

THE DEPARTMENT OF MATHEMATICAL SCIENCES

MATH 631: Linear Algebra Fall 2023 Course Syllabus

NJIT Academic Integrity Code: All Students should be aware that the Department of Mathematical Sciences takes the University Code on Academic Integrity at NJIT very seriously and enforces it strictly. This means that there must not be any forms of plagiarism, i.e., copying of homework, class projects, or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic Integrity, students are obligated to report any such activities to the Instructor.

It is my professional obligation to report any academic misconduct to the Dean of Students Office. Any student found in violation of the code by cheating or plagiarizing will be subject to disciplinary action. This may include a failing grade of F, and/or suspension or dismissal from the university. If you have any questions about the code of Academic Integrity, please contact the Dean of Students Office at dos@njit.edu

COURSE INFORMATION

Course Description: A graduate-level treatment of linear algebra with emphasis on mathematical rigor and depth of understanding. Topics include linear spaces, duality, matrices, determinants, spectral theory, inner product spaces, and matrix decomposition. Time permitting, numerical aspects of eigenvalue calculations are covered.

Number of Credits: 3

Prerequisites: MATH 222 and MATH 337, or departmental approval.

Course-Section and Instructors:

Course-Section	Instructor
Math 631-001	Professor T. Askham

Office Hours for All Math Instructors: Fall 2023 Office Hours and Emails

Required Textbook:

There is no required textbook for this course. Please see the recommended texts below.

- Optional: Linear Algebra and its Applications by Peter Lax (2nd ed.) Wiley 978-0471751564
- Optional: Numerical Linear Algebra by L. N. Trefethen and D. Bau (1st Ed) SIAM
- Optional: Linear algebra Hoffman, Kenneth, and Ray Kunze (2nd Ed), Prentice-Hall

University-wide Withdrawal Date: The last day to withdraw with a W is Monday, November 13, 2023. It will be strictly enforced.

COURSE GOALS

Course Objectives

- To develop a deeper understanding of linear maps in a finite dimensional setting.
- To gain intuition for core concepts, including: eigenvalues and eigenvectors, singular value decompositions, duality, rank, and determinants.
- To master the basics of linear algebra practice, including: solving a system of equations and applying matrix decompositions

Course Outcomes

- Students recognize when linear algebra concepts can be applied to a variety of mathematical and engineering problems.
- Students demonstrate the ability to apply numerical methods to solve linear algebra problems with accuracy, precision, and efficiency.
- Students demonstrate greater ability in making and understanding rigorous arguments.

POLICIES

DMS Course Policies: All DMS students must familiarize themselves with, and adhere to, the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. DMS takes these policies very seriously and enforces them strictly.

Grading Policy: The final grade in this course will be determined as follows:

Homework/Quizzes	40%
Midterm Exam	30%
Final Exam	30%

Your final letter grade will be based on the following tentative curve.

A	90 - 100	C+	76 - 79
B+	86 - 89	С	60 - 75
В	80 - 85	F	0 - 59

Attendance Policy: Attendance at all classes is **mandatory**. Please make sure you read and fully understand the Math Department's Attendance Policy.

Email and Canvas: Regularly check your NJIT email account and the course information posted on Canvas for class assignments and announcements from your instructor.

Homework: Homework problem sets will be assigned regularly via Canvas and may include problems requiring basic coding in MATLAB or Python. Selected problems will be graded.

- This homework must be typeset in LaTeX using the provided template and submitted through Canvas.
- I take issues of academic dishonesty very seriously:
 - The logic of a proof must be completely clear and you must cite sources to receive full credit.
 - Collaboration with other students is encouraged, but you are not allowed to consult the written work of others. If you have collaborated with other students, indicate their names on the first page.
 - No consultation with internet sources outside of the textbook and approved online resources is allowed.

Exams: As of now, all exams will be administered in person. Midterm exams will be held during a regular class meeting; the location and date of the final will be provided to you when they are set.

Midterm Exam	November 1, 2023
Final Exam Period	December 17 - December 23, 2023

The final exam will cover all of the material taught in the entire course. Make sure you read and fully understand the Math Department's Examination Policy. This policy will be strictly enforced.

Makeup Exam Policy: There will be NO MAKE-UP QUIZZES OR EXAMS during the semester. In the event an exam is not taken under rare circumstances where the student has a legitimate reason for missing the exam, the student should contact the Dean of Students office and present written verifiable proof of the reason for missing the exam, e.g., a doctor's note, police report, court notice, etc. clearly stating the date AND time of the mitigating problem. The student must also notify the Math Department Office/Instructor that the exam will be missed.

Cellular Phones: All cellular phones and other electronic devices must be switched off during all class times.

ADDITIONAL RESOURCES

Further Assistance: For further questions, students should contact their instructor. All instructors have regular office hours during the week. These office hours are listed on the Math Department's webpage for **Instructor** Office Hours and Emails.

Accommodation of Disabilities: The Office of Accessibility Resources and Services (OARS) offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT.

If you need accommodation due to a disability, please contact the Office of Accessibility Resources and Services at oars@njit.edu, or visit Kupfrian Hall 201 to discuss your specific needs. A Letter of Accommodation Eligibility from the office authorizing student accommodations is required.

For further information regarding self identification, the submission of medical documentation and additional support services provided please visit the Office of Accessibility Resources and Services (OARS) website at:

https://www.njit.edu/accessibility/

Important Dates (See: Fall 2023 Academic Calendar, Registrar)

Date	Day	Event
------	-----	-------

September 4, 2023	Monday	Labor Day
September 5, 2023	Tuesday	First Day of Classes
September 11, 2023	Monday	Last Day to Add/Drop Classes
November 13, 2023	Monday	Last Day to Withdraw
November 21, 2023	Tuesday	Thursday Classes Meet
November 22, 2023	Wednesday	Friday Classes Meet
November 23 to November 26, 2023	Thursday and Saturday	Thanksgiving Recess - Closed
December 13, 2023	Wednesday	Last Day of Classes
December 14, 2023	Thursday	Reading Day 1
December 15, 2023	Friday	Reading Day 2
December 17 to December 23, 2023	Sunday to Saturday	Final Exam Period

Course Outline

Lecture	Chapter	Topic
1-5	1	Abstract treatment of vector spaces
6-8	2	Matrices
9	3	Differential equations
10-12	4	Determinant and trace
13-16	5	Algebraic Spectral Theory
17	1-5	Midterm Exam Nov 1.
18-21	6	Inner product spaces
22-28	7-8	Analytic spectral theory and Matrices in Practice
		The final exam period is December 17 - December
		23, 2023

Updated by Professor T. Askham - 9/5/2023 Department of Mathematical Sciences Course Syllabus, Fall 2023