

Spring 2025 Course Syllabus: Biol636

Course Title:	Advanced Computational Neuroscience
Textbook:	<p>"Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems" by P. Dayan & L. Abbott – The MIT Press (2001) – ISBN: 0-262-04199-5.</p> <p>"Introduction to Modeling Cognitive Process", by Tom Verguts – The MIT Press (2022) – ISBN 9780262045360</p>
Recommended Books:	<p>"An Introductory Course in Computational Neuroscience" by P. Miller – MIT Press (2018), 1st edition, ISBN: 978-0262038256</p> <p>"An Introduction to Modeling Neuronal Dynamics" by C. Borgers - Springer (2017), 1st edition - ISBN 978-3-319-51171-9</p> <p>"Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting" by E. M. Izhikevich – The MIT Press (2007), 1st edition – ISBN: 0-262-09043-8.</p> <p>"Mathematical Foundations of Neuroscience" by G. B. Ermentrout & D. H. Terman – Springer (2010), 1st edition - ISBN: 978-0-387-87707-5.</p>
Prerequisites:	Biol635 or Permission by instructor
Website:	http://web.njit.edu/~horacio/Biol636/AdvancedCompNeuroS25.html

Week	Topic	Assignment
1	Review of biophysical models of single neurons	See course website
2	Data analysis and spike-train statistics	“
3	Biophysical (conductance-based) models of synapses and networks / Cognitive Models	“
4	Firing rate models of neuronal networks	“
5	Response of neurons to periodic inputs: resonance and entrainment / Synchronization / Central Pattern Generators	“
6	Parameter estimation, model testing	“
7	Synaptic plasticity and Homeostasis	“
8	Learning	“
9	Memory	“
10	Decision making	“
11	Reinforcement learning, unsupervised learning, Bayesian models	
12	Project development/presentations	“

13	Project development/presentations	“
14	Project development/presentations	“
15	Project development/presentations	

IMPORTANT DATES	
FIRST DAY OF SEMESTER	Jan 21, 2025
LAST DAY TO ADD/DROP	Jan 27, 2025
SPRING RECESS	March 16-22, 2025
LAST DAY TO WITHDRAW	April 7, 2025
LAST DAY OF CLASSES	May 7, 2025
FINAL EXAM PERIOD	May 10-16, 2025

Grading Policy (tentative)

Assignment Weighting	
Class Projects	40
Class Participation	20
Final Project / Presentation	40

Tentative Grading Scale	
A	90 -- 100
B+	85 -- 89
B	80 -- 84
C+	75 -- 79
C	70 -- 74
D	60 -- 69
F	0 -- 59

Course Policies: See course website

Important Departmental and University Policies

- [Academic Integrity Code is Strictly Enforced](#)
- [Prerequisites Requirements are Enforced](#)
- [Attendance is Required in Lower-Division Courses](#)
- [Exam Policies \(No Make Up Exams and More\)](#)
- [Cell Phone and Pager Use Prohibited in Class](#)
- [Drop Date is Strictly Observed](#)
- [Complete DMS Course Policies \(\[math.njit.edu/students/undergraduate/policies_math\]\(http://math.njit.edu/students/undergraduate/policies_math\)\)](#)