

THE DEPARTMENT OF MATHEMATICAL SCIENCES

MATH 222: Differential Equations Spring 2025 Course Syllabus

NJIT Academic Integrity Code: All Students should be aware that the Department of Mathematical Sciences takes the University Code on Academic Integrity at NJIT very seriously and enforces it strictly. This means that there must not be any forms of plagiarism, i.e., copying of homework, class projects, or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic Integrity, students are obligated to report any such activities to the Instructor.

COURSE INFORMATION

Course Description: Methods for solving ordinary differential equations are studied together with physical applications, Laplace transforms, numerical solutions, and series solutions.

Number of Credits: 4

Prerequisites: Prerequisite: MATH 112 with a grade of C or better or MATH 133 with a grade of C or better.

Course-Section and Instructors:

Course-Section	Instructor
Math 222-002	Professor P. Rana Concepcion
Math 222-004	Professor M. Potocki-Dul
Math 222-006	Professor P. Rana Concepcion
Math 222-008	Professor M. Potocki-Dul
Math 222-010	Professor S. Alptekin
Math 222-012	Professor R. Bouayad
Math 222-014	Professor R. Bouayad
Math 222-016	Professor S. Alptekin
Math 222-102	Professor S. Alptekin

Office Hours for All Math Instructors: Spring 2025 Office Hours and Emails

Required Textbook:

Title	Elementary Differential Equations and Boundary Value Problems
Author	Boyce and DiPrima
Edition	11th
Publisher	John Wiley & Sons, Inc.
ISBN #	978-1119447399

University-wide Withdrawal Date: The last day to withdraw with a W is Monday, April 7, 2025. It will be strictly enforced.

COURSE GOALS

Course Outcomes

Students should:

- Learn elementary analytical solution techniques for the solution of ordinary differential equations (ODEs).
- Interpret the solutions using plots and methods of calculus.
- Understand the solution structure of linear ODEs in terms of independent homogeneous solutions and nonhomogeneous solutions.
- Understand, by exposure to examples, how systems and phenomena from science and engineering can be modeled by ODEs, a principal example being the linear spring subject to forcing and damping
- Understand how the solution of such a model ODE can be used to analyze or predict a system's behavior.
- Understand the role of initial value problems for ODEs in examples from science & engineering.
- Understand an elementary method for the numerical solution of ODEs and have some familiarity with the solution of ODEs using MATLAB.
- Be introduced to two-point boundary value problems and Fourier series.

Course Outcomes

- Improved problem-solving skills, including knowledge of techniques for the solution of ODES.
- An understanding of the importance of differential equations in the sciences and engineering
- Preparation for further study in science, technology, engineering, and mathematics.

Course Assessment: The assessment of objectives is achieved through homework assignments, weekly quizzes, and common examinations with common grading.

POLICIES

DMS Course Policies: All DMS students must familiarize themselves with, and adhere to, the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. DMS takes these policies very seriously and enforces them strictly.

Grading Policy: The final grade in this course will be determined as follows:

Homework	8%
Quizzes	12%

MATLAB Assignments	0%
Common Midterm Exam I	20%
Common Midterm Exam II	25%
Final Exam	35%

Your final letter grade will be based on the following tentative curve.

A	88 - 100	С	65-71
B+	83 - 87	D	60-64
В	77 - 82	F	0 - 59
C+	72-76		

Attendance: Attendance at all classes will be recorded and is **mandatory**. Please make sure you read and fully understand the Math Department's Attendance Policy. This policy will be strictly enforced. Quizzes and in-class MATLAB activities.

Religious Observance: NJIT is committed to supporting students observing religious holidays. Students must notify their instructors in writing of any conflicts between course requirements and religious observances, ideally by the end of the second week of classes and no later than two weeks before the anticipated absence.

Homework: Weekly homework assignments are listed on the course outline. They are to be handed or uploaded on the Canvas in according to your instructor's schedule. Each week, a 15–20 minute quiz will be given on the material covered in the previous week's homework.

Exams: There will be two common midterm exams held during the semester and one comprehensive common final exam. Exams are held on the following days:

Common Exam I	February 19, 2025
Common Exam II	April 9, 2025
Final Exam Period	May 10 - May 16, 2025

The time of the midterm exams is **4:15–5:40 PM** for daytime students and **5:45–7:10 PM** for evening students. The final exam will test your knowledge of all the course material taught in the entire course. Make sure you read and fully understand the Math Department's Examination Policy. This policy will be strictly enforced.

Makeup Exam Policy: To properly report your absence from a midterm or final exam, please review and follow the required steps under the DMS Examination Policy found here:

http://math.njit.edu/students/policies_exam.php

Cellular Phones: All cellular phones and other electronic devices must be switched off during all class times.

ADDITIONAL RESOURCES

Math Tutoring Center: Located in the Central King Building, Lower Level, Rm. G11 (See: Spring 2025 Hours)

Further Assistance: For further questions, students should contact their instructor. All instructors have regular office hours during the week. These office hours are listed on the Math Department's webpage for **Instructor** Office Hours and Emails.

Accommodation of Disabilities: The Office of Accessibility Resources and Services (OARS) offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT.

If you are in need of accommodations due to a disability please If you need an accommodation due to a disability please contact the Office of Accessibility Resources and Services at oars@njit.edu. The office is located in Kupfrian Hall, Room 201. A Letter of Accommodation Eligibility from the Office of Accessibility Resources and Services office authorizing your accommodations will be required.

For further information regarding self identification, the submission of medical documentation and additional support services provided please visit the Office of Accessibility Resources and Services (OARS) website at:

https://www.njit.edu/accessibility/

Important Dates (See: Spring 2025 Academic Calendar, Registrar)

Date	Day	Event
January 21, 2025	Tuesday	First Day of Classes
January 27, 2025	Monday	Last Day to Add/Drop Classes
March 16, 2025	Sunday	Spring Recess Begins
March 22, 2025	Saturday	Spring Recess Ends
April 3, 2025	Thursday	Wellness day
April 7, 2025	Monday	Last Day to Withdraw
April 18, 2025	Friday	Good Friday - No Classes
April 20, 2025	Sunday	Easter Sunday - No Classes Scheduled
May 6, 2025	Tuesday	Thursday Classes Meet
May 7, 2025	Wednesday	Friday Classes Meet
May 7, 2025	Wednesday	Last Day of Classes
May 8, 2025	Thursday	Reading Day 1

May 9, 2025	Friday	Reading Day 2
May 10 - May 16, 2025	Friday to Thursday	Final Exam Period

COURSE OUTLINE

Week + Dates		Section # + Topic	Assignments	
WEEK 1:	1.1	Some Basic Models; Direction Fields	5, 6, 7, 11, 12, 18	
	1.2	Solutions of Some Differential Equations	2, 4, 11	
	1.3	Classification of Differential Equations	2, 3, 6, 8, 11	
WEEK 2:	2.1	Linear Equations; Integrating Factors	2, 6, 10, 18	
	2.1	Integrating Factors (Continued)	23, 24	
	2.2	Separable Equations	2, 4, 6, 9, 12	
WEEK 3:	2.3	Modeling with First Order Equations	2, 5, 7, 12	
	2.7	Numerical Approximation; Euler's Method	2	
	MATLAB Project 1			
WEEK 4:	3.1	Homogeneous Equations with Constant Coefficients	2, 6, 8, 10, 13, 16	
	3.2	Solutions of Linear Homogeneous Equations and the Wronskian	2, 4, 7, 9, 14, 17, 19, 20, 23	
	3.3	Complex Roots of the Characteristic Equation	2, 4, 6, 8, 12, 19	
WEEK 5:	3.4	Repeated Roots; Reduction of Order	1, 5, 9, 12, 19	
	3.5	Nonhomogeneous Equations; Undetermined Coefficients	2, 4, 8, 13, 14	
	REVIEW FOR EXAM 1			
WEEK 6:	3.5	Undetermined Coefficients (Continued)	16(a), 17(a), 21(a)	

	3.6	Variation of Parameters	2, 6, 10, 12	
	3.7	Mechanical and Electrical Vibrations	1, 3, 4, 6	
WEEK 7:	3.7	Vibrations (Continued)	9, 11, 13	
	3.8	Forced Vibrations	1, 4, 6	
	7.1	System of First Order Linear ODEs	1, 3, 4, 7(a,b)	
WEEK 8:	7.2	Review of Matrices	1, 4, 7, 17	
	7.3	Review of Linear Algebraic Equations, Eigenvalues, and Eigenvectors (2x2)	15, 16, 17	
	7.5	Homogeneous Linear Systems with Constant Coefficients	2(b), 3(b), 5(b), 11	
WEEK 9:	7.6	Complex Eigenvalues	1(b), 4(b), 23	
	MATLAB Project 2			
	6.1	Definition of the Laplace Transform	3, 5, 10, 12, 19	
WEEK 10:	6.2	Laplace Transform Solution of Initial Value Problems	1, 3, 4, 10, 16	
	6.3	Step Functions	1, 3, 8, 10, 14, 15	
	6.4	ODEs with Discontinuous Forcing Functions	2, 3, 4, 7, 11	
WEEK 11:	6.5	Impulse Functions	1, 2, 7	
	6.6	The Convolution Integral	4, 5, 8, 9, 14	
	5.1	Review of Power Series	15, 17, 18, 19	
WEEK 12:	5.2	Series Solutions of Second Order Linear ODEs with Nonconstant Coefficients; Solution Near an Ordinary Point	3(a,b), 5(a,b), 7(a,b)	
	5.4	Euler's Equation; Regular Singular Points	3, 6, 12, 17	
	<u> </u>	l		

WEEK 13:	5.5	Series Solutions Near a Regular Singular Point, Part I	2, 3
	10.1	Two-Point Boundary Value Problems	1, 3, 5, 14, 15
	10.2	Fourier Series	1, 6, 7, 13, 15
WEEK 14:	10.2	Fourier Series (Continued)	1, 6, 7, 13, 15
	10.4	Even and Odd Functions	19(a,b), 27(a,b)
	REVIEW F	OR FINAL EXAM	<u> </u>
WEEK 15:	REVIEW FOR FINAL EXAM		
	•		

Updated by Professor C. Turc - 2025 Department of Mathematical Sciences Course Syllabus, Spring 2025