STRESS ANALYSIS SPRING 2024

Course Number	ME 315-004								
Course Title	Stress Analysis								
Course Structure	(3-0-3) (lecture hr/wk - lab hr/wk – course credits)								
Course	A. D. Rosato								
COORDINATOR									
COURSE DESCRIPTION	This course provides the theoretical background to stress analysis in mechanical design. Topics include two-dimensional elasticity, transformation of stress and strain, plane stress and plane strain problems, axisymmetric members, buckling criteria and failure theories.								
Prerequisite(s)	ME 215 – Engineering Materials and Processes; Mech 237 – Strength of Materials; Math 222 – Differential Equations								
COREQUISITE(S)	None								
REQUIRED, ELECTIVE, OR SELECTED ELECTIVE	Required								
REQUIRED MATERIALS	Mechanics of Materials, R. Craig (Wiley), 3rd edition.								
Materials (not Required)	Power-point lecture notes provided by instructor								
COMPUTER USAGE	MS Excel; MS Word for Homework Assignments								
COURSE LEARNING OUTCOMES/ EXPECTED PERFORMANCE CRETERIA:	Course Learning Outcomes	SOs*	Expected Performance Criteria						
	1 Use Mohr's circle to fully analyze the stress/strain state in a body	1,2	Exam Question (80% of the students will earn a grade of 70% or better on this question)						
	2. Explain how Mohr's circle is related to the stress transformation equations	Homework Assignment (80% of the students will earn a grade of 70% or better on this assignment)							
	3. Solve stress /strain eigenvalue 1 problems		Exam Question (same as 1)						
	4. Apply various failure theories needed in the design process	1,2	Exam Question (same as 1)						
	5. Explain and describe the relationship between stress and strain tensor	1	Homework Assignment (same as 2)						
	6. Define plane stress/ plane strain Explain Airy's Stress function for 2D problems	1	Homework Assignment (same as 2)						
	7. Develop equations for and solve axisymmetric problems - plate with hole, point loads on a half-space	1	Exam Question (same as 1)						

	walled cy	8. Solve problems involving thickwalled cylinders, shrink-fits, and rotating disks				Exam Question (same as 1)				
	9. Descri energy, d	9. Describe the concepts of strain energy, deformation work and explain Betti's reciprocity theorem				Homework Assignment (same as 2)				
	10. Expland apply	10. Explain Castigliano's theorems and apply them to problems on beam deflections, and rotations				Exam Question (same as 1)				
		11. Apply Castigliano's theorems to indeterminate structures				Exam Question (same as 1)				
		12. Explain elastic stability related to column buckling				Homework Assignment (same as 2)				
	4	13. Solve simple column buckling problems				Exam Question (same as 1)				
CLASS TOPICS	2. M 3. N Ti 4. Si 5. Si 6. Pl 7. Si 8. A cy 9. Ti 10. Ei	 Introduction, stress tensor; Equilibrium, transformation of stresses, principal stresses. Mohr's circle for stress, Three-dimensional stresses. Normal and shearing strains, strain tensor, compatibility, Transformation of strains. Stress-strain relations. Strain energy, St. Venant's principle. Plane stress, plane strain, Airy stress function. Stress & strain in polar coordinates, Stress concentration. Axisymmetrically loaded members, Shrink fit, composite cylinders, rotating disks. Theories of Failure. Energy methods, Castigliano's Theorem, Virtual Work. Elastic Stability of Columns. 								
STUDENT OUTCOMES	1 3	2 3	3	4 -	5 -		6	7 -		
(SCALE: 1-3)	3 – Strongly supported 2 – Supported 1 – Minimally supported									

^{*} Student Outcomes