Course	ME 305								
NUMBER									
COURSE TITLE	Introduction to System Dynamics								
COURSE	(3-0-3) (lecture hr/wk - lab hr/wk - course credits)								
STRUCTURE									
COURSE	Z. Ji								
COORDINATOR									
COURSE	Principles of dynamic system modeling and response with emphasis on								
DESCRIPTION	mechanical, electrical, and fluid systems. Application of computer simulation techniques.								
Prerequisite(s)	Mech 236 – Dynamics								
	ME 231 – Kinematics								
	Math 222 — Differential Equations								
COREQUISITE(S)	None								
REQUIRED,	Required								
ELECTIVE OR	1								
SELECTED									
ELECTIVE									
REQUIRED	1. Katsuhiko Ogata, System Dynamics, 4th Ed., Pearson Prentice-Hall,								
MATERIALS	2004, ISBN: 0-13-142462-9								
WATEMALS	2. Software: MATLAB								
Supplemental	None								
materials (not	Tione								
Required)									
COMPUTER	MATLAB software								
USAGE	INTITUTE SOILW GIC								
COURSE	Course Learning Outcomes	SOs*	Expected Performance						
LEARNING	Course Learning Outcomes	308	Criteria						
OUTCOMES/	1 111-1	1							
EXPECTED	1 develop models of mechanical, electrical/electromechanical and fluid	1	Exam Question (80% of						
PERFORMANCE			the students will earn a						
CRITERIA:	systems.		grade of 70% or better on						
CRITERIA.		1	this question)						
	2. analyze dynamic systems through	1	Exam Question (80% of						
	the application of the Laplace		the students will earn a						
	transforms, block diagrams, and		grade of 70% or better on						
	transfer functions.	this question)							
	3. determine transient and steady	1	Exam Question (80% of						
	state response of dynamic systems.	the students will earn a							
			grade of 70% or better on						
			this question)						
	4. calculate frequency response and	1, 2	Exam Question (80% of						
	use the results for vibration isolation		the students will earn a						
		•	•						

	5. perform basic calculation related to automatic controllers and system response specification.				1, 2	Example the s	grade of 70% or better on this question) Exam Question (80% of the students will earn a grade of 70% or better on			
	6. use computer software (MATLAB) in analyzing dynamics systems and control systems			1	Hon (80% earn	this question) Homework Problems (80% of the students will earn a grade of 80% or better on these problems)				
CLASS TOPICS	 Complex Algebra, Linear Algebra, Laplace Transforms, Inverse Laplace Transforms. Linear Differential Equations. Modeling of Mechanical Systems. Block Diagrams, Transfer Functions. Electrical Systems, Electromechanical Systems. Transient Response Analysis. Impulse Response. Analysis in Frequency Domain, Frequency Response, Vibration Isolation. Feedback Control Systems and Automatic Controllers. System Response Analysis and Specification. 									
STUDENT OUTCOMES (SCALE: 1-3)	1	2	3	4		5	6	7		
	3 – Strong	ly supporte	d 2-	- Suppo	orted	1 _ Min	imally sunn	orted		
	3 – Strongly supported 2 – Supported 1 – Minimally supported									

^{*} Student Outcomes