

DEPARTMENT OF BIOMEDICAL ENGINEERING

Department of Biomedical Engineering

Dr. Ghazaleh Khayat	CLASS HOURS	OFFICE	Required Course
	Monday: 11:30 - 12:55 pm	HOURS	Prerequisites: BME
	Thursday: 10:00 - 12:55	(Fenster 612)	111, BME 301, BME
	pm	Thursday 1:00	302 and MATH 222
	4.5 hours/ week	pm	all with a C or better.
	3 credits	•	

TEXT: Fundamentals of Human Physiology, 4th Edition. ©2012

Lauralee Sherwood - West Virginia University-ISBN-10: 0840062257. ISBN-13: 9780840062253

MATLAB programming with applications for Engineers, Stephen Chapman

Publisher: Cengage Learning. ISBN-10: 0495668079 ISBN-13: 9780495668077

COURSE DESCRIPTION: This course is intended for students to integrate their basic knowledge of physiology, biology, engineering, and math. Students should implement their analytical skills and develop their engineering talent when faced with complex and challenging situations in the biomedical field.

LEARNING OUTCOMES

By the end of the semester the student should be able to apply engineering tools and knowledge to decipher, understand and describe situations and problems originating in living systems.

COURSE OUTLINE

Week	Class Content	
1	Welcome/ Hardware Tutorial – Paper	
2	Paper discussion	
3	Introduction to Cardio-Pulmonary	
4	Cardio-Pulmonary Lab	
5	Introduction to Muscle and Fatigue	
6	Muscle and Fatigue	
7	Introduction to Pulmonary Airflow	
8	Pulmonary Airflow	
	SPRING BREAK	
9	Introduction to Tadpole robot	
10	Tadpole robot – I	
11	Introduction to Muscle-nerve preparation	
12	Muscle-nerve preparation	
13	Tadpole robot-II(Mat & met)	
	Muscle-nerve preparation presentation	
14	Tadpole robot – II	
15	Tadpole robot – Presentation & Closure	

Note: numerous quizzes will be given during the semester.

The Course Outline may be modified at the discretion of the instructor or in the event of extenuating circumstances. Students will be notified in class of any changes to the Course outline and schedule.

BME 383: Course Learning Outcome

OUTCOME 6:				
An ability to develop and conduct appropriate experimentation, analyze and interpret data, and				
use engineering judgment to draw conclusions				
Outcome #6. 1. Students will learn to evaluate a proposed experiment and to evaluate critically				
experimental design				
Strategies & Actions	Assessment			
	Method			
During the introductory sessions, students will review the pertinent physiology.	Lab report. Class			
Students will reexamine the proposed task presented in lay terms, they will	discussions.			
identify the problem redefine and restate the problem in engineering and	Quizzes			
scientific language as a Hypothesis. The students will develop and recommend a				
materials and methods section, with material provided on Moodle and				
self-acquired references, to find an answer to the identified problem.				
Outcome # 6.2. Students will learn to create and propose solutions, and to apply engineering and				
math to understand and solve problems.				
Strategies & Actions	Assessment			
	Method			
During the discussion sessions, the students will evaluate and criticize the	Lab report. Class			
adopted strategies used for sensing, recording, and analyzing data collected	discussions.			
during previous laboratory. Students will discuss the different engineering tools	Quizzes			
and techniques used in each assignment. In their lab reports, as well as during the				
introductory and presentation/discussion sessions, students are encouraged to				
propose new techniques for performing the projected studies, and new means for				
achieving the desired results. Reports include graphs, engineering strategies and				
mathematical tools to establish relation between variables, and to draw				
meaningful conclusions.				