Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1784/ in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Application of imaging pyrometry for remote temperature measurements
Author: Kaplinsky, Michael B.
View Online: njit-etd1993-099
(xii, 125 pages ~ 3.8 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Master of Science
Program: Electrical Engineering
Document Type: Thesis
Advisory Committee: Kosonocky, Walter F. (Committee chair)
Manikopoulos, Constantine N. (Committee member)
Hou, Edwin (Committee member)
Date: 1993-01
Keywords: Pyrometers and pyrometry
Radiation -- Measurement
Temperature measurements
Remote sensing
Availability: Unrestricted
Abstract:

The radiometric model of an IR image sensor has been developed. Based on this model, the application of imaging pyrometry to remote temperature measurements has been investigated. This analysis provides the estimation of temperature accuracy achievable by imaging pyrometry in conjunction with a number of radiometric methods. The detection of radiation emitted across the full spectral bandwidth of the imager as well as utilization of narrow-passband filters was analyzed for a target with known emissivity.

The methods of two-wavelength ratio radiometry and multi-wavelength radiometry were considered for the targets with unknown emissivity. The optimal selection of the wavelengths for the method of ratio radiometry was investigated. It was shown that in the case of a blackbody radiator at 1000 °C the ratio radiometry yields temperature resolution of 0.5 °C for the 106 electrons per pixel signal level detected by 320x244 IR imager with PtSi Schottky-barrier detectors and operated with 100-nm-wide Gaussian filters positioned at 1.5 μm and 3.0 µ. The temperature accuracy achievable by least-squares-based multi-wavelength imaging pyrometry (MWIP) was analyzed for linear and quadratic emissivity models. The presented results have shown that for targets with quadratic spectral emissivity at 1000 °C the 6-filter MWIP is capable of providing temperature resolution of about 1 °C for target temperature of 1000 °C and the maximum signal of 4x106 electrons per pixel. For targets at 500 °C the corresponding accuracy is equal to 0.4 °C.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003