Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/690 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Nanostructured composite materials based on carbon nanotubes and 3-D photonic crystals
Author: Chen, Jing
View Online: njit-etd2005-063
(xvi, 148 pages ~ 10.9 MB pdf)
Department: Committee for the Interdisciplinary Program in Materials Science and Engineering
Degree: Doctor of Philosophy
Program: Materials Science and Engineering
Document Type: Dissertation
Advisory Committee: Grebel, Haim (Committee chair)
Iqbal, Zafar (Committee member)
Sosnowski, Marek (Committee member)
Federici, John Francis (Committee member)
Dorsinville, Roger (Committee member)
Date: 2005-05
Keywords: Single-wall carbon nanostructure
Polymeric composite
Inverse opal
Colloid crystal
Raman spectroscopy
Templating technique
Availability: Unrestricted
Abstract:

Carbon nanotubes (CNT) and in particular, single-wall carbon nanotubes (SWCNT) have been extensively studied, in large part, due to their unique one-dimensional crystalline structures and related electronic and optical properties. Various polymeric composite materials, which were based on carbon nanotubes, have been also developed in an attempt to combine the properties of polymer and CNT in a single film. Such composites were mainly formed by mixing carbon nanotubes within the polymer without special emphasis on the structure and thereby, the nanoscopic properties of the resultant material.

Photonic crystals belong to a class of man-made structures aimed at manipulating the propagation of electromagnetic waves at sub-wavelength dimensions in the visible range. The objective of this research work was to fabricate optical nano-composites from the bottom up: by incorporating carbon nanotubes within nano-structured templates we attempted to achieve novel composites with unique optical properties.

Three-dimensional photonic crystals were made by self-assembly using monodisperse suspension of silicon dioxide colloids. Upon sedimentation, this highly ordered crystal, also known as opal, serves as a template for polymeric and polymer/CNT composites. For example, by infiltrating of the templates voids with a desired polymeric solution followed by etching of the silica template away, a three-dimensional inverse polymeric structure is obtained.

Single-wall carbon nanotubes (SWCNT) have been directly grown into the template voids (in the range of 20 - 70 nm) by catalytic Chemical Vapor Deposition (CVD) technique with carbon monoxide as the carbon feedstock. The resultant SWCNTs were mostly semiconductive (p-doped). Control over the growth of SWCNT has been obtained by changing the catalyst concentration and the template's void-size.

Various techniques were used to characterize the SWCNT and its composites: Scanning Electron Microscope (SEM) has been used to identify the morphology of structures; interactions between polymer and nanotubes have been characterized by Raman spectroscopy; optical properties were studied by linear and nonlinear optical transmission and optical activity measurements; electrical properties were studied using thermoelectric and photoconductivity measurements. These data suggest that selforganized nano-scale templates are a promising route for realizing novel optical composite materials.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003