
ENE 662 851: Brownfield Assessment, Investigation, and Remediation (3 credits)

Lectures Asynchronous Online Course

Instructor **Maria Coler**
Office Hours: By Appointment
Virtual
MC2268@njit.edu
201.951.4527

Prerequisite Undergraduate Civil or Environmental Engineering Degree

Required Textbook

Reading materials provided on Canvas.

Other Recommended Texts & Reading

Love Canal: A Toxic History from Colonial Times to the Present, Richard S. Newman

Silent Spring, by Rachel Carson

Course Description

This course will provide students with a high-level understanding of how to assess and remediate a brownfield site in the State of New Jersey—from conducting a preliminary assessment to constructing a conceptual site model, to choosing a remediation strategy. Emerging contaminants and the concepts of resilient and sustainable remediation are explored. In addition, the course contextualizes brownfields in the sustainability movement by providing a broad legislative overview and an exploration of the evolution of public awareness regarding brownfield sites.

<https://catalog.njit.edu/search/?P=ENE%20662>

Course Objectives

By the end of this course, the student will be able to:

Course Topic 1: Understand the historical context in the United States from which brownfield initiatives and legislation emerged. Learn why brownfields are the building blocks of a sustainable future.

Course Topic 2: Learn the fundamentals of constructing a conceptual site model (CSM) in the State of New Jersey: from the preliminary assessment, to the site investigation, to the remedial investigation. A CSM defines the source, nature, extent, fate and transport of contaminants in the environment. At a high level, you will learn the iterative approach to constructing an effective CSM.

Course Topic 3: Understand the role of the CSM in conducting a feasibility study and selecting the appropriate remediation strategy.

Course Topic 4: Become familiar with advanced site investigation tools and ex-situ and in-situ remediation technologies often employed at contaminated sites.

Course Topic 5: Become familiar with the emerging contaminants affecting the brownfield industry.

Course Topic 6: Learn about sustainable and resilient remediation.

Course Topic 7: Learn how the lessons of the iconic environmental sagas continue to be relevant today.

POLICIES & PROCEDURES

Academic Integrity: It is expected that NJIT's University Code on Academic Integrity will be followed in all matters related to this course. Refer to NJIT's Dean of Students website to become familiar with the Code on Academic Integrity and how to avoid Code violations.

<https://www.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf>

Communication: All communications should be via email, unless otherwise specified.

Lectures/Class: Students must be present for the first lecture. Participation is requested and recommended for additional live, on-line classes.

Handouts: Handouts will be made available online.

Homework: Students are expected to read all course materials and comprehensively respond to written assignment questions.

Homework Format: Written responses to assignment questions and discussions.

Late Homework: Credit for late homework submissions will be decided on a case-by-case basis.

Homework Solutions: Feedback will be provided as either a solution handout or comments on each student's work.

Exams: All materials provided during the class will be allowed during quizzes and exams.

Calculation of Course Grade: A weighted average grade will be calculated as follows:

Assignments	10%
Quizzes	20%
Virtual Discussion Participation	10%
Mid-Term	25%
Final	35%
Extra Credit	Max 2.5 points added to final GPA

The distribution of percentages between assignments, quizzes and the mid-term may change based on course progression.

The minimum requirements for final letter grades are as follows:

A = 90%, B+ = 85%, B = 80%, C+ = 75%, C = 70%, D = 65%, F < 65.0%

Grades will not be curved.

Instructor Commitment: You can expect the Instructor to be courteous, punctual, organized, and prepared for lecture and other class activities; to answer questions clearly; to be available during office hours or to notify you beforehand if office hours are moved; to provide a suitable guest lecturer or pre-recorded lecture when they are traveling or unavailable; and to grade uniformly and consistently.

AI Statement: The use of artificial intelligence (AI) is not permitted in the course. Students are expected to complete work without AI assistance to develop their skills in this subject area.

Students with Documented Disabilities: NJIT is committed to providing students with documented disabilities equal access to programs and activities. If you have, or believe that you may have, a physical, medical, psychological, or learning disability that may require accommodations, please contact the Coordinator of Student Disability Services located in the Center for Counseling and Psychological Services, in Campbell Hall, Room 205, (973) 596-3414. Further information on disability services related to the self-identification, documentation and accommodation processes can be found on the webpage at: (<http://www.njit.edu/counseling/services/disabilities.php>)

Course Schedule: Include a table with a preliminary schedule including estimated exam dates, course topics, project dates, etc.

FA25-ENE 662851 Brownfield Remediation: Course Syllabus									
Week	Class #	Percent	Quiz/Exam	Assignments	Discussions	Description of Session	Lecturer	Reading Materials	
Sept. 2	Class 1					Brownfields and Climate Change—A Timeline of Two Crises Lessons from the Environmental Canon: "Silent Spring" and "Love Canal"	MC	PPT	
		2.5			Assignment #1			Excerpts from: "Silent Spring," "Love Canal," Waterfront Alliance article	
Sept. 8	Class 2					Brownfield Regulatory Framework and Applicable Rules	MC	PPT	
Sept. 15	Class 3				Discussion #1	Brownfield Regulatory Framework and Applicable Rules (cont.)	MC	PPT and LSRP Code of Conduct	
Sept. 22	Class 4	2.5	Quiz		Discussion #2	Building a CSM: Starting with Due Diligence— NJ Preliminary Assessment v. Phase I ESA	MC	PPT, Preliminary Assessment Guidance + CSM Guidance	
Sept. 29	Class 5	4		Assignment #2	Discussion #3	Building a CSM: SI/Ri - Soil		PPT and Soil Technical Guidance	
Oct. 6	Class 6	2.5	Quiz		Discussion #4	Building a CSM: SI/Ri - Groundwater (Part I)	MC	PPT and Groundwater Technical Guidance	
Oct. 13	Class 7				Discussion #5	Building a CSM: SI/Ri - Groundwater (Part II)	MC	PPT and Groundwater Technical Guidance	
Oct. 20	Class 8	7.5	Quiz		Discussion #6	Investigative Technologies (Part I)	MC	PPT and other documents	
Oct. 27	Class 9	3.5		Assignment #3	Discussion #7	Investigative Technologies (Part II)		PPT and other documents	
Nov. 3	Class 10					Feasibility Studies + Ex-situ Remediation	MC	PPT	
		2.5	Midterm						
Nov. 10	Class 11				Discussion #8	Ex-situ Remediation Technologies: Part I	MC	PPT + Other Documents	
Nov. 17	Class 12				Discussion #9	Ex-situ Remediation Technologies: Part II		PPT + Other Documents	
Nov. 24	Class 13		5	Quiz	Discussion #10	Introduction to Emerging Contaminants		PPT	
Thanksgiving Recess (Nov. 27-30, 2025)									
Dec. 8	Class 14		2.5			Sustainable and Resilient Remediation	MC	PPT + Other Documents	
TBA	Class 15	35	Final Exam (Dec. 14-21, 2025)			FINAL EXAM	MC		
TBA		2.5		Extra Credit					

CEE Mission, Program Educational Objectives and Student Outcomes

The mission of the Department of Civil and Environmental Engineering is:

- to educate a diverse student body to be employed in the engineering profession
- to encourage research and scholarships among our faculty and students
- to promote service to the engineering profession and society

Program Educational Objectives

Our **Program Educational Objectives** are reflected in the achievements of our recent alumni:

1. **Engineering Practice:** Alumni will successfully engage in the ethical practice of civil engineering within industry, government, and private practice, working towards safe, practical, resilient and sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation, and water resources.
2. **Professional Growth:** Alumni will advance their technical and interpersonal skills through professional growth and development activities such as graduate study in engineering, research and development, professional registration and continuing education; some graduates will transition into other professional fields such as academia, business, and law through further education.
3. **Service:** Alumni will perform service to society and the engineering profession through membership and participation in professional societies, government, educational institutions, civic organizations, charitable giving and other humanitarian endeavors.

Student Outcomes

Our **Student Outcomes** are what students are expected to know and be able to do by the time of their graduation:

1. an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative environment, establish goals, plan tasks and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusion
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Updated 8/2025