

THE DEPARTMENT OF MATHEMATICAL SCIENCES

MATH 309: Mathematical Analysis for Technology
Fall 2025 Course Syllabus

NJIT Academic Integrity Code: Academic Integrity is the cornerstone of higher education and is central to the ideals of this course and the university. Cheating is strictly prohibited and devalues the degree that you are working on. As a member of the NJIT community, it is your responsibility to protect your educational investment by knowing and following the academic code of integrity policy that is found at: NJIT Academic Integrity Code.

Please note that it is my professional obligation and responsibility to report any academic misconduct to the Dean of Students Office. Any student found in violation of the code by cheating, plagiarizing or using any online software inappropriately will result in disciplinary action. This may include a failing grade of F, and/or suspension or dismissal from the university. If you have any questions about the code of Academic Integrity, please contact the Dean of Students Office at dos@njit.edu

COURSE INFORMATION

Course Description: Emphasis on partial derivatives; vector calculus, and multiple integrals.

Number of Credits: 4

Prerequisites: **MATH 112** with a grade of C or better, or **MATH 133** with a grade of C or better or **MATH 238** with a grade of C or better.

Course-Section and Instructors:

Course-Section	Instructor
Math 309-001	Professor I. Cohanoschi
Math 309-101	Professor I. Cohanoschi

Office Hours for All Math Instructors: [Fall 2025 Office Hours and Emails](#)

Required Textbook:

Title	<i>Calculus: Concepts and Contexts</i>
Author	Stewart
Edition	5th
Publisher	Cengage Learning

ISBN #	978-0357756911
--------	----------------

University-wide Withdrawal Date: The last day to withdraw with a W is **Monday, November 10, 2025**. It will be strictly enforced.

POLICIES

DMS Course Policies: All DMS students must familiarize themselves with, and adhere to, the **Department of Mathematical Sciences Course Policies**, in addition to official **university-wide policies**. DMS takes these policies very seriously and enforces them strictly.

Grading Policy: The final grade in this course will be determined as follows:

Exam 1	15%
Exam 2	15%
Exam 3	15%
Homework	10%
Quizzes	15%
Final Exam	30%

Your final letter grade will be based on the following tentative curve. **NOTE:** This course needs to be passed with a grade of C or better in order to proceed to Math 322.

A	90 - 100	C	65 - 74
B+	85 - 89	D	55 - 64
B	80 - 84	F	0 - 54
C+	75 - 79		

Attendance Policy: Attendance at all classes will be recorded and is **mandatory**. Please make sure you read and fully understand the **Math Department's Attendance Policy**. This policy will be strictly enforced.

Religious Observance: NJIT is committed to supporting students observing religious holidays. Students must notify their instructors in writing of any conflicts between course requirements and religious observances, ideally by the end of the second week of classes and no later than two weeks before the anticipated absence.

Homework: Homework is an expectation of the course. The problems listed in the syllabus are to be handed in through Canvas. There will be additional homework on WebAssign that is expected to be completed by the deadlines set forth in the web portal. If you have any difficulties with registering and getting an account with WebAssign please see the professor immediately. Late homework will be assessed at a 50% penalty.

Exams: There will be three exams during the semester and a final exam during the final exam week:

Exam 1	Week 4
Exam 2	Week 9
Exam 3	Week 11
Final Exam Period	December 14 - December 20, 2025

The final exam will test your knowledge of all the course material taught in the entire course. Make sure you read and fully understand the **Math Department's Examination Policy**. This policy will be strictly enforced.

Makeup Exam Policy: There will be **NO MAKE-UP QUIZZES OR EXAMS** during the semester. In the event an exam is not taken under rare circumstances where the student has a legitimate reason for missing the exam, the student should contact the Dean of Students office and present written verifiable proof of the reason for missing the exam, e.g., a doctor's note, police report, court notice, etc. clearly stating the date AND time of the mitigating problem. The student must also notify the Math Department Office/Instructor that the exam will be missed.

Quizzes: Quizzes will be given approximately once per week. They can be on paper or virtual format. The quizzes will be based on the lecture and homework. All quizzes are cumulative.

Cellular Phones: All cellular phones and other electronic devices must be switched off during all class times.

ADDITIONAL RESOURCES

Math Tutoring Center: Located in the Central King Building, Lower Level, Rm. G11 (See: [Fall 2025 Hours](#))

Further Assistance: For further questions, students should contact their instructor. All instructors have regular office hours during the week. These office hours are listed on the Math Department's webpage for [Instructor Office Hours and Emails](#).

Accommodation of Disabilities: The Office of Accessibility Resources and Services (OARS) offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT.

If you need accommodation due to a disability, please contact the Office of Accessibility Resources and Services at oars@njit.edu, or visit Kupfrian Hall 201 to discuss your specific needs. A Letter of Accommodation Eligibility from the office authorizing student accommodations is required.

For further information regarding self identification, the submission of medical documentation and additional support services provided please visit the Office of Accessibility Resources and Services (OARS) website at:

<https://www.njit.edu/accessibility/>

Important Dates (See: [Fall 2025 Academic Calendar, Registrar](#))

Date	Day	Event
September 1, 2025	Monday	Labor Day

September 2, 2025	Tuesday	First Day of Classes
September 8, 2025	Monday	Last Day to Add/Drop Classes
November 10, 2025	Monday	Last Day to Withdraw
November 25, 2025	Tuesday	Thursday Classes Meet
November 26, 2025	Wednesday	Friday Classes Meet
November 27 to November 30, 2025	Thursday to Sunday	Thanksgiving Recess - Closed
December 11, 2025	Thursday	Last Day of Classes
December 12, 2025	Friday	Reading Day 1
December 13, 2025	Saturday	Saturday Classes Meet
December 14 to December 20, 2025	Sunday to Saturday	Final Exam Period

Course Outline

Week	Section & Topic		Lecture and Homework Assignments	
1	9.1:	Three Dimensional Coordinate Systems	1	7, 11, 12, 13
	9.2:	Vectors	1	7, 9, 15, 16, 18, 19, 20
	9.3:	The Dot Product	2	7, 9, 23, 29
2	9.4:	The Cross Product	3	7, 9, 22, 27
	9.5 10.1:	Equations of Lines Vector Functions and Space Curves	4	9.5 # 2-5, 6, 11, 17 10.1 # 2, 5, 7, 23, 27,
3	10.2:	Derivatives of Vector Functions	5	9, 11, 13, 15, 17, 23
	10.2:	Integrals of Vector Functions	5	33, 35, 37, 39
4		Review for Examination 1		Study for Examination 1
		Examination 1	6	
5	10.3:	Arc Length and Curvature	7	2, 17, 21, 22, 35
	9.5: 9.6: 11.1:	Equations of Planes Functions and Surfaces Functions of Several Variables	8	9.5 # 24, 28, 29 9.6 # 5, 6, 16, 18 11.1 # 5, 7, 9
	9.7: H.1-2:	Polar and Cylindrical Coordinates	9	9.7 # 5, 9, 11, 17, 19 H1: # 5, 9, 25, 29 H2: # 1-4, 8, 22, 24

	11.3: 11.4:	Partial Derivatives and Tangent Planes	10	11.3 # 17,27,47,49, 55 11.4 # 1,3,15,27
7	11.5:	Chain Rule	11	5,6,7,11,22,26
	11.6:	Directional Derivatives and the Gradient Vector	12	5,7,11,12,17
8	11.7:	Maximum and Minimum Values	13	5,7,9,11,27
		Review for Examination 2		Study for Examination 2
9		Examination 2		
	12.1: 12.2:	Double Integration over Rectangles	14	12.1 #7,13 12.2 # 5,7,8,12,17,21, 23, 27
10	12.3:	Double Integrals over General Regions	15	# 9,10,13,20,21,23,27,39
	12.4:	Double Integrals in Polar Coordinates	16	# 9,11,17,27
11	12.7:	Triple Integrals	20	# 3,4,5,9,11,20, 31
		Examination 3		
12	13.1: 13.2:	Vector Fields and Line Integrals	21	13.1 # 1,3,13-18 13.2 # 1,3,5,7,20, 22
13	13.3:	The Fundamental Theorem for Line Integrals	23	# 3,5,12,14, 22, 27
	13.4:	Green's Theorem	23	# 1,3,5,19,
14	13.5	Curl and Divergence	24	# 1, 4, 7, 15, 17,
15		Review for Final Examination		
Final	December 14 - 20, 2025			

*Updated by Professor I. Cohanoschi - 2025
Department of Mathematical Sciences Course Syllabus, Fall 2025*