

THE DEPARTMENT OF MATHEMATICAL SCIENCES

# MATH 332: Introduction to Functions of a Complex Variable Fall 2024 Course Syllabus

NJIT Academic Integrity Code: All Students should be aware that the Department of Mathematical Sciences takes the University Code on Academic Integrity at NJIT very seriously and enforces it strictly. This means that there must not be any forms of plagiarism, i.e., copying of homework, class projects, or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic Integrity, students are obligated to report any such activities to the Instructor.

Please be sure you read and fully understand our DMS Online Exam Policy.

### **COURSE INFORMATION**

**Course Description**: Functions of a complex variable: Cauchy-Riemann equations, Cauchy-Goursat theorem, integration, series, residues, poles, geometrical aspects. Emphasis on techniques. Effective From: Fall 2010.

Number of Credits: 3

Prerequisites: MATH 211 or MATH 213 and MATH 222 all with a grade of C or better

**Course-Section and Instructors:** 

| Course-Section | Instructor  |
|----------------|-------------|
| Math 332-001   | Professor - |

Office Hours for All Math Instructors: Fall 2024 Office Hours and Emails

**Required Textbook:** 

| Title     | Fundamentals of Complex Analysis |
|-----------|----------------------------------|
| Author    | Saff & Snider                    |
| Edition   | 3rd                              |
| Publisher | Pearson                          |
| ISBN #    | 0-13-907874-6                    |

University-wide Withdrawal Date: The last day to withdraw with a W is Monday, November 11, 2024. It will be strictly enforced.

## **COURSE GOALS**

#### **Course Objectives**

- Understand the relevance and broad importance of the theory of analytic functions.
- Learn the meaning of theorems and corollaries describing important properties of analytic functions.
- Learn the connection between the series representations and integration properties of analytic functions.
- Learn applications of the Cauchy Residue Theorem, and its use in calculating certain definite integrals.
- Learn how to apply knowledge of analytic functions to problems in applied math, science and engineering.

#### **Course Outcomes**

- Students gain knowledge of the theory of analytic functions of a complex variable and its broad applicability.
- Students gain a deeper understanding of common elementary transcendental functions through the knowledge of their properties in the complex plane.
- Students are prepared for further study in more advanced mathematics, science and engineering courses.
- Students can apply their knowledge of the theory of analytic functions to solve problems in applied mathematics, fluid dynamics, electrodynamics, and other areas of science and engineering.

**Course Assessment:** The assessment of objectives is achieved through homework assignments, and in-class quizzes, midterm and final examinations.

## POLICIES

**DMS Course Policies:** All DMS students must familiarize themselves with, and adhere to, the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. DMS takes these policies very seriously and enforces them strictly.

Grading Policy: The final grade in this course will be determined as follows:

| Homework and Quizzes: 20% | Midterm Exam: 30% | Final Exam: 50% |
|---------------------------|-------------------|-----------------|
|---------------------------|-------------------|-----------------|

A passing final letter grade will be based on the following tentative cutoffs:

| А  | 90 - 100 | C+ | 66 - 75 |
|----|----------|----|---------|
| B+ | 82 - 89  | С  | 58 - 65 |
| В  | 74 - 81  | D  | 50 - 57 |

Attendance Policy: Attendance at all classes will be recorded and is mandatory. Please make sure you read and fully understand the Math Department's Attendance Policy. This policy will be strictly enforced.

Homework and Quiz Policy: Homework problem sets will be posted on the course canvas page at the end of each week, based on the material covered that week. Late homework will not be accepted. Short quizzes will be given at the end of the class on Tuesdays based on the material covered in the previous week.

**Exams:** There will be one midterm exam and one comprehensive final exam. The final exam will test your knowledge of all the course material taught in the entire course. Make sure you read and understand the Math Department's Examination Policy. This policy will be strictly enforced.

**Makeup Exam Policy:** There will be **NO MAKE-UP EXAMS** during the semester. If an exam is not taken under rare circumstances where the student has a legitimate reason for missing the exam, the student should contact the Dean of Students office and present written verifiable proof of the reason for missing the exam, e.g., a doctor's note, police report, court notice, etc. clearly stating the date AND time of the mitigating problem. The student must also notify the Math Department Office/Instructor that the exam will be missed.

Cellular Phones: All cellular phones and other electronic devices must be switched off during all class times.

# ADDITIONAL RESOURCES

Math Tutoring Center: Located in the Central King Building, Lower Level, Rm. G11 (See: Fall 2024 Hours)

**Further Assistance:** For further questions, students should contact their instructor. All instructors have regular office hours during the week. These office hours are listed on the Math Department's webpage for Instructor Office Hours and Emails.

**Accommodation of Disabilities:** The Office of Accessibility Resources and Services (OARS) offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT.

If you need an accommodation due to a disability, please contact the Office of Accessibility Resources and Services at oars@njit.edu, or visit Kupfrian Hall 201 to discuss your specific needs. A Letter of Accommodation Eligibility from the office authorizing student accommodations is required.

For further information regarding self identification, the submission of medical documentation and additional support services provided please visit the Office of Accessibility Resources and Services (OARS) website at:

#### https://www.njit.edu/accessibility/

Important Dates (See: Fall 2024 Academic Calendar, Registrar)

| Date                               | Day                 | Event                        |
|------------------------------------|---------------------|------------------------------|
| September 2, 2024                  | Monday              | Labor Day                    |
| September 3, 2024                  | Tuesday             | First Day of Classes         |
| September 9, 2024                  | Monday              | Last Day to Add/Drop Classes |
| November 11, 2024                  | Monday              | Last Day to Withdraw         |
| November 26, 2024                  | Tuesday             | Thursday Classes Meet        |
| November 27, 2024                  | Wednesday           | Friday Classes Meet          |
| November 28 to<br>December 1, 2024 | Thursday and Sunday | Thanksgiving Recess - Closed |
| December 11, 2024                  | Wednesday           | Last Day of Classes          |
| December 12, 2024                  | Thursday            | Reading Day 1                |
| December 13, 2024                  | Friday              | Reading Day 2                |

| December 15 to<br>December 21, 2024 | Sunday to Saturday | Final Exam Period |
|-------------------------------------|--------------------|-------------------|
|-------------------------------------|--------------------|-------------------|

# **Course Outline**

| Date    |    | Sections              | Торіс                                                                |
|---------|----|-----------------------|----------------------------------------------------------------------|
| Sept 05 | 1  | 1.1-1.3               | Complex Algebra; Vectors & Moduli; Complex Conjugate                 |
| Sept 07 | 2  | 1.4-1.5               | Polar Representation; Products & Powers in Exponential Form; Roots   |
| Sept 12 | 3  | 1.6-1.7               | Regions in the Complex Plane                                         |
| Sept 14 | 4  | 2.1                   | Functions of Complex Variable; Mappings                              |
| Sept 19 | 5  | 2.2                   | Limits and Continuity                                                |
| Sept 21 | 6  | 2.3-2.4               | Derivatives & Analyticity; The Cauchy-Riemann Equations              |
| Sept 26 | 7  | 2.5                   | Analyticity; Cauchy-Riemann Equations in Polar Coordinates, Harmonic |
| Sept 28 | 8  | 2.6                   | Functions; simple solutions of Laplace's equation                    |
| Oct 03  | 9  | 3.1-3.2               | Polynomial and rational functions, the Exponential and Logarithm,    |
| Oct 05  | 10 | 3.3-3.4               | Trigonometric and Hyperbolic Functions                               |
| Oct 10  | 11 | 3.5                   | Inverse Trigonometric & Inverse Hyperbolic Functions                 |
| Oct 12  | 12 | 4.1-4.2               | Contours and Contour Integrals; Fundamental Theorem of Calculus      |
| Oct 17  | 13 | 4.3                   | The Cauchy-Goursat Theorem                                           |
| Oct 19  | 14 | 4.4                   | The Cauchy Integral Formula                                          |
| Oct 24  | 15 | 4.5                   | MIDTERM                                                              |
| Oct 26  | 16 |                       | Extensions of the Cauchy Integral Formula                            |
| Oct 31  | 17 | 5.1-5.2               | Series; Taylor Series; Power Series Convergence                      |
| Nov 02  | 18 | 5.3-5.4               |                                                                      |
| Nov 07  | 19 | 5.4                   | Uniform Convergence                                                  |
| Nov 09  | 20 | 5.5-5.6               | Laurent Series; zeros and singularities                              |
| Nov 14  | 21 | 5.7                   | The Point at Infinity; Cauchy's Residue Theorem                      |
| Nov 16  | 22 | 6.1                   |                                                                      |
| Nov 21  | 23 | 6.2-6.3               | Improper Integrals from Fourier Analysis                             |
| Nov 23  | -  | -                     | No class - Thanksgiving Break                                        |
| Nov 28  | 24 | 6.4                   | Improper Integrals Continued, Jordan's Lemma                         |
| Nov 30  | 25 | 6.5                   | Integrals Involving Indented Contours                                |
| Dec 05  | 26 | 6.6                   | Integration along a Branch Cut                                       |
| Dec 07  | 27 |                       | Definite Integrals Involving Sines and Cosines                       |
| Dec 12  | 28 | REVIEW FOR FINAL EXAM |                                                                      |

Updated by Professor L. Cummings - 8/2024 Department of Mathematical Sciences Course Syllabus, Fall 2024