

SYLLABUS

ME452: Dynamics of Space Flight

Text (required): *Orbital Mechanics for Engineering Students*, H. D. Curtis (Elsevier, 2010) 2nd Edition

References: Additional materials will be e-mailed during the semester

Office Hours: By appointment. Send e-mail request to rosato@njit.edu.

Course Grade: Based on Mid-Term exams and Final Exam.

Homework: Solutions will be e-mailed to the class at the beginning of the semester.

Week	Topic	Reading	Problems
1	Introduction and Review: Kinematics, Newton's Laws, Time derivative of moving vectors, relative motion	Chapter 1	1.1 – 1.10 1.12, 1.13, 1.15
2	Two Body Problem: Motion equations in an Inertial Frame; Relative Motion	2.1 - 2.3	
3	Angular Momentum, Orbital Energy	2.4,	
4	Orbital Trajectories: Circular, Parabolic, Elliptic Hyperbolic Trajectories	2.6 – 2.9	2.1-2.3, 2.6, 2.7, 2.8, 2.11, 2.13, 2.15-2.18, 2.21, 2.22, 2.24, 2.30, 2.32 2.37, 2.38
5	Exam 1	2.10	
6	Perifocal Frame Restricted Three-Body Problem	2.10 2.11	2.26, 2.32, 2.35, 2.36 2.44, 2.45
7	Orbital Position as a Time Function: Time since Periapsis- Circular Elliptical Trajectories	3.1, 3.2 3.5	3.1, 3.4 - 3.10 3.14
8	Hyperbolic Trajectories Kepler Universal Variables Formulation	3.6 3.7	3.16 3.19
9	Exam 2		
10	Orbits in 3 Dimensions: State vector & Geocentric Frame Orbital Elements and State Vector	4.1 – 4.3 4.4	4.1, 4.2 4.4, 4.5
11	Coordinate Transformations Transformation: Geocentric Equatorial to Perifocal Frames	4.5 4.6	4.8 – 4.11 4.14 – 4.16, 4.19,
12	Effects of Earth's Oblateness Exam 3	4.7	4.25, 4.26
13	Preliminary Orbit Determination: Gibbs' Method	5.1, 5.2	5.1, 5.2
14	Lambert's Problem	5.3	5.4, 5.5
15	Final Exam		Comprehensive

Formulas will be provided on all exams. Note that additional Homework Problems may be assigned in class.

All violations of the Honor Code will be referred to the Dean of Students without exception.