

THE DEPARTMENT OF MATHEMATICAL SCIENCES

MATH 138: General Calculus I Fall 2024 Course Syllabus

NJIT Academic Integrity Code: All Students should be aware that the Department of Mathematical Sciences takes the University Code on Academic Integrity at NJIT very seriously and enforces it strictly. This means that there must not be any forms of plagiarism, i.e., copying of homework, class projects, or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic Integrity, students are obligated to report any such activities to the Instructor.

COURSE INFORMATION

Course Description: Intended for students who are not in Science or in Engineering. An introduction to differential and integral calculus of a single variable.

Number of Credits: 3

Prerequisites: MATH 107 with a grade of C or better, or MATH 110 with a grade of C or better or NJIT placement.

Course-Section and Instructors:

Course-Section	Instructor	Location
Math 138-011	Professor N. Massoud	Faculty Memorial Hall (FMH) 404

Office Hours for All Math Instructors: Fall 2024 Office Hours and Emails

Required Textbook:

Title	Calculus: Concepts and Contexts bundled w/ WebAssign
Author	Stewart
Edition	5th
Publisher	Cengage
ISBN #	9780357632499 (Book Only) 9780357756911 (Bundle with Webassign)

University-wide Withdrawal Date: The last day to withdraw with a W is Monday, November 11, 2024. It will be strictly enforced.

POLICIES

DMS Course Policies: All DMS students must familiarize themselves with, and adhere to, the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. DMS takes these policies very seriously and enforces them strictly.

Grading Policy: The final grade in this course will be determined as follows:

Homework	15%
Quizzes	15%
Midterm Exam I	20%
Midterm Exam II	20%
Final Exam	30%

Your final letter grade will be based on the following tentative curve. Note: This course needs to be passed with a grade of C or better in order to proceed to Math 238 or Math 246.

Α	90 - 100	С	65 - 74
B+	85 - 89	D	55 - 64
В	80 - 84	F	0 - 54
C+	75 - 79		

Attendance Policy: Attendance at all classes will be recorded and is mandatory. Please make sure you read and fully understand the Math Department's Attendance Policy. Students are expected to attend class. Each class is a learning experience that cannot be replicated through simply "getting the notes." This policy will be strictly enforced.

Homework Policy: Homework is an expectation of the course. The problems listed in the syllabus are to be handed in. There will be additional homework on WebAssign that is expected to be completed by the deadlines set forth in the web portal. If you have any difficulties with registering and getting an account with WebAssign please see the professor immediately.

Quiz Policy: There will be 8-12 quizzes given throughout the semester. They will be based on the lecture, homework and the in-class discussions.

Exams: There will be two exams during the semester and a cumulative final exam during the final exam week. Each exam will test the material taught since the beginning of the semester:

Midterm Exam I	Lecture 12
Midterm Exam II	Lecture 22
Final Exam	December 15 - December 21, 2024

The final exam will test your knowledge of all the course material taught in the entire course. Make sure you read and fully understand the Math Department's Examination Policy. This policy will be strictly enforced.

Makeup Exam Policy: There will be NO MAKE-UP QUIZZES OR EXAMS during the semester. In the event an exam is not taken under rare circumstances where the student has a legitimate reason for missing the exam, the student should contact the Dean of Students office and present written verifiable proof of the reason for missing the exam, e.g., a doctor's note, police report, court notice, etc. clearly stating the date AND time of the mitigating problem. The student must also notify the Math Department Office/Instructor that the exam will be missed.

Cellular Phones: All cellular phones and other electronic devices must be switched off during all class times.

ADDITIONAL RESOURCES

Math Tutoring Center: Located in the Central King Building, Lower Level, Rm. G11 (See: Fall 2024 Hours)

Further Assistance: For further questions, students should contact their instructor. All instructors have regular office hours during the week. These office hours are listed on the Math Department's webpage for **Instructor** Office Hours and Emails.

Accommodation of Disabilities: The Office of Accessibility Resources and Services (OARS) offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT.

If you need accommodation due to a disability, please contact the Office of Accessibility Resources and Services at oars@njit.edu, or visit Kupfrian Hall 201 to discuss your specific needs. A Letter of Accommodation Eligibility from the office authorizing student accommodations is required.

For further information regarding self identification, the submission of medical documentation and additional support services provided please visit the Office of Accessibility Resources and Services (OARS) website at: https://www.njit.edu/accessibility/

Important Dates (See: Fall 2024 Academic Calendar, Registrar)

Date	Day	Event
September 2, 2024	Monday	Labor Day
September 3, 2024	Tuesday	First Day of Classes
September 9, 2024	Monday	Last Day to Add/Drop Classes
November 11, 2024	Monday	Last Day to Withdraw
November 26, 2024	Tuesday	Thursday Classes Meet
November 27, 2024	Wednesday	Friday Classes Meet
November 28 to December 1, 2024	Thursday and Sunday	Thanksgiving Recess - Closed
December 11, 2024	Wednesday	Last Day of Classes
December 12, 2024	Thursday	Reading Day 1
December 13, 2024	Friday	Reading Day 2
December 15 to	Sunday to Saturday	Final Exam Period

December 21, 2024	

Course Outline

Lecture*	Section	Topic	Assignment*
1	2.2	The Limit of a Function	2.2 ex: 4, 6, 14, 16
2	2.3	Calculating Limits using Limit Laws	2.3 ex: 12, 16, 18, 20
3	2.5	Limits Involving Infinity	2.5 ex: 4, 16, 20, 22, 24
4	2.6	Derivatives and Rates of Change	2.6 ex: 6, 8, 11, 13
5	2.7	The Derivative as a Function	2.7 ex: 4, 14, 19, 21, 26
6	3.1	Derivatives of Polynomials and Exponential Functions	3.1 ex: 4, 8, 12, 50
7	Appendix C	Trigonometry	Appendix C: ex: 21, 23, 25
8	3.2	Product and Quotient Rules	3.2 ex: 3, 5, 15, 17
9	3.3	Derivatives of Trigonometric Functions	3.3 ex: 3, 5, 11, 15, 16
10	3.4	Chain Rule	3.4 ex: 3,4,12,16
11		CATCH UP & REVIEW FOR EXAM 1	
12		EXAM 1	
13	3.5	Implicit Differentiation	3.5 ex: 6, 8, 22, 24
14	3.7	Derivatives of Log Functions	3.7 ex: 4, 8, 10, 12
15	3.8	Rates of Change in the Natural and Social Sciences	3.8 ex: 8, 12a, 14
16	4.1	Related Rates	4.1 ex: 11-14
17	4.2	Max and Min Values	4.2 ex: 4, 6, 24, 26

18	4.3	Derivatives and Shapes of Curves	4.3 ex: 8, 12, 22, 24
19	4.5	Indeterminate forms and L'Hopital's Rule	4.5 ex: 5, 8, 31, 34
20	4.6	Optimization Problems	4.6 ex: 10, 14, 18, 40
21		REVIEW FOR EXAM 2	
22		EXAM 2	
23	4.8	Antiderivatives	
24	5.1	Areas and Distances	5.1 ex: 1-2
25	5.2	The Definite Integral	5.2 ex: 5
26	5.3	Evaluating Definite Integrals	5.3 ex: 4, 10, 14, 24
27	5.4	The Fundamental Theorem of Calculus	5.4 ex: 8, 24
28		REVIEW FOR FINAL EXAM	
		FINAL EXAM	

Updated by Professor N. Msassoud -Department of Mathematical Sciences Course Syllabus, Fall 2024 *Assignments and lecture dates are subject to change at the discretion of the instructor