MECHANICAL PROPERTIES OF MATERIALS

MTSE 610-101 (CRN 95459)

Wednesday 6:00 pm – 8:50 pm, FMH 404

Instructor: Dr. Oktay Gokce Tiernan 456 Phone: 973-596-3571, email: gokce@njit.edu

Office hours: By appointment

Course Description: Overview of mechanical properties of ceramics, metals, and polymers, emphasizing the role of processing and microstructure in controlling these properties.

Learning Outcomes:

The Materials students will be able to deal with the stresses, strains and displacements of near-stationary structural materials subjected to applied loads. The students will learn the basics of solid mechanics within the context of processing-structure-properties-performance that characterizes Materials Science and Engineering. After having a sound understanding of the fundamentals of material behavior, students should be able to choose proper structural modification methods for the materials at micro/nano scale to tailor the desired performance properties at macro scale.

Textbook: Thomas H. Courtney, MECHANICAL BEHAVIOR OF MATERIALS (2nd edition), Waveland Press, 2005, ISBN-13: 978-1577664253.

Course website: The lecture outlines and additional material will be posted on the course website at Canvas. Go to https://canvas.njit.edu/; log in with your UCID.

Project: Present paper in class (15 to 20-min talk + questions), and ~ 7 page report (not including figures).

Date:	Subject (book chapter):
Week 1	Introduction, Overview of Mechanical Behavior
	(Ch. 1)
Week 2	Elastic Behavior (Ch. 2)
Week 3	Dislocations (Ch. 3)
Week 4	Plastic Deformation in Single and
	Polycrystalline Materials (Ch. 4)
Week 5	Strengthening of Crystalline Materials (Ch. 5)
Week 6	Midterm Exam (Ch 1-Ch. 5)
Week 7	High-Temperature Deformation of Crystalline
	Materials (Ch. 7)
Week 8	Deformation of Noncrystalline Materials (Ch. 8)
Week 9	Fracture Mechanics (Ch. 9)
Week 10	Fatigue of Engineering Materials (Ch. 12)
Week 11	Embrittlement (Ch. 13)
Week 12	Projects
Week 13	Projects
Final Exam Week (December 20)	Final Exam (Comprehensive)

Final Grade consists of the following items:

Midterm Exam: 30% Final Exam: 30%

Projects: 20% (Presentation from a selected journal article and a report. Also a second report as a critique on

another student's presentation project is requested)

Homework: 20%