IS601: Web Systems Development

Spring 2025 Syllabus

Welcome to IS601: Web Systems Development!

Welcome to IS601! This course is designed to equip you with the skills and knowledge necessary to excel in modern web systems development.

Key Policies:

- Generative AI: A subscription to ChatGPT or Claude AI is required for course activities.
- **Git Commit Policy**: Follow the established guidelines to track your progress and model professional developer behavior.
- **Academic Integrity**: Strict adherence to original work and proper collaboration documentation is mandatory.
- **Late Submissions**: Homework and projects have specific deadlines with penalties for late submissions.

Let's embark on this journey to build your technical expertise and professional acumen!

Course Overview

Course Information

- Course Number: IS601
- Course Title: Web Systems Development
- Credit Hours: 3

Sections:

- Section 002: Tuesday 10:00 AM 12:50 PM, CKB 303
- Section 004: Thursday 1:00 PM 3:50 PM, CKB 215 (Students must bring their own device for this section)

Instructor Information

Contact Details

- Name: Keith Williams
- Office: GITC 3420
- Email: <u>kwilliam@njit.edu</u> (Discord Preferred)

- **Discord**: Primary communication method join link provided in Canvas
- Virtual Office: Zoom Link

Day	Time	Format	Designated Course
Tuesday	1:00 PM - 2:20 PM	In-Person/Discord	IS601
Thursday	4:00 PM - 5:30 PM	In-Person/Discord	IS421
Friday	4:00 PM - 5:30 PM	In-Person/Discord	IS322

Office Hours (GITC 3420)

Additional Support:

- Available on Discord throughout the week
- Quick questions can be answered anytime on Discord
- Virtual meetings can be scheduled outside office hours by appointment
- Message on Discord before visiting office hours
- All students are welcome during any office hour time slot

Learning Outcomes

By the end of this course, students will be able to:

- 1. Develop and deploy web applications using Python and the FastAPI framework.
- 2. Implement and interact with various data sources, including CSV files, SQL databases, and RESTful APIs.
- 3. Utilize Git for version control, demonstrating effective commit practices and collaboration.
- 4. Apply object-oriented programming principles and design patterns in project development.
- 5. Containerize applications using Docker and manage full-stack development workflows.
- 6. Implement user authorization and authentication mechanisms and understand the web security model.
- 7. Conduct unit testing and ensure code quality through continuous integration practices.
- 8. Effectively use Generative AI tools to enhance learning and development processes.

Course Description

This comprehensive course immerses students in the world of data programming with Python and web development, focusing on hands-on projects to develop critical problem-solving skills for addressing complex information system requirements. Students will gain proficiency in Python programming, working with various data sources like CSV files, SQL databases, and REST-based web services. The course emphasizes professional competencies, including:

- Industry standards
- Git for version control
- Code standards
- Object-oriented programming
- Design patterns
- Docker
- FastAPI
- SQLAlchemy
- User authorization and authentication
- Web security model

Prerequisites

None

Generative AI Policy

Subscription Requirement

- All students must purchase a subscription to either **ChatGPT** or **Claude Al** to access advanced features necessary for coursework.

Permitted Use

- 1. **Learning Assistance**: Use GenAl to understand course materials, clarify concepts, and accelerate learning.
- 2. Idea Generation: Brainstorm ideas for projects and assignments.
- 3. **Debugging Help**: Seek assistance in identifying and resolving coding issues.
- 4. **Code Snippets**: Obtain code snippets to understand specific functionalities, but integrate and modify them to fit project requirements.

Prohibited Use

- 1. **Direct Code Generation**: Do not use GenAl to generate complete code solutions for assignments or projects.
- 2. **Plagiarism**: Any GenAl-generated code or content must be properly cited.
- 3. Academic Dishonesty: Using GenAI to bypass learning objectives is strictly prohibited.

Transparency and Ethical Use

- Acknowledgment: Document GenAl use in project documentation or README files.
- **Commit Documentation**: Reflect GenAl usage in Git commits.

- **Respect Privacy**: Do not input sensitive information into GenAI tools.
- **Review and Understand**: Always review and comprehend GenAl-generated content before integration.

Git Commit Policy

Commit Guidelines

- 1. Commit Frequency:
 - Commit changes frequently
 - Break work into small, manageable commits

2. Commit Messages:

- Clear and descriptive
- Format: <type>: <short description>
- Types: feat, fix, docs, style, refactor, test, chore

Examples

Feature implementation

git checkout -b feature/user-authentication

git commit -m "feat: add user authentication module"

Bug fixing

git checkout -b fix/data-parsing-bug

git commit -m "fix: resolve data parsing error in API"

Documentation update

git checkout -b docs/update-readme

git commit -m "docs: update README with installation instructions"

Grading

Grade Breakdown

Category	Percentage
Weekly Hands-on Assignments	50%
Midterm Project	25%
Final Project	25%

Grading Scale

Grade	Range	Significance
А	94-100	Superior
В+	87-93	Excellent
В	80-86	Very Good
C+	74-79	Good
С	66-73	Acceptable
D	60-65	Minimum
F	< 60	Inadequate

Grading Policy

- No grade increases will be considered
- Homework graded complete/incomplete
- Projects graded on:
 - Minimum 50% for substantive effort
 - Additional 50% based on functionality, design, and code quality

Late Policy

- Homework: No submissions accepted after 2 days late
- **Projects**: 10% penalty per day, maximum 4 days late
- **Exceptions**: Only with medical/military documentation

Academic Integrity

Collaboration and Original Work

- Original work is required
- Referencing tutorials is allowed; copying is not
- Violations will be reported to the Dean of Students

Collaboration Documentation

- Every commit from another student must be documented in the collaboration report
- Collaboration report must show:
 - Authorization by both students
 - Authentic nature of collaboration
- Clear commit messages and project work history are essential

Consequences

- First violation: Project/homework receives 0
- Subsequent violations: Automatic course failure
- Potential disciplinary actions include:
 - Referral to Dean of Students
 - Committee on Professional Conduct review
 - Possible Disciplinary Probation
 - Permanent record marking
 - Possible dismissal
 - Course grade of 'F'

Course Calendar

Key Dates and Deliverables

Week	Dates	Topics & Deliverables
1	Jan 21-24	Python Environment Setup, Git Review
		Lab 1: Development Environment
2	Jan 27-31	Python Fundamentals, Functions, OOP
		Lab 2: Python Basics

Week	Dates	Topics & Deliverables
3	Feb 3-7	Data Structures, File Operations
		Lab 3: Data Processing
4	Feb 10-14	Database Fundamentals, SQL **Lab 4**: SQL Basics **Proiect 1 Assigned**
5	Feb 17-21	ORM Patterns
		Lab 5: ORM Implementation
6	Feb 24-28	FastAPI Basics **Lab 6**: API Development
		Project 1 Due
7	Mar 3-7	Advanced API Features
		Lab 7: Complex APIs
8	Mar 10-14	Testing Principles **Lab 8**: Unit Testing
		Midterm Project Assigned
-	Mar 16-22	Spring Recess
9	Mar 24-28	CI/CD with GitHub Actions
		Lab 9: Automation
10	Mar 31-Apr 4	Advanced Python Patterns **Lab 10**: Design Patterns
		Midterm Project Due
11	Apr 7-11	Security Best Practices **Lab 11**: API Security

Week	Dates	Topics & Deliverables
		Final Project Assigned
12	Apr 14-18	Performance Optimization
		Lab 12: Optimization
13	Apr 21-25	Project Workshop
		Code Reviews
14	Apr 28-May 2	Production Deployment
		Final Project Development
15	May 5-7	Final Project Presentations
		Final Project Due

Important Notes

- All assignments due at 11:59 PM EST
- Weekly hands-on assignments build towards project requirements
- Lab assignments due at time posted in Canvas
- Project demonstrations during class times

Course Resources

- NJIT Library: Academic resources
- Stack Overflow: Programming Q&A
- GitHub Learning Lab: Git tutorials
- Python Documentation: Official docs
- FastAPI Documentation: Comprehensive guide
- NJIT Tutoring Services: Academic support

Attendance and Participation

Attendance Policy

- Highly recommended to attend all scheduled classes
- More than three unexcused absences may negatively impact grade

Participation Requirements

- Active engagement in class discussions, group work, and Discord channels
- Contribute to collaborative learning environments

Excused Absences

- Medical or military absences require documented verification
- Notify instructor in advance when possible

Accessibility and Accommodations

NJIT is committed to an inclusive learning environment. Students requiring accommodations due to disability should contact the NJIT Disability Resource Center early to discuss needs confidentially.

Inclusion and Diversity

We value diversity and strive to create an inclusive environment. Discrimination or harassment will not be tolerated. Report any incidents to the instructor or NJIT Office of Diversity and Inclusion.