
Errata for first printing

Page 23, Table 2.1, last sentence of item 4.B starting with “this is expected . . . ”: Re-
move this sentence—this is invalidated as based on our recent solution to the related
problem; find updated discussion in our new publications.

Page 83, Figure 5.7d: Replace ˙ur, f (u̇r) andur, by u̇, f (u̇) andu.
Page 84, Eq. (5.27), also second term in Eq. (5.33): Replace “uq” by “ uqr, whereuqr =

(uq−us′)+(uq −us′′), us′ andus′′ being the displacements of the vacuuon oscillators
on the right and left.”
In Eq. (5.29) and in the two lines above Eq. (5.29): Replace “uq” by “ uq −us′”, and
“ur” by “ us′ −uq”. Cf. Appendix A6.2B in this Errata.

Page 85, Eq. (5.34): Replace “
√

βq

Mq
”, by: ”Ω.” Add: ”The equation of motion is solved

in Appendix 6.2 in this Errata. For now we only apply an existing knowledge that
for small displacement the oscillation of the vaculeon oscillator in normal coordinate

is harmonic, and thus write down the equation of motion asd2Uqn

dT 2 + Ω2
qUqn = 0, Eq.

(5.33b).”
Page 85, LHS of Eq. (5.35): Replaceuq by Uqn.
Page 85, second line from bottom: Replace “(5.33) has . . . ” by “(5.33b) has . . . ”.
Page 86, Eq. (5.36): Replace “Ωr” by “ Ω”. See further Appendix 6.2A in this Errata.
Page 96, Eq. (6.5): Replace “∑Xs ∑Ω AΩs” by “ 2π√

NbL
∑s ∑K”.

Page 97, Eq. (6.6): Replace “ur” by ” uK
r (Xs,T )”.

Eq. (6.7): Replace “ur(T)” by “ us(X ,T)”.
Eq. (a) and Eq. (6.9): Replace “ur(T )” in the first term by “∑s us(Xs,T)”, and

“ur(T )” in the second term by “∑s,K uK
r (Xs,T )”.

Page 98: Replace the last paragraph, starting from line 2 from bottom (“Following the
above . . . ”), with discussion in Appendix A6.2B in this Errata.

Page 99, Eq. (6.13): Replace “Ar” by “ A”, and “Ωr” by “ Ω”.
Pages 101-102 (Sec. 6.5): Remove Eqs. (a), (b), and Eq. (6.18a). Use Eq. (6.18b) or

(F.15) only. Remove the line after Eq. (6.18b) on page 102.
Page 103: Replace the content from Eq. (6.25) to Eq. (6.27) by Appendix 6.2B in this

Errata.
Page 108, Eq. (6.39a): Replace “X2 +Y 2 +Z2” by: “X X̂ +YŶ +ZẐ”.
Page 111, Eqs. (a), (c) and (d): Replace the equations by: ”Ω = Ωq”, “A r(= A) = Aq”

and “A= Aq”.
Page 112: Remove Eqs. (6.49a) and (6.49c). Use Eqs. (6.49b) and (6.49d) only.
Page 113, in Eq. (6.54b), in the line above Eq. (6.54b), and in Eq. (6.55b): Replace

“ 1
2πK ” by “ b”.

Page 114, RHS of Eq. (6.56): Remove the last expression.
Page 117, Eq. (6.63) and in the second line above: Replace “1

2πK ” by “ b”.

Page 117, Eqs. (6.64), (6.67) and (6.69): Replace “Ω3

c (= K3

µ0∈0
)” by “ Ω2

2πb”.

Page 118, Eq. (6.70): Replace “1
∈0b ” by “ µ0

2π”.



Pages 231-234, Appendix E: Replace “Aq′” by “ Aq”. In the second paragraph: Remove
the discussion starting from second line after Eq. (E.1).

Pages 243-4, Appendix I, Eqs. (I.1), (I.2), (I.4), (I.8), (I.10), (I.12): Replace “∇” by “ ∇∇∇”.
Page x (About Contributors), second paragraph, line 2 from bottom: Replace “co-developed”

by “co-authored”.

Appendix to Sec. 6.2: The Forced Oscillation of Vacuum by Na-
ture

6.2A. Oscillation frequency of the medium versus driving frequency of the vaculeon
source It is established in classical wave mechanics that, for an ordinary coupled oscilla-
tor system subjecting to a driving force, the initial total oscillation includes a forced oscil-
lation and free oscillation; when reaching a so-called steady state after a sufficiently long
time, with the free oscillation being damped off, only the forced oscillation will sustain.
For the coupled vacuuon oscillator system, we will be mainly concerned with its applica-
tions in the formation of material particles in stationary states (Chapters 7-8), which fall
on the steady state, forced oscillation case. Besides, even initial state is in question, a free
oscillation would be essentially absent given the vacuuons have a zero rest inertia.

Furthermore, it may be induced based on observations, on the scattering of electromag-
netic waves by charged particles in particular, combined with theoretical analysis which
we present in a separate publication, that the oscillation of the vacuuon oscillators would
plausibly assume the driving frequencyΩq:

Ω = Ωq (A6.2.1)

We here only supply one argument that (A6.2.1) should hold given the vacuuon oscillators
have a mass produced only dynamically and in direct proportion to the driving frequency
Ωq.

6.2B. Displacement amplitude of the vacuum versus vaculeon sourceAs an alternative
to the traditional treatment which will yield a amplitude which increases when nearing
resonance frequency, we here establish a relationship betweenA and Aq concretely for
the specific source, an oscillatory (vaculeon) charge driven by its own spontaneous kinetic
energy, which is itself an oscillator in the chain. Consider the source is at locationXs = sb
in the place of the regular site of a vacuuon oscillator,s, and has a harmonic displacement
uq(Xs,T) = Aqei(Ksb−ΩqT). ForΩq = Ω, this writes:

uq(Xs,T ) = Aqei(Ksb−ΩT) (a)

Ignoring any source-vicinity effect, the displacements of the vacuuon oscillators in contact
with the source, atXs−1 andXs+1, are given by the earlier solution for regular sites:us−1 =
Aei(K(s−1)b−ΩT), us+1 = Aei(K(s+1)b−ΩT). In the nearest-neighbor representation, the source



makes at any time the displacementsuq − us−1 andus+1− uq relative to its neighbors. The
chain, through the direct contacting neighbors to the source, will tend to restore the source
back to its equilibrium. For small displacement each force obeys the Hooke’s law, with
βq the force constant for the source–vacuuon-chain interaction; accordingly the total force
writes:

FqRt = −βq(uq−us−1)−βq(us+1−uq) = −βq[2uq−us−1−us+1] (b)

With the explicit functions for the displacements, (b) writesFqRt = −βqAqei(Ksb−ΩT)[2−
A
Aq

(cosKb− icosKb+cosKb+ icosKb)] = −βqAqei(Ksb−ΩT)2[1− A
Aq

cosKb].

Substituting in it with (a), we have

FqRt = −βquq2[1− A
Aq

cosKb] (A6.2.2)

With (A6.2.2), the Newtonian equation of motion for the source,Mq
d2uq

dT 2 −FqRt = 0, thus
writes:

Mq
d2uq

dT 2 +βquq2[1− A
Aq

cosKb] = 0 (A6.2.3)

From (a) we haved2uq

dT 2 = −Ω2uq; with this in (A6.2.3) we have−MqΩ2uq + βquq2[1−
A
Aq

cosKb] = 0. Eliminating the commonuq, reordering we have

Ω2 =
βq

Mq
2[1− A

Aq
cosKb] (A6.2.4)

But Ω2 = 4Ω2
r sin2

(
Kb
2

)
= βr

Mb
[1− cosKb] as given after Eq. (a) of Sec. 6.4., the solution

from the regular regions of the chain, whereΩ2
r = βr

Mb
. CancelingΩ2 between this and

(A6.2.4), we haveβq
Mq

[1− A
Aq

cosKb] = βr

Mb
[1−cosKb]. Sorting, the above gives

A = Aq

1− Ω2

2(βq/Mq)

1− Ω2

2Ω2
N

= Aq

1− (βr/Mb)4sin2 Kb
2

2(βq/Mq)

1−2sin2(Kb/2)
(c)

For waves in the continuum region, there isKb << 1, and thus sin2(Kb/2)<< 1. Further
assuming(βr/Mb)

βq/Mq
, if > 1, is not significantly greater than 1, then the second term in the

numerator is
(βr/Mb)4sin2 Kb

2
2(βq/Mq)

<< 1. So to a good approximation (c) reduces to

A = Aq (A6.2.5)


