

SCHOOL OF APPLIED ENGINEERING & TECHNOLOGY
SURVEYING ENGINEERING TECHNOLOGY

SET 200

Introduction to Geomatics

Fall 2025

COURSE STRUCTURE	(2-0-2) (lecture hr/wk - lab hr/wk – course credits) Classroom: CKB 341 (Monday: 6:00 pm – 7:55 pm)
COURSE DESCRIPTION	Plane surveying with angle and distance measurements; geospatial data acquisition technologies and, basics of aerial mapping and Global Navigation Satellite System (GNSS) for localization (positioning). Principles of topographic mapping and Geographic Information Systems (GIS) for surveying and mapping applications. Emphasis is on the using computers for solving typical field and office problems.
PREREQUISITE(S)	Pre-calculus
CO REQUISITE(S)	SET200A-Surveying Laboratory
TEXTBOOK(s)/ RECOMMENDED MATERIAL	Elementary Surveying: An Introduction to Geomatics , Latest Edition, by Charles D. Ghilani, Pearson, ISBN-13: 978-0134604657. Calculator (NCEES –recommended), Engineering Computation Pad
SUPPLEMENTARY MATERIALS	Surveying with Construction Applications , 3 rd Edition, Prentice Hall 1997.
COMPUTER USAGE	MS Word, Excel
COURSE LEARNING OUTCOMES	By the completion of this course, students will be able to: <ol style="list-style-type: none">1. Develop an understanding of the survey math and its application to basic surveying2. Develop understanding on surveying measures and associated measurement errors.3. Perform height leveling computations and adjustment4. Develop understanding on remote sensing and photogrammetric principles5. Perform basic computations associated with GNSS measurements and geodetic datums6. Perform topographic mapping and contour interpretations7. Understand and differentiate the difference between vector and raster data and associate GIS operations on these data formats,8. Perform elementary GIS operations
CLASS TOPICS	Technology for distance and angular measurements and basics of measurement errors, heights and differential leveling, bearings and azimuths, coordinate computations, , earthworks: areas and volumes topographic surveys and mapping, construction surveys, elements of photogrammetry & remote sensing, space-based positioning (i.e., GPS), introduction to Geographic Information Systems (GIS).
STUDENT OUTCOMES	The Course Learning Outcomes (CLO) support the achievement of the following SET Student Outcomes and TAC of ABET Criterion 9 requirements: Student Outcome b - an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that

SCHOOL OF APPLIED ENGINEERING & TECHNOLOGY
SURVEYING ENGINEERING TECHNOLOGY

SET 200

Introduction to Geomatics

Fall 2025

**HYBRID LEARNING
INFORMATION**

require the application of principles and applied procedures or methodologies;
Related CLO – 1 thru 3

The instructor will discuss these requirements on the first day of the course and/or post on their Learning Management System (LMS).

Please become familiar with:

- Zoom: <https://njit-edu.zoom.us/>
- Online Proctoring: <https://ist.njit.edu/online-proctoring/>
- Back2Classroom: <https://back2classroom.njit.edu/getting-started-students>

GRADING POLICY

Quizzes.....20% (due dates indicated on Canvas)
Homework 25% (due dates indicated on Canvas)
Mid Term25% (- Date shown on syllabus)
Final.....30% (In Class. See Registrar Webpage)

Videos: Videos cover concepts outlined in the recommended text book.

Quizzes: Canvas will host all quizzes for this course. Quizzes will cover materials covered in the Lecture and the posted videos. For example, the assignment “Review V1” means that students should access the online quiz for Video 1 by the due date as posted in Canvas (and the syllabus).

Homework: Solutions to survey problems that require application of concepts learnt. Problems statements will also require the computational skills using the basic scientific calculation. It is strongly recommended to solve the homework problems (follow the format as shown in lecture videos) using either engineering calculation pad or a ruled workbook to better understand the sequence of computations that lead to the solution. This method will also be helpful during your review for the midterm and final exam. Submittals of your homework assignments are also via Canvas in the form of a quiz.

Exam: There will be one midterm and a final exam. The final exam is not comprehensive but will cover materials that were covered since the midterm exam. The general **format** for the midterm exam will be two parts. **Part I** consists of multiple choice and True/False questions in a timed quiz with lockdown browser. **Part II** of an exam comprises problem/solution type questions as a timed quiz with lockdown browser.

Notes:

Students cannot pass this course if you have NOT completed more than 80% of the quizzes and the homework assignments. Penalty for late submissions will be at a rate of 10% per day after the posted deadline.

There will be no makeup exams.

Student use of artificial intelligence (AI) is permitted in this course for certain assignments and activities. It is not permitted to be used in the homework

SCHOOL OF APPLIED ENGINEERING & TECHNOLOGY
SURVEYING ENGINEERING TECHNOLOGY

SET 200

Introduction to Geomatics

Fall 2025

assignments as doing so would undermine student learning and achievement of course learning outcomes. Additionally, if and when students use AI in this course, the AI must be cited as is shown within the NJIT Library AI citation page for AI. If you have any questions or concerns about AI technology use in this class, please reach out to your instructor prior to submitting any assignments.

Due date for assignments is Sunday 11:59 pm of the week of the assignment

Final Grade/Score Assignment (out of 100 %)

D= 50-56

C= 57-62

C+= 63-69

B = 70-76

B+ = 77-84

A > 85

ACADEMIC INTEGRITY	NJIT has a zero-tolerance policy regarding cheating of any kind and student behavior that is disruptive to a learning environment. Any incidents will be immediately reported to the Dean of Students. In the cases the Honor Code violations are detected, the punishments range from a minimum of failure in the course plus disciplinary probation up to expulsion from NJIT with notations on students' permanent record. Avoid situations where honorable behavior could be misinterpreted. For more information on the honor code, go to http://www.njit.edu/academics/honorcode.php
DISCUSS VIOLENT CRITICAL INCIDENT	Class discussion on strategies when class may encounter a Violent Critical Incident: Alert, Evacuate, Counter
STUDENT BEHAVIOR	<ul style="list-style-type: none">• See NJIT policy at https://www.njit.edu/doss/code-student-conduct-article-11-university-policy-academic-integrity/
MODIFICATION TO COURSE	The Course Outline may be modified at the discretion of the instructor or in the event of extenuating circumstances. Students will be notified in a timely manner of any changes to the Course outline.
PREPARED BY	Dr. L. V. Potts
Office Hours	221 Fenster Hall: Monday and Wednesday 3:00 – 5:30 pm Or by appointment via email lpotts@njit.edu

SCHOOL OF APPLIED ENGINEERING & TECHNOLOGY
SURVEYING ENGINEERING TECHNOLOGY

SET 200

Introduction to Geomatics

Fall 2025

Course Outline

Week	Date: Week of	Assignments online via Canvas	Reading/ Activity	Topics
1.	9/01		Ch. 1	<u>Introduction</u> (Video) <ul style="list-style-type: none"> • Overview of Geomatics • Math Review • Principles of Geospatial Mapping
2.	9/08	Review V1	Ch. 3: 3.1-3.8	<u>Measurements</u> (Video - V1) <ul style="list-style-type: none"> • Measurement Technologies • Data Types for topographic Mapping
3.	9/15	HW #1	Ch. 6 Ch. 7	<u>Surveying Measurements (cont.)</u> (Video – V2) <ul style="list-style-type: none"> • Angles, Azimuth & Bearings • Distance Measurements • Quality of Surveying Data
4.	9/22	Review V2	Ch.: 6 Part II	<u>Calibration & Measurement Corrections</u> <ul style="list-style-type: none"> • Equipment Calibration • Measurement Corrections
5.	9/29	HW #2	Ch. 4: (4.1-4.2) Ch.13 (13.4.3)	<u>Geodetic Surfaces, Coordinates & Reductions</u> <ul style="list-style-type: none"> • Geodetic Surfaces and Datums • Horizontal (Geodetic) Datums • Vertical Datum (Height) Datums • Projections - State Planar Coordinates • Measurement Reductions (scale factors)
6.	10/06		Ch. 4 Section 4.5	<u>Heights</u> (Video – V3) <ul style="list-style-type: none"> • Trigonometric leveling • Computations & Adjustments
7.	10/13	Review V3	Ch. 4 Section 4.5 Ch. 5 (5.5; 5.6; 5.9)	<u>Concepts on Heights (cont.)</u> <ul style="list-style-type: none"> • Differential leveling • Computations and Adjustments
8.	10/20	HW #3	Ch. 10 (10.4; 10.8)	<u>Coordinate Geometry</u> (Video – V4) <ul style="list-style-type: none"> • Departures and Latitude • Computing Coordinates • Compute Construction Data
9.	10/27		Midterm (Covers Materials from Weeks 1 - 7)	
10.	11/03	Review V4	Ch. 13 (13.4; 13.5)	<u>Space-based Positioning (Localization)</u> (Video – V5) <ul style="list-style-type: none"> • GPS (Pseudo Range) Observation • GNSS advantageous & Limitations • Receiver Location (XYZ) & Numerical Examples

SCHOOL OF APPLIED ENGINEERING & TECHNOLOGY
SURVEYING ENGINEERING TECHNOLOGY

SET 200

Introduction to Geomatics

Fall 2025

11.	11/10	Review V5	Ch: 17 (27.6-27.7)	Principles of Aerial Surveying (Video – V6) <ul style="list-style-type: none"> • Principles of Remote Sensing with Drones • Principles of Photogrammetry • Creating coordinates from aerial photos
12.	11/17	HW #4 Review V6	Ch. 18 (18.6 – 18.9) Ch. 12 (12.5) Ch. 26 (26.11)	Mapping (Video – V7) <ul style="list-style-type: none"> • Construction of Topographic Maps • Contours and contour interval (Gradient) • Area & Volume Computations
13.	11/24	Review V7	Ch. 28 28.1-28.6	Geographic Information System (GIS) (Video – V8) <ul style="list-style-type: none"> • GIS Components • GIS data types and limitations
14.	12/01		Ch. 28 Section 28.9	GIS (cont.) <ul style="list-style-type: none"> • GIS Operations • ArcGIS – Software • ArcGIS Mapping
15.	12/08	HW #5 Review V8		Construction Surveys <ul style="list-style-type: none"> • Layout Computations • Reality Capture Geospatial Intelligence & Applications <ul style="list-style-type: none"> • “The Geoverse” • Point clouds • Building Information Modeling (BIM) • Digital Twins Course Summary & Review
		Final Exam (see Registrar Homepage for schedule details)		