9/3/25,10:05 AM Syllabus | CS 490-001 (Au25)

CS 490-001 (Au25)

Syllabus

Welcome to CS 490: Guided Design in Software Engineering! This is a course about building
software that satisfies stronger properties than “it works": it's about building software that is
correct, reliable, maintainable, testable, and usable. That is, this course will teach you about how
to build software well.

The course is structured around giving you experience in both the theory (through readings and
lectures) and the practice (through programming assignments and a large group project) of
software engineering. However, this course has a strong emphasis on the practical: the
assignments mirror real engineering activities, most readings are blog posts from engineers, etc.
My overarching goal in this class is to expose you to how high-quality software engineering is
done at the world's best software engineering firms.

Course Outcomes

Official course outcomes:

Students will be able to explain the major theories and methods applicable to professional
software engineering.

- Students will be able to design, implement and evaluate a computer-based system to meet
desired needs.

- Students will be able to function effectively on a team to accomplish a goal.

Students will be able to use current techniques, skills and tools necessary for computing
practice.

My course design is based additionally on these unofficial outcomes:

Students will be able to assess the quality of software engineering being done at some future
workplace

- Students will be competent software engineers that | wouldn’t be worried about hiring as an
engineering manager

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/about/ 1/8

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/

9/3/25,10:05 AM Syllabus | CS 490-001 (Au25)

Prerequisites

Technically this course requires CS 280 and CS 288, which are both courses about how to
program. | will assume in this course that you know how to program: that is, that if | tell you to go
write some code, you'll be able to go do it. Since this course focuses on how to program well (i.e.,
how to engineer software!), you first need to know how to program at all. I'll also assume some
familiarity with command line tools, debugging, and using a search engine: | expect that if | ask
you to go write code in some language you've never seen before, you'll be able to find the
necessary components online, find an online tutorial on the syntax, and figure out how to write
that code. Put another way, | won't teach you how to write a program: this course already
assumes that you can do that.

As an analogy to carpentry, classes like CS 113 teach you how to build the equivalent of a software
cabinet. CS 280 and CS 288 teach you how to build something like a software shed: pretty big,
but still small enough for one person to do on their own by combining the skills they learned
building cabinets. CS 490 is about the equivalent of building a software high-rise: not only is it
more than a single-person job, but also there's lots of other things you need to worry about that
don't come up when you're building a shed.

The first homework assignment is due right at the drop date, and is intended to let you check that
you have the basic skills that will be needed for this course: it requires you to make a trivial
change to a big program in a language you've never seen before.

However, software engineering is a broad topic that requires a synthesis of knowledge, and
students will benefit from almost all of the rest of the undergraduate curriculum. We will use
concepts from most other courses in the curriculum, including but not limited to: CS theory (CS
341), operating systems (CS 332), algorithms (CS 435), data structures (CS 114), security (CS
351), and databases (CS 331). You don't need to have taken these courses before you take CS
490, but I'll bring up topics from them when they're relevant to the course, so you'll get more out
of CS 490 if you have seen those classes first (or are taking them concurrently).

Topics

What is Software Engineering?
- Software Engineering process
« Version control

Code review

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/about/ 2/8

9/3/25,10:05 AM Syllabus | CS 490-001 (Au25)

Programming in teams

Testing, including coverage, continuous integration, test-driven development, mutation
testing, and fuzzing

Requirements and specifications
Programming languages

Build systems

Static analysis

Debugging

Architecture and design, including design patterns, microservice design, designing for
security, and designing for scale

Technical debt, refactoring, and maintenance
DevOps, logging and post-mortems

Open source software

Grading and Assignments

Your grade is composed of the following sub-scores (in no particular order):

15%: Participation & Professionalism

15%: Individual Assignments

35%: Group Project

35%: Exams (15% for the mid-term, 20% for the final)

This class will be curved: when grading, | prefer to use the whole range available rather than
scores in a tight range. That is, if an assignment is worth 10 points, | will give grades at all the
points between 0 and 10. | will project your raw scores onto the final distribution twice during the
semester:

after the mid-term exam

shortly before the final exam

You will be notified of your current projected class grade via email at each of these points.

Readings and Reading Responses

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/about/ 3/8

9/3/25,10:05 AM Syllabus | CS 490-001 (Au25)
Each lecture has two kinds of readings: mandatory and “Your Choice" readings. | expect you to
read mandatory readings before coming to class that day, and reading quizzes (see Participation
& Professionalism, below) will cover the mandatory readings only. During the semester, you must
complete at least two "Your Choice” readings: one before the mid-term, and another before the
final. Most “Your Choice" readings are research papers from the software engineering literature:
the idea is that you will do a deeper dive on two topics that interest you. The “Your Choice”
readings will be checked on the exams: see the "Your Choice” reading page.

Participation & Professionalism

Your participation & professionalism grade is composed of two scores.

First, your Professionalism score is based on the instructors (both the professor and TAs!)
impression of how well you participated in class, with deductions for distracting other students
and credit for asking and answering questions (either in person or on the course discussion
board). Professionalism during the project (especially in interactions with your group’s TA mentor)
is also a major component.

Second, your Participation score is based on reading quizzes (about topics from the mandatory
readings only - quizzes will never cover "Your Choice” readings) at the beginning of most
lectures. You get half credit on these quizzes just for being there, and half credit for answering the
reading questions correctly (the questions are supposed to be easy if you did the reading). For full
participation, you need to get at least a score of 70% on all quizzes over the whole semester (this
gives you space to e.g., miss a reading quiz because you were sick or have a family emergency -
there are no excuses for missing reading quizzes). Put another way, you can miss up to 30% of
the reading quiz points and still get full participation points.

These policies are designed to encourage you to come to class. A big part of the goal of this class
is to help you develop an intuition for what good software engineering looks like, and without
coming to class you won't get the full benefit of that intuition.

Remote Participation

Generally this class does not support remote participation: teaching is much more effective, in my
experience, when everyone is physically present. However, | understand that sometimes you are
sick, traveling, or otherwise unable to come to class. | will arrange for remote participation in any
particular lecture as long as you request it at least one hour in advance (if you're sick or in some
other emergency) or 24 hours in advance (if you're traveling or otherwise planning to be unable to
come to class). Notify the instructor via email if you need to participate in a particular class
remotely.

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/about/ 4/8

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/optional-readings.html

9/3/25,10:05 AM Syllabus | CS 490-001 (Au25)
Asking Questions
There is a course Discord server which you can use to ask (and answer) questions about any of
the course topics or for help with the homework. Participating on Discord is optional, but if you do
participate in a productive manner (especially by answering other student’s questions!), it will
have a positive impact on your participation score.

Course Project (both Individual and Group)

The assignments and project for this class are designed to mirror the experiences of a software
engineer joining a new development team: you will be "onboarded” to our codebase, make several
individual contributions, and then form a team to propose, develop and implement a new feature.
The codebase that we'll be developing on is a remote collaboration tool called Covey.Town.
Covey.Town provides a virtual meeting space where different groups of people can have
simultaneous video calls, allowing participants to drift between different conversations, just like in
real life. Covey.Town is inspired by existing products like Gather.Town, Sococo, and Gatherly.IO —
but it is an open source effort, and the features will be proposed and implemented by you! All
implementation will take place in the TypeScript programming language, using React for the user
interface.

At the end of the semester, the instructors and TAs will evaluate all of the student projects, and
select the best (in terms of usability, code quality, test suite quality, and overall design) to merge
into the open source Covey.Town codebase on GitHub repository. No additional course credit will
be awarded to these teams, but these students will have the opportunity to receive public
recognition for their project (in the form of a pull request merged into our repository and
acknowledgments in the project’s contributors list).

The project will provide hands-on experience to complement the skills taught in this class,
requiring students to be able to:

- Work effectively in a small team

Enumerate and prioritize development tasks

Propose, design, implement and test a new feature in an existing non-toy software application
« Write code that their team members can read and review

Review teammates’ code

Analyze a proposed software architecture

Use relevant software tools, such as:

TypeScript
+ Visual Studio Code (or similar IDE)

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/about/ 5/8

http://discord.com/channels/1412140735339303064/1412140735804735602
https://www.covey.town/
https://gather.town/
https://www.sococo.com/
https://www.gatherly.io/
https://github.com/neu-se/covey.town

9/3/25,10:05 AM Syllabus | CS 490-001 (Au25)
- Git
« Mocha and Jest
- Twilio's Programmable Video API

« Postman

Exams

There are two exams in this course:

« amid-term, which is held in class about halfway through the semester (worth 10% of your
course grade)

- afinal exam, which is held during the university-scheduled final exam slot (worth 15% of your
course grade)

Both exams will cover a range of topics discussed in lecture and/or in the mandatory readings,
from any time during the semester up to the point when the exam is held. The exam will be
comprehensive, covering many of the topics we discuss; | may ask about anything we covered in
class or that you were supposed to read. The exam will be conducted in person. Contact the
course staff privately via email if you are not able to attend for any reason (e.g., you are sick or
need special accommodations) and we will arrange an alternative. See the exams page for more

information.

Collaboration Policy

Collaboration is generally encouraged in this course, as is consulting online resources. You are
permitted to copy small amounts of code from any source except someone else's copy of an
assignment, as long as you cite your source. "someone else's copy of an assignment” also
includes students not currently enrolled in the course - e.g., students who took (or are taking) this
class in previous semesters or took classes that used similar individual projects at other
institutions. To make this more clear, here are some examples of acceptable and unacceptable
collaboration on a programming assignment in this course:

Acceptable collaborations:

« Discuss problems/solutions/anything with any number of other students (as long as you don’t
look at each other’s code).

- Copy a short (about 10 lines or fewer - use your judgment) snippet from stackoverflow.com or
a similar source, as long as you include a comment with the source URL.

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/about/ 6/8

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/exam
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/about/stackoverflow.com

9/3/25,10:05 AM Syllabus | CS 490-001 (Au25)
Copy code written by one of your teammates during the group project for another part of the
group project.
Copy code from the output of a generative Al tool such as ChatGPT that you prompted
yourself, if you include a link to a record of your interaction with the model (e.g., ChatGPT's
"share” feature) as a code comment.

Unacceptable collaborations:

Copy code directly from another student on an individual project.
Copy code from another group on a group project.

Copy a significant portion (more than about 10 lines of code or a single method - use your
judgment) of your assignment from the internet, even if you cite your source.

Copy a short snippet from the internet without citing your source.

Copy code from the output of a generative Al tool (such as ChatGPT) without citing your
source

Copy code from the output of a generative Al tool prompted by someone other than you (or
your teammates, for the group project)

These rules are intended to mimic what is acceptable in industry when working as a software
engineer: using the resources available to you, such as your teammates and the wider internet, is
always allowed. But, it would be illegal to copy code from a competing company working on a
similar product.

Consequences of Violating the Collaboration
Policy

(From the University)

"Academic Integrity is the cornerstone of higher education and is central to the ideals of this
course and the university. Cheating is strictly prohibited and devalues the degree that you are
working on. As a member of the NJIT community, it is your responsibility to protect your
educational investment by knowing and following the academic code of integrity policy that is
found at: http://wwwb5.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf.

Please note that it is my professional obligation and responsibility to report any academic
misconduct to the Dean of Students Office. Any student found in violation of the code by
cheating, plagiarizing or using any online software inappropriately will result in disciplinary action.

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/about/ 7/8

9/3/25,10:05 AM Syllabus | CS 490-001 (Au25)
This may include a failing grade of F, and/or suspension or dismissal from the university. If you
have any questions about the code of Academic Integrity, please contact the Dean of Students
Office at dos@njit.edu”

Late Policy

All deadlines are final; no late work will be accepted for credit. We are always happy to give you
feedback on late work if you contact us by email.

Acknowledgments

This course is heavily indebted to a number of other courses in software engineering at other
universities, especially:

Jon Bell's CS 4530 at Northeastern (special thanks to Jon and his colleagues for their
permission to re-use the Covey.Town project materials.)

Wes Weimer's EECS 481 at the University of Michigan
Michael Ernst's CSE 403 at the University of Washington

As a student, if you're looking for more materials (or just a different perspective) on any of the
topics we cover, you might start with those (excellent) courses.

© 2022-2025 Martin Kellogg, Jonathan Bell, Adeel Bhutta and Mitch Wand. Released under the CC BY-SA license

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/about/ 8/8

https://www.jonbell.net/
https://neu-se.github.io/CS4530-Fall-2022/
https://web.eecs.umich.edu/~weimerw/
https://web.eecs.umich.edu/~weimerw/481/index.html
https://homes.cs.washington.edu/~mernst/
https://courses.cs.washington.edu/courses/cse403/19wi/
https://creativecommons.org/licenses/by-sa/4.0/

9/3/25,10:05 AM

CS 490-001 (Au25)

Calendar

Week 1

Sep 1.

Sep 3:

Week 2

Sep 8:

Sep 8:

No Class (Labor Day)

Introduction

INDIVIDUAL PROJECT O

Code-level Design

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/calendar/

Calendar | CS 490-001 (Au25)

Totally Optional, For Fun
Readings: Gross' The Grug
Brained Developer and
Kingsbury's Reversing the
technical interview

Mandatory reading: the
Individual Project O Specification
and the syllabus (No reading
quiz today, but these are fair
game for any subsequent
reading quiz.)

Your Choice reading: Brooks'
No Silver Bullet

Mandatory reading: Spolsky’s
The Joel Test (note that this
article is from 2000, so the
examples are a little dated),
Gransee's Opinions on
Opinionated Formatters, the
Prettier team’'s Option
Philosophy, and Wikipedia's Law
of Triviality.

1/10

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/
https://grugbrain.dev/
https://grugbrain.dev/
https://aphyr.com/posts/340-reversing-the-technical-interview
https://aphyr.com/posts/340-reversing-the-technical-interview
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-intro.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/ip0.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/about/
https://worrydream.com/refs/Brooks_1986_-_No_Silver_Bullet.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/ip0.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-code-level-design.pdf
https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-to-better-code/
https://www.seangransee.com/blog/autoformatters
https://www.seangransee.com/blog/autoformatters
https://prettier.io/docs/en/option-philosophy.html
https://prettier.io/docs/en/option-philosophy.html
https://en.wikipedia.org/wiki/Law_of_triviality
https://en.wikipedia.org/wiki/Law_of_triviality

9/3/25,10:05 AM Calendar | CS 490-001 (Au25)
Your Choice reading: Ajami et
al!s Syntax, predicates, idioms
— what really affects code
complexity?

Sep 10: Reading Code Mandatory reading: Atwood'’s
Learn to Read the Source, Luke,
Coleman’s How to quickly and
effectively read other people's
code, and the Individual Project
1 Specification

Your Choice reading: Endres et
al's Relating Reading,
Visualization, and Coding for
New Programmers: A
Neuroimaging Study

Week 3

Sep 15: Testing (1) Mandatory reading: Shore's
The Art of Agile Development:
Test-Driven Development

Your Choice reading: Saff and
Ernst’s An Experimental
Evaluation of Continuous
Testing During Development

Sep 17: Testing (2) Mandatory reading: Petrovic's
Mutation Testing

Your Choice reading: Memon
et al's Taming Google-Scale
Continuous Testing

Week 4

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/calendar/ 2/10

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/complexity.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/complexity.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/complexity.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-reading-code.pdf
https://blog.codinghorror.com/learn-to-read-the-source-luke/
https://selftaughtcoders.com/how-to-quickly-and-effectively-read-other-peoples-code/
https://selftaughtcoders.com/how-to-quickly-and-effectively-read-other-peoples-code/
https://selftaughtcoders.com/how-to-quickly-and-effectively-read-other-peoples-code/
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/ip1.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/ip1.html
https://web.eecs.umich.edu/~weimerw/p/weimer-icse2021-reading-preprint.pdf
https://web.eecs.umich.edu/~weimerw/p/weimer-icse2021-reading-preprint.pdf
https://web.eecs.umich.edu/~weimerw/p/weimer-icse2021-reading-preprint.pdf
https://web.eecs.umich.edu/~weimerw/p/weimer-icse2021-reading-preprint.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-testing1.pdf
http://www.jamesshore.com/v2/books/aoad1/test_driven_development
http://www.jamesshore.com/v2/books/aoad1/test_driven_development
https://homes.cs.washington.edu/~mernst/pubs/ct-user-study-issta2004.pdf
https://homes.cs.washington.edu/~mernst/pubs/ct-user-study-issta2004.pdf
https://homes.cs.washington.edu/~mernst/pubs/ct-user-study-issta2004.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-testing2.pdf
https://testing.googleblog.com/2021/04/mutation-testing.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/googletest.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/googletest.pdf

9/3/25,10:05 AM

Sep 22:

Sep 22:

Sep 24

Week 5

Sep 29:

Sep 29:

INDIVIDUAL PROJECT 1 DUE

Testing (3)

Version Control

INDIVIDUAL PROJECT PROPOSAL DUE

Process

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/calendar/

Calendar | CS 490-001 (Au25)

Mandatory reading: SQLite's
How SQLite is Tested and the
Group Project Specification.

Your Choice reading: Barr et
al's The Oracle Problem in
Software Testing: A Survey

Mandatory reading: Ernst's
Version control concepts and
best practices and Thompson's
My favourite Git commit

Your Choice reading: De Rosso
et al's Purposes, concepts,
misfits, and a redesign of git

Mandatory reading: The Agile
Manifesto and its Twelve
Principles (this should be a
quick read, but | suggest you
think about what it is
advocating for at least a few
minutes before moving onto the
next article) and Santo's
“"Waterfall” doesn’t mean what
you think it means

Your Choice reading: Anda et
al!s Variability and
Reproducibility in Software
Engineering: A Study of Four

3/10

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/ip1.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-testing3.pdf
https://www.sqlite.org/testing.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/project-overview.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/testoracles.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/testoracles.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-vcs.pdf
https://homes.cs.washington.edu/~mernst/advice/version-control.html
https://homes.cs.washington.edu/~mernst/advice/version-control.html
https://dhwthompson.com/2019/my-favourite-git-commit
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/gitless.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/gitless.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25//projects/individual-project-proposal.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-process.pdf
https://agilemanifesto.org/
https://agilemanifesto.org/
https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html
https://changelog.com/posts/waterfall-doesnt-mean-what-you-think-it-means
https://changelog.com/posts/waterfall-doesnt-mean-what-you-think-it-means
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/estimation.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/estimation.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/estimation.pdf

9/3/25,10:05 AM Calendar | CS 490-001 (Au25)

Companies that Developed the
Same System

Oct 1: Working in Teams Mandatory reading: Fowler’s
Two Pizza Team and Arguelles’
My favorite coding question to
give candidates (and why)

Your Choice reading: Behroozi
et al's Hiring is Broken: What
Do Developers Say About
Technical Interviews?

Oct 3: Team Assignments published no later than this date.
Week 6
Oct 6: Requirements and Specifications (1) Mandatory reading: Spolsky'’s

How to be a Program Manager
and Ubl's Design Docs at
Google.

Your Choice reading: Ernst et
al!s The Daikon system for
dynamic detection of likely
invariants

Oct 8: Requirements and Specifications (2) Mandatory reading: Wayne's
Using Formal Methods at Work.

Your Choice reading: Lamport’s
Introduction to TLA

Week 7

Oct 13: PROJECT PLAN

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/calendar/ 4/10

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/estimation.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/estimation.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-teams.pdf
https://martinfowler.com/bliki/TwoPizzaTeam.html
https://carloarg02.medium.com/my-favorite-coding-question-to-give-candidates-17ea4758880c
https://carloarg02.medium.com/my-favorite-coding-question-to-give-candidates-17ea4758880c
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/hiring-is-broken.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/hiring-is-broken.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/hiring-is-broken.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-specs1.pdf
https://www.joelonsoftware.com/2009/03/09/how-to-be-a-program-manager/
https://www.industrialempathy.com/posts/design-docs-at-google/
https://www.industrialempathy.com/posts/design-docs-at-google/
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/daikon.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/daikon.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/daikon.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-specs2.pdf
https://www.hillelwayne.com/post/using-formal-methods/
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/tla.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/project-plan.html

9/3/25,10:05 AM

Oct 13:

Oct 15:

Week 8

Oct 20:

Oct 22:

Code Review

Languages

Build Systems

Static Analysis

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/calendar/

Calendar | CS 490-001 (Au25)

Mandatory reading: Google's
How to do a code review (read
all six linked sub-pages in the

bulleted list)

Your Choice reading: Bacchelli
and Bird's Expectations,
Outcomes, and Challenges Of
Modern Code Review

Mandatory reading: Howarth's
Why Discord is Switching from
Go to Rust and Schwab's Safety
through Incompatibility

Your Choice reading: Hoare's
Hints on Programming
Language Design (shorter than
it looks!)

Mandatory reading: Atwood's
The F5 Key Is Not a Build
Process

Your Choice reading: Mokhov
et al's Build Systems a la Carte

Mandatory reading: Ayewah et
al's Experiences Using Static
Analysis to Find Bugs and
Schwartz-Narbonne's How to
integrate formal proofs into
software development

Your Choice reading: Chapter
2 ("Abstract Interpretation”) of

5/10

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-code-review.pdf
https://google.github.io/eng-practices/review/reviewer/
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/codereview.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/codereview.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/codereview.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-languages.pdf
https://discord.com/blog/why-discord-is-switching-from-go-to-rust
https://discord.com/blog/why-discord-is-switching-from-go-to-rust
https://lukasschwab.me/blog/gen/safe-incompatibility.html
https://lukasschwab.me/blog/gen/safe-incompatibility.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/hoarehints.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/hoarehints.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-build-systems.pdf
https://blog.codinghorror.com/the-f5-key-is-not-a-build-process/
https://blog.codinghorror.com/the-f5-key-is-not-a-build-process/
https://www.microsoft.com/en-us/research/uploads/prod/2018/03/build-systems-final.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-static-analysis.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/findbugs.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/findbugs.pdf
https://www.amazon.science/blog/how-to-integrate-formal-proofs-into-software-development
https://www.amazon.science/blog/how-to-integrate-formal-proofs-into-software-development
https://www.amazon.science/blog/how-to-integrate-formal-proofs-into-software-development

9/3/25,10:05 AM

Week 9

Oct 27:

Oct 27:

Oct 29:

Oct 31:

Week 10

Nov 3:

Nov 3:

Nov b:

REVISED PROJECT PLAN

Debugging (1)

Debugging (2)

DEPLOYMENT DEMO

Mid-term Exam (in-class)

PROJECT TEAM SURVEY

Software Architecture

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/calendar/

Calendar | CS 490-001 (Au25)

Ernst’'s Notes on Program
Analysis

Mandatory reading: Zeil's
Debugging — Using Hypotheses
to Track Down the Culprit and
Taylor's Debugging

Your Choice reading: Ko and
Myers' Designing the WhyLine:
A Debugging Interface for
Asking Questions about
Program Behavior

Mandatory reading: Zeller's
Automated Debugging: Are We
Close? and Alpert's TODOs
aren't for doing

Your Choice reading: Cleve
and Zeller's Locating Causes of
Program Failures

see the exams page for old and
practice exams (with keys)

Mandatory reading: Kastner's
Thinking Like a Software

6/10

https://homes.cs.washington.edu/~mernst/pubs/program-analysis-book.pdf
https://homes.cs.washington.edu/~mernst/pubs/program-analysis-book.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/revised-project-plan.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-debugging.pdf
https://www.cs.odu.edu/~zeil/cs333/s14/Public/debugging2/debugging2__html.html
https://www.cs.odu.edu/~zeil/cs333/s14/Public/debugging2/debugging2__html.html
https://airs.com/ian/essays/debug/debug.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/whyline.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/whyline.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/whyline.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/whyline.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-debugging2.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/delta.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/delta.pdf
https://sophiebits.com/2025/07/21/todos-arent-for-doing
https://sophiebits.com/2025/07/21/todos-arent-for-doing
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/delta2.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/delta2.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/project-demos.html#deployment-demo-due
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/exam
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/surveys.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-architecture.pdf
https://ckaestne.medium.com/thinking-like-a-software-architect-121ea6919871

9/3/25,10:05 AM Calendar | CS 490-001 (Au25)

Nov 7: WIZARD-OF-0Z DEMO

Week 11

Nov 10: Design Patterns

Nov 12: Tech debt, refactoring, and maintenance (1)
Week 12
Nov 17: Tech debt, refactoring, and maintenance (2)

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/calendar/

Architect and Ross’ How
Architecture Diagrams Enable
Better Conversations

Your Choice reading: Garlan's
Software Architecture

Mandatory reading: Fowler’s
Writing Software Patterns (read
up to, but not including,
“Common Pattern Forms") and
Lewis and Fowler's

Microservices

Your Choice reading: Kellogg
et al's Verifying Object
Construction

Mandatory reading: Allman’s
Managing Technical Debt

Your Choice reading: Kim et
al!s A Field Study of Refactoring
Challenges and Benefits

Mandatory reading: Spolsky's
Things you should never do,
part | and Majors’ Friday Deploy
Freezes Are Exactly Like
Murdering Puppies

7/10

https://ckaestne.medium.com/thinking-like-a-software-architect-121ea6919871
https://www.unravelled.dev/how-architecture-diagrams-enable-better-conversations/
https://www.unravelled.dev/how-architecture-diagrams-enable-better-conversations/
https://www.unravelled.dev/how-architecture-diagrams-enable-better-conversations/
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/architecture.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/project-demos.html#wizard-of-oz-demo
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-design-patterns.pdf
https://www.martinfowler.com/articles/writingPatterns.html
https://www.martinfowler.com/articles/microservices.html
https://kelloggm.github.io/martinjkellogg.com/papers/ICSE2020-camera-ready.pdf
https://kelloggm.github.io/martinjkellogg.com/papers/ICSE2020-camera-ready.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-techdebt1.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/techdebt.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/refactoring.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/refactoring.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-techdebt2.pdf
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/
https://charity.wtf/2019/05/01/friday-deploy-freezes-are-exactly-like-murdering-puppies/
https://charity.wtf/2019/05/01/friday-deploy-freezes-are-exactly-like-murdering-puppies/
https://charity.wtf/2019/05/01/friday-deploy-freezes-are-exactly-like-murdering-puppies/

9/3/25,10:05 AM Calendar | CS 490-001 (Au25)
Your Choice reading: Scully et
al's Machine Learning: The
High-Interest Credit Card of
Technical Debt

Nov 19: DevOps (1) Mandatory reading: Sloss'
“Introduction” and Baye's
"Emergency Response” from
Google's Site Reliability
Engineering

Your Choice reading: Dean and
Barroso’s “The Tail at Scale”

Nov 21: PRELIMINARY DEMO

Week 13

Nov 24: DevOps (2) Mandatory reading: Lunney
and Lueder’s “Postmortem
Culture: Learning from Failure”
from Google's Site Reliability
Engineering and Luu's
“"Postmortem Lessons”
Your Choice reading: Xu et al.'s
“"Do Not Blame Users for
Misconfiguration”

Nov 26: No class (Friday classes meet for Thanksgiving holiday)

Nov 26: PROJECT TEAM SURVEY

Week 14

Dec 1: Free and Open-source Software Mandatory reading: Stallman’s

Why Open Source Misses the
Point of Free Software and

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/calendar/ 8/10

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43146.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43146.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43146.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-devops1.pdf
https://sre.google/sre-book/introduction/
https://sre.google/sre-book/emergency-response/
https://sre.google/sre-book/table-of-contents/
https://sre.google/sre-book/table-of-contents/
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/tail-at-scale.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/project-demos.html#preliminary-demo
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-devops2.pdf
https://sre.google/sre-book/postmortem-culture/
https://sre.google/sre-book/postmortem-culture/
https://sre.google/sre-book/table-of-contents/
https://sre.google/sre-book/table-of-contents/
https://danluu.com/postmortem-lessons/
https://cseweb.ucsd.edu//~tixu/papers/sosp13.pdf
https://cseweb.ucsd.edu//~tixu/papers/sosp13.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/surveys.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-foss.pdf
https://www.gnu.org/philosophy/open-source-misses-the-point.en.html
https://www.gnu.org/philosophy/open-source-misses-the-point.en.html

9/3/25,10:05 AM

Dec 3:

Week 15

Dec 8:

Dec 10:

Software Engineer Panel

What is Software Engineering?

ALL GROUP PROJECT FINAL DELIVERABLES DUE

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/calendar/

Calendar | CS 490-001 (Au25)

Zaitsev's The Future of Open
Source is Polarized

Your Choice reading: Terrell et
al's Gender differences and bias
in open source: pull request
acceptance of women versus
men

Mandatory reading: none, but
you must submit a question by
December 2 AoE

Your Choice reading: none

Mandatory reading: Shaw's
"What makes good research in
software engineering?”

Your Choice reading: read 10
abstracts in the latest ICSE
proceedings and make a list of
words you don't know. Then,
look up at least 5 of those
words and write a brief
definition. Send me the list of
words, the 5 definitions, and the
titles of the papers whose
abstracts you read over email.
(The reading quiz question for
this reading will cover a topic
that everyone who chooses this
reading has read.)

9/10

https://www.percona.com/blog/the-future-of-open-source-is-polarized/
https://www.percona.com/blog/the-future-of-open-source-is-polarized/
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/genderpull.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/genderpull.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/genderpull.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/genderpull.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/lecture-wrapup.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/good-se.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/good-se.pdf
https://dblp.org/db/conf/icse/icse2025.html
https://dblp.org/db/conf/icse/icse2025.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/project-deliverable.html

9/3/25,10:05 AM

Dec 10:

Dec 12:

Dec 13:

Dec 13:

Week 16

Dec X:

Dec 18:

Calendar | CS 490-001 (Au25)

TBD/Slack, for now

Group project demos for the instructor must be done by this date AoE. Attendence
(in-person) is required. At least one group member must bring a laptop with a working
demo of your group project (running in a publicly-accessible, deployed covey.town
instance). Your team can sign up for a timeslot here.

THIRD PROJECT TEAM SURVEY DUE

INDIVIDUAL REFLECTION DUE

Final exam at TBD

ALL GROUP PROJECT FINAL DELIVERABLES (RE-SUBMISSION) DUE

© 2022-2025 Martin Kellogg, Jonathan Bell, Adeel Bhutta and Mitch Wand. Released under the CC BY-SA license

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/calendar/

10/10

https://creativecommons.org/licenses/by-sa/4.0/
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/calendar/
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/surveys.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/project-deliverable.html#individual-reflection-1
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/project-deliverable.html#resubmission-after-the-final-demo

9/3/25,10:07 AM

CS 490-001 (Au25)

Projects | Project Overview

Project Overview

The individual and team projects for this class are designed to mirror the experiences of a

Project Overview | CS 490-001 (Au25)

software engineer joining a new development team: you will be “onboarded” to our codebase,

make several individual contributions, and then form a team to propose, develop and implement a

new feature. The codebase that we are be developing on is a remote collaboration tool called

Covey.Town. Covey.Town provides a virtual meeting space where different groups of people can

have simultaneous video calls, allowing participants to drift between different conversations, just

like in real life. Covey.Town is inspired by existing products like Gather.Town, Sococo, and

Gatherly.lO — but it is an open source effort, and the features will be proposed and implemented

by you! All implementation will take place in the TypeScript programming language, using React

for the user interface.

Overview of Project Deliverables

Date

9/29/25

10/3/25

10/13/25

10/27/25

10/31/25

11/3/25

11/7/25

Deliverable

Individual Project
Proposals

Team Assignment

Preliminary Project
Plan

Revised Project Plan

Deployment Demo

First team survey

Wizard-of-Oz Demo

Description

Propose a feature for Covey.Town and specify preferences
for teammates

Teams will be assigned based on individual proposed
features.

As a team, propose and plan a new feature for Covey.Town
that can be implemented within 7 weeks

Refine the scope of your feature based on staff feedback,
define detailed requirements and project acceptance
criteria.

Show that you can deploy a lightly-modified copy of
covey.town to a remotely-accessible machine.

Let us know how you think the project is going.

Show what your project will look like, once it is complete,
to your project mentor and the instructor. This demo

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/project-overview.html

1/6

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/
https://www.covey.town/
https://gather.town/
https://www.sococo.com/
https://www.gatherly.io/
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25//projects/individual-project-proposal.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25//projects/individual-project-proposal.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25//projects/project-plan.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25//projects/project-plan.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25//projects/revised-project-plan.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25//projects/project-demos.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25//projects/surveys.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25//projects/project-demos.html

9/3/25,10:07 AM

Date Deliverable

11/21/25

11/26/25

12/10/25

12/12/25

12/12/25

12/17/25

Preliminary Demo

Second team survey

Project Implementation
and Documentation

Final Demo

Third team survey

Project Implementation
and Documentation
(Resubmission)

Project Overview | CS 490-001 (Au25)
Description

doesn’t require you to show any working code: it is purely
about design.

Demonstrate one user story to your project mentor and the
instructor. In this demo, you need to actually be running
your own code (unlike the Wizard-of-Oz demo).

Let us know how you think the project is going.

Deliver your new feature, including design documentation
and tests.

You will demo your feature to the instructor by this date.
Let us know how you think the project is going.

If your final demo does not meet your project goals, you
may schedule another demo with your project mentor and
the instructor no more than one week after the last day of
class (12/17). Re-submit your code and documentation
immediately before the demo.

All assignments are due on the specified date, AoE (i.e., before the beginning of the next day
anywhere on Earth, which is at 7am EST the next day).

Summary of Project Grading

Your overall project grade (which will account for 45% of your final grade in this course) will be
the weighted average of each of the deliverables.

« Planning Documents

« 7.5% Preliminary Project Plan

+ 10% Revised Project Plan

« Activities During the Project

+ 5% Meetings with Mentor and Team Surveys

+ 10% Ongoing development progress, including code reviews

- Final Deliverables

. Code

20% Final implementation of your feature

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/project-overview.html

2/6

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25//projects/project-demos.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25//projects/surveys.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25//projects/project-deliverable.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25//projects/project-deliverable.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25//projects/surveys.html

9/3/25,10:07 AM Project Overview | CS 490-001 (Au25)

+ 10% Final test suite of your feature
+ Report

- 5% Feature Overview
« 7.5% Technical Overview
7.5% Process Overview

- Demos

1% Deployment demo
+ 2.5% Wizard-of-Oz demo
« 4% Preliminary demo
10% Final demo

In cases where team members do not equally contribute to the project, we may assign different
grades to different individuals, up to an extreme of deducting 50% of the team project grade for a
student. We will evaluate each individual’s contribution on the basis of a variety of factors,
including progress reports at meetings, through inspecting version control history, through each
students’ self-reflection, and through each students' peer evaluation (during and/or) at the end of
the project. We will make regular efforts to collect and distribute this feedback throughout the
project — our ultimate goal is for all students to participate and receive full marks.

Team Formation
All projects will be completed in a team of 3-4 students (most teams will have 4). Part of the first

deliverable for the project will be a team formation survey: you will be able to indicate your
preferences for teammates. The instructors will assign students to the teams based on a number

of factors including your responses to the survey.

Individual Project Proposal

You'll write a one-page proposal for a feature. You only need to explain the feature from a user
perspective in this document. We'll create groups so that people whose individual proposals are
similar are grouped together. Your feature should be something that can be implemented within
the timeframe allotted (5-7 weeks), and will be implemented in a fork of the main Covey.Town

codebase.

Team Meetings with Mentor

Each team will be assigned a member of the course staff as a mentor, who will also serve as your
point of contact for project grading. During the first week after project teams are announced, you
will have a "Kickoff Meeting” with your mentor, where you will meet your mentor and have the

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/project-overview.html 3/6

9/3/25,10:07 AM Project Overview | CS 490-001 (Au25)
opportunity to share any early ideas that you might want feedback on before submitting the
preliminary proposal. Once project begins in full force, you will have regular standup meetings
with your mentor (scheduled at your team’s and your mentor’s convenience, at least once every
week) in order to help ensure that you are making progress on the project, and to help address
problems that you encounter (be they technical or non-technical problems).

Preliminary Project Plan

All projects will involve frontend and backend development of a new feature for Covey.Town. Once
teams have been formed, you and your team will decide what kind of new feature you would like
to build. We suggest starting with one of your individual proposals, but you're welcome to come
up with something new together, too, if you'd like. Talk to your mentor! Given that you will be up-
to-speed on the Covey.Town codebase (and have been introduced to TypeScript, React, NodeJS,
and testing frameworks), and that you will have a team of three or four, we expect that the feature
that you propose will be more complex than the feature implemented in the individual projects.

The project plan will focus on two sections:

User stories and conditions of satisfaction that describe the feature that you plan to
implement.
Work breakdown: Map your user stories to engineering tasks. Assign each task to a team

member (or pair of team members), provide an estimate for how long each task will take, a
rationale for that estimate, and schedule those stories into sprints.

Creating a GitHub Repository

Your team's development must take place within a private GitHub repository in our GitHub
Classroom. To create your repository, each member of your team should follow these instructions:

1 Signin to GitHub.com, and then use our invitation to create a repository with the covey.town
codebase. Check to see if one of your groupmates has created a group already - if so, select it
to join it. Otherwise, you should enter your group number and the current semester (e.g.
“"Group 7-Au25") as the team name.

2 Refresh the page, and it will show a link to your new repository. Click the link to navigate to
your new repository. This is the repository you will use for the project.

This repository will be private, and visible only to your team and the course staff. After the
semester ends, you are welcome to make it public - you have complete administrative control of
the repository.

Revised Project Plan

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/project-overview.html 4/6

https://www.github.com/
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/project-overview.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/project-overview.html

9/3/25,10:07 AM Project Overview | CS 490-001 (Au25)
Based on the feedback that you receive from the course staff, you will revise your preliminary
project plan, creating a more detailed plan to implement your new feature.

The project plan will include:

- Revised user stories and conditions of satisfaction (based on feedback on the preliminary
project plan)

Revised work breakdown (based on feedback on the preliminary project plan)

Your team will self-organize, as agile teams do, and will use the work breakdown and schedule as
the basis for your check-ins with your team's mentor.

Project Implementation and Documentation

You will be assigned a mentor for your project who will work closely with you for the entire project.
You will coordinate with the mentor to setup weekly meetings and regular sprint demos. Peer
evaluation will also be used. Your final team deliverable will be a "release” of your new feature on
GitHub (with tests), and will be accompanied by a demo. Optionally, you may also open a pull
request to merge your feature into our main repository (submitting a pull request, or the pull
request being merged into our codebase is independent of the grade you receive, but provides a
platform for more visiblity of your project).

Your final team deliverable will include:

The implementation of your new feature
Automated tests for your new feature

+ Areport

Accompanying the final team deliverable will be an individual reflection, which every student must
submit on their own, which will include your reflections on:

The evolution of your project concept: How does the project that you delivered compare to
what you originally planned to deliver? What caused these deviations?

The software engineering processes that you feel could have been improved in your project:
were there any procesess that in hindsight, you wish that you followed, or wish that you
followed better?

Your team dynamic: Provide a frank (and ideally, blameless) postmortem of your and your
teammates collaborative performance and participation. If you had to do this same project
over with the same teammates, what would you have done differently (or not) to improve your
team'’s overall performance?

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/project-overview.html 5/6

9/3/25,10:07 AM Exams | CS 490-001 (Au25)

CS 490-001 (Au25)

Exams

My exams are generally cumulative: anything we've covered in the course up to the point at which
you take the exam is fair game. | may also include questions about assigned mandatory readings,
homework assignments, or any other class content that you are supposed to have viewed.
Notably, this does not generally include the “Your Choice” readings: | don't expect you to have
read all of those, so questions about them will always offer you a choice of which reading to
answer a question about. See the "Your Choice"” readings page for more information about how
the "Your Choice" readings will be assessed on the exams.

My exam design philosophy is to aim for a wide range of question difficulties: | try to include both
some questions that | think every student should get right and some questions that | think are
difficult enough that only those who have deeply understood multiple concepts that we covered in
class will even be able to answer them in a reasonable way, and everything in between.

To help you prepare for this semester’s exams, below you can find links to exams from previous
semesters, all of which have solutions ("keys"). Some of these exams cover the whole course
(anything labeled "final”), so you'll want to be careful when studying for the midterm—not
everything on these exams will have been covered by then. In addition, keep in mind that the set
of topics changes a bit semester-to-semester, so it's possible that these exams include some
topics that we didn't cover, and that your exams this semester might include topics that these
exams ignore. These exams are provided "as-is" to help you study, but please don’t over-rely on
them.

| strongly recommend that before looking at a "key” for one of these exams, you sit down and
attempt the exam yourself, under something like exam conditions (quiet room, no interruptions,
etc.): this will help you more to prepare for this semester’s exam than just reading the solutions.

Sp23 Practice Final (key)
Sp23 Final (key)

Au23 Midterm (key)
Au23 Final (key)

Au24 Midterm (key)

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/exam/ 172

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/projects/optional-readings.html
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/practice-sp23.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/practice-sp23-key.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/exam-sp23.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/exam-sp23-key.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/au23-midterm.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/au23-midterm-key.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/au23-final.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/au23-final-key.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/au24-midterm.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/au24-midterm-key.pdf

9/3/25,10:07 AM Exams | CS 490-001 (Au25)

Au24 Final (key)

© 2022-2025 Martin Kellogg, Jonathan Bell, Adeel Bhutta and Mitch Wand. Released under the CC BY-SA license

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/exam/ 2/2

https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/au24-final.pdf
https://kelloggm.github.io/martinjkellogg.com/teaching/cs490-au25/assets/au24-final-key.pdf
https://creativecommons.org/licenses/by-sa/4.0/

