

**BME 303: Biological and Chemical Foundations of Biomedical Engineering** 3 Credits, 3 Contact hours

Instructor: Alexander Buffone, PhD.,

### **Textbook(s)/Materials Required:**

The course materials are posted in the Moodle portal to this course as PowerPoint lecturehandouts. Each lecture materials are accessed to students in <a href="http://moodle.njit.edu/">http://moodle.njit.edu/</a> at least 48 hours prior to lecture. Students are required to read two books for more information.

- (1) Essential Cell Biology. Alberts et. al., 3rd edition [Garland Science], ISBN Number (ISBN-10:0815341296).
- (2) Principles of Biochemistry 5th edition, by Robert Horton (2011, Pearson Publisher), (ISBN13: 978-0321707338).

## **Description:**

This course introduces the biomedical students to the basic concept of cellular biochemistry and molecular biology in a well-organized intracellular compartment. Lecture series are designed in an orderly manner so that students can easily understand the complexity of human biochemistry within a self-organized cellular structure. The course objective is to enrich students with adequate knowledge of biochemistry, molecular and cellular biology for a meaningful interpretation of engineering principles to designing appropriate biomedical devices and application. The course adequately integrates the replication and translation of simple nucleic acid base in transforming into functional protein for regulation of biological signals in an energy dependent manner.

As an interactive learning to scientific research communications, students are given a challenging peer-reviewed article to critique the soundness of the title, hypothesis, experimental approach, statistical data analysis, data interpretation, and conclusion of the novel findings. A human disease related article is chosen within the course topics, which is presented by students in the form of journal club discussion. Thus, the course not only introduces critical thinking to design and conduct experiments, analyze and interpret data, use engineering judgment to draw conclusions, but imparts an ability to communicate effectively in public health care topics.

#### **Prerequisites:**

Grade of C or higher in Chem 126, Phys 111. This is a required course for all BME undergraduate students.

#### **Course Learning Outcomes (CLO):**

- 1. Understand the fundamental principles of biochemistry, cell biology, molecular biology, and intracellular signaling mechanisms for effective designing of biomedical devices.
- 2. Enrich critical scientific thinking, comprehensive analysis of experimental findings, and toimpart effective communication of scientific topics in human disease.
- 3. Introduce hands-on lab works to gain surgical techniques, cell isolation, and cell culture.

# **Student Learning Outcomes:**

**Student outcome B** – An ability to design and conduct experiments, as well as to analyze **Related CLO** –  $\bf 6$  and interpret data

**Student outcome** C – Apply engineering design to meet specified needs with consideration of **Related CLO** – 2 public health

**Student outcome** G – Present oral and written communication of tech info/data **Related CLO** – 3

Student outcome I – Ability to acquire and apply new knowledge learned to gain surgical Related CLO-7 techniques, cell isolation, and cell culture.

Student outcome J – A knowledge of contemporary issues from peer-reviewed article Related CLO – 2

Student outcome L - Grasp bio- & physiological principles Related CLO-1

## **Program Specific Criteria:**

A - an understanding of biology and physiology  $\mathbf{Related}\ \mathbf{CLO} - \mathbf{1}$ 

# **Course Syllabus:**

| Week & date | Lecture Topic                                                    | Reading<br>Material | Assignments               |
|-------------|------------------------------------------------------------------|---------------------|---------------------------|
| Week 1      | Overview of the course and introduction to living cell diversity | PPT lecture         |                           |
| Week 2      | Cell division cycles                                             | PPT lecture         | Quiz                      |
| Week 3      | Cell structure, organelles and functions                         | PPT lecture         | Quiz                      |
| Week 4      | Membrane transport mechanisms                                    | PPT lecture         | Quiz                      |
| Week 5      | Cytoskeleton proteins & functions                                | PPT lecture         | Quiz                      |
| Week 6      | Nucleic Acid-DNA                                                 | PPT lecture         | Quiz                      |
| Week 7      | Nucleic Acid-RNA                                                 | PPT lecture         | Quiz                      |
| Week 8      | Chromatin and Epigenetic                                         | PPT lecture         | Quiz                      |
| Week 9      | Protein structure and enzymes                                    | PPT lecture         | Quiz                      |
| Week 10     | Intracellular Signaling                                          | PPT lecture         | Quiz                      |
| Week 11     | CNS Cell Signaling                                               | PPT lecture         | Quiz                      |
| Week 12     | PNS Cell Signaling                                               | PPT lecture         | Quiz                      |
| Week 13     | Metabolism and Energetic cell communication                      | PPT lecture         | Quiz & journal assignment |
| Week 14     | Lab work                                                         | Lab work            |                           |
| Week 15     | Final exam & Journal discussion                                  |                     |                           |