Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1091 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Adaptive radar in heterogeneous environment
Author: Futernik, Albert
View Online: njit-etd1996-054
(ix, 44 pages ~ 1.5 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Master of Science
Program: Electrical Engineering
Document Type: Thesis
Advisory Committee: Haimovich, Alexander (Committee chair)
Ge, Hongya (Committee member)
Siveski, Zoran (Committee member)
Date: 1996-01
Keywords: Radar.
Adaptive signal processing.
Availability: Unrestricted
Abstract:

Radar performance in heterogeneous clutter has been a much studied topic. In all the studies so far, various forms of the sample matrix inversion (SMI) technique where used to calculate the weight vector of the processor. In this thesis an eigenanalysis-based technique known as the eigencanceler, is used. Performance of this technique is compared to the performance of the generalized likelihood ration (GLR) processor. This comparison is done using the clutter edge model, in which there is an abrupt change in the clutter power in the reference window. It is shown that the false alarm rate fluctuations, of the cell averaging constant false alarm rate (CA-CFAR) eigencanceler, depend on the number of secondary data vectors used to estimate the covariance matrix. It is also shown that when the estimate of the covariance matrix is poor, the eigencanceler is able to perform where the GLR fails.

These two methods are also compared using the range-dependent clutter power model, in which the range clutter power is a Weibull random variable. It is shown that the performance of the eigencanceler depends heavily on the variance of the clutter power random variable. It is again shown that the eigencanceler is able to perform with a low number of range cell samples, where the GLR fails.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003