Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/791 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Experimental ion implantation system for decaborane ions
Author: Babaram, Vijay
View Online: njit-etd2000-077
(xii, 70 pages ~ 8.4 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Master of Science
Program: Electrical Engineering
Document Type: Thesis
Advisory Committee: Sosnowski, Marek (Committee chair)
Grebel, Haim (Committee member)
Poate, J. M. (Committee member)
Jacobson, Dale C. (Committee member)
Date: 2000-01
Keywords: Ion implantation.
Borane.
Thin films.
Availability: Unrestricted
Abstract:

Future generations of Si technology will require ultra shallow junctions (tens of nm) in the drain and source regions of MOS transistors. Fabrication of such shallow p-type junctions requires implantation of boron at ultra low energies (< 1 keV), below the limits of standard ion implantation technology. A proposed solution involves implantation of B10Hx+ ions in which boron atoms carry less than 10% of the beam energy.

This thesis is a part of the feasibility study of this new technology. An experimental ion implantation system was designed and built at Ion Beam and Thin Film Lab, NJIT. The system was tested and the mass analyzing magnet was calibrated using argon ions. Decaborane ions, of the order of microamperes, were successifilly generated and implanted into Si. Beam-profiling experiments were performed to understand the shape of the beam and magnet focussing. Ion mass spectra of decaborane from the experimental implanter agreed with earlier measurements with a quadrupole mass spectrometer. The implanted boron dose was measured at Bell Labs, Murray Hill, NJ, using Nuclear Reaction Analysis (NRA). From electrostatic beam deflection experiments, it was concluded that there is no significant neutral beam component and no substantial breakup of B10Hx+ ions after the magnet. Boron dose determined from current integration with horizontal beam scan and electron suppression was within 7% of the dose measured with NRA. The developed experimental ion implantation system will be used for investigating the characteristics of Si implanted with decaborane ions.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003