Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1181 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Synthesis of silicon oxide/VYCOR composite membrane structures by an optimized LPCVD process
Author: Datta, Abhijit
View Online: njit-etd1995-078
(xi, 95 pages ~ 2.1 MB pdf)
Department: Committee for the Interdisciplinary Program in Materials Science and Engineering
Degree: Master of Science
Program: Engineering Science
Document Type: Thesis
Advisory Committee: Levy, Roland A. (Committee co-chair)
Grow, James M. (Committee co-chair)
Kristol, David S. (Committee member)
Date: 1995-01
Keywords: Silicon dioxide films.
Chemical vapor deposition.
Ceramic materials.
Availability: Unrestricted
Abstract:

This study is focused on development of highly selective ceramic membrane structures consisting of silicon dioxide films synthesized by low pressure chemical vapor deposition (LPCVD) on mesoporous Vycor substrates. The ability of easily altering the composition of such films by varying the LPCVD processing parameters affords the opportunity of microengineering the pore structure by reducing the diameters of pre-existing pores in the support. The process parameters investigated include, deposition temperature, total pressure, and flow rate of oxygen. Both the kinetics and select properties of the deposits were examined. The growth rate as a function of temperature was seen to follow an Arrhenius behavior in the range 350-475 °C with an apparent activation energy of 9 kcal/mol. The growth rate was seen to increase with higher oxygen flow rate and to vary as a function of the square root of pressure. Within the framework of the process window investigated a temperature of 450 °C, total pressure of 500 mTorr, oxygen and DES flow rate of 15 sccm and 30 scorn, respectively, yielded the best quality oxide with density 2.11 g/cm3, RI 1.45, and compressive stress 210 MPa. Permeation studies on Silicon Oxide/ Vycor composite membrane synthesized by the same side reaction geometry indicated poor permselectivity performance followed by cracking of the membrane structure. Opposing reactant geometry technique resulted in membrane structures of significantly higher selectivity than that predicted by Knudsen mechanism.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003