Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1818/ in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Modeling of rapid thermal processing system by finite element method
Author: Martynov, Helen
View Online: njit-etd1993-120
(xi, 94 pages ~ 2.5 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Master of Science
Program: Electrical Engineering
Document Type: Thesis
Advisory Committee: Kosonocky, Walter F. (Committee chair)
Manikopoulos, Constantine N. (Committee member)
Hou, Edwin (Committee member)
Date: 1993-10
Keywords: Semiconductors -- Heat treatment
Semiconductor wafers
Finite element method
Availability: Unrestricted
Abstract:

A finite element model for the Rapid Thermal Processing (RTP) system at NJIT was developed based on the software package MSC/NASTRAN. Based on this model, a thermal analysis of the 9" chamber, 3 zones (37 lamps) RTP system was conducted for various modes of system operation with the 6" silicon wafer temperature varying from 300°K to 1100°K. An open-loop control algorithm was developed in order to study the dependence of wafer temperature on time, position, and applied radiant heat distribution. It was shown that the non-uniformity in the radial temperature profile can be less than 3°C during wafer heating at the rate of 35°C per second.

The developed model was also utilized for the analysis of the change in the wafer temperature profile due to the heat loss through thermocouple wiring attached to the wafer. It was shown that for a 0.005" Nickel-Chromium thermocouple the maximum disturbance of the wafer temperature profile at the thermocouple contact was only of the order of 0.1°C with the wafer temperature in the interval from 800°K to 1100°K.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003