	NJI		
	Department of Con	nputer Science	
CS 610	-102: DATA STRUCT	URES & ALGORIT	THMS
Spring 2023	CULM LE	CT 3	Tue 6:00 PM - 8:50 PM
Instructor: Marzieh Eskandari Ema	ail: <u>marzieh.eskandari@</u> ı	njit.edu Webex: <u>ht</u>	tps://njit.webex.com/meet/me374
Office: GITC 4313 Office Hours: Tue 12:45-2:15, Fri 4:45-5:45			
Prerequisites:			
 Undergrad course on Data Structur Discrete Math (CS 506 or CS 241 or Programming Maturity. 	-	or equivalent);	
Textbook:			
Michael Goodrich and Roberto Tamas Algorithm Design: Foundations, Analy ISBN: 0-471-38365-1. (Available at N.	sis, and Internet Exampl	es, Wiley, 2002.	ALGORITHM DESIGN Formations Formations Formations Formations
Evaluation:			
Assignments: 15% Attendance: 5% Midterm Exam 1 (February 14): 20% Midterm Exam 2 (March 28): 20% Makeup Exam (April 25) Final Exam (May): 40% Note 1: NJIT Picture ID required for a	III exams. All exams are o	closed books and clos	sed notes.
Course Description:			
This is a graduate-level course on data and analysis of algorithms. Topics i recurrence relations, priority queues trees), sorting algorithms; divide-and and dynamic-programming, graph algorithms.	nclude analysis techniq , hash tables, binary-sea -conquer design techniq	ues, worst-case and arch trees, balanced	average-case analysis, recursion, search trees (AVL trees, red-black
Course Objectives (what you are exp	ected to get out of this o	course):	
 Learn basic analysis techniques Learn basic design techniques Learn recurrence equations and Learn advanced data structures Understand sorting algorithms and Learn basic graph algorithms and 	: Priority queues, heaps, and their complexities		rch trees
Grading:			
The grading scale (out of 100) is: 90–2	100: A, 80–89: B+, 70–79	: B, 60–69: C+, 50 – 5	9: C, 40-49: D

Academic Integrity:

Academic Integrity is the cornerstone of higher education and is central to the ideals of this course and the university. Cheating is strictly prohibited and devalues the degree that you are working on. As a member of the NJIT community, it is your responsibility to protect your educational investment by knowing and following the academic code of integrity policy that is found at: <u>http://www5.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf</u>

Please note that it is my professional obligation and responsibility to report any academic misconduct to the Dean of Students Office. Any student found in violation of the code by cheating, plagiarizing or using any online software inappropriately will result in disciplinary action. This may include a failing grade of F, and/or suspension or dismissal from the university. If you have any questions about the code of Academic Integrity, please contact the Dean of Students Office at dos@njit.edu

e Date In 31 eb 14 ar 21 ar 28 or 18 May vsis,			
eb 14 ar 21 ar 28 or 18 May			
ar 21 ar 28 or 18 May			
ar 28 or 18 May			
or 18 May			
Лау			
-			
'sis,			
ʻsis,			
vsis,			
Introduction, Analysis Techniques, Examples of worst-case and average-case analysis, Complexity definitions: O(), Omega, Theta			
Recursive Algorithms, Recurrence Relations, Binary Search			
sort,			
Balanced Search Trees: AVL and Red-Black trees Graphs: Definitions, Representations and Traversals			
l,			
Greedy method (Fractional Knapsack, Task Scheduling, Huffman Coding, Single-Source-Shortest-Paths (Dijkstra))			
Greedy method (MST Algorithms: Prim, Kruskal) Dynamic Programming (introduction, Binomial coefficients)			
on,			