Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/605 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Integrating tolerances in G and M codes using neural networks
Author: Sundareshan, Vijay Kumar
View Online: njit-etd2003-015
(ix, 83 pages ~ 3.6 MB pdf)
Department: Department of Industrial and Manufacturing Engineering
Degree: Master of Science
Program: Industrial Engineering
Document Type: Thesis
Advisory Committee: Abdou, George Hanna (Committee chair)
McDermott, Kevin J. (Committee member)
Ranky, Paul G. (Committee member)
Date: 2003-01
Keywords: Design tolerances
Artificial neural networks (ANN)
Availability: Unrestricted
Abstract:

Continuous integrated solutions from CAD down to the preparation of NC programs were developed in the recent years. However, if tolerances should be considered, the interaction of human experts is still necessary. A way to fill this gap in the production process is shown in this thesis. The study builds a relationship between the given design tolerances and including these tolerances in machining by generating respective G and M codes. The study focuses on physical phenomena and their inter-relationship while manufacturing. For example how the speed of machining, torque, power, depth of cut, etc. influences machining under specified tolerances. Artificial neural networks (ANN) have been used to generate required outputs because of their capability to learn from a given set of data points. Four different kinds of neural networks, as a module, have been used. with different kinds of learning rules (algorithms) depending on the type of inputs and outputs. The whole model incorporates retrieval of tolerances from a CAD software and running the algorithms for (i) Dimensional tolerance analysis, (ii) Control of feed rate, spindle speed, depth of cut and cutting forces, (iii) Propagation of errors in multistage machining, and (iv) Vectorization of geometrical tolerances. Machining processes would include (i) Milling, (ii) Turning, and (iii) Drilling. Then the corresponding outputs are interpreted and analyzed to generate G and M codes. This study has shown how ANN can revolutionize NC machine manufacturing. A case study illustrates the effectiveness of the proposed method.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003