| Course | ME 305 | | | | | | | | | |-----------------|---|--------------------------|---------------------------|--|--|--|--|--|--| | NUMBER | | | | | | | | | | | COURSE TITLE | Introduction to System Dynamics | | | | | | | | | | COURSE | (3-0-3) (lecture hr/wk - lab hr/wk - course credits) | | | | | | | | | | STRUCTURE | | | | | | | | | | | COURSE | Z. Ji | | | | | | | | | | COORDINATOR | | | | | | | | | | | COURSE | Principles of dynamic system modeling and response with emphasis on | | | | | | | | | | DESCRIPTION | mechanical, electrical, and fluid systems. Application of computer simulation techniques. | | | | | | | | | | Prerequisite(s) | Mech 236 – Dynamics | | | | | | | | | | | ME 231 – Kinematics | | | | | | | | | | | Math 222 — Differential Equations | | | | | | | | | | COREQUISITE(S) | None | | | | | | | | | | REQUIRED, | Required | | | | | | | | | | ELECTIVE OR | 1 | | | | | | | | | | SELECTED | | | | | | | | | | | ELECTIVE | | | | | | | | | | | REQUIRED | 1. Katsuhiko Ogata, System Dynamics, 4th Ed., Pearson Prentice-Hall, | | | | | | | | | | MATERIALS | 2004, ISBN: 0-13-142462-9 | | | | | | | | | | WATEMALS | 2. Software: MATLAB | | | | | | | | | | Supplemental | None | | | | | | | | | | materials (not | Tione | | | | | | | | | | Required) | | | | | | | | | | | COMPUTER | MATLAB software | | | | | | | | | | USAGE | INTITUTE SOILW GIC | | | | | | | | | | COURSE | Course Learning Outcomes | SOs* | Expected Performance | | | | | | | | LEARNING | Course Learning Outcomes | 308 | Criteria | | | | | | | | OUTCOMES/ | 1 111-1 | 1 | | | | | | | | | EXPECTED | 1 develop models of mechanical, electrical/electromechanical and fluid | 1 | Exam Question (80% of | | | | | | | | PERFORMANCE | | | the students will earn a | | | | | | | | CRITERIA: | systems. | | grade of 70% or better on | | | | | | | | CRITERIA. | | 1 | this question) | | | | | | | | | 2. analyze dynamic systems through | 1 | Exam Question (80% of | | | | | | | | | the application of the Laplace | | the students will earn a | | | | | | | | | transforms, block diagrams, and | | grade of 70% or better on | | | | | | | | | transfer functions. | this question) | | | | | | | | | | 3. determine transient and steady | 1 | Exam Question (80% of | | | | | | | | | state response of dynamic systems. | the students will earn a | | | | | | | | | | | | grade of 70% or better on | | | | | | | | | | | this question) | | | | | | | | | 4. calculate frequency response and | 1, 2 | Exam Question (80% of | | | | | | | | | use the results for vibration isolation | | the students will earn a | | | | | | | | | | • | • | | | | | | | | | 5. perform basic calculation related to automatic controllers and system response specification. | | | | 1, 2 | Example the s | grade of 70% or better on this question) Exam Question (80% of the students will earn a grade of 70% or better on | | | | |-------------------------------|---|-------------|------|---------|----------------------|--|--|-------|--|--| | | 6. use computer software (MATLAB) in analyzing dynamics systems and control systems | | | 1 | Hon (80% earn | this question) Homework Problems (80% of the students will earn a grade of 80% or better on these problems) | | | | | | CLASS TOPICS | Complex Algebra, Linear Algebra, Laplace Transforms, Inverse Laplace Transforms. Linear Differential Equations. Modeling of Mechanical Systems. Block Diagrams, Transfer Functions. Electrical Systems, Electromechanical Systems. Transient Response Analysis. Impulse Response. Analysis in Frequency Domain, Frequency Response, Vibration Isolation. Feedback Control Systems and Automatic Controllers. System Response Analysis and Specification. | | | | | | | | | | | STUDENT OUTCOMES (SCALE: 1-3) | 1 | 2 | 3 | 4 | | 5 | 6 | 7 | | | | | 3 – Strong | ly supporte | d 2- | - Suppo | orted | 1 _ Min | imally sunn | orted | | | | | 3 – Strongly supported 2 – Supported 1 – Minimally supported | | | | | | | | | | ^{*} Student Outcomes