' ' 8 '  ' 9 '  ' 1 0 '
< + ) 65 10 11 2 1 0 1 1 2 0 3 0 0
<-> 62 11 11 2 1 1 0 2 1 1 2 0 0

Average S t . Dv. Energy Power C o r r e l a t  i on
0 4 2467 19 23

End o-f PDSP F 2 I t e r a t i o n  # 2
Signal  p rocess ing  using PDSP F 2 I t e r a t i o n  # 3
Output b i t  energy 120.5985  Other energy 2394 .1 02  SNRo -1 2 .97801
Processed 2 b u r s t s .  Sample PD = .9495943 Sample PG = 13 .32286
Sample Crb =  -1 5 1 .2 5 8 3  Sample Cdb = 121.3344 Sample Cfb = 10.05102
Sample Cd = .9553894 Sample Cg = 5 .7 06848
P l o t t i n g  the f i l t e r e d  r e c e iv e d  s ig n a l  r < t ) = b < t ) + i <t ) + n ( t )
Received PDSP output  r < t ) = b < t ) + i <t ) + n < t )  is p l o t t e d  in F ig u re  D-9  
P l o t t i n g  the PN output  s ig na l  named processed b<t )
Processed s ig n a l  b ( t )  is p l o t t e d  in F ig u re  D-10 
C a l c u l a t i n g  s t a t i s t i c s  f o r  Processed r < t ) = b ( t ) + i ( t ) + n ( t )
Highest  r  = 12 .86227 a t  1 . Lowest r -  - 1 1 .5 5 8 9 1  a t  58

'N ' ' C ' ' B ' M '  ' 2 ' " 3 / ' 4 ' "5" ' 6 '  ' 7 ' ' B '  ' 9 '  ' 1 0 '
< + ) 67 18 19 7 3 2 1 1 1 0 3 1 0
< - )  60 19 19 10 1 1 0 3 1 0 3 0 0

Average St . Dv. Energy Power C o r r e l a t  ion
0 4 2284 18 10

C a l c u l a t i n g  s t a t i s t i c s  f o r  Processed b < t )
H ighest  r = 1 .285714 a t  108 . Lowest r  =  - 1 . 4  a t  118

'N ' ' C ' ' & ' ' 1 ' ' 2 ' ' 3 '  ' 4 ' ' 5 ' ' 6 '  ' 7 ' ' B '  ' 9 '  M O '
< + ) 64 32 32 16 8 4 2 1 0 1 0 0 0
< - )  63 32 32 16 8 4 2 1 1 0 0 0 0

Average S t . Dv. Energy Power C orre l  at  i oi
-0 1 121 1 121
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End o* PDSP F 2 I t e r a t i o n  # 3
Genera t in g  the re c e i v e d  PDSP input  s ignal  7 s r ( t ) = b < t ) + i <t ) + n < t )
input  b i t  energy 127 Other energy 5 7 062 .7  SNRi - 2 6 .5 2 5 4 9
Signal  process in g  using PDSP F 3 I t e r a t i o n  # 1
Output b i t  energy 113.5667 Other energy 1208 .656  SNRo - 1 0 . 2 7 0 5 2
Processed 3 b u r s t s .  Sample PD = .8942258 Sample PG = 15 .76944
Sample Crb ■ - 1 5 1 .2 5 8 3  Sample Cdb = 113 .5667  Sample Cfb = 37 .16476
Sample Cd = .8942257 Sample Cg = 10 .6 06 75
P l o t t i n g  the - f i l t e r e d  r e c e iv e d  s ig n a l  r< t )=b<  t )+ i < t )  + n< t )
Received PDSP output  r ( t ) = b < t ) + i < t > + n < t )  is  p l o t t e d  in F ig u re  D - l l  
P l o t t i n g  the PN o utp ut  s igna l  named processed b ( t )
Processed s ig n a l  b < t )  is p l o t t e d  in F ig ure  D-12  
C a l c u l a t i n g  s t a t i s t i c s  -for Processed r  < t )=b<  t ) +  i < t )  + n< t  >
Highest  r  «  7 .7537 58  a t  1 . Lowest r  = - 7 . 6 0 8 0 3 3  a t  117

' N '  ' C ' / g /  / j /  / 2f ' 3 '  ' 4 '  ' 5 ' ' 6 '  ' 7 ' ' Q '  ' 9 ' -10-'
( + )  66 22 23 7 5 2 3 5 1 0 0 0 0
< - )  61 23 23 10 2 3 3 4 1 0 0 0 0

Average S t .  Dv. Energy Power C o r r e l a t  i on
0 3 1169 9 37

l c u l a t i n g  s t a t i s t i c s  f o r  Processed b ( t )
ghest  r  = 1 .75 a t  78 . Lowest r  = - 1 . 5 a t  11

/ N / ' C ' ' 1 ' ' 2 ' ' 3 '  ' 4 ' ' 5 ' ' 6 '  ' 7 ' ' 8 '  ' 9 ' ' 1 0 '
( + ) 64 32 32 16 8 4 2 1 0 1 0 0 0
< - )  63 32 32 16 8 4 2 1 1 0 0 0 0

Average St . Dv. Energy Power C o r r e l a t  i on
0 1 114 1 114

End o f  PDSP F 3 I t e r a t i o n  ft 1
Signal  pro cess in g  using PDSP F 3 I t e r a t i o n  # 2
Output b i t  energy 113.5667  Other energy 1208 .656 SNi\o -1 0 . 2 7 0 5 2
Processed 0 b u r s t s .  Sample PD = .8942258 Sample PG = 15 .76944
Sample Crb = - 1 5 1 .2 5 8 3  Sample Cdb = 113.5667  Sample Cfb = 37 .16476
Sample Cd = .8942257 Sample Cg = 10 .60675
End of  PDSP F 3 I t e r a t i o n  # 2
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Generat ing the re c e i v e d  PDSP input  s igna l  7 ; r < t ) = b < t ) + i < t ) + n ( t )
input  b i t  energy 127 Other energy 5 70 62 .7  SNRi -2 6 ,5 2 5 4 9
Signal process ing  using PDSP F 4 I t e r a t i o n  tt 1
Output b i t  energy 111.0686  Other energy 3 23 .82 86  SNRo - 4 .6 4 7 2 3 9
Processed 3 b u r s t s .  Sample PD = .8745561 Sample PG = 21 .29613
Sample Crb = - 1 5 1 . 2 5 8 3  Sample Cdb = 111 .0667  Sample Cfb = 66 .6 2285
Sample Cd = .8745407 Sample Cg = 2 9 .9 8 0 1 5
P l o t t i n g  the - f i l t e r e d  r e c e iv e d  s ig n a l  r < t ) = b ( t ) + i <t ) + n < t )
Received PDSP outp ut  r ( t ) = b < t ) + i < t ) + n ( t >  is  p l o t t e d  in F ig ure  D-13  
P l o t t i n g  the PN output  s igna l  named processed b < t )
Processed s ig n a l  b < t )  is  p l o t t e d  in F igu re  D-14  
C a l c u l a t i n g  s t a t i s t i c s  f o r  Processed r <t ) = b < t ) + i <t ) + n < t )
Highest  r  =  4 .4 9 4 0 3 3  a t  119 . Lowest r  =  - 7 .3 3 2 3 5  a t  127

' N ' ' C ' ' B ' " I " ' 2 ' ' 3 '  ' 4 ' ' 5 ' ' 7 ' ' 8 '  ' 9 ' ' 1 0 '
< + ) 62 36 37 21 10 4 1 1 0 0 0 0 0
< - )  65 37 37 21 9 3 3 1 0 0 0 0 0

Average St . Dv • Energy Power C o r r e l a t  i on
0 2 348 3 67

C a l c u l a t i n g  s t a t i s t i c s  f o r  Processed b < t )
Highest  r  = 1 .828125  a t  33 . Lowest r = - 1 . 5 9 3 7 5  a t  11

' N ' ' C ' ' B ' ' 1 '  ' 2 ' ' 3 '  ' 4 ' ' 5 ' ' 6 '  ' 7 ' ' 8 '  ' 9 ' ' 1 0 '
( + ) 66 33 33 16 9 4 2 1 0 1 0 0 0
< - ) 61 33 33 17 9 4 2 0 1 0 0 0 0

Average S t . Dv. Energy Power C o r r e l a t  i on
0 1 111 1 111

End of  PDSP F 4 I t e r a t i o n  # 1
Signal processing us ing  PDSP F 4 I t e r a t i o n  it 2
Output b i t  energy 111.0686  Other energy 3 23 .82 86  SNRo - 4 .6 4 7 2 3 9
Processed 0 b u r s t s .  Sample PD = .8745561 Sample PG = 21 .2 9613
Sample Crb = - 1 5 1 .2 5 8 3  Sample Cdb = 111.0667  Sample Cfb = 66 .62285
Sample Cd = .8745407 Sample Cg = 2 9 .9 8 0 1 5
End of  PDSP F 4 I t e r a t i o n  # 2



APPENDIX D

INVARIANT ALGORITHMS DEMONSTRATION 

WAVEFORM RESULTS

In this Appendix, we provide sample waveforms which resulted from the 

run in Appendix C. The parameters pertaining to each waveform are also provided 

in Appendix C.

First we generate a sample PN waveform b(t) shown in Figure D-1 to which 

we add an interference waveform shown in Figure D-2. Finally, we add the 

zero-mean , tr = 1 Gaussian noise shown in Figure D-3 to form the received 

input waveform r(t) = b(t) + i(t) + n(t) shown in Figure D-4. r(t) is then 

processed by each of the four PDSPs FI through F4. The PDSP FI output when 

interference is continuous is provided in Figure D-5. Note the significant 

processing distortion. In Figure D-6, the PDSP F1 output shows the erasure 

caused by a bursty Interference turned on during chip intervals 16-64. 

Regenrating the off-tone Interference for the duration of the entire PN period, 

Figures D-7, D-8 and D-9 show the Iterated waveform output of PDSP F2 for two 

iterations and Figure D-10 shows the final resulting signal distortion due to 

PDSP F2. With PDSP F3 and F4, no Iterations are required and Figures D-11 and 

D-13 show the resulting PDSP output. The corresponding PN waveforms 

distorted by the PDSPs are shown In Figures D -12 and D -14.
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Figure D-1. PN-Coded Waveform at Input to PDSPs
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Figure D-2. Relevant Interference at Input of PDSPs
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Figure D-3. Relevant Noise at Input of PDSPs
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Figure D-4. Received Signal at Input of PDSPs
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Figure D-5. Received and Distorted PN Waveforms at Output of PDSP FI
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Figure D-7. Received Waveform at Output of PDSP F2 after Iteration *1
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Figure D-8. Received Waveform at Output of PDSP F2 after Iteration *2
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Figure D-9. Received Waveform at Output of PDSP F2 after Iteration *3
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Figure D-10. Distorted PN Signal at Output of PDSP F2
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Figure D-11. Received Waveform at Output of PDSP F3 after IterationJ
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Figure D-12. Distorted PN Signal at Output of PDSP F3
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