Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfilment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

ISO/IEC 9075-2:2003 (E)
17.1 <connect statement>

17 Connection management

17.1 <connect statement>

Function

Establish an SQL-session.

Format

<connect statement> ::= CONNECT TO <connection target>

<connection target> ::=
<SQL-server name> [AS <connection name>] [USER <connection user names>]
| DEFAULT

Syntax Rules

1) If <connection user name> is not specified, then an implementation-defined <connection user name> for
the SQL-connection is implicit.

Access Rules

None.

General Rules

1) If a <connect statement> is executed after the first transaction-initiating SQL-statement executed by the
current SQL-transaction and the SQL-implementation does not support transactions that affect more than
one SQL-server, then an exception condition is raised: feature not supported — multiple server transactions.

2) If <connection user name> is specified, then let S be <connection user name> and let ¥ be the character
string that is the value of

TRIM (BOTH ' ' FROM S)

3) If V does not conform to the Format and Syntax Rules of a <user identifier>, then an exception condition
is raised: invalid authorization specification.

4) If the SQL-client module that contains the <externally-invoked procedure> that contains the <connect
statement> specifies a <module authorization identifier>, then whether or not <connection user name>
shall be identical to that <module authorization identifier> is implementation-defined, as are any other

©ISO/IEC 2003 - All rights reserved T Connection management 899

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold t0:INFOTRIEVE, INC, W0277804

No reproduction or netwarking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
17.1 <connect statement>

restrictions on the value of <connection user name>. Otherwise, any restrictions on the value of <connection
user name> are implementation-defined.

5) If'the value of <connection user name> does not conform to the implementation-defined restrictions, then
an exception condition is raised: invalid authorization specification.

6) If <connection name> was specified, then let C¥ be <simple value specification> immediately contained
in <connection name>. If neither DEFAULT nor <connection name> were specified, then let C¥ be <SQL-
server name>. Let CN be the result of

TRIM (BOTH ' ' FROM CV)

If CN does not conform to the Format and Syntax Rules of an <identifier>, then an exception condition is
raised: invalid connection name.

7) 1If an SQL-connection with name CN has already been established by the current SQL-agent and has not
been disconnected, or if DEFAULT is specified and a default SQL-connection has already been established
by the current SQL-agent and has not been disconnected, then an exception condition is raised: connection
exception — connection name in use.

8) Case:

a) If DEFAULT is specified, then the default SQL-session is initiated and associated with the default
SQL-server. The method by which the default SQL-server is determined is implementation-defined.

b) Otherwise, an SQL-session is initiated and associated with the SQL-server identified by <SQL-server
name>. The method by which <SQL-server name> is used to determine the appropriate SQL-server is
implementation-defined.

9) If the <connect statement> successfully initiates an SQL-session, then:

a) The current SQL-connection CC and current SQL-session, if any, become a dormant SQL-connection
and a dormant SQL-session, respectively. The SQL-session context for CC is preserved and is not
affected in any way by operations performed over the initiated SQL-connection.

NOTE 419 — The SQL-session context is defined in Subclause 4.37, “SQL-sessions”.

b) The SQL-session initiated by the <connect statement> becomes the current SQL-session and the SQL-
connection established to that SQL-session becomes the current SQL-connection.

NOTE 420 — If the <connect statement> fails to initiate an SQL-session, then the current SQL-connection and current SQL-session,
if any, remain unchanged.

10) If the SQL-client cannot establish the SQL-connection, then an exception condition is raised: connection
exception — SQL-client unable to establish SQL-connection.

11) If the SQL-server rejects the establishment of the SQL-connection, then an exception condition is raised:
connection exception — SQL-server rejected establishment of SQL-connection.

12) The SQL-server for the subsequent execution of <externally-invoked procedure>s in any SQL-client
modules associated with the SQL-agent is set to the SQL-server identified by <SQL-server name>.

13) In the context of the newly established SQL-session, the authorization stack is initialized with a single cell
containing the user identifier <connection user name>.

14) A new savepoint level is established.

900 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved
Copyright Canadian Standards Assaciation
Reproduced by IHS under license with CSA Soid to:INFOTRIEVE, INC, W0277804
Nor or ing permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
17.1 <connect statement>

Conformance Rules

1) Without Feature F771, “Connection management”, conforming SQL language shall not contain a <connect
statement>,

©ISO/IEC 2003 - Al rights reserved Connection management 901

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sald to:INFOTRIEVE, INC, W0277804
No ion or i without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
17.2 <set connection statement>

17.2 <set connection statement>

Function

Select an SQL-connection from the available SQL-connections.

Format

<set connection statement> ::= SET CONNECTION <connection objects>

<connection object> ::=
DEFAULT
| <connection names>

Syntax Rules

None.

Access Rules

None.

General Rules

1) Ifa <set connection statement> is executed after the first transaction-initiating SQL-statement executed by
the current SQL-transaction and the SQL-implementation does not support transactions that affect more
than one SQL-server, then an exception condition is raised: feature not supported — multiple server
transactions.

2) Case:

a) If DEFAULT is specified and there is no default SQL-connection that is current or dormant for the
current SQL-agent, then an exception condition is raised: connection exception — connection does not
exist.

b) Otherwise, if <connection name> does not identify an SQL-session that is current or dormant for the
current SQL-agent, then an exception condition is raised: connection exception — connection does not
exist.

3) If the SQL-connection identified by <connection object> cannot be selected, then an exception condition
is raised: connection exception — connection failure.

4) The current SQL-connection and current SQL-session become a dormant SQL-connection and a dormant
SQL-session, respectively. The SQL-session context information is preserved and is not affected in any
way by operations performed over the selected SQL-connection.

NOTE 421 — The SQL-session context information is defined in Subclause 4.37, “SQL-sessions”.

902 Foundation (SQL/Foundation) s ©ISOIEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No rep ion or ing itted without licanse from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
17.2 <set connection statement>

5) The SQL-connection identified by <connection object>becomes the current SQL-connection and the SQL-
- session associated with that SQL-connection becomes the current SQL-session. All SQL-session context
information is restored to the same state as at the time the SQL-connection became dormant.

NOTE 422 — The SQL-session context information is defined in Subclause 4.37, “SQL-sessions”.

6) The SQL-server for the subsequent execution of <externally-invoked procedure>s in any SQL-client
modules associated with the SQL-agent are set to that of the current SQL-connection.

Conformance Rules

1) Without Feature F771, “Connection management”, conforming SQL language shall not contain a <set
connection statement>.

©ISO/IEC 2003 - All rights reserved Connection management 903

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
17.3 <disconnect statement>

17.3 <disconnect statement>

Function

Terminate an SQL-connection.

Format

<disconnect statement> ::= DISCONNECT <disconnect object>

<disconnect object> ::=

. <connection object>
| ALL
| CURRENT

Syntax Rules

None.

Access Rules

None.

General Rules

1)

2)

3)

4)
5)

6)

7)

If <connection name> is specified and <connection name> does not identify an SQL-connection that is
current or dormant for the current SQL-agent, then an exception condition is raised: connection exception
— connection does not exist.

If DEFAULT is specified and there is no default SQL-connection that is current or dormant for the current
SQL-agent, then an exception condition is raised: connection exception — connection does not exist.

If CURRENT is specified and there is no current SQL-connection for the current SQL-agent, then an
exception condition is raised: connection exception — connection does not exist.

Let C be the current SQL-connection.

Let L be a list of SQL-connections. If a <connection name> is specified, then L is that SQL-connection. If
CURRENT is specified, then L is the current SQL-connection. If ALL is specified, then L is a list representing
every SQL-connection that is current or dormant for the current SQL-agent, in an implementation-dependent
order. If DEFAULT is specified, then L is the default SQL-connection.

If any SQL-connection in L is active, then an exception condition is raised: invalid transaction state —
active SQL-transaction.

For every SQL-connection C! in L, treating the SQL-session S/ identified by C! as the current SQL-session,
all of the actions that are required after the last call of a <externally-invoked procedure> by an SQL-agent,

904 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Assaciation
Reproduced by IHS under license with CSA Soid to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
17.3 <disconnect statement>

except for the execution of a <rollback statement> or a <commit statement>, are performed. C/ is terminated,
regardless of any exception condition that might occur during the disconnection process.

NOTE 423 — Sce the General Rules of Subclause 13.1, “<SQL-client module definition>", for the actions to be performed after
the last call of a <externally-invoked procedure> by an SQL-agent.

8) Ifany error is detected during execution of a <disconnect statement>, then a completion condition is raised:
warning — disconnect error.

9) If Cis contained in L, then there is no current SQL-connection following the execution of the <disconnect
statement>. Otherwise, C remains the current SQL-connection.

Conformance Rules

1) Without Feature F771, “Connection management”, conforming SQL language shall not contain a <disconnect
statement>.

©ISO/IEC 2003 - Al rights reserved Connection management 905

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Nol for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)

This page intentionally left blank.

906 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitied without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
18.1 <set session characteristics statement>

18 Session management

18.1 <set session characteristics statement>

Function

Set one or more characteristics for the current SQL-session.

Format

<set session characteristics statements> ::=
SET SESSION CHARACTERISTICS AS <«session characteristic lists>

<session characteristic list> ::=

<session characteristic> [{ <comma> <session characteristics> }...]
<session characteristics> ::= <transaction characteristicss>
Syntax Rules

1) None of <isolation level>, <transaction access mode>, and <diagnostics size> shall be specified more than
once in a single <session characteristic list>.

Access Rules

“None.

Géneral Rules

1) For each <transaction characteristics™> contained in the <session characteristic list>, the enduring transaction
characteristics of the SQL-session are set to the values explicitly specified in the <transaction characteristics>;
enduring characteristics corresponding to <transaction characteristics> values not explicitly specified are
unchanged.

Conformance Rules

1) Without Feature F761, “Session management”, conforming SQL language shall not contain a <set session
characteristics statement>.

2) Without Feature F111, “Isolation levels other than SERIALIZABLE”, conforming SQL language shall not
contain a <set session characteristics statement> that contains a <level of isolation> other than SERIALIZ-
ABLE.

©ISO/IEC 2003 - All rights reserved Session management 907

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Soid to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
18.1 <set session characteristics statement>

18.2 <set session user identifier statement>

Function

Set the SQL-session user identifier and the current user identifier of the current SQL-session context.

Format

<set session user identifier statements> ::=
SET SESSION AUTHORIZATION <value specification>

Syntax Rules

1) The declared type of the <value specification> shall be a character string type.

Access Rules

None.

General Rules

1) If a <set session user identifier statement> is executed and an SQL-transaction is currently active, then an
exception condition is raised: invalid transaction state — active SQL-transaction.

2) Let § be <value specification> and let V be the character string that is the value of

TRIM (BOTH ' ' FROM S)

3) If V does not conform to the Format and Syntax Rules of an <authorization identifier>, then an exception
condition is raised: invalid authorization specification.

4) Whether or not the SQL-session user identifier can be set to a different <user identifier> is implementation-
defined, as are any restrictions pertaining to such changes.

5) Ifthe current user identifier and the current role name are restricted from setting the user identifier to V,
then an exception condition is raised: invalid authorization specification.

6) The SQL-session user identifier of the current SQL-session context is set to V.
7) The current user identifier is set to V.

8) The SQL-session role name and the current role name are removed.

Conformance Rules

1) Without Feature F321, “User authorization”, conforming SQL language shall not contain a <set session
user identifier statement>.

908 Foundation (SQL/Foundation) ~ CISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproduced by {HS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804
No ion or ing permitted without licanse from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
18.3 <set role statement>

18.3 <set role statement>

Function

Set the current role name for the current SQL-session context.

Format

<set role statement> ::= SET ROLE <role specification>

<role specification> ::=
<value specification>
| NONE

Syntax Rules

1) The declared type of the <value specification> shall be a character string type.

Access Rules

None.

General Rules

1) Ifa<setrole statement> is executed and an SQL-transaction is currently active, then an exception condition
is raised: invalid transaction state — active SQL-transaction.

2) Let S be <value specification> and let ¥ be the character string that is the value of

TRIM (BOTH ' ' FROM S)

3) If V does not conform to the Format and Syntax Rules of a <role name>, then an exception condition is
raised: invalid role specification.

4) If no role authorization descriptor exists that indicates that the role identified by V has been granted to
either the current user identifier or to PUBLIC, then an exception condition is raised: invalid role specifi-
cation.

5) Case:
a) IfNONE is specified, then
Case:

i) If there is no current user identifier, then an exception condition is raised: invalid role specifica-
tion.

i) Otherwise, the current role name is removed.

©ISO/IEC 2003 — Al rights reserved Session management 909

Copyright Canadian Standards Assaciation
Reproduced by HS under license with CSA Sold to:INFOTRIEVE. INC, W0277804
No di or ing permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
18.3 <set role statement>

b) Otherwise, the current role name is set to V.

Conformance Rules

1) Without Feature T331, “Basic roles”, conforming SQL language shall not contain a <set role statement>.

910 Foundation (SQL/Foundation) ©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association

Reproduced by !HS under license with CSA Sold t0:INFOTRIEVE, INC, W0277804
No reproduction or natworking permitted without license fram IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/TIEC 9075-2:2003 (E)
18.4 <set local time zone statement>

18.4 <set local time zone statement>

Function

Seti-'the current default time zone displacement for the current SQL-session.

Fdrmat

<set local time zone statement> ::= SET TIME ZONE <set time zone value>

<set time zone value> ::=
<interval value expression>
| LOCAL

Syntax Rules

1) The declared type of the <interval value expression> immediately contained in the <set time zone value>
shall be INTERVAL HOUR TO MINUTE.

Access Rules

None.

General Rules

1) Case:

a) If LOCAL is specified, then the current default time zone displacement of the current SQL-session is
set to the original time zone displacement of the current SQL-session.

b) Otherwise,
Case:

i) If the value of the <interval value expression> is not the null value and is between INTERVAL
—'12:59'and INTERVAL +'14:00', then the current default time zone displacement of the current
SQL-session is set to the value of the <interval value expression>.

ii) ~ Otherwise, an exception condition is raised: data exception — invalid time zone displacement
value.

Conformance Rules

1) Without Feature F411, “Time zone specification”, conforming SQL language shall not contain a <set local
time zone statement>.

©ISO/IEC 2003 - All rights reserved Session management 911

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
18.5 <set catalog statement>

18.5 <set catalog statement>

Function

Set the default catalog name for unqualified <schema name>s in <preparable statement>s that are prepared in
the current SQL-session by an <execute immediate statement> or a <prepare statement> and in <direct SQL
statement>s that are invoked directly.

Format

<set catalog statement> ::= SET <catalog name characteristics>
<catalog name characteristic> ::= CATALOG <value specification>
Syntax Rules

1) The declared type of the <value specification> shall be a character string type.

Access Rules

None.

General Rules

1) Let S'be <value specification> and let V' be the character string that is the value of
TRIM (BOTH ' ' FROM S)
2) If V does not conform to the Format and Syntax Rules of a <catalog name>, then an exception condition
is raised: invalid catalog name.

3) The default catalog name of the current SQL-session is set to V.

Conformance Rules

1) Without Feature F651, “Catalog name qualifiers”, conforming SQL language shall not contain a <set catalog
statement>.

2) Without Feature F761, “Session management”, conforming SQL language shall not contain a <set catalog
statement>,

912 Foundation (SQL/Foundation) B ©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted withoul license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
18.6 <set schema statement>

18.6 <set schema statement>

Function

Set the default schema name for unqualified <schema qualified name>s in <preparable statement>s that are
prepared in the current SQL-session by an <execute immediate statement> or a <prepare statement> and in
<direct SQL statement>s that are invoked directly.

Format

<set schema statement> ::= SET <schema name characteristics
<schema name characteristic> ::= SCHEMA <value specification>
Syntax Rules

1) The declared type of the <value specification> shall be a character string type.

Access Rules

None.

General Rules

1) Let S be <value specification> and let V" be the character string that is the value of
TRIM (BOTH ' ' FROM S)
2) If V does not conform to the Format and Syntax Rules of a <schema name>, then an exception condition
is raised: invalid schema name.
3) Case:

a) If V conforms to the Format and Syntax Rules for a <schema name> that contains a <catalog name>,
then let X be the <catalog name> part and let Y be the <unqualified schema name> part of V. The fol-
lowing statement is implicitly executed:

SET CATALOG 'X!
and the <set schema statement> is effectively replaced by:

SET SCHEMA 'Y

b) Otherwise, the default unqualified schema name of the current SQL-session is set to V.

©ISO/IEC 2003 ~ Al rights reserved Session management 913

Copyright Canadian Standards Assaciation
Reproduced by IHS under license with CSA Sold o:INFOTRIEVE, INC, W0277804
No ion or ing permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
18.6 <set schema statement>

Conformance Rules

1) Without Feature F761, “Session management”, conforming SQL language shall not contain a <set schema
statement>.

_ 914 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association

Reproduced by IHS under licensa with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
18.7 <set names statement>

18.7 <set names statement>

Function

Set the default character set name for <character string literal>s in <preparable statement>s that are prepared
in the current SQL-session by an <execute immediate statement> or a <prepare statement> and in <direct SQL
statement>s that are invoked directly.

Format

<set names statement> ::= SET <character set name characteristics>
<character set name characteristic> ::= NAMES <value specification>
Syntax Rules

1) The declared type of the <value specification> shall be a character string type.

Access Rules

None.

General Rules

1) Let S be <value specification> and let ¥ be the character string that is the value of
TRIM (BOTH ' ' FROM S)
2) If ¥ does not conform to the Format and Syntax Rules of a <character set name>, then an exception condition
is raised: invalid character set name.

3) The default character set name of the current SQL-session is set to V.

Conformance Rules

1) Without and Feature F461, “Named character sets”, conforming SQL language shall not contain a <set
names statement>.

2) Without Feature F761, “Session management”, conforming SQL language shall not contain a <set names
statement>.

©ISO/IEC 2003 — All rights reserved L e Session management 915

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
18.8 <set path statement>

18.8 <set path statement>

Function

Set the SQL-path used to determine the subject routine of <routine invocation>s with unqualified <routine
name>s in <preparable statement>s that are prepared in the current SQL-session by an <execute immediate
statement™> or a <prepare statement> and in <direct SQL statement>s, respectively, that are invoked directly.
The SQL-path remains the current SQL-path of the SQL-session until another SQL-path is successfully set.

Format

<set path statement> ::= SET <SQL-path characteristic>
<SQL-path characteristic> ::= PATH <value specification>
Syntax Rules

1) The declared type of the <value specification> shall be a character string type.

Access Rules

None.

General Rules

1) Let Sbe <value specification> and let ¥ be the character string that is the value of
TRIM (BOTH ' ' FROM S)

a) If V does not conform to the Format and Syntax Rules of a <schema name list>, then an exception
condition is raised: invalid schema name list specification.

b) The SQL-path of the current SQL-session is set to V.

NOTE 424 — A <set path statement> that is executed between a <prepare statement> and an <execute statement> has no effect
on the prepared statement.

Conformance Rules

1) Without Feature S071, “SQL paths in function and type name resolution”, Conforming SQL language shall
not contain a <set path statement>.

916 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under licanse with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/MTEC 9075-2:2003 (E)
18.9 <set transform group statement>

18.9 <set transform group statement>

Function

Set the group name that identifies the group of transform functions for mapping values of user-defined types
to predefined data types.

Format

<set transform group statement> ::= SET <transform group characteristic>

<transform group characteristics> ::=
DEFAULT TRANSFORM GROUP <value specification>
| TRANSFORM GROUP FOR TYPE <path-resolved user-defined type name> <value specifications

Syntax Rules

1) The declared type of the <value specification> shall be a character string type.

2) 1If <path-resolved user-defined type name> is specified, then let UDT be the user-defined type identified
by that <path-resolved user-defined type name>.

Access Rules

None.

General Rules

1) Let S be <value specification> and let ¥ be the character string that is the value of
TRIM (BOTH ' ' FROM S)

a) If V does not conform to the Format and Syntax Rules of a <group name>, then an exception condition
is raised: invalid transform group name specification.

b) Case:

i) If <path-resolved user-defined type name> is specified, then the transform group name corre-
sponding to all subtypes of UDT for the current SQL-session is set to V.

i) Otherwise, the default transform group name for the current SQL-session is set to V.

NOTE 425 — A <set transform group statement> that is executed after a <prepare statement> has no effect on the prepared
statement.

Conformance Rules

1) Without Feature S241, “Transform functions”, conforming SQL language shall not contain a <set transform
group statement>.

©ISO/IEC 2003 — All rights reserved Session management 917

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Soid to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
18.9 <set transform group statement>

18.10 <set session collation statement>

‘Function

‘Set the SQL-session collation of the SQL-session for one or more character sets. An SQL-session collation
:remains effective until another SQL-session collation for the same character set is successfully set.

Format

<set session collation statement> ::=
SET COLLATION <collation specification> [FOR <character set specification list>]
| SET NO COLLATION [FOR <character set specification list>]

<collation specification> ::= <value specifications>

Syntax Rules

1) The declared type of the <value specification> shall be a character string type.

Access Rules

None.

General Rules

1) Let §be <value specification> and let V' be the character string that is the value of
TRIM (BOTH ' ' FROM S)

a) If ¥ does not conform to the Format and Syntax Rules of a <collation name>, then an exception condition
is raised: invalid collation name.

b) Let CO be the collation identified by the <collation name> contained in V.
Case:
i) If <character set specification list> is specified, then
Case:

1) Ifthe collation specified by CO is not applicable to any character set identified by a <char-
acter set specification>, then an exception condition is raised: invalid collation name.

2) Otherwise, for each character set specified, the SQL-session collation for that character set
in the current SQL-session is set to CO.

it) Otherwise, the character sets for which the SQL-session collations are set to CO are implemen-
tation-defined.

2) If SET NO COLLATION is specified, then

918 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Repraduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
18.10 <set session collation statement>

Case:

a) If <character set specification list> is specified, then, for each character set specified, the SQL-session
collation for that character set in the current SQL-session is set to none.

b) Otherwise, the SQL-session collation for every character set in the current SQL-session is set to none.

Conformance Rules

1) Without Feature F693, “SQL-session and client module collations”, conforming SQL language shall not
contain a <set session collation statement>.

©ISO/IEC 2003 - Al rights reserved Session management 919

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Soid to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)

This page intentionally left blank.

920 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804
No or ing permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.1 Description of SQL descriptor areas

19 Dynamic SQL

19.1 Description of SQL descriptor areas

Function

Specify the identifiers, data types, and codes used in SQL item descriptor areas.

Syntax Rules

1) An SQL item descriptor area comprises the items specified in Table 24, “Data types of <key word>s used
in SQL item descriptor areas”.

2) An SQL descriptor area comprises the items specified in Table 23, “Data types of <key word>s used in the
header of SQL descriptor areas”, and one or more occurrences of an SQL item descriptor area.

3) Given an SQL item descriptor area /DA in which the value of LEVEL is N, the immediately subordinate
descriptor areas of IDA are those SQL item descriptor areas in which the value of LEVEL is N+1 and
whose position in the SQL descriptor area follows that of /DA and precedes that of any SQL item descriptor
area in which the value of LEVEL is less than N+1.

The subordinate descriptor areas of IDA are those SQL item descriptor areas that are immediately subor-
dinate descriptor areas of /DA or that are subordinate descriptor areas of an SQL item descriptor area that
is immediately subordinate to /DA.

4) Given a data type DT and its descriptor DE, the immediately subordinate descriptors of DE are defined to
be:

Case:

a) If DT is a row type, then the field descriptors of the fields of DT. The i-th immediately subordinate
descriptor is the descriptor of the i-th field of DT.

b) If DT is a collection type, then the descriptor of the associated element type of DT.

The subordinate descriptors of DE are those descriptors that are immediately subordinate descriptors of
DE or that are subordinate descriptors of a descriptor that is immediately subordinate to DE.

5) Given a descriptor DE, let SDE; represent its j-th immediately subordinate descriptor. There is an implied
ordering of the subordinate descriptors of DE, such that:

a) SDE) is in the first ordinal position.

b) The ordinal position of SDEj;| is K+NS+1, where K is the ordinal position of SDE; and NS is the
number of subordinate descriptors of SDE;. The implicitly ordered subordinate descriptors of SDE;
occupy contiguous ordinal positions starting at position K+1.

©ISO/IEC 2003 — All rights reserved. . Dynamic SQL 921

Copyright Canadian Standards Assaciation
Reproduced by IHS under license with CSA Said 10:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.1 Description of SQL descriptor areas

6) Anitem descriptor area IDA is valid if and only if TYPE indicates a code defined in Table 25, “Codes used
for SQL data types in Dynamic SQL”, and one of the following is true:

Case:

a)

g)
h)

)

k)

D

n)

TYPE indicates CHARACTER, CHARACTER VARYING, or CHARACTER LARGE OBJECT,
LENGTH is a valid length value for TYPE, and CHARACTER_SET_CATALOG, CHARAC-
TER_SET_SCHEMA, and CHARACTER_SET_NAME are the fully qualified name of a character
set that is valid for TYPE.

TYPE indicates CHARACTER LARGE OBJECT LOCATOR.

TYPE indicates BINARY LARGE OBJECT and LENGTH is a valid length value for the BINARY
LARGE OBIJECT data type.

TYPE indicates BINARY LARGE OBJECT LOCATOR.

TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale values for the
NUMERIC data type.

TYPE indicates DECIMAL and PRECISION and SCALE are valid precision and scale values for the
DECIMAL data type.

TYPE indicates SMALLINT, INTEGER, BIGINT, REAL, or DOUBLE PRECISION.
TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data type.
TYPE indicates BOOLEAN.

TYPE indicates a <datetime type>, DATETIME_INTERVAL_CODE is a code specified in Table 26,
“Codes associated with datetime data types in Dynamic SQL”, and PRECISION is a valid value for
the <time precision> or <timestamp precision™> of the indicated datetime data type.

TYPE indicates an <interval type>, DATETIME_INTERVAIL_CODE is a code specified in Table 27,
“Codes used for <interval qualifier>s in Dynamic SQL”, and DATETIME_INTERVAL_PRECISION
and PRECISION are valid values for <interval leading field precision> and <interval fractional seconds
precision> for an <interval qualifier>.

TYPE indicates USER-DEFINED TYPE LOCATOR and USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are the fully qualified
name of a valid user-defined type.

TYPE indicates REF, LENGTH is the length in octets for the REF type, and
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and
USER_DEFINED_TYPE_NAME are a valid qualified user-defined type name, and SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME are a valid qualified table name.

TYPE indicates ROW, the value N of DEGREE is a valid value for the degree of a row type, there are
exactly N immediately subordinate descriptor areas of /DA and those SQL item descriptor areas are
valid.

TYPE indicates ARRAY or ARRAY LOCATOR, the value of CARDINALITY is a valid value for
the cardinality of an array, there is exactly one immediately subordinate descriptor area of /DA, and
that SQL item descriptor area is valid.

922 Foundation (SQL/Foundation) ©ISO/IEC 2003 - Al rights reserved f

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold t0:INFOTRIEVE, INC, W0277804
No rep " " "

without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

or p

p)

9

ISO/IEC 9075-2:2003 (E)
19.1 Description of SQL descriptor areas

TYPE indicates MULTISET or MULTISET LOCATOR, there is exactly one immediately subordinate
descriptor area of /DA, and that SQL item descriptor area is valid.

TYPE indicates an implementation-defined data type.

7) The declared type T of a <simple value specification> or a <simple target specification> SV'T is said to
match the data type specified by a valid item descriptor area IDA if and only if one of the following conditions
is true.

Case:

a)

TYPE indicates CHARACTER and T'is specified by CHARACTER(L), where L is the value of
LENGTH and the <character set specification> formed by the values of CHARACTER_SET_CATA-
LOG, CHARACTER_SET_SCHEMA, and CHARACTER_SET_NAME identifies the character set
of SVT.

b) Either TYPE indicates CHARACTER VARYING and T'is specified by CHARACTER VARYING(L)
or type indicates CHARACTER LARGE OBJECT and T is specified by CHARACTER LARGE
OBJECT(L), where the <character set specification> formed by the values of CHARACTER_SET_CAT-
ALOG, CHARACTER_SET_SCHEMA, and CHARACTER_SET_NAME identifies the character set
of SVT and
Case:

i) SVT is a <simple value specification> and L is the value of LENGTH.
i) SFVT is a <simple target specification> and L is not less than the value of LENGTH.

¢) TYPE indicates CHARACTER LARGE OBJECT LOCATOR and T is specified by CHARACTER
LARGE OBJECT LOCATOR.

d) TYPE indicates BINARY LARGE OBJECT and 7 'is specified by BINARY LARGE OBJECT(L) and
Case:

i) STV is a <simple value specification> and L is the value of LENGTH.
ii) STV is a <simple target specification> and L is not less than the value of LENGTH.

e) TYPE indicates BINARY LARGE OBJECT LOCATOR and T is specified by BINARY LARGE
OBJECT LOCATOR.

f) TYPE indicates NUMERIC and T is specified by NUMERIC(2P,S), where P is the value of PRECISION
and S is the value of SCALE.

g) TYPE indicates DECIMAL and T'is specified by DECIMAL(P,S), where P is the value of PRECISION
and S is the value of SCALE.

h) TYPE indicates SMALLINT and 7 is specified by SMALLINT.

i) TYPE indicates INTEGER and T is specified by INTEGER.

j) TYPE indicates BIGINT and T is specified by BIGINT.

k) TYPE indicates FLOAT and T is specified by FLOAT(P), where P is the value of PRECISION.

I) TYPE indicates REAL and T is specified by REAL.

©ISO/IEC 2003 ~ All rights reserved Dynamic SQL 923

Copyright Canadian Standards Associaiiéﬁ '

itted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No ")

or

ISO/IEC 9075-2:2003 (E)
19.1 Description of SQL descriptor areas

m) TYPE indicates DOUBLE PRECISION and T is specified by DOUBLE PRECISION.
n) TYPE indicates BOOLEAN and T is specified by BOOLEAN.

o) TYPE indicates USER-DEFINED TYPE and T is specified by USER-DEFINED TYPE LOCATOR,
where the values of USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and
USER_DEFINED_TYPE_NAME are the fully qualified name of the associated user-defined type of
SVT.

p) TYPE indicates REF and T is specified by REF, where the <user-defined type name> formed by the
values of USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and
USER_DEFINED_TYPE_NAME identifies the row type of S¥'T, and SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME identify the scope of the reference type.

q) TYPE indicates ROW, and T is a row type with degree D, where D is the value of DEGREE, and the
data type of the i-th field of SV'T matches the data type specified by the i-th immediately subordinate
descriptor area of IDA.

r) TYPE indicates ARRAY and T is an array type with maximum cardinality C and the data type of the
element type of T matches the immediately subordinate descriptor area of /DA, and

Case:
i) SVT is a <simple value specification> and C is the value of CARDINALITY.
ii) SVTis a <simple target specification> and C is not less than the value of CARDINALITY.

’z s) TYPE indicates ARRAY LOCATOR and T'is an array locator type whose associated array type has
maximum cardinality C and the data type of the element type of the associated array type of 7 matches
the immediately subordinate descriptor area of IDA4, and

Case:
i) SVT is a <simple value specification> and C is the value of CARDINALITY.
ii) SVTis a <simple target specification> and C is not less than the value of CARDINALITY.

t) TYPE indicates MULTISET and T is a multiset type and the data type of the element type of 7 matches
the immediately subordinate descriptor area of IDA.

u) TYPE indicates MULTISET LOCATOR and T'is a multiset locator type and the data type of the element
type of T matches the immediately subordinate descriptor area of /DA.

v) TYPE indicates a data type from Table 25, “Codes used for SQL data types in Dynamic SQL”, other
than an implementation-defined data type and 7 satisfies the implementation-defined rules for matching
that data type.

w) TYPE indicates an implementation-defined data type and T satisfies the implementation-defined rules
for matching that data type.

8) A data type DT is said to be represented by an SQL item descriptor area if a <simple value specification>
of type DT matches the SQL item descriptor area.

924 Foundation (SQL/Foundation) ©ISO/IEC 2003 — Al rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/TEC 9075-2:2003 (E)
19.1 Description of SQL descriptor areas

Table 23 — Data types of <key word>s used in the header of SQL descriptor areas

<key word>

Data Type

COUNT

exact numeric with scale 0 (zero)

DYNAMIC_FUNCTION

character string with character set SQL_IDENTIFIER and length
not less than 128 characters

DYNAMIC_FUNCTION_CODE

exact numeric with scale 0 (zero)

KEY_TYPE

exact numeric with scale 0 (zero)

TOP_LEVEL_COUNT

exact numeric with scale 0 (zero)

Table 24 — Data types of <key word>s used in SQL item descriptor areas

<key word>

Data Type

CARDINALITY

exact numeric with scale 0 (zero)

CHARACTER_SET_CATALOG

character string with character set SQL_IDENTIFIER and length
not less than 128 characters

CHARACTER_SET_NAME

character string with character set SQL_IDENTIFIER and length
not less than 128 characters

CHARACTER_SET_SCHEMA

character string with character set SQL_IDENTIFIER and length
not less than 128 characters

COLLATION_CATALOG

character string with character set SQL_IDENTIFIER and length
not less than 128 characters

COLLATION_NAME

character string with character set SQL_IDENTIFIER and length
not less than 128 characters

COLLATION_SCHEMA

character string with character set SQL_IDENTIFIER and length
not less than 128 characters

DATA

matches the data type represented by the SQL item descriptor
area

DATETIME_INTERVAL_CODE

exact numeric with scale 0 (zero)

DATETIME_INTERVAL_PRECI-
SION

exact numeric with scale 0 (zero)

©ISO/IEC 2003 - All rights reserved Dynamic SQL 925

Copyright Canadian Standards Association
Reproduced by IHS under ficense with CSA
No reproduction or networking permitted without license from IHS

Sold to:INFOTRIEVE, INC, W0277804
Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.1 Description of SQL descriptor areas

<key word> Data Type

DEGREE exact numeric with scale 0 (zero)

INDICATOR exact numeric with scale 0 (zero)

KEY_MEMBER exact numeric with scale 0 (zero)

LENGTH exact numeric with scale 0 (zero)

LEVEL exact numeric with scale 0 (zero)

NAME character string with character set SQL_IDENTIFIER and length

not less than 128 characters
NULLABLE exact numeric with scale 0 (zero)

OCTET_LENGTH

exact numeric with scale 0 (zero)

PARAMETER_MODE

exact numeric with scale 0 (zero)

PARAMETER_ORDINAL_POSITION

exact numeric with scale 0 (zero)

PARAMETER_SPECIFIC_CATALOG

character string with character set SQL_IDENTIFIER and length
not less than 128 characters

PARAMETER_SPECIFIC_NAME

character string with character set SQL_IDENTIFIER and length
not less than 128 characters

PARAMETER_SPECIFIC_SCHEMA

character string with character set SQL_IDENTIFIER and length
not less than 128 characters

PRECISION

exact numeric with scale 0 (zero)

RETURNED_CARDINALITY

exact numeric with scale 0 (zero)

RETURNED_LENGTH

exact numeric with scale 0 (zero)

RETURNED_OCTET_LENGTH

exact numeric with scale 0 (zero)

SCALE

exact numeric with scale 0 (zero)

SCOPE_CATALOG

character string with character set SQL_IDENTIFIER and length
not less than 128 characters

SCOPE_NAME

character string with character set SQL_IDENTIFIER and length
not less than 128 characters

SCOPE_SCHEMA

character string with character set SQL_IDENTIFIER and length
not less than 128 characters

926 Foundation (SQL/Foundation)

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA
No reproduction or networking permitted without license from IHS

©ISO/IEC 2003 — Al rights reserved

Sold t0:INFOTRIEVE, INC, W0277804
Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.1 Description of SQL descriptor areas

<key word> Data Type
TYPE exact numeric with scale 0 (zero)
UNNAMED exact numeric with scale 0 (zero)

USER_DEFINED_TYPE_CATALOG | character string with character set SQL_IDENTIFIER and length
not less than 128 characters

USER_DEFINED_TYPE_NAME character string with character set SQL_IDENTIFIER and length
not less than 128 characters

USER_DEFINED_TYPE_SCHEMA | character string with character set SQL_IDENTIFIER and length
not less than 128 characters

USER_DEFINED_TYPE_CODE exact numeric with scale 0 (zero)

NOTE 426 — “Matches” and “represented by”, as applied to the relationship between a data type and an SQL item descriptor area
are defined in the Syntax Rules of this Subclause.

Access Rules

None.

General Rules

1) Table 25, “Codes used for SQL data types in Dynamic SQL”, specifies the codes associated with the SQL

data types.
Table 25 — Codes used for SQL data types in Dynamic SQL
Data Type Code
Implementation-defined data types <0 (zero)
ARRAY 50
ARRAY LOCATOR 51
BIGINT 25
BLOB 30
BLOB LOCATOR 31
BOOLEAN 16
CHARACTER 1 (one)
©ISO/IEC 2003 — Al rights reserved Dynamic SQL 927
Como ey, A ——

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.1 Description of SQL descriptor areas

Data Type Code
CHARACTER VARYING 12
CLOB 40
CLOB LOCATOR 41
DATE, TIME WITHOUT TIME ZONE, 9
TIME WITH TIME ZONE, TIMESTAMP
WITHOUT TIME ZONE, or TIMESTAMP
WITH TIME ZONE

DECIMAL 3
DOUBLE PRECISION 8
FLOAT 6
INTEGER 4
INTERVAL 10
MULTISET 55
MULTISET LOCATOR 56
NUMERIC 2
REAL 7
SMALLINT 5
USER-DEFINED TYPE LOCATOR 18
ROW TYPE 19
REF 20
User-defined types 17

2) Table 26, “Codes associated with datetime data types in Dynamic SQL”, specifies the codes associated

with the datetime data types.

Table 26 — Codes associated with datetime data types in Dynamic SQL

Datetime Data Type Code

DATE 1 (one)

928 Foundation (SQL/Foundation)

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resala,2005/6/17 21:54:10 GMT

©ISO/IEC 2003 — All rights reserved

ISO/IEC 9075-2:2003 (E)
19.1 Description of SQL descriptor areas

Datetime Data Type Code
TIME WITH TIME ZONE 4
TIME WITHOUT TIME ZONE 2
TIMESTAMP WITH TIME ZONE 5
TIMESTAMP WITHOUT TIME ZONE 3

3) Table 27, “Codes used for <interval qualifier>s in Dynamic SQL”, specifies the codes associated with
<interval qualifier>s for interval data types.

Table 27 — Codes used for <interval qualifier>s in Dynamic SQL

Datetime Qualifier Code
DAY 3
DAY TO HOUR 8
DAY TO MINUTE 9
DAY TO SECOND 10
HOUR 4
HOUR TO MINUTE 11
HOUR TO SECOND 12
MINUTE 5
MINUTE TO SECOND 13
MONTH 2
SECOND 6
YEAR 1 (one)
YEAR TO MONTH 7

4) The value of DYNAMIC_FUNCTION is a character string that identifies the type of the prepared or executed
SQL-statement. Table 31, “SQL-statement codes”, specifies the identifier of the SQL-statements.

5) The value of DYNAMIC_FUNCTION_CODE is a number that identifies the type of the prepared or executed
SQL-statement. Table 31, “SQL-statement codes”, specifies the identifier of the SQL-statements.

©ISO/IEC 2003 — All rights reserved Dynamic SQL 929

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without licanse from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)

. 19.1 Description of SQL descriptor areas

: 6) Table 28, “Codes used for input/output SQL parameter modes in Dynamic SQL”, specifies the codes used
: for the PARAMETER_MODE item descriptor field when describing a <call statement>.

Table 28 — Codes used for input/output SQL parameter modes in Dynamic SQL

Parameter mode Code
PARAMETER_MODE_IN 1 (one)
PARAMETER_MODE_INOUT 2
PARAMETER_MODE_OUT 4

7) Table 29, “Codes associated with user-defined types in Dynamic SQL”, specifies the codes associated with

user-defined types.

Table 29 — Codes associated with user-defined types in Dynamic SQL

User-Defined Type Code
DISTINCT 1 (one)
STRUCTURED 2

Conformance Rules

None.

930 Foundation (SQL/Foundation)

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA
No reproduction or networking parmitted without license from IHS

Sold to:INFOTRIEVE, INC, W0277804
Not for Resale,2005/6/17 21:54:10 GMT

©ISO/IEC 2003 — Al rights reserved

ISO/IEC 9075-2:2003 (E)
19.2 <allocate descriptor statement>

19.2 <allocate descriptor statement>

Function

Allocate an SQL descriptor area.

Format

<allocate descriptor statement> ::=
ALLOCATE [SQL] DESCRIPTOR <descriptor name> [WITH MAX <occurrences>]

<occurrences> ::= <simple value specification>

Syntax Rules

1) The declared type of <occurrences> shall be exact numeric with scale 0 (zero).

2) If WITH MAX <occurrences> is not specified, then an implementation-defined default value for <occur-
rences> that is greater than 0 (zero) is implicit.

Access Rules

None.

General Rules

1) Let S'be the <simple value specification> that is immediately contained in <descriptor name> and let V' be
the character string that is the result of

TRIM (BOTH ' ' FROM S)

If V does not conform to the Format and Syntax Rules of an <identifier>, then an exception condition is
raised: invalid SQL descriptor name.

2) Case:

a) Ifan SQL descriptor area whose name is ¥ and whose scope is specified by the <scope option>
immediately contained in a <descriptor name> is currently allocated, then an exception condition is
raised: invalid SQL descriptor name.

b) Otherwise, the <allocate descriptor statement> allocates an SQL descriptor area whose name is ¥ and
whose scope is specified by the <scope option> immediately contained in a <descriptor name>. The
SQL descriptor area will have at least <occurrences™> number of SQL item descriptor areas. The value
of LEVEL in each of the item descriptor areas is set to 0 (zero). The values of all other fields in the
SQL descriptor area are initially undefined.

3) If <occurrences> is less than 1 (one) or is greater than an implementation-defined maximum value, then
an exception condition is raised: dynamic SQL error — invalid descriptor index. The maximum number
of SQL descriptor areas that can be allocated at one time is implementation-defined.

- ©ISO/IEC-2003.—-All rights reserved Dynamic SQL 931

Copyright Canadian Standards Association
Reproduced by IHS under ficense with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.2 <allocate descriptor statement>

Conformance Rules

1) Without Feature B032, “Extended dynamic SQL”, conforming SQL language shall not contain an
<occurrences> that is not a <literal>.

2) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain an <allocate
descriptor statement>,

932 Foundation (SQL/Foundation) ... ©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproduced by IMS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.3 <deallocate descriptor statement>

19.3 <deallocate descriptor statement>

Function

Deallocate an SQL descriptor area.

Format

<deallocate descriptor statements> ::=
DEALLOCATE [SQL] DESCRIPTOR <descriptor names>

Syntax Rules

None.

Access Rules

None.

General Rules

1) Case:

a) Ifan SQL descriptor area is not currently allocated whose name is the value of the <simple value
specification> immediately contained in <descriptor name> and whose scope is specified by the <scope
option> immediately contained in <descriptor name>, then an exception condition is raised: invalid
SQL descriptor name.

b) Otherwise, the <deallocate descriptor statement> deallocates an SQL descriptor area whose name is
the value of the <simple value specification> immediately contained in <descriptor name> and whose
scope is specified by the <scope option> immediately contained in <descriptor name>.

Conformance Rules

1) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain a <deallocate
descriptor statement>.

©ISO/IEC 2003 — All rights réserved Dynamic SQL 933

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/8/17 21:54:10 GMT

ISO/TEC 9075-2:2003 (E)
19.4 <get descriptor statement>

19.4 <get descriptor statement>

Function

Get information from an SQL descriptor area.

Format

<get descriptor statement> ::=
GET [SQL] DESCRIPTOR <descriptor name> <get descriptor informations

<get descriptor informations> ::=
<get header information> [{ <comma> <get header information> }...]
| VALUE <item number> <get item information>
[{ <comma> <get item informations> }...]

<get header information> ::=
<simple target specification 1> <equals operator> <header item name>

<header item name> ::=
COUNT
| KEY_TYPE
| DYNAMIC FUNCTION
| DYNAMIC_ FUNCTION_CODE
| TOP_LEVEL_COUNT

<get item informations> ::=
<simple target specification 2> <equals operator> <descriptor item name>

<item number> ::= <simple value specification>
<simple target specification 1> ::= <simple target specification>
<simple target specification 2> ::= <simple target specification>

<descriptor item names> ::=
CARDINALITY

| CHARACTER_SET_CATALOG
| CHARACTER_SET_NAME
| CHARACTER_SET_ SCHEMA
| COLLATION_CATALOG
| COLLATION_ NAME
| COLLATION_SCHEMA
| DATA
| DATETIME_INTERVAL_CODE
| DATETIME_INTERVAL_PRECISION
| DEGREE
| INDICATOR
| KEY_MEMBER
| LENGTH
| LEVEL
| NAME
| NULLABLE
| OCTET_LENGTH

934 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804
No reproduction or ing permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.4 <get descriptor statement>

| PARAMETER_ MODE
| PARAMETER_ORDINAL_POSITION
| PARAMETER_SPECIFIC_CATALOG
| PARAMETER_SPECIFIC_NAME
| PARAMETER_SPECIFIC_SCHEMA
| PRECISION

| RETURNED_CARDINALITY
| RETURNED_LENGTH
| RETURNED OCTET LENGTH
| SCALE

| SCOPE_CATALOG
| SCOPE_NAME

| SCOPE_SCHEMA

| TYPE

| UNNAMED

| USER_DEFINED_TYPE_CATALOG
| USER_DEFINED TYPE_NAME

| USER_DEFINED_TYPE_SCHEMA
| USER_DEFINED_TYPE_CODE

Syntax Rules

1) The declared type of <item number> shall be exact numeric with scale 0 (zero).

2) For each <get header information>, the declared type of <simple target specification 1> shall be that shown
in the Data Type column of the row in Table 23, “Data types of <key word>s used in the header of SQL
descriptor areas”, whose <key word> column value is equivalent to <header item name>.

3) For each <get item information>, the declared type of <simple target specification 2> shall be that shown
in the Data Type column of the row in Table 24, “Data types of <key word>s used in SQL item descriptor
areas”, whose <key word> column value is equivalent to <descriptor item name>.

Access Rules

None.

General Rules

1) If <descriptor name> identifies an SQL descriptor area that is not currently allocated whose name is the
value of the <simple value specification> immediately contained in <descriptor name> and whose scope
is specified by the <scope option> immediately contained in <descriptor name>, then an exception condition
is raised: invalid SQL descriptor name.

2) If the <item number> specified in a <get descriptor statement> is greater than the value of <occurrences>
specified when the <descriptor name> was allocated or less than 1 (one), then an exception condition is
raised: dynamic SQL error — invalid descriptor index.

3) If the <item number> specified in a <get descriptor statement> is greater than the value of COUNT, then
a completion condition is raised: no data.

©ISO/IEC 2003 — All rights reserved Dynamic SQL. 935

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sald t0:INFOTRIEVE, INC, W0277804
No ion or ing permitted without licanse from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.4 <get descriptor statement>

4) If the declared type of the <simple target specification> associated with the keyword DATA does not match
the data type represented by the item descriptor area, then an exception condition is raised: data exception
- error in assignment.

NOTE 427 — “Match” and “represented by” are defined in the Syntax Rules of Subclause 19.1, “Description of SQL descriptor
areas”.

5) Letibe the value of the <item number> contained in <get descriptor information>. Let /DA be the i-th item
descriptor area. If a <get item information> specifies DATA, then:

a) If IDA is subordinate to an item descriptor area whose TYPE field indicates ARRAY, ARRAY
LOCATOR, MULTISET, or MULTISET LOCATOR, then an exception condition is raised: dynamic
SQL error — undefined DATA value.

b) Ifthe value of TYPE in /DA indicates ROW, then an exception condition is raised: dynamic SQL error
— undefined DATA value.

c) If the value of INDICATOR is negative and no <get item information> specifies INDICATOR, then
an exception condition is raised: data exception — null value, no indicator parameter.

6) If an exception condition is raised in a <get descriptor statement>, then the values of all targets specified
by <simple target specification 1> and <simple target specification 2> are implementation-dependent.

7) A <get descriptor statement> retrieves values from the SQL descriptor area and item specified by
<descriptor name>. For each item, the value that is retrieved is the one established by the most recently
executed <allocate descriptor statement>, <set descriptor statement>, or <describe statement> that references
the specified SQL descriptor area and item. The value retrieved by a <get descriptor statement> for any
field whose value is undefined is implementation-dependent.

Case:

a) If <get descriptor information> contains one or more <get header information>s, then for each <get
header information> specified, the value of <simple target specification 1> is set to the value V in the
SQL descriptor area of the field identified by the <header item name> by applying the General Rules
of Subclause 9.2, “Store assignment”, to <simple target specification 1> and V as TARGET and VALUE,
respectively.

b) If <get descriptor information> contains one or more <get item information>s, then:
i) Let i be the value of the <item number> contained in the <get descriptor information>.

ii) For each <get item information> specified, the value of <simple target specification 2> is set to
the value ¥ in the i-th SQL item descriptor area of the field identified by the <descriptor item
name> by applying the General Rules of Subclause 9.2, “Store assignment”, to <simple target
specification 2> and V as TARGET and VALUE, respectively.

Conformance Rules

1) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain a <get
descriptor statement>.

2) Without Feature T301, “Functional dependencies”, conforming SQL language shall not contain a
<descriptor item name> that contains KEY_MEMBER.

936 Foundation (SQL/Foundation) ©®ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No rep or i i without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.5 <set descriptor statement>

19.5 <set descriptor statement>

Function

Set information in an SQL descriptor area.

Format

<set descriptor statements> ::=
SET [SQL] DESCRIPTOR <«descriptor name> <set descriptor information>

<set descriptor informations> ::=
<set header information> [{ <comma> <set header information> }... 1
| VALUE <item number> <set item informations>
[{ <comma> <set item information> }...]

<set header information> ::=
<header item name> <equals operator> <simple value specification 1>

<set item information> ::=
<descriptor item name> <equals operator> <simple value specification 2>

<simple value specification 1> ::= <simple value specification>
<simple value specification 2> ::= <simple value specification>
Syntax Rules

1) Foreach <set header information>, <header item name> shall not be KEY_TYPE, TOP_LEVEL_COUNT,
DYNAMIC_FUNCTION, or DYNAMIC_FUNCTION_CODE, and the declared type of <simple value
specification 1> shall be that in the Data Type column of the row of Table 23, “Data types of <key word>s
used in the header of SQL descriptor areas”, whose <key word> column value is equivalent to <header
item name>.

2) For each <set item information>, the value of <descriptor item name> shall not be RETURNED_LENGTH,
RETURNED_OCTET_LENGTH, RETURNED_CARDINALITY, OCTET_LENGTH, NULLABLE,
KEY_MEMBER, COLLATION_CATALOG, COLLATION_SCHEMA, COLLATION_NAME, NAME,
UNNAMED, PARAMETER_MODE, PARAMETER_ORDINAL_POSITION, PARAMETER_SPE-
CIFIC_CATALOG, PARAMETER_SPECIFIC_SCHEMA, PARAMETER_SPECIFIC_NAME, or
USER_DEFINED_TYPE_CODE. Other alternatives for <descriptor item name> shall not be specified
more than once in a <set descriptor statement>. The declared type of <simple value specification 2> shall
be that shown in the Data Type column of the row in Table 24, “Data types of <key word>s used in SQL
item descriptor areas”, whose <key word> column value is equivalent to <descriptor item name>.

3) Ifthe <descriptor item name> specifies DATA, then <simple value specification 2> shall not be a <literal>.

Access Rules

None.

©ISO/IEC 2003 — Ali rights reserved Dynamic SQL 937

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:iNFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.5 <set descriptor statement>

General Rules

1) If <descriptor name> identifies an SQL descriptor area that is not currently allocated whose name is the
value of the <simple value specification> immediately contained in <descriptor name> and whose scope
is specified by the <scope option> immediately contained in <descriptor name>, then an exception condition
is raised: invalid SQL descriptor name.

2) If the <item number> specified in a <set descriptor statement> is greater than the value of <occurrences>
specified when the <descriptor name> was allocated or less than 1 (one), then an exception condition is
raised: dynamic SQL error — invalid descriptor index.

3) When more than one value is set in a single <set descriptor statement>, the values are effectively assigned
in the following order: LEVEL, TYPE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRE-
CISION, PRECISION, SCALE, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, SCOPE_NAME, LENGTH,
INDICATOR, DEGREE, CARDINALITY, and DATA.

When any value other than DATA is set, the value of DATA becomes undefined.

4) For every <set item information> specified, let DIN be the <descriptor item name>, let ¥ be the value of
the <simple value specification 2>, let N be the value of <item number>, and let /DA be the N-th item
descriptor area.

Case:
a) If DIN is DATA, then:

i) If IDA is subordinate to an item descriptor area whose TYPE field indicates ARRAY, ARRAY
LOCATOR, MULTISET, or MULTISET LOCATOR, then an exception condition is raised: .
dynamic SQL error — invalid DATA target.

i) If TYPE in /DA indicates ROW, then an exception condition is raised: dynamic SQL error —
invalid DATA target.

iii) If the most specific type of ¥ does not match the data type specified by the item descriptor area, :
then an exception condition is raised: data exception — error in assignment.

NOTE 428 — “Match” is defined in the Syntax Rules of Subclause 19.1, “Description of SQL descriptor areas”.
iv) The value of DATA in IDA is setto V.
b) If DIN is LEVEL, then:

i) If Nis 1 (one) and ¥ is not 0 (zero), then an exception condition is raised: dynamic SQL error
— invalid LEVEL value.

if) If N is greater than 1 (one), then let PIDA be IDA's immediately preceding item descriptor area
and let K be its LEVEL value.

1) If V=K+1 and TYPE in PIDA does not indicate ROW, ARRAY, ARRAY LOCATOR,
MULTISET, MULTISET LOCATOR, then an exception condition is raised: dynamic SQL
error — invalid LEVEL value.

938 Foundation (SQL/Foundation) ©®ISO/IEC 2003 — Al rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under ficense with CSA Sold 10:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

2)

3)

ISO/IEC 9075-2:2003 (E)
19.5 <set descriptor statement>

If V> K+1, then an exception condition is raised: dynamic SQL error — invalid LEVEL
value.

If V < K+1, then let OIDA; be the i-th item descriptor area to which PIDA is subordinate
and whose TYPE field indicates ROW, let NS; be the number of immediately subordinate
descriptor areas of OIDA; between OIDA; and IDA and let D; be the value of DEGREE in
OIDA;.

A) For each OIDA; whose LEVEL value is greater than V, if D; is not equal to NS;, then
an exception condition is raised: dynamic SQL error — invalid LEVEL value.

B) If K is not 0 (zero), then let OIDA; be the OIDA; whose LEVEL value is K. If there
exists no such OIDA; or D; is not greater than NS;, then an exception condition is raised:
dynamic SQL error — invalid LEVEL value.

iif) The value of LEVEL in IDA4 is setto V.
¢) IfDINis TYPE, then:
i) The value of TYPE in IDA is setto V.

ii) The value of all fields other than TYPE and LEVEL in /DA are set to implementation-dependent
values.

i) Case:

)]

2)

3)
4)

5)
6)

7

8)

If V indicates CHARACTER, CHARACTER VARYING, or CHARACTER LARGE
OBIJECT, then CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA and
CHARACTER_SET_NAME in IDA are set to the values for the default character set name
for the SQL-session and LENGTH in IDA is set to 1 (one).

If V indicates CHARACTER LARGE OBJECT LOCATOR, then LENGTH in /DA is set
to 1 (one).

If ¥V indicates BINARY LARGE OBJECT, then LENGTH in IDA is set to 1 (one).

If V indicates BINARY LARGE OBJECT LOCATOR, then LENGTH in /DA is set to 1
(one).

If V indicates DATETIME, then PRECISION in IDA is set to 0 (zero).

If V indicates INTERVAL, then DATETIME_INTERVAL_PRECISION in IDA is set to
2.

If ¥ indicates NUMERIC or DECIMAL, then SCALE in IDA is set to 0 (zero) and PRECI-
SION in IDA is set to the implementation-defined default value for the precision of
NUMERIC or DECIMAL data types, respectively.

If ¥ indicates FLOAT, then PRECISION in /DA is set to the implementation-defined default
value for the precision of the FLOAT data type.

d) If DINis DATETIME_INTERVAL_CODE, then

Case:

~ ©ISO/IEC 2003 - Al rights reserved Dynamic SQL 939

Copyright Canadian Standards Association
Reproduced by {HS under license with CSA

Soid lo:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted withaut ficense from HS Not for Resale,2005/6/17 21:54:10 GMT

ISO/TEC 9075-2:2003 (E)
19.5 <set descriptor statement>

i) If TYPE in IDA indicates DATETIME, then
Case:

1) If Vindicates DATE, TIME, or TIME WITH TIME ZONE, then PRECISION in IDA is set
to 0 (zero) and DATETIME_INTERVAL_CODE in /D4 is set to V.

2) If Vindicates TIMESTAMP or TIMESTAMP WITH TIME ZONE, then PRECISION in
IDA is set to 6 and DATETIME_INTERVAL_CODE in IDA4 is setto V.

3) Otherwise, an exception condition is raised: dynamic SQL error — invalid DATE-
TIME_INTERVAL_CODE.

ii) If TYPE in IDA indicates INTERVAL, then
Case:

1) If ¥ indicates DAY TO SECOND, HOUR TO SECOND, MINUTE TO SECOND, or
SECOND, then PRECISION in /DA is set to 6, DATETIME_INTERVAL_PRECISION in
IDA is set to 2 and DATETIME_INTERVAL_CODE in IDA is setto V.

2) If ¥ indicates YEAR, MONTH, DAY, HOUR, MINUTE, YEAR TO MONTH, DAY TO
HOUR, DAY TO MINUTE, or HOUR TO MINUTE, then PRECISION in /DA is set to 0
(zero), DATETIME_INTERVAL_PRECISION in /DA is set to 2 and DATETIME_INTER-
VAL_CODE in ID4 is set to V.

3) Otherwise, an exception condition is raised: dynamic SQL error — invalid DATE-
TIME_INTERVAL_CODE.

iii) Otherwise, an exception condition is raised: dynamic SQL error — invalid DATETIME_INTER-
VAL_CODE.

e) Otherwise, the value of DIN in IDA is set to V by applying the General Rules of Subclause 9.2, “Store
assignment”, to the field of /DA identified by DIN and V as TARGET and VALUE, respectively. .

5) For each <set header information> specified, the value of the field identified by <header item name> is set
to the value ¥ of <simple value specification 1> by applying the General Rules of Subclause 9.2, “Store
assignment”, to the field identified by the <header item name>and ¥ as TARGET and VALUE, respectively.

6) If an exception condition is raised in a <set descriptor statement>, then the values of all elements of the
item descriptor area specified in the <set descriptor statement> are implementation-dependent.

7) Restrictions on changing TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE,
DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA,
CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME values
resulting from the execution of a <describe statement> before execution of an <execute statement>, <dynamic
open statement>, or <dynamic fetch statement> are implementation-defined.

Conformance Rules

1) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain a <set descriptor

statement>.
940 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved
Copyright Canadian Standards Association
Reproduced by tHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
Nor Y or ing permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.6 <prepare statement>

19.6 <prepare statement>

Function

Prepare a statement for execution.

Format

<prepare statement> ::=
PREPARE <SQL statement name> [<attributes specification>]
FROM <SQL statement variablex>

<attributes specifications> ::= ATTRIBUTES <attributes variable>
<attributes variable> ::= <simple value specification>
<SQL statement variable> ::= <simple value specification>

<preparable statement> ::=
<preparable SQL data statement>
| <preparable SQL schema statement>
| <preparable SQL transaction statement>
| <preparable SQL control statements>
| <preparable SQL session statement>
| <preparable implementation-defined statement>

<preparable SQL data statement> ::=
<delete statement: searched>
| <dynamic single row select statement>
| <insert statement>
| <dynamic select statement>
| <update statement: searched>
| <merge statement>
| <preparable dynamic delete statement: positioned>
| <preparable dynamic update statement: positioned>
| <hold locator statement>
| <free locator statement>

<preparable SQL schema statement> ::= <SQL schema statement>
<preparable SQL transaction statement> ::= <SQL transaction statement>
<preparable SQL control statement> ::= <SQL control statement>

<preparable SQL session statement> ::= <SQL session statement>

<dynamic select statement> ::= <cursor specification>
<preparable implementation-defined statement> ::= !! See the Syntax Rules.
Syntax Rules

1) The <simple value specification> of <SQL statement variable> shall not be a <literal>.

©ISO/IEC 2003 - All rights reserved Dynamic SQL 941

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Soid to:INFOTRIEVE, INC, W0277804
No ion or g itted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.6 <prepare statement>

2) The declared types of each of <SQL statement variable> and <attributes variable> shall be character string.

3) The Format and Syntax Rules for <preparable implementation-defined statement> are implementation-
defined.

4) A <preparable SQL control statement> shall not contain an <SQL procedure statement> that is not a
<preparable statement>, nor shall it contain a <dynamic single row select statement> or a <dynamic select
statement>.

Access Rules

None.

General Rules

1) Let P be the contents of the <SQL statement variable>. If P is an <SQL control statement>, then let PS be
an <SQL procedure statement> contained in P.

2) Two subfields SFI and SF2 of row types RTI and RT2 are corresponding subfields if either SFI or SF2
are positionally corresponding fields of RT7 and RT2, respectively, or SF1 and SF2 are positionally corre-
sponding fields of RT1SF1 and RT2SF2 and RT1SFI and RT2SF?2 are the declared types of corresponding
subfields of RTI and RT2 respectively.

3) If P does not conform to the Format, Syntax Rules, and Access Rules of a <preparable statement>, or if P
contains a <simple comment> then an exception condition is raised: syntax error or access rule violation.

4) Let DTGN be the default transform group name and let TFL be the list of {user-defined type name —
transform group name} pairs used to identify the group of transform functions for every user-defined type
that is referenced in P. DTGN and TFL are not affected by the execution of a <set transform group statement>
after P is prepared.

5) Let DPV be a <value expression> that is either a <dynamic parameter specification> or a <dynamic ;
parameter specification> immediately contained in any number of <left paren> <right paren> pairs. Initially,
the declared type of such a <value expression> is, by definition, undefined. A data type is undefined if it
is neither a data type defined in this standard nor a data type defined by the implementation.

6) Let MP be the implementation-defined maximum value of <precision> for the NUMERIC data type. Let
ML be the implementation-defined maximum value of <length> for the CHARACTER VARYING data
type. For each <value expression> DP in P or PS that meets the criteria for DPV let DT denote its declared
type. The syntactic substitutions specified in Subclause 14.12, “<set clause list>", shall not be applied until
the data types of <dynamic parameter specification>s are determined by this General Rule.

a) Case:
i) If DP is immediately followed by an <interval qualifier> /Q, then DT is INTERVAL IQ.

ii) IfDPis the <numeric value expression> simply contained in an <array element reference>, then
DT is NUMERIC (MP, 0).

iiiy If DP is the <string value expression> simply contained in a <char length expression> or an
<octet length expression>, then DTis CHARACTER VARYING(ML) with an implementation-
defined character set.

942 Foundation (SQL/Foundation) ©ISO/IEC 2003 — Al rights reserved

Copyright Canadian Standards Assaciation
Reproduced by IHS under ficense with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.6 <prepare statement>

iv) If DP is either the <numeric value expression dividend> X7 or the <numeric value expression
divisor> X2 simply contained in a <modulus expression>, then if DP is X1 (X2), then DT is the
declared type of X2 (X1).

v) If DP is either X1 or X2 in a <position expression> of the form “POSITION <left paren> X7 IN
X2 <right paren>", and if DP is X1 (X2), then

Case:

1) Ifthe declared type of X2 (X7) is CHARACTER or CHARACTER VARYING with character
set CS, then DT is CHARACTER VARYING (ML) with character set CS.

2) Otherwise, DT is the declared type of X2 (X1).

vi) If DP is either X2 or X3 in a <string value function> of the form “SUBSTRING <left paren>
XI FROM X2 FOR X3 <right paren>” or “SUBSTRING <left paren>.X! FROM X2 <right
paren>", then DT is NUMERIC (MP, 0).

vii) If DP is either X1, X2, or X3 in a <string value function> of the form “SUBSTRING (X1 SIMI-
LAR X2 ESCAPE X3)”, then

1) Case:

A) Ifthe declared type of X1 is CHARACTER, CHARACTER VARYING, or CHARAC-
TER LARGE OBJECT, then let CS be the character set of X1.

B) If the declared type of X2 is CHARACTER, CHARACTER VARYING, or CHARAC-
TER LARGE OBJECT, then let CS be the character set of X1.

C) Ifthe declared type of X3 is CHARACTER, CHARACTER VARYING, or CHARAC-
TER LARGE OBJECT, then let CS be the character set of X1.

D) Otherwise, the character set of CS is undefined.

2) If CSis defined, then:
A) If DPis XI or X2, then DT is CHARACTER VARYING(ML) with character set CS.
B) If DPis X3, then DT is CHARACTER(1) with character set CS.

viii) If DP is any of X1, X2, X3, or X4 in a <string value function> of the form “OVERLAY <left
paren> X1 PLACING X2 FROM X3 FOR X4 <right paren>" or “OVERLAY <left paren> X1
PLACING X2 FROM X3 <right paren>”, then

Case:
1) If DPis X1 (X2), then
Case:

A) If the declared type of X2 (X1) is CHARACTER or CHARACTER VARYING with
character set CS, DT is CHARACTER VARYING (ML) with character set CS.

B) Otherwise, DT is the declared type of X2 (X1).
2) Otherwise, DT is NUMERIC (MP, 0).

©ISO/IEC 2003 — All rights reserved Dynamic SQL 943

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804
No rep! ion or ki itted without license from (HS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.6 <prepare statement>

ix) IfDP is either X1 or X2 in a <value expression> of the form “XI <concatenation operator> X2”
and DP is X1 (X2), then

Case:

1) Ifthe declared type of X2 (XI) is CHARACTER or CHARACTER VARYING with character
set CS, then DT is CHARACTER VARYING (ML) with character set CS.

2) Otherwise, DT is the declared type of X2 (X1).

X) If DP is either X7 or X2 in a <value expression> of the form “X/ <asterisk>X2” or “X1 <solidus>
X2” and DP is X1 (X2), then

Case:

1) If DPis X1, then DT is the declared type of X2.

2) Otherwise,
Case:
A) If the declared type of X1 is an interval type, then DT is NUMERIC (MP, 0).
B) Otherwise, DT is the declared type of X2 (XI).

xi) If DPis either X1 or X2 in a <value expression> of the form “XI <plus sign> X2” or “XI <minus
sign> X2”, then

Case:

1) If DPis XI in an expression of the form "X/ <minus sign> X2", then DT is the declared
type of X2.

2) Otherwise, if DP is X1 (X2), then
Case:

A) Ifthe declared type of X2 (X/) is date, then DT'is INTERVAL YEAR (PR) TO MONTH,
where PR is the implementation-defined maximum <interval leading field precision>.

B) Ifthe declared type of X2 (X1) is time or timestamp, then DT is INTERVAL DAY (PR)
TO SECOND(FR), where PR and FR are the implementation-defined maximum
<interval leading field precision> and maximum <interval fractional seconds precision>,
respectively.

C) Otherwise, DT is the declared type of X2 (XI).

xii) If DP is the <value expression primary> simply contained in a <boolean primary>, then DT is
BOOLEAN.

xiii) If DP is an <array element> simply contained in an <array element list> AEL or DP represents
the value of a subfield SF of the declared type of an <array element> simply contained in an
<array element list> AEL, then let ET be the result of applying the Syntax Rules of Subclause 9.3,
“Data types of results of aggregations”, to the declared types of the <array element>s simply

contained in AEL.
Case:
944 Foundation (SQL/Foundation) ©ISO/IEC 2003 - All rights reserved
Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold 0:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from 1HS Not for Resale,2005/6/17 21:54:10 GMT

Xiv)

XV)

xvi)

Xvii)

ISO/IEC 9075-2:2003 (E)
19.6 <prepare statement>

1) If DPis an <array element> of AEL, then DT is ET.
2) Otherwise, DT is the declared type of the subfield of ET that corresponds to SF.

If DP is a <multiset element> simply contained in a <multiset element list> MEL or DP represents
the value of a subfield SF of the declared type of a <multiset element> simply contained in a
<multiset element list> MEL, then let ET be the result of applying the Syntax Rules of
Subclause 9.3, “Data types of results of aggregations”, to the declared types of the <multiset
element>s simply contained in MEL.

Case:
1) If DPis a <multiset element> of MEL, then DT is ET.
2) Otherwise, DT is the declared type of the subfield of ET that corresponds to SF.

If DP is the <cast operand> simply contained in a <cast specification> CS or DP represents the
value of a subfield SF of the declared type of the <cast operand> simply contained in a <cast
specification> CS, then let CT be the simply contained <cast target> of CS.

Case:

1) Let RT be a data type determined as follows:
Case:
A) If CT immediately contains ARRAY or MULTISET, then RT is undefined.
B) If CT immediately contains <data type>, then RT is that data type.

C) If CT simply contains <domain name> D, then RT is the declared type of the domain
identified by D.

2) Case:
A) If DP is the <cast operand> of CS, DT is RT.
B) Otherwise, DT is the declared type of the subfield of RT that corresponds to SF.

If DP is a <value expression> simply contained in a <case abbreviation> C4 or DP represents
the value of a subfield SF of the declared type of such a <value expression>, then let RT be the
result of applying the Syntax Rules of Subclause 9.3, “Data types of results of aggregations”,
to the declared types of the <value expression>s simply contained in CA.

Case:
1) If DPis a <value expression> simply contained in CA4, then DT is RT.
2) Otherwise, DT is the declared type of the subfield of RT that corresponds to SF.

If DP is a <result expression> simply contained in a <case specification> CE or DP represents
the value of a subfield SF of the declared type of such a <result expression>, then let RT be the
result of applying the Syntax Rules of Subclause 9.3, “Data types of results of aggregations”,
to the declared types of the <result expression>s simply contained in CE.

Case:

©ISO/IEC 2003 - All rights reserved Dynamic SQL 945

Copyright Canadian Standards Association

Reproduced

by IHS under license with
ion o " .

CSA

No repl

Soid lo:INFOTRIEVE, INC, W0277804

d without ficense from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.6 <prepare statement>

1) If DP is a <result expression> simply contained in CE, then DT is RT.
2) Otherwise, DT is the declared type of the subfield of RT that corresponds to SF.

xviii) If DP is a <case operand> or <when operand> simply contained in a <simple case> CE or DP
represents the value of a subfield SF of the declared type of such a <case operand> or <when
operand>, then RT is the result of applying the Syntax Rules of Subclause 9.3, “Data types of
results of aggregations”, to the declared types of the <case operand> and <when operand>s
simply contained in CE.

Case:
1) If DP is a <case operand> or <when operand> simply contained in CE, then DT is RT.
2) Otherwise, DT is the declared type of the subfield of RT that corresponds to SF.

xix) If DPisa <row value expression> or <contextually typed row value expression> simply contained
in a <table value constructor> or <contextually typed table value constructor> TVC, or if DP
represents the value of a subfield SF of the declared type of such a <row value expression> or
<contextually typed row value expression>, then

Case:
1) Let RT be a data type determined as follows.
Case:

A) If TVC is simply contained in a <query expression> that is simply contained in an <insert
statement> IS or if TVC is immediately contained in the <insert columns and source>
of an <insert statement> IS, then RT is a row type in which the declared type of the i-th
field is the declared type of the i-th column in the explicit or implicit <insert column
list> of IS and the degree of RT is equal to the number of columns in the explicit or
implicit <insert column list> of IS.

B) Otherwise, RT is the result of applying the Syntax Rules of Subclause 9.3, “Data types
of results of aggregations”, to the declared types of the <row value expression>s or
<contextually typed row value expression>s simply contained in TVC.

2) Case:

A) If DPis a <row value expression> or <contextually typed row value expression> simply
contained in TVC, then DT is RT.

B) Otherwise, DT is the declared type of the subfield of RT that corresponds to SF.

xx) If DP is the <value expression> simply contained in an <merge insert value list> of an <merge
insert specification™> MIS of a <merge statement> or if DP represents the value of a subfield SF
of the declared type of such a <value expression>, then let RT be the data type indicated in the
column descriptor for the positionally corresponding column in the explicit or implicit <insert
column list> contained in MIS.

Case:
1) If DP is the <value expression> simply contained in MIS, then DT is RT.
2) Otherwise, DT is the declared type of the subfield of RT that corresponds to SF.

946 Foundation (SQL/Foundation) ©ISO/IEC 2003 ~ All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.6 <prepare statement>

xxi) If DP is a <row value predicand> simply contained in a <comparison predicate>, <distinct
predicate> or <between predicate> PR or if DP represents the value of a subfield SF of the
declared type of such a <row value predicand>, then let RT be the result of applying the Syntax
Rules of Subclause 9.3, “Data types of results of aggregations”, to the declared types of the <row
value predicand>s simply contained in PR.

Case:
1) If DPis a <row value predicand> simply contained in PR, then DT is RT.
2) Otherwise, DT is the declared type of the subfield of RT that corresponds to SF.

xxii) If DP is a <row value predicand> simply contained in a <quantified comparison predicate> or
<match predicate> PR or DP represents the value of a subfield SF of the declared type of such
a <row value predicand>, then let RT be the declared type of the <table subquery> simply con-
tained in PR.

Case:
1) If DP is a <row value predicand> simply contained in PR, then DT is RT.
2) Otherwise, DT is the declared type of the subfield of RT that corresponds to SF.

xxiii) If DP is a <row value predicand> simply contained in an <in predicate> PR or if DP represents
the value of a subfield SF of the declared type of such a <row value predicand>, then let RT be
the result of applying the Syntax Rules of Subclause 9.3, “Data types of results of aggregations”,
to the declared types of the <row value predicand>s simply contained in PR and the declared
row type of the <table subquery> (if any) simply contained in PR.

Case:
1) If DPis a <row value predicand> simply contained in PR, then DT is RT.
2) Otherwise, DT is the declared type of the subfield of RT that corresponds to SF.

xxiv) If DP is the first <row value constructor element> simply contained in either <row value predicand
1> RV or <row value predicand 2> RV2 in an <overlaps predicate> PR, then

Case:

1) Ifboth R¥I and R¥V2 simply contain a <row value constructor predicand> whose first <row
value constructor element> meets the criteria for DPV, then DT is TIMESTAMP WITH
TIME ZONE.

2) Otherwise, if DP is simply contained in RVI (RV2), then DT is the declared type of the first
field of RV2 (RV1).

xxv) If DP is simply contained in a <character like predicate>, <octet like predicate>, or <similar
predicate> PR, then let X represent the <row value predicand> immediately contained in PR,
let X2 represent the <character pattern>, the <octet pattern> or the <similar pattern>, and let X3
represent the <escape character> or the <escape octet>.

Case:

1) Ifall X1, X2 and X3 meet the criteria for DPV, then DT is CHARACTER VARYING (ML)
with an implementation-defined character set.

OISO/IEC 2003 - All rights reserved Dynamic SQL 947

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.6 <prepare statement>

2) Otherwise, let RT be the result of applying the Syntax Rules of Subclause 9.3, “Data types
of results of aggregations”, to the declared types of X1, X2 and X3.

Case:

A) If RTis CHARACTER or CHARACTER VARYING with character set CS, then DT
is CHARACTER VARYING(ML) with character set CS.

B) Otherwise, DT is RT.

xxvi) If DP is the <value expression> simply contained in an <update source> of a <set clause> SC
or if DP represents the value of a subfield SF of the declared type of such a <value expression>,
then let RT be the declared type of the <update target> or <mutated set clause> specified in SC.

Case:
1) If DP is the <value expression> simply contained in SC, then DT is RT.
2) Otherwise, DT is the declared type of the subfield of RT that corresponds to SF.

xxvii) If DP is a <contextually typed row value expression> simply contained in a <multiple column
assignment> MCA of a <set clause> SC or if DP represents the value of a subfield SF of the
declared type of such a <contextually typed row value expression>, then let RT be a row type
in which the declared type of the i-th field is the declared type of the <update target> or <mutated
set clause> immediately contained in the i-th <set target> contained in the <set target list> of
MCA.

Case:

1) If DP is a <contextually typed row value expression> simply contained in MC4, then DT
is RT.

2) Otherwise, DT is the declared type of the subfield of RT that corresponds to SF.

xxviii) If DP is the <value specification> immediately contained in a <catalog name characteristic>,
<schema name characteristic>, <character set name characteristic>, <SQL-path characteristic>,
<transform group characteristic>, <role specification> or <set session user identifier statement>,
then DT is CHARACTER VARYING (ML) with an implementation-defined character set.

xxix) If DP is the <interval value expression> immediately contained in a <set local time zone state-
ment>, then DT is INTERVAL HOUR TO MINUTE.

xxx) If DP is an <SQL argument> of a <routine invocation> R/ or if DP is the value of a subfield SF
of the declared type of a <value expression> immediately contained in such an <SQL argument>,
and if DP is the i-th <SQL argument> of R/ or is contained in the i-th <SQL argument> of R/,
then let RT denote the declared type of the i-th SQL parameter of the subject routine of R/
determined by applying the Syntax Rules of Subclause 10.4, “<routine invocation>", to RI.

Case:
1) If DP is the i-th <SQL argument> of R/, then DT is RT.
2) Otherwise, DT is the declared type of the subfield of RT that corresponds to SF.

xxxi) If DP is contained in a <window frame preceding> or a <window frame following> contained
in a <window specification> WS, then

"""948 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Soid to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.6 <prepare statement>

Case:

1) If WS specifies ROWS, then DT is NUMERIC (MP, 0).

2) Otherwise, let SDT be the data type of the single <sort key> contained in WS.
Case:
A) If SDT is a numeric type, then DT is SDT.
B) If SDTis DATE, then DT is INTERVAL DAY.

C) If SDTis TIME(P) WITHOUT TIME ZONE or TIME(P) WITH TIME ZONE, then
DT is INTERVAL HOUR TO SECOND(P).

D) IfSDTis TIMESTAMP(P) WITHOUT TIME ZONE or TIMESTAMP(P) WITH TIME
ZONE, then DT is INTERVAL DAY TO SECOND(P).

E) If SDT is an interval type, then DT is SDT.

xxxii) If DP is a <locator reference> simply contained in a <hold locator statement> or a <free locator

statement>, then DT is INTEGER.

b) If DT is undefined, then an exception condition is raised: syntax error or access rule violation.

7) Whether a <dynamic parameter specification> is an input argument, an output argument, or both an input
and an output argument is determined as follows.

Case:

a) If Pis a<call statement™>, then:

i)

ii)

iii)

Let SR be the subject routine of the <routine invocation> R/ immediately contained in P. Let n
be the number of <SQL argument>s in the <SQL argument list> immediately contained in R/.

Let 4y, 1 (one) <y < n, be the y-th <SQL argument> of the <SQL argument list> immediately
contained in R/.

For each <dynamic parameter specification> D contained in some <SQL argument> 4, 1 (one)

<k<n:

1) D is an input <dynamic parameter specification> if the <parameter mode> of the k-th SQL
parameter of SR of SR is IN or INOUT.

2) D isan output <dynamic parameter specification> if the <parameter mode> of the k-th SQL
parameter of SR is OUT or INOUT.

b) Otherwise:

i) If a <dynamic parameter specification> is contained in a <target specification>, then it is an
output <dynamic parameter specification>.
ii) If a <dynamic parameter specification> is contained in a <value specification>, then it is an
input <dynamic parameter specification>.
©ISO/IEC 2003 — Allrights reserved Dynamic SQL 949

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA

Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.6 <prepare statement>

8) If P or PSis a <preparable dynamic delete statement: positioned> or a <preparable dynamic update statement:
positioned>, then let CN be the <cursor name> contained in P or PS, respectively.

Case:

a) If P or PS contains a <scope option> that specifies GLOBAL, then

Case:

i) If there exists an extended dynamic cursor EDC with an <extended cursor name> having a global
scope and a <cursor name> that is equivalent to CN, then EDC is the cursor referenced by P or
PS.

i) Otherwise, an exception condition is raised: invalid cursor name.

b) If P or PS contains a <scope option> that specifies LOCAL, or if no <scope option> is specified, then
the potentially referenced cursors of P or PS include every declared dynamic cursor whose <cursor
name> is equivalent to CN and whose scope is the containing module and every extended dynamic
cursor having an <extended cursor name> that has a scope of the containing module and whose <cursor
name> is equivalent to CN.

Case:

i) If the number of potentially referenced cursors is greater than 1 (one), then an exception condition
is raised: ambiguous cursor name.

ii) If the number of potentially referenced cursors is less than 1 (one), then an exception condition
is raised: invalid cursor name.

iii) Otherwise, CN refers to the single potentially referenced cursor of P.

9) If <extended statement name> is specified for the <SQL statement name>, then let S be <simple value
specification> and let V' be the character string that is the result of

TRIM (BOTH ' ' FROM S)

If ¥ does not conform to the Format and Syntax Rules of an <identifier>, then an exception condition is
raised: invalid SQL statement identifier.

10) If <statement name> is specified for the <SQL statement name>, P is not a <cursor specification>, and
<statement name> is associated with a cursor C through a <dynamic declare cursor>, then an exception
condition is raised: dynamic SQL error — prepared statement not a cursor specification.

11) If the value of the <SQL statement name> identifies an existing prepared statement, then an implicit
DEALLOCATE PREPARE SSN
is executed, where SSN is the value of the <SQL statement name>.
12) P is prepared for execution, resulting in a prepared statement PRP.
Case:
a) If the <prepare statement> is contained in an <SQL routine> R, then

Case:

950 Foundation (SQL/Foundation)- ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under ficense with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Nol for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.6 <prepare statement>

i) If the security characteristic of R is DEFINER, then the owner of PRP is set to the owner of R.
i) Otherwise, PRP has no owner.

b) If the <prepare statement> is contained in a triggered action, then the owner of PRP is set to the owner
of the trigger.

c) Otherwise,

NOTE 429 — If the <prepare statement> is in neither of the above, then it must necessarily be immediately contained in an
externally-invoked procedure.

Case:

i) If the SQL-client module that includes the <prepare statement> has a <module authorization
identifier> MAJ and FOR STATIC ONLY was not specified in the <SQL-client module defini-
tion>, then the owner of PRP is MAL

ii) Otherwise, PRP has no owner.
13) Case:

a) If <extended statement name> is specified for the <SQL statement name>, then the value of the
<extended statement name> is associated with the prepared statement. This value and explicit or implied
<scope option> shall be specified for each <execute statement> or <allocate cursor statement> that is
to be associated with this prepared statement.

b) If <statement name> is specified for the <SQL statement name>, then:

i) If <statement name> is not associated with a cursor and either P is not a <cursor specification>
or P is a <cursor specification> that conforms to the Format and Syntax Rules of a <dynamic
single row select statement>, then an equivalent <statement name> shall be specified for each
<execute statement> that is to be associated with this prepared statement.

ii) If P is a <cursor specification> and <statement name> is associated with a cursor C through a
<dynamic declare cursor>, then an association is made between C and P. The association is
preserved until the prepared statement is destroyed.

14) The validity of an <extended statement name> value or a <statement name> that does not identify a held
cursor in an SQL-transaction different from the one in which the statement was prepared is implementation-
dependent.

15) If <attributes specification> is specified, then let ATV be the contents of the <attributes variable>. If ATV
is not a zero-length character string, then

a) If ATV does not conform to the Format and Syntax Rules of Subclause 19.7, “<cursor attributes>”,
then an exception condition is raised: syntax error or access rule violation.

b) Let N be the number of <dynamic declare cursor>s in the containing <SQL-client module definition>
whose <statement name> is equivalent to the <statement name> of the <prepare statement>.
¢) IfN>0 (zero), then let CR;, 1 (one) <i < N, be the cursor specified by the i-th <dynamic declare cursor>

in the containing <SQL-client module definition>. For 1 (one) i< N:

i) If ATV includes <cursor sensitivity> CS, then the sensitivity of CR; is set to CS.

©ISO/IEC 2003 ~ All rights reserved Dynamic SQL 951

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804
No reproduction or netwarking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.6 <prepare statement>

iiy If ATV includes <cursor scrollability> CL, then the scrollability of CR; is set to CL.
iiiy If ATV includes <cursor holdability> CH, then the holdability of CR; is set to CH.

iv) If ATV includes <cursor returnability> CR, then the returnability of CR; is set to CR.

Conformance Rules

1) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain a <prepare
statement>.

2) Without Feature B034, “Dynamic specification of cursor attributes”, conforming SQL language shall not
contain an <attributes specification>.

952 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold t0:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.7 <cursor attributes>

19.7 <cursor attributes>

Function

Specify a list of cursor attributes.

Format

<cursor attributess> ::= <cursor attribute>...

<cursor attribute> ::=
<cursor sensitivitys>
| <cursor scrollability>
| <cursor holdability>
| <cursor returnability>

Syntax Rules

1) Each of <cursor sensitivity>, <cursor scrollability>, <cursor holdability> and <cursor returnability> shall
be specified at most once.

Access Rules

None.

General Rules

None.

Conformance Rules

None.

©ISO/IEC 2003 — All rights reserved Dynamic SQL 953

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No duction or ing permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.8 <deallocate prepared statement>

19.8 <deallocate prepared statement>

Function

Deallocate SQL-statements that have been prepared with a <prepare statement>.

Format

<deallocate prepared statement> ::= DEALLOCATE PREPARE <SQL statement name>

Syntax Rules

1) If <SQL statement name> is a <statement name>, then the containing <SQL-client module definition>
shall contain a <prepare statement> whose <statement name> is equivalent to the <statement name> of the
<deallocate prepared statement>.

Access Rules

None.

General Rules

1) If the <SQL statement name> does not identify a statement prepared in the scope of the <SQL statement
name>, then an exception condition is raised: invalid SQL statement name.

2) If the value of <SQL statement name> identifies an existing prepared statement that is the <cursor specifi-
cation> of an open cursor, then an exception condition is raised: invalid cursor state.

3) The prepared statement identified by the <SQL statement name> is destroyed. Any cursor that was allocated
with an <allocate cursor statement> that is associated with the prepared statement identified by the <SQL
statement name> is destroyed. If the value of the <SQL statement name> identifies an existing prepared
statement that is a <cursor specification>, then any prepared statements that reference that cursor are
destroyed.

Conformance Rules

1) Without Feature B032, “Extended dynamic SQL”, conforming SQL language shall not contain a <deallocate
prepared statement>.

954 Foundation (SQL/Foundation) ... ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by HS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.9 <describe statement>

19.9 <describe statement>

Function

Obtain information about the <select list> columns or <dynamic parameter specification>s contained in a prepared
statement or about the columns of the result set associated with a cursor.

Format

<describe statement> ::=
<describe input statement>
| <describe output statement>

<describe input statement> ::=
DESCRIBE INPUT <SQL statement name> <using descriptor> [<nesting option>]

<describe output statement> ::=
DESCRIBE [OUTPUT] <described object> <using descriptor> [<nesting option>]

<nesting option> ::=
WITH NESTING
| WITHOUT NESTING

<using descriptor> ::= USING [SQL] DESCRIPTOR <descriptor name>

<described object> ::=
<SQL statement name>
| CURSOR <extended cursor name> STRUCTURE

Syntax Rules

1) If <SQL statement name> is a <statement name>, then the containing <SQL-client module definition>
shall contain a <prepare statement> whose <statement name> is equivalent to the <statement name> of the
<describe statement>.

2) If <nesting option> is not specified, then WITHOUT NESTING is implicit.

Access Rules

None.

General Rules

1) If <describe input statement> is executed and the value of the <SQL statement name> does not identify a
statement prepared in the scope of the <SQL statement name>, then an exception condition is invalid SQL
statement name.

©ISO/IEC 2003 ~ All rights reserved....... Dynamic SQL 955

Copyright Canadian Standards Association
Reproduced by IHS under ficense with CSA Soid to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.9 <describe statement>

2) If<describe output statement> is executed, <SQL statement name> is specified, and the value of the <SQL
statement name> does not identify a statement prepared in the scope of the <SQL statement name>, then
an exception condition is invalid SQL statement name.

3) If <describe output statement> is executed, <extended cursor name> is specified, and the value of the
<extended cursor name> does not identify a known allocated cursor, then an exception condition is invalid
cursor name.

4) If an SQL system descriptor area is not currently allocated whose name is the value of the <simple value
specification> immediately contained in <descriptor name> and whose scope is specified by the <scope
option> immediately contained in <descriptor name>, then an exception condition is raised: invalid SOL
descriptor name.

5) Let DA be the descriptor area identified by <descriptor name>. Let N be the <occurrences> specified when
DA was allocated.

6) Case:

a) Ifthe statement being executed is a <describe input statement>, then a descriptor for the input <dynamic
parameter specification>s for the prepared statement is stored in DA. Let D be the number of input
<dynamic parameter specification>s in the prepared statement. If WITH NESTING is specified, then

let NS;, 1 (one) < i < D, be the number of subordinate descriptors of the descriptor for the i-th input
dynamic parameter; otherwise, let NS; be 0 (zero).

b) If the statement being executed is a <describe output statement> and the prepared statement that is
being described is a <dynamic select statement> or a <dynamic single row select statement>, then a
descriptor for the <select list> columns for the prepared statement is stored in DA. Let 7 be the table
defined by the prepared statement and let D be the degree of 7. If WITH NESTING is specified, then

let NS;, 1 (one) < i < D, be the number of subordinate descriptors of the descriptor for the i-th column
of T; otherwise, let NS; be 0 (zero).

¢) Otherwise, a descriptor for the output <dynamic parameter specification>s for the prepared statement
is stored in DA. Let D be the number of output <dynamic parameter specification>s in the prepared

statement. If WITH NESTING is specified, then let NS;, 1 (one) < i < D, be the number of subordinate
descriptors of the descriptor for the i-th output dynamic parameter; otherwise, let NS; be 0 (zero).

7) DA is set as follows:
a) Let 7D be the value of D+NS|+NSy+...+NSp. COUNT is set to TD.

b) TOP_LEVEL_COUNT is set to D.

¢) DYNAMIC_FUNCTION and DYNAMIC_FUNCTION_CODE are set to the identifier and code,
respectively, for the prepared statement as shown in Table 31, “SQL-statement codes”.

d) If the statement being executed is a <describe output statement> and the prepared statement that is
being described is a <dynamic select statement> or a <dynamic single row select statement>:

Case:

1) If some subset of the columns of T is the primary key of 7, then KEY_TYPE is set to 1 (one).

956 Foundation (SQL/Foundation) ©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproducad by IHS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/8/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.9 <describe statement>

i) If some subset of the columns of T is the preferred candidate key of T, then KEY_TYPE is set
to 2.

iii) Otherwise, KEY_TYPE is set to 0 (zero).

NOTE 430 — Primary keys and preferred candidate keys are defined in Subclause 4.8, “Functional dependencies”.

e) If TD is greater than N, then a completion condition is raised: warning — insufficient item descriptor
areas.

f) If TD is 0 (zero) or TD is greater than N, then no item descriptor areas are set. Otherwise:

i) The first 7D item descriptor areas are set with values from the descriptors and, optionally, sub-
ordinate descriptors for

Case:

1) If the statement being executed is a <describe input statement>, then the input <dynamic
parameter specification>s.

2) If the statement being executed is a <describe output statement> and the statement being
described is a <dynamic select statement> or a <dynamic single row select statement>, then
the columns of 7. :

3) Otherwise, the output <dynamic parameter specification>s.

i) The descriptor for the first such column or <dynamic parameter specification> is assigned to
the first item descriptor area.

iii) If the descriptor for the j-th column or <dynamic parameter specification> is assigned to the
k-th item descriptor area, then:

1) The descriptor for the (j+1)-th column or <dynamic parameter specification> is assigned to
the (k+NSj+1)-th item descriptor area.

2) If WITH NESTING is specified, then the implicitly ordered subordinate descriptors for the
Jj-th column or <dynamic parameter specification> are assigned to contiguous item descriptor
areas starting at the (k+1)-th item descriptor area.

8) An SQL item descriptor area, if set, consists of values for LEVEL, TYPE, NULLABLE, NAME,
UNNAMED, PARAMETER_ORDINAL_POSITION, PARAMETER_SPECIFIC_CATALOG,
PARAMETER_SPECIFIC_SCHEMA, PARAMETER_SPECIFIC_NAME, and other fields depending on
the value of TYPE as described below. The DATA and INDICATOR fields are not relevant. Those fields
and fields that are not applicable for a particular value of TYPE are set to implementation-dependent values.

a) If the SQL item descriptor area is set to a descriptor that is immediately subordinate to another whose
LEVEL value is K, then LEVEL is set to K+1; otherwise, LEVEL is set to 0 (zero).

b) TYPE is set to a code, as shown in Table 25, “Codes used for SQL data types in Dynamic SQL”,
indicating the declared type of the column, <dynamic parameter specification>, or subordinate

descriptor.
c) Case:
i) If the value of LEVEL is 0 (zero) and the item descriptor area describes a column, then:
©ISO/IEC 2003 - All rights reserved Dynamic SQL 957
Copyright Canadian Standards Association
Reproduced by iHS under license with CSA Soid to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/TEC 9075-2:2003 (E)
19.9 <describe statement>

1) Ifthe column is possibly nullable, then NULLABLE is set to 1 (one); otherwise, NULLABLE
is set to 0 (zero).

2) Ifthe column name is implementation-dependent, then NAME is set to the implementation-
dependent name of the column and UNNAMED is set to 1 (one); otherwise, NAME is set
to the <derived column> name for the column and UNNAMED is set to 0 (zero).

3) If the column is a member of the primary key of 7and KEY_TYPE was set to 1 (one) or if
the column is a member of the preferred candidate key of 7and KEY_TYPE was set to 2,
then KEY_MEMBER is set to 1 (one); otherwise, KEY_MEMBER is set to 0 (zero).

ii) If the value of LEVEL is 0 (zero) and the item descriptor area describes a <dynamic parameter
specification>, then:

1) NULLABLE is set to 1 (one).

NOTE 431 — This indicates that the <dynamic parameter specification> can have the null value.
2) UNNAMED is set to 1 (one) and NAME is set to an implementation-dependent value.
3) KEY_MEMBER is set to 0 (zero).

iii) Otherwise:

1) NULLABLE is set to 1 (one).
2) Case:

A) If the item descriptor area describes a field of a row, then

Case:

I If the name of the field is implementation-dependent, then NAME is set to the
implementation-dependent name of the field and UNNAMED is set to 1 (one).

1) Otherwise, NAME is set to the name of the field and UNNAMED is set to 0
(zero).

B) Otherwise, UNNAMED is set to 1 (one) and NAME is set to an implementation-defined
value.

3) KEY_MEMBER is set to 0 (zero).
d) Case:
i) If TYPE indicates a <character string type>, then:
1) LENGTH is set to the length or maximum length in characters of the character string type.
2) OCTET_LENGTH is set to the maximum possible length in octets of the character string
type.

3) CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARAC-
TER_SET_NAME are set to the the fully qualified name of the character string type's
character set.

958 Foundation (SQL/Foundation) ©ISO/IEC 2003 ~ All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No rep ion or i i without license from iHS Not for Resale 2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.9 <describe statement>

4) COLLATION_CATALOG, COLLATION_SCHEMA and COLLATION_NAME are set
to the fully qualified name of the character string type's declared type collation, if any, and
otherwise to the empty string.

If the subject <language clause> specifies C, then the lengths specified in LENGTH and
OCTET_LENGTH do not include the implementation-defined null character that terminates a
C character string.

i) If TYPE indicates a <binary large object string type>, then LENGTH is set to the length or
maximum length in octets of the binary string and OCTET_LENGTH is set to the maximum
possible length in octets of the binary string.

iii) IfTYPE indicates an <exact numeric type>, then PRECISION and SCALE are set to the precision
and scale of the exact numeric.

iv) If TYPE indicates an <approximate numeric type>, then PRECISION is set to the precision of
the approximate numeric.

v) If TYPE indicates a <datetime type>, then LENGTH is set to the length in positions of the
datetime type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 26, “Codes
associated with datetime data types in Dynamic SQL”, to indicate the specific datetime data
type and PRECISION is set to the <time precision> or <timestamp precision>, if either is
applicable.

vi) If TYPE indicates an <interval type>, then LENGTH is set to the length in positions of the
interval type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 27, “Codes
used for <interval qualifier>s in Dynamic SQL”, to indicate the <interval qualifier> of the
interval data type, DATETIME_INTERVAL_PRECISION is set to the <interval leading field
precision> and PRECISION is set to the <interval fractional seconds precision>, if applicable.

vii) If TYPE indicates a user-defined type, then USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to the fully
qualified name of the user-defined type, and USER_DEFINED_TYPE_CODE is set to a code
as specified in Table 29, “Codes associated with user-defined types in Dynamic SQL”, to indicate
the category of the user-defined type.

viii) If TYPE indicates a <reference type>, then:

1) USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and
USER_DEFINED_TYPE_NAME are set to the fully qualified name of the referenced type.

2) SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME are set to the fully qualified
name of the referenceable base table.

3) LENGTH and OCTET_LENGTH are set to the length in octets of the <reference type>.
ix) If TYPE indicates ROW, then DEGREE is set to the degree of the row type.

X) If TYPE indicates ARRAY, then CARDINALITY is set to the maximum cardinality of the array
type.

e) IfLEVEL is 0 (zero) and the prepared statement is a <call statement>, then:

i) Let SR be the subject routine for the <routine invocation> of the <call statement>.
©ISQ/IEC 2003 - All rights reserved Dynamic SQL 959
Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.9 <describe statement>

ii) Let D, be the x-th <dynamic parameter specification> simply contained in an SQL argument
4, of the <call statement>.
iii) Let P) be the y-th SQL parameter of SR.

NOTE 432 — A P whose <parameter mode> is IN can be a <value expression> that contains zero, one, or more
<dynamic parameter specification>s. Thus:

— Every D, maps to one and only one P,..
— Several D, instances can map to the same P,
— There can be P, instances that have no D, instances that map to them.

iv) The PARAMETER_MODE value in the descriptor for each D, is set to the value from Table 28,

“Codes used for input/output SQL parameter modes in Dynamic SQL”, that indicates the
<parameter mode> of P,

V) The PARAMETER_ORDINAL_POSITION value in the descriptor for each D, is set to the
ordinal position of P,,.

vi) The PARAMETER_SPECIFIC_CATALOG, PARAMETER_SPECIFIC_SCHEMA, and
PARAMETER_SPECIFIC_NAME values in the descriptor for each D, are set to the values

that identify the catalog, schema, and specific name of SR.

Conformance Rules

1) Without Feature B032, “Extended dynamic SQL”, conforming SQL language shall not contain a <describe
input statement>.

2) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain a <describe
output statement>.

960 Foundation (SQL/Foundation) ©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No duction or ing permitted without license from IHS Nol for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.10 <input using clause>

19.10 <input using clause>

Function

Supply input values for an <SQL dynamic statement>.

Format

<input using clauses> ::=
<using arguments>
| <using input descriptors

<using arguments> ::= USING <using argument> [{ <comma> <using argument> }...]
<using argument> ::= <general value specification>

<using input descriptor> ::= <using descriptor>

Syntax Rules

1) The <general value specification> immediately contained in <using argument> shall be either a <host
parameter specification> or an <embedded variable specification>.

Access Rules

None.

General Rules

1) If <using input descriptor> is specified and an SQL descriptor area is not currently allocated whose name
is the value of the <simple value specification> immediately contained in <descriptor name> and whose
scope is specified by the <scope option> immediately contained in <descriptor name>, then an exception
condition is raised: invalid SQL descriptor name.

2) When an <input using clause> is used in a <dynamic open statement> or as the <parameter using clause>
in an <execute statement>, the <input using clause> describes the input <dynamic parameter specification>
values for the <dynamic open statement> or the <execute statement>, respectively. Let PS be the prepared
<dynamic select statement> referenced by the <dynamic open statement> or the prepared statement refer-
enced by the <execute statement™>, respectively.

3) Let D be the number of input <dynamic parameter specification>s in PS.

4) If <using arguments> is specified and the number of <using argument>s is not D, then an exception condition
is raised: dynamic SQL error — using clause does not match dynamic parameter specifications.

5) If <using input descriptor> is specified, then:

a) Let N be the value of COUNT.

©ISO/IEC 2003 - All rights reserved Dynamic SQL 961

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or nelworking permitted without license from IHS Not for Rasale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.10 <input using clause>

b) If Nis greater than the value of <occurrences> specified when the SQL descriptor area identified by
<descriptor name> was allocated or is less than zero, then an exception condition is raised: dynamic
SQL error — invalid descriptor count.

¢) If the first N item descriptor areas are not valid as specified in Subclause 19.1, “Description of SQL
descriptor areas”, then an exception condition is raised: dynamic SQL error — using clause does not
match dynamic parameter specifications.

d) In the first N item descriptor areas:

i) If the number of item descriptor areas in which the value of LEVEL is 0 (zero) is not D, then
an exception condition is raised: dynamic SQL error — using clause does not match dynamic
parameter specifications.

ii) If the value of INDICATOR is not negative, TYPE does not indicate ROW, and the item
descriptor area is not subordinate to an item descriptor area whose INDICATOR value is negative
or whose TYPE field indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET
LOCATOR, and if the value of DATA is not a valid value of the data type represented by the
item descriptor area, then an exception condition is raised: dynamic SQL error — using clause
does not match dynamic parameter specifications.

6) Forl (one)<i<D:

a) Let TDT be the effective declared type of the i-th input <dynamic parameter specification>, defined to
be the type represented by the item descriptor area and its subordinate descriptor areas that would be
set by a <describe input statement> to reflect the description of the i-th input <dynamic parameter
specification> of PS.

NOTE 433 — See the General Rules of Subclause 19.9, “<describe statement>".

NOTE 434 — “Represented by”, as applied to the relationship between a data type and an item descriptor area, is defined in
the Syntax Rules of Subclause 19.1, “Description of SQL descriptor areas”.

b) Case:
i) If <using input descriptor> is specified, then:
1) Let IDA be the i-th item descriptor area whose LEVEL value is 0 (zero).

2) Let SDT be the effective declared type represented by /DA.

NOTE 435 — *Represented by”, as applied to the relationship between a data type and an item descriptor area,
is defined in the Syntax Rules of Subclause 19.1, “Description of SQL descriptor areas”.

3) Let SV be the associated value of IDA.
Case:
A) If the value of INDICATOR is negative, then SV is the null value.
B) Otherwise,
Case:

) If TYPE indicates ROW, then SV is a row whose type is SDT and whose field
values are the associated values of the immediately subordinate descriptor areas
of IDA.

962 Foundation (SQL/Foundation) ©ISO/EC 2003 —~ All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Soid to:INFOTRIEVE, INC, W0277804
No reproduction or permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.10 <input using clause>

II) Otherwise, SV is the value of DATA with data type SDT.

ii) If <using arguments> is specified, then let SDT and SV be the declared type and value, respec-
tively, of the i-th <using argument>.

¢) Case:
1) If SDT is a locator type, then
Case:

1) If SV is not the null value, then let the value of the i-th dynamic parameter be the value of
SV.

2) Otherwise, let the value of the i-th dynamic parameter be the null value.
ii) If SDT and TDT are predefined data types, then
Case:
1) If the <cast specification>
CAST (IV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”, and there
is an implementation-defined conversion from type STD to type TDT, then that implemen-
tation-defined conversion is effectively performed, converting /¥ to type TDT, and the result
is the value TV of the i-th input dynamic parameter.

2) Otherwise:
A) If the <cast specification>
CAST (IV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>”, then
an exception condition is raised: dynamic SQL error — restricted data type attribute
violation.

B) If the <cast specification>
CAST (IV AS TDT)

does not conform to the General Rules of Subclause 6.12, “<cast specification>", then
an exception condition is raised in accordance with the General Rules of Subclause 6.12,
“<cast specification>”.

C) The <cast specification>
CAST (IV AS TDT)
is effectively performed and is the value of the i-th input dynamic parameter.
iii) If SDT is a predefined data type and TDT is a user-defined type, then:
1) Let DT be the data type identified by 7DT.

©ISO/IEC 2003 - All rights reserved Dynamic SQL 963

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/TEC 9075-2:2003 (E)
19.10 <input using clause>

2) Ifthe current SQL-session has a group name corresponding to the user-defined name of DT,
then let GN be that group name; Otherwise, let GN be the default transform group name
associated with the current SQL-session.

3) The Syntax Rules of Subclause 9.19, “Determination of a to-sql function™, are applied with
DT and GN as TYPE and GROUP, respectively.

Case:

A) If there is an applicable to-sql function, then let TSF be that to-sql function. If 7SF is
an SQL-invoked method, then let TSFPT be the declared type of the second SQL
parameter of TSF; otherwise, let TSFPT be the declared type of the first SQL parameter
of TSF.

Case:
I) If TSFPT is compatible with SDT, then
Case:

1) If TSF is an SQL-invoked method, then TSF is effectively invoked with the
value returned by the function invocation:

DT()

as the first parameter and SV as the second parameter. The <return value> is
the value of the i-th input dynamic parameter.

2) Otherwise, TSF is effectively invoked with SV as the first parameter. The
<return value> is the value of the i-th input dynamic parameter.

II) Otherwise, an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

B) Otherwise, an exception condition is raised: dynamic SQL error — data type transform
function violation.

Conformance Rules

1) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain an <input using
clause>.

964 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.11 <output using clause>

19.11 <output using clause>

Flfmction

Supply output variables for an <SQL dynamic statement>.

Format

<output using clause> ::=
<into arguments>
| <into descriptors

<into arguments> ::= INTO <into argument> [{ <comma> <into argument> |
<into argument> ::= <target specification>

<into descriptor> ::= INTO [SQL] DESCRIPTOR <descriptor name>

Syntax Rules

1) The <target specification> immediately contained in <into argument> shall be either a <host parameter
specification> or an <embedded variable specification>.

Access Rules

Norne.

General Rules

1) If <into descriptor> is specified and an SQL descriptor area is not currently allocated whose name is the
value of the <simple value specification> immediately contained in <descriptor name> and whose scope
is specified by the <scope option> immediately contained in <descriptor name>, then an exception condition
is raised: invalid SQL descriptor name.

2) When an <output using clause> is used in a <dynamic fetch statement> or as the <result using clause> of
an <execute statement>, let PS be the prepared <dynamic select statement> referenced by the <dynamic
fetch statement> or the prepared <dynamic single row select statement> referenced by the <execute state-
ment>, respectively.

3) Case:

a) If PSis a <dynamic select statement> or a <dynamic single row select statement>, then the <output
using clause> describes the <target specification>s for the <dynamic fetch statement> or the <execute
statement>. Let D be the degree of the table specified by PS.

b) Otherwise, the <output using clause> describes the <target specification>s for the output <dynamic
parameter specification>s contained in PS. Let D be the number of such output <dynamic parameter
specification>s.

©ISO/IEC 2003 - All rights reserved Dynamic SQL 965

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.11 <output using clause>

4) If <into arguments> is specified and the number of <into argument>s is not D, then an exception condition
is raised: dynamic SQL error — using clause does not match target specifications.

5) If <into descriptor> is specified, then:
a) Let N be the value of COUNT.

b) If Nis greater than the value of <occurrences> specified when the SQL descriptor area identified by
<descriptor name> was allocated or less than zero, then an exception condition is raised: dynamic SQL
error — invalid descriptor count.

c¢) If the first N item descriptor areas are not valid as specified in Subclause 19.1, “Description of SQL
descriptor areas”, then an exception condition is raised: dynamic SQL error — using clause does not
match target specifications.

d) In the first N item descriptor areas, if the number of item descriptor areas in which the value of LEVEL
is 0 (zero) is not D, then an exception condition is raised: dynamic SQL error — using clause does not
match target specifications.

6) Forl(one)<i<D:

a) Let SDT be the effective declared type of the i-th <select list> column or output <dynamic parameter
specification>, defined to be the type represented by the item descriptor area and its subordinate
descriptor areas that would be set by

Case:

i) If PS is a <dynamic select statement> or a <dynamic single row select statement>, then a
<describe output statement> to reflect the description of the i-th <select list> column; let SV be
the value of that <select list> column, with data type SDT.

it) Otherwise, a <describe output statement> to reflect the description of the i-th output <dynamic
parameter specification>; let SV be the value of that <dynamic parameter specification>, with
data type SDT.

NOTE 436 — “Represented by”, as applied to the relationship between a data type and an item descriptor area, is defined in
the Syntax Rules of Subclause 19.1, “Description of SQL descriptor areas”.

b) Case:
i) If <into descriptor> is specified, then let TDT be the declared type of the i-th <target specification>
as represented by the i-th item descriptor area /DA whose LEVEL value is 0 (zero).

NOTE 437 — “Represented by”, as applied to the relationship between a data type and an item descriptor area, is
defined in the Syntax Rules of Subclause 19.1, “Description of SQL descriptor areas”.

i) If <into arguments> is specified, then let DT be the data type of the i-th <into argument>.

¢) If the <output using clause> is used in a <dynamic fetch statement>, then let LTDT be the data type on
the most recently executed <dynamic fetch statement>, if any, for the cursor CR. It is implementation-
defined whether or not an exception condition is raised: dynamic SQL error — restricted data type
attribute violation if any of the following are true:

i) LTDT and TDT both identify a binary large object type and only one of LTDT and 7DT is a
binary large object locator.

966 Foundation (SQL/Foundation) ©ISO/IEC 2003 ~ Al rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.11 <output using clause>

iiy LTDT and TDT both identify a character large object type and only one of LTDT and TDT is a
character large object locator.

iiiy LTDT and TDT both identify an array type and only one of LTDT and TDT is an array locator.
iv) LTDTand TDTboth identify a multiset type and only one of LTDT and 7DT is a multiset locator.

V) LTDT and TDT both identify a user-defined type and only one of LTDT and TDT is a user-defined
type locator.

d) Case:
i) If TDT is a locator type, then
Case:

1) If SV is not the null value, then a locator L that uniquely identifies S¥ is generated and is
the value TV of the i-th <target specification>.

2) Otherwise, the value TV of the i-th <target specification> is the null value.
it) If STD and TDT are predefined data types, then
Case:
1) If the <cast specification>
CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>", and there
is an implementation-defined conversion of type STD to type TDT, then that implementation-
defined conversion is effectively performed, converting SV to type 7DT, and the result is
the value TV of the i-th <target specification>.

2) Otherwise:
A) If the <cast specification>
CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.12, “<cast specification>", then
an exception condition is raised: dynamic SQL error — restricted data type attribute
violation.

B) If the <cast specification>
CAST (SV AS TDT)

does not conform to the General Rules of Subclause 6.12, “<cast specification>", then
an exception condition is raised in accordance with the General Rules of Subclause 6.12,
“<cast specification>”.

C) The <cast specification>
CAST (SV AS TDT)

is effectively performed, and is the value TV of the i-th <target specification>.

©ISO/IEC 2003 — All rights reserved Dynamic SQL 967

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold 0:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.11 <output using clause>

iiiy IfSDT is a user-defined type and TDT is a predefined data type, then:
1) Let DT be the data type identified by SDT.

2) If the current SQL-session has a group name corresponding to the user-defined type name
of DT, then let GN be that group name; otherwise, let GN be the default transform group
name associated with the current SQL-session.

3) Apply the Syntax Rules of Subclause 9.17, “Determination of a from-sql function”, with
DT and GN as TYPE and GROUP, respectively.

Case:

A) If there is an applicable from-sql function, then let FSF be that from-sql function and
let FSFRT be the <returns data type> of FSF.

Case:

D If FSFRT is compatible with TDT, then the from-sql function FSF is effectively
invoked with SV as its input SQL parameter and the <return value> is the value
TV of the i-th <target specification>.

II) Otherwise, an exception condition is raised: dynamic SQL error — restricted
data type attribute violation.

B) Otherwise, an exception condition is raised: dynamic SQL error — data type transform
function violation.

e) Case:
1) If <into descriptor> is specified, then IDA is set to reflect the value of 7V as follows:
Case:
1) If TYPE indicates ROW, then
Case:

A) If TV is the null value, then the value of INDICATOR in /D4 and in all subordinate
descriptor areas of IDA that are not subordinate to an item descriptor area whose TYPE
indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR is
set to —1.

B) Otherwise, the i-th subordinate descriptor area of IDA is set to reflect the value of the
i-th field of TV by applying this subrule (beginning with the outermost 'Case’) to the i-th
subordinate descriptor area of IDA as IDA, the value of the i-th field of 7V as TV, the
value of the i-th field of SV as SV, and the data type of the i-th field of SV as SDT.

2) Otherwise,
Case:
A) If TV is the null value, then the value of INDICATOR is set to —1.
B) If TV is not the null value, then:
) The value of INDICATOR is set to 0 (zero).

968 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under ficense with CSA Sold to:INFOTRIEVE, INC, W0277804
No ion or ing itted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.11 <output using clause>

II) Case:

1) If TYPE indicates a locator type, then a locator L that uniquely identifies 7V
is generated and the value of DATA is set to an implementation-dependent
four-octet value that represents L.

2) Otherwise, the value of DATA is set to TV.
IlI) Case:

1) IfTYPEindicates CHARACTER VARYING or BINARY LARGE OBJECT,
then RETURNED_LENGTH is set to the length in characters or octets,
respectively, of TV, and RETURNED_OCTET_LENGTH is set to the length
in octets of TV.

2) IfSDTis CHARACTER VARYING or BINARY LARGE OBJECT, then
RETURNED_LENGTH is set to the length in characters or octets, respec-
tively, of SV, and RETURNED_OCTET_LENGTH is set to the length in
octets of SV.

3) IfTYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTI-
SET LOCATOR, then RETURNED_CARDINALITY is set to the cardinality
of TV.

ii) If <into arguments> is specified, then the Rules in Subclause 9.1, “Retrieval assignment”, are
applied to TV and the i-th <into argument> as VALUE and TARGET, respectively.

NOTE 438 — All other values of the SQL descriptor area are unchanged.

Conformance Rules

1) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain an <output
using clause>.

©ISO/IEC 2003 - All rights reserved Dynamic SQL. 969

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.12 <execute statement>

19.12 <execute statement>

Function

Associate input SQL parameters and output targets with a prepared statement and execute the statement.

Format

<execute statement> ::=
EXECUTE <SQL statement names> [<result using clause>] [<parameter using clause>]

<result using clause> ::= <output using clause>
<parameter using clause> ::= <input using clause>
Syntax Rules

1) If<SQL statement name> is a <statement name>, then the containing <SQL-client module definition>
shall contain a <prepare statement> whose <statement name> is equivalent to the <statement name> of the
<execute statement>.

Access Rules

None.

General Rules

1) When the <execute statement> is executed, if the <SQL statement name> does not identify a prepared
statement P, then an exception condition is raised: invalid SQL statement name.

2) Let PS be the statement previously prepared using <SQL statement name>.

3) If PSis a <dynamic select statement> that does not conform to the Format and Syntax Rules of a <dynamic
single row select statement>, then an exception condition is raised: dynamic SQL error — cursor specification
cannot be executed.

4) If PS contains the <table name> of a created or declared local temporary table and if the <execute statement>
is not in the same <SQL-client module definition> as the <prepare statement> that prepared the prepared
statement, then an exception condition is raised: syntax error or access rule violation.

5) If PS contains input <dynamic parameter specification>s and a <parameter using clause> is not specified,
then an exception condition is raised: dynamic SQL error — using clause required for dynamic parameters.

6) If PSis a <dynamic single row select statement> or it contains output <dynamic parameter specification>s
and a <result using clause> is not specified, then an exception condition is raised: dynamic SQL error —
using clause required for result fields.

7) If a <parameter using clause> is specified, then the General Rules specified in Subclause 19.10, “<input
using clause>”, for a <parameter using clause> in an <execute statement> are applied.

970 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No rep

1 or

permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.12 <execute statement>

8) A copy of the top cell is pushed onto the authorization stack. If PS has an owner, then the top cell of the
authorization stack is set to contain only the authorization identifier of the owner of PS.

9) The General Rules of Subclause 13.5, “<SQL procedure statement>”, are evaluated with PS as the executing
statement.

10) If PS is a <preparable dynamic delete statement: positioned>, then when it is executed all General Rules
in Subclause 19.22, “<preparable dynamic delete statement: positioned>", apply to the <preparable state-
ment>.

11) If PS is a <preparable dynamic update statement: positioned>, then when it is executed, all General Rules
in Subclause 19.23, “<preparable dynamic update statement: positioned>", apply to the <preparable state-
ment>.

12) If a <result using clause> is specified, then the General Rules specified in Subclause 19.11, “<output using
clause>”, for a <result using clause> in an <execute statement> are applied.

13) Upon completion of execution, the top cell in the authorization stack is removed.

Conformance Rules

1) Without Feature B032, “Extended dynamic SQL”, conforming SQL language shall not contain a <result
using clause>.

2) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain an <execute
statement>.

©ISO/IEC 2003 - All rights reserved Dynamic SQL 971

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.13 <execute immediate statement>

19.13 <execute immediate statement>

Function

Dynamically prepare and execute a preparable statement.

Format

<execute immediate statements> ::=

EXECUTE IMMEDIATE <SQL statement variable>

Syntax Rules

1)

The declared type of <SQL statement variable> shall be character string.

Access Rules

None.

General Rules

1)
2)

3)

Let P be the contents of the <SQL statement variable>.

If one or more of the following are true, then an exception condition is raised: syntax error or access rule
violation.

a) Pisa <dynamic select statement> or a <dynamic single row select statement>.
b) P contains a <dynamic parameter specification>.
Let SV be <SQL statement variable>. <execute immediate statement> is equivalent to the following:

PREPARE IMMEDIATE STMT FROM SV ;
EXECUTE IMMEDIATE STMT ;
DEALLOCATE PREPARE IMMEDIATE STMT ;

where IMMEDIATE _STMT is an implementation-defined <statement name> that is not equivalent to any
other <statement name> in the containing <SQL-client module definition>.

NOTE 439 — Exception condition or completion condition information resulting from the PREPARE or EXECUTE is reflected
in the diagnostics area.

Conformance Rules

1)

972 Foundation (SQL/Foundation)

Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain an <execute
immediate statement>.

©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association

Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

Nor

ion or r

ISO/IEC 9075-2:2003 (E)
19.14 <dynamic declare cursor>

19.14 <dynamic declare cursor>

Function

Declare a cursor to be associated with a <statement name>, which may in turn be associated with a <cursor
specification>.

Format

<dynamic declare cursor> ::=
DECLARE <cursor name> [<cursor sensitivity>] [<cursor scrollability>] CURSOR
[<cursor holdability>]
[<cursor returnability>]
FOR <«<statement name>

Syntax Rules

1) The <cursor name> shall not be identical to the <cursor name> specified in any other <declare cursor> or
<dynamic declare cursor> in the same <SQL-client module definition>.

2) The containing <SQL-client module definition> shall contain a <prepare statement> whose <statement
name> is equivalent to the <statement name> of the <dynamic declare cursor>.

3) If <cursor scrollability> is not specified, then NO SCROLL is implicit.
4) If <cursor holdability> is not specified, then WITHOUT HOLD is implicit.
5) If <cursor returnability> is not specified, then WITHOUT RETURN is implicit.

Access Rules

None.

General Rules

1) All General Rules of Subclause 14.1, “<declare cursor>", apply to <dynamic declare cursor>, replacing
“<cursor specification>" with “prepared statement”.

Conformance Rules

1) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain a <dynamic
declare cursor>.

©ISO/IEC 2003 - All rights reserved o Dynamic SQL 973

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Soid to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from (HS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.15 <allocate cursor statement>

19.15 <allocate cursor statement>

Function

Define a cursor based on a prepared statement for a <cursor specification> or assign a cursor to the ordered set
of result sets returned from an SQL-invoked procedure.

Format

<allocate cursor statement> ::=
ALLOCATE <extended cursor name> <cursor intents>

<cursor intent> ::=
<statement cursor>
| <result set cursors

<statement cursor> ::=
[<cursor sensitivity>] [<cursor scrollability>] CURSOR
[<cursor holdability> 1
[<cursor returnabilitys>]
FOR <extended statement name>

<result set cursor> ::= FOR PROCEDURE <specific routine designator>

Syntax Rules

1) If<result set cursor> is specified, then the SQL-invoked routine identified by <specific routine designator>
shall be an SQL-invoked procedure.

Access Rules

None.

General Rules

1) Let .S be the <simple value specification> immediately contained in <extended cursor name>. Let V' be the
character string that is the result of

TRIM (BOTH ' ' FROM S)

If ¥ does not conform to the Format and Syntax Rules of an <identifier>, then an exception condition is
raised: invalid cursor name.

2) If the value of the <extended cursor name> is identical to the value of the <extended cursor name> of any
other cursor allocated in the scope of the <extended cursor name>, then an exception condition is raised:
invalid cursor name.

3) If <statement cursor> is specified, then:

974 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold ta: INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without ficense from IHS Not for Resale,2005/6/17 21:54:10 GMT

b)

c)

d)

ISO/IEC 9075-2:2003 (E)
19.15 <allocate cursor statement>

When the <allocate cursor statement> is executed, if the value of the <extended statement name> does
not identify a statement previously prepared in the scope of the <extended statement name>, then an
exception condition is raised: invalid SQL statement name.

If the prepared statement associated with the <extended statement name> is not a <cursor specification>,
then an exception condition is raised: dynamic SQL error — prepared statement not a cursor specifi-
cation.

All General Rules of Subclause 14.1, “<declare cursor>", apply to <allocate cursor statement>,
replacing “<open statement>" with “<dynamic open statement>" and “<cursor specification>" with
“prepared statement”.

An association is made between the value of the <extended cursor name> and the prepared statement
in the scope of the <extended cursor name>. The association is preserved until the prepared statement
is destroyed, at which time the cursor identified by <extended cursor name> is also destroyed.

4) 1If <result set cursor> is specified, then:

a)

b)

d)

g)

When the <allocate cursor statement> is executed, if the <specific routine designator> does not identify
an SQL-invoked procedure P that has been previously invoked during the current SQL-session, an
exception condition is raised: invalid SQL-invoked procedure reference.

If P did not return any result sets, then an exception condition is raised: no data — no additional dynamic
result sets returned.

Let RRS be the ordered set of result sets returned by P.

When the <allocate cursor statement> is executed, an association is made between the <extended cursor
name> and the first result set FRS in RRS. The definition of FRS is the definition of the <cursor speci-
fication> CS in P that created FRS. Let CR be the cursor declared by the <declare cursor> that contains
CS.

Let 7 be the table specified by CS. T is the first result set returned from P.
A table descriptor for T is effectively created.

Cursor CR is placed in the open state.

Case:

i) If CR is scrollable, then let CRCN be the <cursor name> of CR in P. The position of CR in T'is
before the row that would be retrieved if the following SQL-statement were executed in P:

FETCH NEXT FROM CRCN; INTO...

i) Otherwise, the position of CR is before the first row of T.

Conformance Rules

1) Without Feature B032, “Extended dynamic SQL”, conforming SQL language shall not contain an <allocate
cursor statement>.

_ ©ISO/IEC 2003 — All rights reserved Dynamic SQL 975

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

No rep

or

g p

ISO/IEC 9075-2:2003 (E)
19.16 <dynamic open statement>

19.16 <dynamic open statement>

Function

Associate input dynamic parameters with a <cursor specification> and open the cursor.

Format

<dynamic open statement> ::= OPEN <dynamic cursor name> [<input using clause>]

Syntax Rules

1) If<dynamic cursor name> DCN is a <cursor name> CN, then the containing <SQL-client module definition>
shall contain a <dynamic declare cursor> whose <cursor name> is CN.

Access Rules

1) The Access Rules for the <query expression> simply contained in the prepared statement associated with
the <dynamic cursor name> are applied.

General Rules

1) If <dynamic cursor name> is a <cursor name> and the <statement name> of the associated <dynamic
declare cursor> is not associated with a prepared statement, then an exception condition is raised: invalid
SOL statement name.

2) If <dynamic cursor name> is an <extended cursor name> whose value does not identify a cursor allocated
in the scope of the <extended cursor name>, then an exception condition is raised: invalid cursor name.

3) If the prepared statement associated with the <dynamic cursor name> contains <dynamic parameter speci-
fication>s and an <input using clause> is not specified, then an exception condition is raised: dynamic SQL
error — using clause required for dynamic parameters.

4) The cursor specified by <dynamic cursor name> is updatable if and only if the associated <cursor specifi-
cation> specified an updatable cursor.

NOTE 440 — “updatable cursor” is defined in Subclause 14.1, “<declare cursor>".

5) If an <input using clause> is specified, then the General Rules specified in Subclause 19.10, “<input using
clause>”, for <dynamic open statement> are applied.

6) All General Rules of Subclause 14.2, “<open statement>", apply to the <dynamic open statement>.

Conformance Rules

1) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain a <dynamic
open statement>.

976 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Soid 10:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.17 <dynamic fetch statement>

19.17 <dynamic fetch statement>

Function

Fetch a row for a cursor declared with a <dynamic declare cursor>.

Format

<dynamic fetch statement> ::=
FETCH [[<fetch orientation>] FROM] <dynamic cursor name> <output using clause>

Syntax Rules

1) If <fetch orientation> is omitted, then NEXT is implicit.

2) If <dynamic cursor name> DCN is a <cursor name> CN, then the containing <SQL-client module definition>
shall contain a <dynamic declare cursor> whose <cursor name> is CN.

3) Let CR be the cursor identified by DCN.

4) Ifthe implicit or explicit <fetch orientation> is not NEXT, then the <dynamic declare cursor> or <allocate
cursor statement> associated with CR shall specify SCROLL.

Access Rules

None.

General Rules
1) All General Rules of Subclause 14.3, “<fetch statement>", are applied to cursor CR, <fetch orientation>,

and an empty <fetch target list>.

2) The General Rules of Subclause 19.11, “<output using clause>", are applied to the <dynamic fetch statement>
and the current row of CR as the retrieved row.

Conformance Rules

1) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain a <dynamic
fetch statement>.

©ISO/IEC 2003 - All rights reserved Dynamic SQL 977

Copyright Canadian Standards Assaciation
Reproduced by IHS under license with CSA Sold lo:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.18 <dynamic single row select statement>

19.18 <dynamic single row select statement>

Function

Retrieve values from a dynamically-specified row of a table.

Format

<dynamic single row select statement> ::= <query specification>

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let Q be the result of the <query specification>.
2) Case:
a) Ifthe cardinality of Q is greater than 1 (one), then an exception condition is raised: cardinality violation.

b) If Qis empty, then a completion condition is raised: no data.

Conformance Rules

1) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain a <dynamic
" single row select statement>.

978 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Assaciation
Reproduced by IHS under licanse with CSA Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.19 <dynamic close statement>

19.19 <dynamic close statement>

Function

Close a cursor.

Format

<dynamic close statement> ::= CLOSE <dynamic cursor name>

Syntax Rules

1) If<dynamic cursor name> DCN is a <cursor name> CN, then the containing <SQL-client module definition>
shall contain a <dynamic declare cursor> whose <cursor name> is CN.

Access Rules

None.

General Rules

1) All General Rules of Subclause 14.4, “<close statement>", apply to the <dynamic close statement>.

Conformance Rules

1) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain a <dynamic
close statement>.

©ISO/IEC 2003 - All rights reserved Dynamic SQL 979

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitied without license from IHS Not for Resale,2006/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.20 <dynamic delete statement: positioned>

19.20 <dynamic delete statement: positioned>

Function

Delete a row of a table.

Format

<dynamic delete statement: positioneds> ::=

DELETE FROM <target table> WHERE CURRENT OF <dynamic cursor name>

Syntax Rules

1)

If <dynamic cursor name> DCN is a <cursor name> CN, then the containing <SQL-client module definition>
shall contain a <dynamic declare cursor> whose <cursor name> is CN.

Access Rules

1)

All Access Rules of Subclause 14.6, “<delete statement: positioned>", apply to the <dynamic delete state-
ment: positioned>.

General Rules

1)

2)

3)
4)
S)

6)

7)

If DCN is a <cursor name> and the <statement name> of the associated <dynamic declare cursor> is not
associated with a prepared statement, then an exception condition is raised: invalid SQL statement name.

If DCN is an <extended cursor name> whose value does not identify a cursor allocated in the scope of the
<extended cursor name>, then an exception condition is raised: invalid cursor name.

Let CR be the cursor identified by DCN.
If CR is not an updatable cursor, then an exception condition is raised: invalid cursor name.

Let T be the simply underlying table of CR. T is the subject table of the <dynamic delete statement: posi-
tioned>. T shall have exactly one leaf underlying table LUT. Let LUTN be a <table name> that identifies
LUT.

Let TN be the <table name> contained in <target table>. If TN does not identify LUTN, or if ONLY is
specified and the <table reference> in T that references LUT does not specify ONLY, or if ONLY is not
specified and the <table reference> in T that references LUT does specify ONLY, then an exception condition
is raised: target table disagrees with cursor specification.

All General Rules of Subclause 14.6, “<delete statement: positioned>", apply to the <dynamic delete
statement: positioned>, replacing “<delete statement: positioned>" with “<dynamic delete statement:
positioned>".

980 Foundation (SQL/Foundation) ©ISO/IEC 2003 — Al rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitied without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.20 <dynamic delete statement: positioned>

Conformance Rules

1) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain a <dynamic
delete statement: positioned>. .

©ISO/IEC 2003 — All rights reserved Dynamic SQL 981

Copyright Canadian Standards Association
Reproduced by IHS under ficense with CSA Sold to:INFOTRIEVE, INC, W0277804
No ion or ing permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.21 <dynamic update statement: positioned>

19.21 <dynamic update statement: positioned>

Function

Update a row of a table.

Format

<dynamic update statement: positioned> ::=

UPDATE <target table> SET <set clause list>
WHERE CURRENT OF <dynamic cursor name>

Syntax Rules

1)

2)

If <dynamic cursor name> DCN is a <cursor name> CN, then the containing <SQL-client module definition>
shall contain a <dynamic declare cursor> whose <cursor name> is CN.

The scope of the <table name> is the entire <dynamic update statement: positioned>.

Access Rules

1)

All Access Rules of Subclause 14.10, “<update statement: positioned>", apply to the <dynamic update
statement: positioned>.

General Rules

1)

2)

3)
4)
5)

6)

7)

If DCN is a <cursor name> and the <statement name> of the associated <dynamic declare cursor> is not
associated with a prepared statement, then an exception condition is raised: invalid SQL statement name.

If DCN is an <extended cursor name> whose value does not identify a cursor allocated in the scope of the
<extended cursor name>, then an exception condition is raised: invalid cursor name.

Let CR be the cursor identified by DCN.
If CR is not an updatable cursor, then an exception condition is raised: invalid cursor name.

Let 7 be the simply underlying table of CR. T is the subject table of the <dynamic update statement: posi-
tioned>. T shall have exactly one leaf underlying table LUT. Let LUTN be a <table name> that identifies
LUT.

Let TN be the <table name> contained in <target table>. If 7N does not identify LUTN, or if ONLY is
specified and the <table reference> in 7 that references LUT does not specify ONLY, or if ONLY is not
specified and the <table reference> in T that references LUT does specify ONLY, then an exception condition
is raised: target table disagrees with cursor specification.

If any object column is directly or indirectly referenced in the <order by clause> of the <cursor specification>
for CR, then an exception condition is raised: attempt to assign to ordering column.

982 Foundation (SQL/Foundation) e ©ISO/IEC 2003 ~ Al rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804
No reproduction or networking permittad without license from (HS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.21 <dynamic update statement: positioned>

8) Ifany object column identifies a column that is not identified by a <column name> contained in the explicit
or implicit <column name list> of the explicit or implicit <updatability clause> of the <cursor specification>
for CR, then an exception condition is raised: attempt to assign to non-updatable column.

9) All General Rules of Subclause 14.10, “<update statement: positioned>", apply to the <dynamic update
statement: positioned>, replacing “<cursor name>" with “<dynamic cursor name>" and “<update statement:
positioned>" with “<dynamic update statement: positioned>".

Conformance Rules

1) Without Feature B031, “Basic dynamic SQL”, conforming SQL language shall not contain a <dynamic
¢ update statement: positioned>.

©ISO/IEC 2003 — Ali rights reserved Dynamic SQL 983

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804

No reproduction or networking permitied without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.22 <preparable dynamic delete statement: positioned>

19.22 <preparable dynamic delete statement: positioned>

Function

Delete a row of a table through a dynamic cursor.

Format

<preparable dynamic delete statement: positioned> ::=
DELETE [FROM <target table>]
WHERE CURRENT OF [<scope option>] <cursor name>

Syntax Rules

1) If <target table> is not specified, then let 7N be the name of the leaf underlying table LUT of the <cursor
specification> identified by <cursor name>.

Case:
a) If the <table reference> that references LUT specifies ONLY, then the <target table>
ONLY (TN)
is implicit.
b) Otherwise, the <target table>
TN
is implicit.

2) All Syntax Rules of Subclause 14.6, “<delete statement: positioned>", apply to the <preparable dynamic
delete statement: positioned>, replacing “<declare cursor>" with “<dynamic declare cursor> or <allocate
cursor statement>" and “<delete statement: positioned>" with “<preparable dynamic delete statement:
positioned>".

Access Rules

1) All Access Rules of Subclause 14.6, “<delete statement: positioned>", apply to the <preparable dynamic
delete statement: positioned>.

General Rules

1) All General Rules of Subclause 14.6, “<delete statement: positioned>", apply to the <preparable dynamic
delete statement: positioned>, replacing “<delete statement: positioned>" with “<preparable dynamic delete
statement: positioned>".

984 Foundation (SQL/Foundation) ©ISO/EC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.22 <preparable dynamic delete statement: positioned>

Conformance Rules

1) Without Feature B032, “Extended dynamic SQL”, conforming SQL language shall not contain a
<preparable dynamic delete statement: positioned>.

©ISO/IEC 2003 — All rights reserved - Dynamic SQL 985

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No duction or g itted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.23 <preparable dynamic update statement: positioned>

19.23 <preparable dynamic update statement: positioned>

Function

Update a row of a table through a dynamic cursor.

Format

<preparable dynamic update statement: positioneds> ::=
UPDATE [<target table>] SET <set clause list>
WHERE CURRENT OF [<scope option>] <cursor names

Syntax Rules

1) If <target table> is not specified, then let TN be the name of the leaf underlying table LUT of the <cursor
specification> identified by <cursor name>.

Case:
a) If the <table reference> that references LUT specifies ONLY, then the <target table>
ONLY (TN)
is implicit.
b) Otherwise, the <target table>
TN
is implicit.

2) All Syntax Rules of Subclause 14.10, “<update statement: positioned>", apply to the <preparable dynamic
update statement: positioned>, replacing “<declare cursor>" with “<dynamic declare cursor> or <allocate
cursor statement>" and “<update statement: positioned>" with “<preparable dynamic update statement:
positioned>".

Access Rules

1) All Access Rules of Subclause 14.10, “<update statement: positioned>", apply to the <preparable dynamic
update statement: positioned>.

General Rules

1) All General Rules of Subclause 14.10, “<update statement: positioned>", apply to the <preparable dynamic
update statement: positioned>, replacing “<update statement: positioned>”" with “<preparable dynamic
update statement: positioned>".

986 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No duction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
19.23 <preparable dynamic update statement: positioned>

Conformance Rules

1) Without Feature B032, “Extended dynamic SQL”, conforming SQL language shall not contain a
<preparable dynamic update statement: positioned>.

©ISO/IEC 2003 - Al rights reserved Dynamic SQL 987

Copyright Canadian Standards Association
Reproduced by IHS under ficense with CSA Soid t0:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)

This page intentionally left blank.

988 Foundation (SQL/Foundation) ©ISO/IEC 2003 — Al rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

20 Embedded SQL

20.1

20.1 <embedded SQL host program>

Function

Specify an <embedded SQL host program>.

Format

<embedded SQL host program> ::=
<embedded SQL Ada program>

| <embedded SQL C programs>
| <embedded SQL COBOL programs>
| <embedded SQL Fortran program>
| <embedded SQL MUMPS programs
| <embedded SQL Pascal program>
| <embedded SQL PL/I program>

<embedded SQL statement> ::=

<SQL prefix> <statement or declaration> [<SQL terminators>]

<statement or declaration> ::=
<declare cursors>
<dynamic declare cursor>
<temporary table declaration>

<embedded authorization declaration>

<embedded transform group specifications>

<embedded collation specifications>

<embedded exception declaration>

|
|
I
| <embedded path specifications>
I
I
|
| <SQL procedure statements>

<SQL prefix> ::=
EXEC SQL
| <ampersand>SQL<left paren>

<SQL terminators> ::=
END-EXEC
| <semicolons>
| <right parens>

<embedded authorization declarations>

<embedded authorization clause> ::=
SCHEMA <schema name>

| AUTHORIZATION <embedded authorization identifier>
[FOR STATIC { ONLY | AND DYNAMIC } }

©ISO/IEC 2003 — All rights reserved ... e

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA
No reproduction or networking permitted without license from IHS

Sold to:INFOTRIEVE, INC, W0277804
Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
<embedded SQL host program>

:= DECLARE <embedded authorization clause>

Embedded SQL 989

ISO/IEC 9075-2:2003 (E)
20.1 <embedded SQL host program>

| SCHEMA <schema name> AUTHORIZATION <embedded authorization
[FOR STATIC { ONLY | AND DYNAMIC }]

<embedded authorization identifier> ::=
<module authorization identifiers

<embedded path specifications> ::= <path specifications>

<embedded transform group specification> ::=
<transform group specification>

<embedded collation specification> ::= <module collations>

<embedded SQL declare section> ::=
<embedded SQL begin declare>
[<embedded character set declarations>]
[<host variable definition>...]
<embedded SQL end declare>
| <embedded SQL MUMPS declare>

<embedded character set declaration> ::=
SQL NAMES ARE <character set specification>

<embedded SQL begin declare> ::=
<SQL prefix> BEGIN DECLARE SECTION [<SQL terminator>]

<embedded SQL end declare> ::=
<SQL prefix> END DECLARE SECTION [<SQL terminator> |}

<embedded SQL MUMPS declares> ::=
<SQL prefix>
BEGIN DECLARE SECTION
[<embedded character set declarations>]
[<host variable definition>...]
END DECLARE SECTION
<SQL terminators>

<host variable definition> ::=
<Ada variable definition>

| <C variable definition>
| <COBOL variable definition>
| <Fortran variable definition>
| <MUMPS variable definition>
| <Pascal variable definition>
| <PL/I variable definition>

<embedded variable name> ::= <colon><host identifiers

<host identifier> ::=
<Ada host identifier>

| <C host identifiers

| <COBOL host identifier>

| <Fortran host identifiers>
| <MUMPS host identifier>

| <Pascal host identifiers>
| <PL/I host identifier>

990 Foundation (SQL/Foundation)

Copyright Canadian Standards Assaciation
Reproduced by IHS under license with CSA Sald to:INFOTRIEVE, INC, W(277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

identifier>

©ISO/IEC 2003 - All rights reserved

ISO/IEC 9075-2:2003 (E)
20.1 <embedded SQL host program>

Syntax Rules

1) An <embedded SQL host program> is a compilation unit that consists of programming language text and
SQL text. The programming language text shall conform to the requirements of a specific standard program-
ming language. The SQL text shall consist of one or more <embedded SQL statement>s and, optionally,
one or more <embedded SQL declare section>s, as defined in this International Standard.

NOTE 441 — “Compilation unit” is defined in Subclause 4.22, “SQL-client modules”.
2) Case:

a) An <embedded SQL statement> or <embedded SQL MUMPS declare> that is contained in an
<embedded SQL MUMPS program> shall contain an <SQL prefix> that is “<ampersand>SQL<left
paren>". There shall be no <separator> between the <ampersand> and “SQL” nor between “SQL” and
the <left paren>.

b) An <embedded SQL statement>, <embedded SQL begin declare>, or <embedded SQL end declare>
that is not contained in an <embedded SQL MUMPS program> shall contain an <SQL prefix> that is
“EXEC SQL”.

3) Case:

a) An <embedded SQL statement>, <embedded SQL begin declare>, or <embedded SQL end declare>
contained in an <embedded SQL COBOL program> shall contain an <SQL terminator> that is
END-EXEC.

b) An <embedded SQL statement>, <embedded SQL begin declare>, or <embedded SQL end declare>
contained in an <embedded SQL Fortran program> shall not contain an <SQL terminator>.

¢) An <embedded SQL statement>, <embedded SQL begin declare>, or <embedded SQL end declare>
contained in an <embedded SQL Ada program>, <embedded SQL C program>, <embedded SQL
Pascal program>, or <embedded SQL PL/I program> shall contain an <SQL terminator> that is a
<semicolon>.

d) An<embedded SQL statement> or <embedded SQL. MUMPS declare> that is contained in an
<embedded SQL MUMPS program> shall contain an <SQL terminator> that is a <right paren>.

4) Case:

a) An<embedded SQL declare section> that is contained in an <embedded SQL MUMPS program> shall
be an <embedded SQL MUMPS declare>.

b) An<embedded SQL declare section> that is not contained in an <embedded SQL MUMPS program>
shall not be an <embedded SQL MUMPS declare>.

NOTE 442 — There is no restriction on the number of <embedded SQL declare section>s that may be contained in an <embedded
SQL host program>.

5) The <token>s comprising an <SQL prefix>, <embedded SQL begin declare>, or <embedded SQL end
declare> shall be separated by <space> characters and shall be specified on one line. Otherwise, the rules
for the continuation of lines and tokens from one line to the next and for the placement of host language
comments are those of the programming language of the containing <embedded SQL. host program>.

6) Ifan <embedded authorization declaration> appears in an <embedded SQL host program>, then it shall be
contained in the first <embedded SQL statement> of that <embedded SQL host program>.

©ISO/IEC 2003 - All rights reserved Embedded SQL 991

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reprod Yor permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20:1 <embedded SQL host program>

7): An <embedded SQL host program> shall not contain more than one <embedded path specification>.

8) An <embedded SQL host program> shall not contain more than one <embedded transform group specifi-
cation>.

9) An <embedded SQL host program> shall not contain more than one <embedded collation specification>.
10) Case:

a) If <embedded transform group specification> is not specified, then an <embedded transform group
specification> containing a <multiple group specification> with a <group specification> GS for each
<host variable definition> that has an associated user-defined type UDT, but is not a user-defined
locator variable is implicit. The <group name> of G is implementation-defined and its <path-resolved
user-defined type name> is the <user-defined type name> of UDT.

b) If <embedded transform group specification> contains a <single group specification> with a <group
name> GN, then an <embedded transform group specification> containing a <multiple group specifi-
cation> with a <group specification> GS for each <host variable definition> that has an associated
user-defined type UDT, but is not a user-defined type locator variable is implicit. The <group name>
of GS is GN and its <path-resolved user-defined type name> is the <user-defined type name> of UDT.

¢) If<embedded transform group specification> contains a <multiple group specification> MGS, then an
<embedded transform group specification> containing a <multiple group specification> that contains
MGS extended with a <group specification> GS for each <host variable definition> that has an associated
user-defined type UDT, but is not a user-defined locator variable and no equivalent of UDT is contained
in any <group specification> contained in MGS is implicit. The <group name> of GS is implementation-
defined and its <path-resolved user-defined type name> is the <user-defined type name> of UDT.

11) In the text of the <embedded SQL host program>, the implicit or explicit <embedded transform group
specification> shall precede every <host variable definition>.

12) An <embedded SQL host program> shall contain no more than one <embedded character set declaration>.
If an <embedded character set declaration> is not specified, then an <embedded character set declaration>
that specifies an implementation-defined character set that contains at least every character that is in <SQL
language character> is implicit.

13) A <temporary table declaration> that is contained in an <embedded SQL host program> shall precede in
the text of that <embedded SQL host program> any SQL-statement or <declare cursor> that references the
<table name> of the <temporary table declaration>.

14) A <declare cursor> that is contained in an <embedded SQL host program> shall precede in the text of that
<embedded SQL host program> any SQL-statement that references the <cursor name> of the <declare
cursor>.

15) A <dynamic declare cursor> that is contained in an <embedded SQL host program> shall precede in the
text of that <embedded SQL host program> any SQL-statement that references the <cursor name> of the
<dynamic declare cursor>.

16) Any <host identifier> that is contained in an <embedded SQL statement> in an <embedded SQL host
program> shall be defined in exactly one <host variable definition> contained in that <embedded SQL host
program>. In programming languages that support <host variable definition>s in subprograms, two <host
variable definition>s with different, non-overlapping scope in the host language are to be regarded as
defining different host variables, even if they specify the same variable name. That <host variable definition>
shall appear in the text of the <embedded SQL host program> prior to any <embedded SQL statement™>

992 Foundation (SQL/Foundation) ©ISO/IEC 2003 — Al rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.1 <embedded SQL host program>

that references the <host identifier>. The <host variable definition> shall be such that a host language ref-
erence to the <host identifier> is valid at every <embedded SQL statement> that contains the <host identi-
fier>.

17) A <host variable definition> defines the host language data type of the <host identifier>. For every such
host language data type an equivalent SQL <data type> is specified in Subclause 20.3, “<embedded SQL
Ada program>”, Subclause 20.4, “<embedded SQL C program>”, Subclause 20.5, “<embedded SQL
COBOL program>”, Subclause 20.6, “<embedded SQL Fortran program>", Subclause 20.7, “<embedded
SQL MUMPS program>", Subclause 20.8, “<embedded SQL Pascal program>”, and Subclause 20.9,
“<embedded SQL PL/I program>".

18) An <embedded SQL host program> shall contain a <host variable definition> that specifies SQLSTATE.

19) If one or more <host variable definition>s that specify SQLSTATE appear in an <embedded SQL host
program>, then the <host variable definition>s shall be such that a host language reference to SQLSTATE
is valid at every <embedded SQL statement>, including <embedded SQL statement>s that appear in any
subprograms contained in that <embedded SQL host program>. The first such <host variable definition>
of SQLSTATE shall appear in the text of the <embedded SQL host program> prior to any <embedded SQL
statement>.

20) Given an <embedded SQL host program> H, there is an implied standard-conforming <SQL-client module
definition> M and an implied standard-conforming host program P derived from H. The derivation of the
implied program P and the implied <SQL-client module definition> M of an <embedded SQL host program>
H effectively precedes the processing of any host language program text manipulation commands such as
inclusion or copying of text.

NOTE 443 — Before H can be executed, M is processed by an implementation-defined mechanism to produce an SQL-client

module. An SQL-implementation may combine this mechanism with the processing of the <embedded SQL host program>, in
which the existence of M is pure hypothetical.

Given an <embedded SQL host program> H with an implied <SQL-client module definition> M and an
implied program P defined as above:

a) The implied <SQL-client module definition> M of H shall be a standard-conforming <SQL-client
module definition>.

b) If H is an <embedded SQL Ada program>, an <embedded SQL C program>, an <embedded SQL
COBOL program>, an <embedded SQL Fortran program>, an <embedded SQL MUMPS program>,
an <embedded SQL. Pascal program>, or an <embedded SQL PL/I program>, then the implied program
P shall be a standard-conforming Ada program, a standard-conforming C program, a standard-conforming
COBOL program, a standard-conforming Fortran program, a standard-conforming M program, a
standard-conforming Pascal program, or standard-conforming PL/I program, respectively.

21) M is derived from H as follows:

a) M contains a <module name clause> whose <SQL-client module name> is either implementation-
dependent or is omitted.

b) M contains a <module character set specification> that is identical to the explicit or implicit <embedded
character set declaration> with the keyword “SQL” removed.

¢) M contains a <language clause> that specifies either ADA, C, COBOL, FORTRAN, M, PASCAL, or
PLI, where H is respectively an <embedded SQL Ada program>, an <embedded SQL C program>, an

©ISO/IEC 2003 ~ All rights reserved Embedded SQL 993

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or rki itted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.1 <embedded SQL host program>

<embedded SQL COBOL program>, an <embedded SQL Fortran program>, an <embedded SQL
MUMPS program>, an <embedded SQL Pascal program>, or an <embedded SQL PL/I program>.

d) Case:

i) If H contains an <embedded authorization declaration> EAD, then let EAC be the <embedded
authorization clause>contained in EAD; M contains a <module authorization clause> that spec-
ifies EAC.

it) Otherwise, let SN be an implementation-defined <schema name>; M contains a <module
authorization clause> that specifies “SCHEMA SN”.

e) Case:

i) If H contains an <embedded path specification> EPS, then M contains the <module path speci-
fication> EPS.

ii) Otherwise, M contains an implementation-defined <module path specification>.

f) M contains a <module transform group specification> that is identical to the explicit or implicit
<embedded transform group specification>.

g) Ifan <embedded collation specification> ECS is specified, then M contains a <module collations> that
is identical to the <module collations> contained in ECS.

h) For every <declare cursor> EC contained in H, M contains one <declare cursor> PC and one <externally-
invoked procedure> PS that contains an <open statement> that references PC.

i) The <procedure name> of PS is implementation-dependent. PS contains a <host parameter
declaration> PD for each distinct <embedded variable name> EVN contained in PC with an
implementation-dependent <host parameter name> PN and the <host parameter data type> PT,
determined as follows:

Case:
1) If EVN identifies a binary large object locator variable, then PT is BLOB AS LOCATOR.
2) If EVNidentifies a character large object locator variable, then PTis CLOB AS LOCATOR.

3) If EVN identifies an array locator variable, then PT is AAT AS LOCATOR, where 44T is
the associated array type of V.

4) If EVN identifies a multiset locator variable, then PT is AMT AS LOCATOR, where AMT
is the associated multiset type of V.

5) If EVN identifies a user-defined type locator variable, then PTis UDT AS LOCATOR,
where UDT is the associated user-defined type of V.

6) Otherwise, PT is the SQL data type that corresponds to the host language data type of EVN
as specified in Subclause 13.6, “Data type correspondences”.

ii) PS contains a <host parameter declaration> that specifies SQLSTATE. The order of <host
parameter declaration>s in PS is implementation-dependent. PC is a copy of EC in which each
EVN has been replaced as follows:

Case:

994 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from iHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.1 <embedded SQL host program>

1) IfEVN does not identify user-defined type locator variable, but EVN identifies a host variable
that has an associated user-defined type UT, then:

A) Let GN be the <group name> corresponding to the <user-defined type name> of UT
contained in <group specification> contained in <embedded transform group specifica-
tion>.

B) Apply the Syntax Rules of Subclause 9.19, “Determination of a to-sql function”, with
DT and GN as TYPE and GROUP, respectively. There shall be an applicable to-sql
function TSF.

C) Letthe declared type of the single SQL parameter of 7SF be TPT. PT shall be assignable
to TPT.

D) EVN is replaced by:
TSFN(CAST (PN AS TPT))

2) Otherwise, EVN is replaced by:
PN
i) For every <dynamic declare cursor> EC in H, M contains one <dynamic declare cursor> PC that is a
copy of EC.

j) M contains one <temporary table declaration> for each <temporary table declaration> contained in H.

Each <temporary table declaration> of M is a copy of the corresponding <temporary table declaration>
of H.

k) M contains one <embedded exception declaration> for each <embedded exception declaration> contained
in H. Each <embedded exception declaration> of M is a copy of the corresponding <embedded
exception declaration> of H.

I} M contains an <externally-invoked procedure> for each <SQL procedure statement> contained in H.
The <externally-invoked procedure> PS of M corresponding with an <SQL procedure statement> ES
of H is defined as follows.

Case:
i) If ES is not an <open statement>, then:
1) The <procedure name> of PS is implementation-dependent.

2) Let n be the number of distinct <embedded variable name>s contained in ES. Let HVN;, 1

(one) < i € n, be the i-th such <embedded variable name> and let HV; be the host variable
identified by HVN;.

3) Foreach HVN;, 1 (one) <i < n, PS contains a <host parameter declaration> PD; defining a
host parameter P; such that:

A) The <host parameter name> PN; of PD; is implementation-dependent.

B) The <host parameter data type> PT; of PD; is determined as follows.

©ISO/NEC 2003 - Al rights reserved Embedded SQL 995

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Soid to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.1 <embedded SQL host program>

Case:

D If HV; is a binary large object locator variable, then PT;is BLOB AS LOCATOR.

II) If HV;is a character large object locator variable, then PT; is CLOB AS LOCA-
TOR.

III) If HV;is an array locator variable, then PT; is AAT AS LOCATOR, where AAT
is the associated array type of HV.

IV) If HV;is a multiset locator variable, then PT;is AMT AS LOCATOR, where AMT
is the associated multiset type of HV.

V) If HV;is user-defined type locator variable, then PT; is UDT AS LOCATOR,
where UDT is the associated user-defined type of HV;.

VI) Otherwise, PT; is the SQL data type that corresponds to the host language data
type of HV; as specified in Subclause 13.6, “Data type correspondences”.

4) PS contains a <host parameter declaration> that specifies SQLSTATE.

5) The order of the <host parameter declaration>s PD;, 1 (one) < i < n, is implementation-
dependent.

6) Foreach HVN;, 1 (one) < i < n, that identifies some HV; that has an associated user-defined

type, but is not a user-defined type locator variable, apply the Syntax Rules of Subclause 9.6,
“Host parameter mode determination”, with the PD; corresponding to HVN; and ES as <host

parameter declaration> and <SQL procedure statement>, respectively, to determine whether
the corresponding P; is an input host parameter, an output host parameter, or both an input

host parameter and an output host parameter.

A) Among P;, 1 (one) <i < n, let a be the number of input host parameters, b be the number
of output host parameters, and let ¢ be the number of host parameters that are both input

host parameters and output host parameters.
B) Among P;, 1 (one) <i<n,let PI; 1 (one) <j < a, be the input host parameters, let POy,

1 (one) < k < b, be the output host parameters, and let PIO;, 1 (one) <! < c, be the host
parameters that are both input host parameters and output host parameters.

C) Let PNI; 1 (one) <j < a, be the <host parameter name> of PJ;. Let PNO, 1 (one) <k

< b, be the <host parameter name> of POy. Let PNIO), 1 (one) <! < ¢, be the <host
parameter name> of PIOj.

D) Let HVI;, 1 (one) < < a, be the host variable corresponding to PI;. Let HVOy, 1 (one)

< k < b, be the host variable corresponding to POy. Let HVIO), 1 (one) < I < c, be the
host variable corresponding to PIO;.

996 Foundation (SQL/Foundation) ©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from (HS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.1 <embedded SQL host program>

E) Let 7SI}, 1 (one) <j < a, be the associated SQL data type of HVI;. Let TSOy, 1 (one) <

k < b, be the associated SQL data type of HVOy. Let TSIO), 1 (one) </ < c, be the
associated SQL data type of HVIO,.

F) Let TUI}, 1 (one) <j < a, be the associated user-defined type of HV1;. Let TUOy, 1 (one)

< k < b, be the associated user-defined type of HVOy. Let TUIO), 1 (one) <1< c, be the
associated user-defined type of HVIO;.

G) Let GNI;, 1 (one) <j < a, be the <group name> corresponding to the <user-defined type
name> of TUI; contained in the <group specification> contained in <embedded transform

group specification>. Let GNO, 1 (one) < k < b, be the <group name> corresponding
to the <user-defined type name> of 7UQ, contained in the <group specification> con-

tained in <embedded transform group specification>. Let GNIO;, 1 (one) </ <c, be the
<group name> corresponding to the <user-defined type name> of TUIO; contained in
the <group specification> contained in <embedded transform group specification>.

H) For everyj, 1 (one) <j < a, apply the Syntax Rules of Subclause 9.19, “Determination
of a to-sql function”, with TUI; and GNI; as TYPE and GROUP, respectively. There
shall be an applicable to-sql function TSF; identified by <routine name> 7SIN;. Let
TTI; be the data type of the single SQL parameter of 7SFJ;. TSI; shall be assignable to
TTI;.

I) Foreveryl, 1 (one) <!<c, apply the Syntax Rules of Subclause 9.19, “Determination
of a to-sql function”, with TUIO; and GNIO; as TYPE and GROUP, respectively. There

shall be an applicable to-sql function 7SFIO; identified by <routine name> TSION. Let
TTIO, be the data type of the single SQL parameter of 7SF10;. TSIO; shall be assignable
to TTIO,.

J) Foreveryk, 1 (one) < k< b, apply the Syntax Rules of Subclause 9.17, “Determination
of a from-sql function”, with TUQ, and GNOy, as TYPE and GROUP, respectively.
There shall be an applicable from-sql function FSFO, identified by <routine name>
FSON;. Let TROy, be the result data type of FSFOy. TSOy, shall be assignable to TRO;.

K) Forevery [, 1 (one) <1< ¢, apply the Syntax Rules of Subclause 9.17, “Determination
of a from-sql function”, with TUIO; and GNIO; as TYPE and GROUP, respectively.
There shall be an applicable from-sql function FSFIO; identified by <routine name>
FSION;. Let TRIO; be the result data type of FSFIO;. TSIO; shall be assignable to TRIO.

L) LetSVI;, 1(one)<j<a,SVOy, | (one)<k<b,and SVIO;, 1 (one) < 1< ¢, be implemen-
tation-dependent <SQL variable name>s, each of which is not equivalent to any other
<SQL variable name> contained in ES, to any <SQL parameter name> contained in ES,
or to any <column name> contained in ES.

©ISO/IEC 2003 - All rights reserved Embedded SQL 997

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No rep ion or itted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.1 <embedded SQL host program>

7) Let NES be an <SQL procedure statement> that is a copy of ES in which every HVN;, 1
(one) < i < n, is replaced as follows.

Case:

A) If HV; has an associated user-defined type but is not a user-defined type locator variable,
then

Case:

D If P; is an input host parameter, then let PJ;, 1 (one) <j < g, be the input host
parameter that corresponds to P;; HVN; is replaced by SVI;.

I) If P;is an output host parameter, then let POy, 1 (one) < &k < b, be the output host
parameter that corresponds to P;; HVN, is replaced by SVO;.

III) Otherwise, let PIO;, 1 (one) << c, be the input host parameter and the output
host parameter that corresponds to P;; HVN, is replaced by SVIO;.

B) Otherwise, HVN; is replaced by PN;.

8) The <SQL procedure statement> of PS is:

BEGIN ATOMIC
DECLARE SVI; TUI;;

DECLARE SVI, TUI,;
DECLARE SVO, TUO,;

DECLARE SVO, TUOp;
DECLARE SVIO; TUIO;;

DECLARE SVIO. TUIO.;
SET SVI; = TSIN; (CAST (PNI, AS TTIy));:

SET SVI; = TSIN; (CAST (PNI, AS TTI,));
SET SVIO; = TSION; (CAST (PNIO; AS TTIO));

SET SVIO. = TSION, (CAST (PNIO; AS TTIO.));
NES;
SET PNO;

CAST (FSON; (SVO,) AS TSO);

SET PNO, = CAST (FSONp (SVOp) AS TSOp):
SET PNIO, = CAST (FSION; (SVIO,) AS TSIO;);

SET PNIO, = CAST (FSION. (SVIO.) AS TSIO.};
END;

998 Foundation (SQL/Foundation) e ©ISO/IEC 2003 — Al rights reserved

Copyright Canadian Standards Assaciation
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No or ing permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.1 <embedded SQL host program>

9) Whether one <externally-invoked procedure> of M can correspond to more than one <SQL
procedure statement> of H is implementation-dependent.

ii) If £S is an <open statement>, then:
1) Let EC be the <declare cursor> in H referenced by ES.

2) PSis the <externally-invoked procedure> in M that contains an <open statement> that ref-
erences the <declare cursor> in M corresponding to EC.

22) P is derived from H as follows:

a) Each <embedded SQL begin declare>, <embedded SQL end declare>, and <embedded character set
declaration> has been deleted. If the embedded host language is M, then each <embedded SQL MUMPS
declare> has been deleted.

b) Each <host variable definition> in an <embedded SQL declare section> has been replaced by a valid
data definition in the target host language according to the Syntax Rules specified in an <embedded
SQL Ada program>, <embedded SQL C program>, <embedded SQL COBOL program>, <embedded
SQL Fortran program>, <embedded SQL Pascal program>, or an <embedded SQL PL/I program>
clause.

¢) Each <embedded SQL statement> that contains a <declare cursor>, a <dynamic declare cursor>, an
<SQL-invoked routine>, or a <temporary table declaration> has been deleted, and every <embedded
SQL statement> that contains an <embedded exception declaration> has been replaced with statements
of the host language that will have the effect specified by the General Rules of Subclause 20.2,
“<embedded exception declaration>”,

d) Each <embedded SQL statement> that contains an <SQL procedure statement> has been replaced by
host language statements that perform the following actions:

i) A host language procedure or subroutine call of the <externally-invoked procedure> of the
implied <SQL-client module definition> M of H that corresponds with the <SQL procedure
statement>.

If the <SQL procedure statement> is not an <open statement>, then the arguments of the call
include each distinct <host identifier> contained in the <SQL procedure statement> together
with the SQLSTATE <host identifier>. If the <SQL procedure statement> is an <open statement>,
then the arguments of the call include each distinct <host identifier> contained in the correspond-
ing <declare cursor> of H together with the SQLSTATE <host identifier>.

The order of the arguments in the call corresponds with the order of the corresponding <host
parameter declaration>s in the corresponding <externally-invoked procedure>.

NOTE 444 — In an <embedded SQL Fortran program>, the “SQLSTATE” variable may be abbreviated to “SQLSTA”.
See the Syntax Rules of Subclause 20.6, “<embedded SQL Fortran program>".

ii) Exception actions, as specified in Subclause 20.2, “<embedded exception declaration>".

e) Each <statement or declaration> that contains an <embedded authorization declaration> is deleted.

©ISO/IEC 2003 — Al rights reserved Embedded SQL 999

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.1 <embedded SQL host program>

Access Rules

1) For every host variable whose <embedded variable name> is contained in <statement or declaration> and
has an associated user-defined type, the current privileges shall include EXECUTE privilege on all from-
sql functions (if any) and all to-sql functions (if any) referenced in the corresponding SQL-client module.

General Rules

1) The interpretation of an <embedded SQL host program> H is defined to be equivalent to the interpretation
of the implied program P of H and the implied <SQL-client module definition> M of H.

Conformance Rules

1) Without Feature B051, “Enhanced execution rights”, conforming SQL language shall not contain an
<embedded authorization declaration>.

2) Without Feature F461, “Named character sets”, conforming SQL language shall not contain an <embedded
character set declaration>.

3) Without Feature F361, “Subprogram support”, conforming SQL language shall not contain two <host
. variable definition>s that specify the same variable name.

4) Without Feature S071, “SQL paths in function and type name resolution”, conforming SQL language shall
* not contain an <embedded path specification>.

5) Without Feature S241, “Transform functions”, conforming SQL language shall not contain a <embedded
transform group specification>.

1000 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sald to:INFOTRIEVE, INC, W0277804
No ion or i itted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.2 <embedded exception declaration>

20.2 <embedded exception declaration>

Function

Specify the action to be taken when an SQL-statement causes a specific class of condition to be raised.

Format
<embedded exception declaration> ::= WHENEVER <condition> <condition action>
<conditions> ::= <SQL conditions>

<SQL condition> ::=
<major categorys
| SQLSTATE (<SQLSTATE class value> [, <SQLSTATE subclass value>])
| CONSTRAINT <constraint names>

<major category> ::=
SQLEXCEPTION
| SQLWARNING
| NOT FOUND

<SQLSTATE class value> ::=
<SQLSTATE char><SQLSTATE char> !! See the Syntax Rules.

<SQLSTATE subclass values> ::=
<SQLSTATE char><SQLSTATE char><SQLSTATE char> !! See the Syntax Rules.

<SQLSTATE char> ::=
<simple Latin upper case letters>
| <digit>

<condition action> ::=
CONTINUE
| <go to>

<go to> ::= { GOTO | GO TO } <goto target>

<goto target> ::=
<host label identifiers
| <unsigned integers>
| <host PL/I label variable>

<host label identifier> ::= !! See the Syntax Rules.
<host PL/I label variable> ::= !! See the Syntax Rules.
Syntax Rules

1) SQLWARNING, NOT FOUND, and SQLEXCEPTION correspond to SQLSTATE class values correspond-
ing to categories W, N, and X in Table 32, “SQLSTATE class and subclass values”, respectively.

©ISO/IEC 2003 — All rights reserved Embedded SQL 1001

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permilted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.2 <embedded exception declaration>

2) An<embedded exception declaration> contained in an <embedded SQL host program> applies to an <SQL
procedure statement> contained in that <embedded SQL host program> if and only if the <SQL procedure
statement> appears after the <embedded exception declaration> that has condition C in the text sequence
of the <embedded SQL host program> and no other <embedded exception declaration> E that satisfies one
of the following conditions appears between the <embedded exception declaration> and the <SQL procedure
statement> in the text sequence of the <embedded SQL host program>.

Let D be the <condition> contained in E.
a) D isthe same as C.
b) D is a <major category> and belongs to the same class to which C belongs.

¢) D contains an <SQLSTATE class value>, but does not contain an <SQLSTATE subclass value>, and
E contains the same <SQLSTATE class value> that C contains.

d) D contains the <SQLSTATE class value> that corresponds to integrity constraint violation and C
contains CONSTRAINT.

3) Inthe values of <SQLSTATE class value> and <SQLSTATE subclass value>, there shall be no <separator>
between the <SQLSTATE char>s.

4) The values of <SQLSTATE class value> and <SQLSTATE subclass value> shall correspond to class values
and subclass values, respectively, specified in Table 32, “SQLSTATE class and subclass values”.

5) If an <embedded exception declaration> specifies a <go to>, then the <host label identifier>, <host PL/I
label variable>, or <unsigned integer> of the <go to> shall be such that a host language GO TO statement
specifying that <host label identifier>, <host PL/I label variable>, or <unsigned integer> is valid at every
<SQL procedure statement> to which the <embedded exception declaration> applies.

NOTE 445 —

If an <embedded exception declaration> is contained in an <embedded SQL Ada program>, then the <goto target> of a <go
to> should specify a <host label identifier> that is a label_name in the containing <embedded SQL Ada program>.

If an <embedded exception declaration> is contained in an <embedded SQL C program>, then the <goto target> of a <go to>
should specify a <host label identifier> that is a label in the containing <embedded SQL C program>.

If an <embedded exception declaration> is contained in an <embedded SQL COBOL program>, then the <goto target> of a
<go to> should specify a <host label identifier> that is a section-name or an unqualified paragraph-name in the containing
<embedded SQL COBOL program>.

If an <embedded exception declaration> is contained in an <embedded SQL Fortran program>, then the <goto target> of a <go
to> should be an <unsigned integer> that is the statement label of an executable statement that appears in the same program
unit as the <go to>.

If an <embedded exception declaration> is contained in an <embedded SQL MUMPS program>, then the <goto target> of a
<go to> should be a gotoargument that is the statement label of an executable statement that appears in the same <embedded
SQL MUMPS program>.

If an <embedded exception declaration> is contained in an <embedded SQL Pascal program>, then the <goto target> of a <go
to> should be an <unsigned integer> that is a label.

If an <embedded exception declaration> is contained in an <embedded SQL PL/I program>, then the <goto target> of a <go
to> should specify either a <host label identifier> or a <host PL/I label variable>.

Case:

— If <host label identifier> is specified, then the <host label identifier> should be a label constant in the containing
<embedded SQL PL/I program>.

1002 Foundation (SQL/Foundation) e ©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No re ion or rking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.2 <embedded exception declaration>

— If <host PL/I label variable> is specified, then the <host PL/I label variable> should be a PL/I label variable declared in
the containing <embedded SQL PL/I program>.

Access Rules

None.

General Rules

1) Immediately after the execution of an <SQL procedure statement> STMT in an <embedded SQL host pro-
gram> that returns an SQLSTATE value other than successful completion:

a) Let E be the set of <embedded exception declaration>s that are contained in the <embedded SQL host
program> containing STMT, that applies to STMT, and that specifies a <condition action> that is <go
to>.

b) Let CV and SCV be respectively the values of the class and subclass of the SQLSTATE value that
indicates the result of the <SQL procedure statement>.

c) If the execution of the <SQL procedure statement> caused the violation of one or more constraints or
assertions, then:

i) Let ECN be the set of <embedded exception declaration>s in E that specify CONSTRAINT and
the <constraint name> of a constraint that was violated by execution of STMT.

i1) If ECN contains more than one <embedded exception declaration>, then an implementation-
dependent <embedded exception declaration> is chosen from ECN; otherwise, the single
<embedded exception declaration> in ECN is chosen.

iii) A GO TO statement of the host language is performed, specifying the <host label identifier>,
<host PL/I label variable>, or <unsigned integer> of the <go to> specified in the <embedded
exception declaration> chosen from ECN.

d) Otherwise:

i) Let ECS be the set of <embedded exception declaration>s in E that specify SQLSTATE, an
<SQLSTATE class value>, and an <SQLSTATE subclass value>.

ii) If ECS contains an <embedded exception declaration> EY that specifies an <SQLSTATE class
value> identical to CV and an <SQLSTATE subclass value> identical to SCV, then a GO TO
statement of the host language is performed, specifying the <host label identifier>, <host PL/I
label variable>, or <unsigned integer> of the <go to> specified in the <embedded exception
declaration> EY.

iii) Otherwise:

1) Let EC be the set of <embedded exception declaration>s in E that specify SQLSTATE and
an <SQLSTATE class value> without an <SQLSTATE subclass value>.

2) IfEC contains an <embedded exception declaration> EY that specifies an <SQLSTATE
class value> identical to C¥, then a GO TO statement of the host language is performed,

©ISO/IEC 2003 - All rights reserved Embedded SQL 1003

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.2 <embedded exception declaration>

specifying the <host label identifier>, <host PL/I label variable>, or <unsigned integer> of
the <go to> specified in the <embedded exception declaration> EY.

3) Otherwise:

A) Let EXbe the set of <embedded exception declaration>s in E that specify SQLEXCEP-
TION.

B) If EX contains an <embedded exception declaration> EY and CV belongs to Category
X in Table 32, “SQLSTATE class and subclass values”, then a GO TO statement of the
host language is performed, specifying the <host label identifier>, <host PL/I label
variable>, or <unsigned integer> of the <go to> specified in the <embedded exception
declaration> EY.

C) Otherwise:

I) Let EW be the set of <embedded exception declaration>s in E that specify SQL-
WARNING.

II) If EW contains an <embedded exception declaration> EY and CV belongs to
Category W in Table 32, “SQLSTATE class and subclass values”, then a GO
TO statement of the host language is performed, specifying the <host label
identifier>, <host PL/I label variable>, or <unsigned integer> of the <go to>
specified in the <embedded exception declaration> EY.

III) Otherwise, let ENF be the set of <embedded exception declaration>s in E that
specify NOT FOUND. If ENF contains an <embedded exception declaration>
EY and CV belongs to Category N in Table 32, “SQLSTATE class and subclass
values”, then a GO TO statement of the host language is performed, specifying
the <host label identifier>, <host PL/I label variable>, or <unsigned integer> of
the <go to> specified in the <embedded exception declaration> EY.

Conformance Rules

1) Without Feature B041, “Extensions to embedded SQL exception declarations”, conforming SQL language
shall not contain an <SQL condition> that contains either SQLSTATE or CONSTRAINT.

2) Without Feature F491, “Constraint management”, conforming SQL language shall not contain an <SQL
condition> that contains a <constraint name>.

1004 Foundation (SQL/Foundation) ©ISO/IEC 2003 - Al rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/TEC 9075-2:2003 (E)
20.3 <embedded SQL Ada program>

20.3 <embedded SQL Ada program>

Function

Specify an <embedded SQL Ada program>.

Format

<embedded SQL Ada program> ::= !! See the Syntax Rules.

<Ada variable definition> ::=
<Ada host identifier> [{ <comma> <Ada host identifier> }...] <colon>
<Ada type specification> [<Ada initial value>]

<Ada initial value> ::=
<Ada assignment operator> <character representations...

<Ada assignment operators> ::= <colon><equals operator>
<Ada host identifier> ::= !! See the Syntax Rules.

<Ada type specification> ::=
<Ada qualified type specifications>
| <Ada unqualified type specification>
| <Ada derived type specification>

<Ada qualified type specification> ::=

Interfaces.SQL <period> CHAR
[CHARACTER SET [IS] <character set specifications]
<left paren> 1 <double period> <length> <right paren>

| Interfaces.SQL <period> SMALLINT

| Interfaces.SQL <period> INT

| Interfaces.SQL <period> BIGINT

| Interfaces.SQL <period> REAL

| Interfaces.SQL <period> DOUBLE_PRECISION

| Interfaces.SQL <period> BOOLEAN

| Interfaces.SQL <period> SQLSTATE_ TYPE

| Interfaces.SQL <period> INDICATOR_TYPE

<Ada unqualified type specifications ::=

CHAR <left paren> 1 <double period> <length> <right paren>
| SMALLINT
| INT
| BIGINT
| REAL
| DOUBLE_PRECISION
| BOOLEAN
| SQLSTATE_TYPE
| INDICATOR_TYPE

<Ada derived type specification> ::=
<Ada CLOB variable>
| <Ada CLOB locator variable>
| <Ada BLOB variablex>

©ISO/IEC 2003 — All rights reserved Embedded SQL 1005

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.3 <embedded SQL Ada program>

| <Ada BLOB locator variables>

| <Ada user-defined type variables>

| <Ada user-defined type locator variable>
| <Ada REF variables

| <Ada array locator variables

| <Ada multiset locator variables>

<Ada CLOB variables> ::=
SQL TYPE IS CLOB <left paren> <large object length> <right paren>
[CHARACTER SET [IS] <character set specification>]

<Ada CLOB locator variable> ::= SQL TYPE IS CLOB AS LOCATOR

<Ada BLOB variables> ::=
SQL TYPE IS BLOB <left paren> <large object length> <right paren>

<Ada BLOB locator variable> ::= SQL TYPE IS BLOB AS LOCATOR

<Ada user-defined type variable> ::=
SQL TYPE IS <path-resolved user-defined type name> AS <predefined type>

<Ada user-defined type locator variable> ::=
SQL TYPE IS <path-resolved user-defined type name> AS LOCATOR

<Ada REF variable> ::= SQL TYPE IS <reference type>
<Ada array locator variable> ::= SQL TYPE IS <array type> AS LOCATOR

<Ada multiset locator variable> ::= SQL TYPE IS <multiset type> AS LOCATOR

Syntax Rules

1) An <embedded SQL Ada program™> is a compilation unit that consists of Ada text and SQL text. The Ada
text shall conform to [ISO8652]. The SQL text shall consist of one or more <embedded SQL statement>s
and, optionally, one or more <embedded SQL declare section>s.

2) An<embedded SQL statement> may be specified wherever an Ada statement may be specified. An
<embedded SQL statement> may be prefixed by an Ada label.

3) An <Ada host identifier> is any valid Ada identifier. An <Ada host identifier> shall be contained in an
<embedded SQL Ada program>.

4) An <Ada variable definition> defines one or more host variables.

5) An<Ada variable definition> shall be modified as follows before it is placed into the program derived
from the <embedded SQL Ada program> (see the Syntax Rules of Subclause 20.1, “<embedded SQL host
program>"):

a) Any optional CHARACTER SET specification shall be removed from an <Ada qualified type specifi-
cation> and <Ada derived type specification>.

b) The <length> specified in a CHAR declaration of any <Ada qualified type specification> or <Ada
derived type specification> that contains a CHARACTER SET specification shall be replaced by a
length equal to the length in octets of PN, where PN is the <Ada host identifier> specified in the con-
taining <Ada variable definition>.

1006 Foundation (SQL/Foundation) ©ISO/IEC 2003 ~ All rights reserved

Copyright Canadian Standards Assaciation
Reproduced by IHS under ticense with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from 1HS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.3 <embedded SQL Ada program>

c) The syntax
SQL TYPE IS CLOB (L)
and the syntax
SQL TYPE IS BLOB (L)
for a given <Ada host identifier> HVN shall be replaced by
TYPE HVN IS RECORD
HVN RESERVED : Interfaces.SQL.INT;
HVN_LENGTH : Interfaces.SQL.INT;
HVN DATA : Interfaces.SQL.CHAR(1l..L);
END RECORD;
in any <Ada CLOB variable> or <Ada BLOB variable>, where L is the numeric value of <large object
: length> as specified in Subclause 5.2, “<token> and <separator>".
- d) The syntax
‘ SQL TYPE IS UDTN AS PDT
shall be replaced by
ADT
in any <Ada user-defined type variable>, where 4DT is the data type listed in the “Ada data type”
column corresponding to the row for SQL data type PDT in Table 16, “Data type correspondences for
Ada”. ADT shall not be “none”. The data type identified by UDTN is called the associated user-defined
type of the host variable and the data type identified by PDT is called the associated SQL data type of
the host variable.
e) The syntax
SQL TYPE IS BLOB AS LOCATOR
shall be replaced by
Interfaces.SQL.INT
in any <Ada BLOB locator variable>. The host variable defined by <Ada BLOB locator variable> is
called a binary large object locator variable.
f) The syntax
SQL TYPE IS CLOB AS LOCATOR
shall be replaced by
Interfaces.SQL.INT
in any <Ada CLOB locator variable>. The host variable defined by <Ada CLOB locator variable> is
called a character large object locator variable.
g) The syntax
SQL TYPE IS <path-resolved user-defined type name> AS LOCATOR
©ISO/IEC 2003 — All rights reserved Embedded SQL 1007
Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.3 <embedded SQL Ada program>

shall be replaced by
Interfaces.SQL.INT

in any <Ada user-defined type locator variable>. The host variable defined by <Ada user-defined type
locator variable> is called a user-defined type locator variable. The data type identified by <path-
resolved user-defined type name> is called the associated user-defined type of the host variable.

h) The syntax
SQL TYPE IS <array type> AS LOCATOR
shall be replaced by
Interfaces.SQL.INT

in any <Ada array locator variable>. The host variable defined by <Ada array locator variable> is called
an array locator variable. The data type identified by <array type> is called the associated array type
of the host variable.

i) The syntax
SQL TYPE IS <multiset type> AS LOCATOR
shall be replaced by
Interfaces.SQL.INT

in any <Ada multiset locator variable>. The host variable defined by <Ada multiset locator variable>
is called a multiset locator variable. The data type identified by <multiset type> is called the associated
multiset type of the host variable.

j) The syntax
SQL TYPE IS <reference type>
for a given <Ada host identifier> RTV shall be replaced by
RTV : Interfaces.SQL.CHAR(1l..<length>)
in any <Ada REF variable>, where <length> is the length in octets of the reference type.

The modified <Ada variable definition> shall be a valid Ada object-declaration in the program derived
from the <embedded SQL Ada program>.

6) The reference type identified by <reference type> contained in an <Ada REF variable> is called the refer-
enced type of the reference.

7) An<Ada variable definition> shall be specified within the scope of Ada with and use clauses that specify
the following:

with Interfaces.SQL;
use Interfaces.SQL;

use Interfaces.SQL.CHARACTER_SET;

1008 Foundation (SQL/Foundation) e . ©ISO/IEC 2003 — Al rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Soid 10:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.3 <embedded SQL Ada program>

8) The <character representation> sequence in an <Ada initial value> specifies an initial value to be assigned
to the Ada variable. It shall be a valid Ada specification of an initial value.

9) CHAR describes a character string variable whose equivalent SQL data type is CHARACTER with the
same length and character set specified by <character set specification>. If <character set specification> is
not specified, then an implementation-defined <character set specification> is implicit.

10) SMALLINT, INT, and BIGINT describe exact numeric variables. The equivalent SQL data types are
SMALLINT, INTEGER, and BIGINT, respectively.

11) REAL and DOUBLE_PRECISION describe approximate numeric variables. The equivalent SQL data
types are REAL and DOUBLE PRECISION, respectively.

12) BOOLEAN describes a boolean variable. The equivalent SQL data type is BOOLEAN.

13) SQLSTATE_TYPE describes a character string variable whose length is the length of the SQLSTATE
parameter, five characters.

14) INDICATOR_TYPE describes an exact numeric variable whose specific data type is any <exact numeric
type> with a scale of 0 (zero).

Access Rules

None.

General Rules

1) See Subclause 20.1, “<embedded SQL host program>".

Conformance Rules

1) Without Feature BO11, “Embedded Ada”, conforming SQL language shall not contain an <embedded SQL |
Ada program>.

2) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain an
<Ada BLOB variable>.

3) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain an
<Ada CLOB variable>.

4) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain an
<Ada BLOB locator variable>.

5) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain an
<Ada CLOB locator variable>.

6) Without Feature T071, “BIGINT data type”, conforming SQL language shall not contain an <Ada qualified
type specification> that contains Interfaces.SQL.BIGINT.

7) Without Feature T071, “BIGINT data type”, conforming SQL language shall not contain an <Ada
unqualified type specification> that contains BIGINT.

©ISO/IEC 2003 — All rights reserved Embedded SQL 1009

Copyright Canadian Standards Assaciation
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.3 <embedded SQL Ada program>

8) Without Feature S241, “Transform functions”, conforming SQL language shall not contain an <Ada user-
defined type variable>.

9) Without Feature S041, “Basic reference types”, conforming SQL language shall not contain an <Ada REF
variable>,

10) Without Feature S232, “Array locators”, conforming SQL language shall not contain an <Ada array locator
variable>.

11) Without Feature S233, “Multiset locators”, conforming SQL language shall not contain an <Ada multiset
locator variable>.

12) Without Feature S231, “Structured type locators”, conforming SQL language shall not contain a <path-
resolved user-defined type name> simply contained in an <Ada user-defined type locator variable> that
identifies a structured type.

1010 Foundation (SQL/Foundation) ©ISO/IEC 2003 - Al rights reserved

Copyright Canadian Standards Association
Raproduced by HS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/TEC 9075-2:2003 (E)
20.4 <embedded SQL C program>

20.4 <embedded SQL C program>

Function

Specify an <embedded SQL C program>.

Format

<embedded SQL C program> ::= !! See the Syntax Rules.

<C variable definition> ::=
[<C storage class>] [<C class modifiexrs>]
<C variable specification> <semicolon>

<C variable specification> ::=
<C numeric variable>
| <C character variables
| <C derived variable>

<C storage class> ::=
auto
| extern
| static

<C class modifier> ::=
const
| volatile

<C numeric variable> ::=
{ long long | long | short | float | double }
<C host identifier> [<C initial values]
[{ <comma> <C host identifier> [<C initial value>] }...]

<C character variable> ::=
<C character type> [CHARACTER SET [IS] <character set specifications>]
<C host identifier> <C array specification> [<C initial value>]
[{ <comma> <C host identifier> <C array specifications>
[<C initial value> 1 }...]

<C character type> ::=
char
| unsigned char
| unsigned short

<C array specification> ::= <left bracket> <length> <right bracket>
<C host identifier> ::= !! See the Syntax Rules.

<C derived variable> ::=
<C VARCHAR variable>
| <C NCHAR variable>
| <C NCHAR VARYING variable>
| <C CLOB variable>
| <C NCLOB variable>

©ISO/IEC 2003 - All rights reserved Embedded SQL 1011

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold t0:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.4 <embedded SQL C program>

<C
<C
<C
<C
<C
<C
<C
<C

BLOB variable>

user-defined type variable>

CLOB locator variable>

BLOB locator variable>

array locator variable>

multiset locator variables>
user-defined type locator variables>
REF variable>

<C VARCHAR variable> ::=
VARCHAR [CHARACTER SET [IS] <character set specifications]

<C host identifiers <C array specification> [<C initial value>]
[{ <comma> <C host identifier> <C array specification> [

<C

<C

<C

<C

<C

<C

<C

<C

initial value>] }...]

NCHAR variable> ::=

NCHAR [CHARACTER SET [IS] <character set specification>]

<C host identifier> <C array specification> [<C initial value>]
[{ <comma> <C host identifier> <C array specification>
[<C initial value>] } ...]

NCHAR VARYING variable> ::=
NCHAR VARYING [CHARACTER SET [IS] <character set specification>]
<C host identifier> <C array specification> [<C initial value>]

[{ <comma> <C host identifier> <C array specification> [

<C

initial value>] } ...]

CLOB variables> ::=
SQL TYPE IS CLOB <left paren> <large object length> <right parens
[CHARACTER SET [IS] <character set specification>]

[{ <comma> <C host identifier> [

<C host identifier> [<C initial values]

<C

initial value>] }...]

NCLOB variables> ::=
SQL TYPE IS NCLOB <left paren> <large object length> <right parens>
[CHARACTER SET [IS] <character set specification>]

[{ <comma> <C host identifiers>

<C host identifier> [<C initial value>]

[<C initial value>] }...]

user-defined type variable> ::=
SQL TYPE IS <path-resolved user-defined type name> AS <predefined type>

<C host identifier> [<C initial values>]

[{ <comma> <C host identifiers> [

<C

initial value> 1 } ...]

BLOB variables> ::=
SQL TYPE IS BLOB <left paren> <large object length> <right paren>

<C host identifier> [<C initial value>]

[{ <comma> <C host identifier> [

<C

initial value> 1 } ...]

CLOB locator variable> ::=
SQL TYPE IS CLOB AS LOCATOR

<C host identifier> [<C initial value>]

[{ <comma> <C host identifier> [

<C

initial value> 1 } ...]

1012 Foundation (SQL/Foundation)

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA

No rep

or

g P

itted without license from IHS

Sold to:INFOTRIEVE, INC, W0277804
Not for Resale,2005/6/17 21.54:10 GMT

©ISO/IEC 2003 - All rights reserved

<C

<C

<C

<C

<C

<C

ISO/IEC 9075-2:2003 (E)
20.4 <embedded SQL C program>

BLOB locator variable> ::=
SQL TYPE IS BLOB AS LOCATOR
<C host identifier> [<C initial value>]
[{ <comma> <C host identifier> [
<C initial value>] } ... 1

array locator variable> ::=

SQL TYPE IS <array type> AS LOCATOR

<C host identifier> [<C initial value>]
[{ <comma> <C host identifier> [

<C initial value>] } ...]

multiset locator variables ::=
SQL TYPE IS <multiset type> AS LOCATOR
<C host identifier> [<C initial value>]
[{ <comma> <C host identifier> [
<C initial value>] } ...]

user-defined type locator variable> ::=
SQL TYPE IS <path-resolved user-defined type name> AS LOCATOR
<C host identifier> [<C initial value>]
[{ <comma> <C host identifier> [
<C initial value>] }...]

REF variable> ::=
SQL TYPE IS <reference type> <C host identifier> [<C initial value>]
[{ <comma> <C host identifier> [<C initial value>] }...]

initial value> ::=
<equals operator> <character representations...

Syntax Rules

1)

2)

3)

4)
5)

An <embedded SQL C program> is a compilation unit that consists of C text and SQL text. The C text
shall conform to {ISO9899]. The SQL text shall consist of one or more <embedded SQL statement>s and,
optionally, one or more <embedded SQL declare section>s.

An <embedded SQL statement> may be specified wherever a C statement may be specified within a function
block. If the C statement could include a label prefix, then the <embedded SQL statement> may be imme-
diately preceded by a label prefix.

A <C host identifier> is any valid C variable identifier. A <C host identifier> shall be contained in an
<embedded SQL C program>.

A <C variable definition> defines one or more host variables.

A <C variable definition> shall be modified as follows before it is placed into the program derived from
the <embedded SQL C program> (see the Syntax Rules of Subclause 20.1, “<embedded SQL host pro-
gram>"")

a) Any optional CHARACTER SET specification shall be removed from a <C VARCHAR variable>, a
<C character variable>, a <C CLOB variable>, a <C NCHAR variable>, <C NCHAR VARYING
variable>, or a <C NCLOB variable>.

b) The syntax “VARCHAR?” shall be replaced by “char” in any <C VARCHAR variable>.

©ISO/IEC 2003 — All rights reserved Embedded SQL 1013

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No rep ion or

without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.4 <embedded SQL C program>

¢) The <length> specified in a <C array specification> in any <C character variable> whose <C character
type> specifies “char” or “unsigned char”,inany <C VARCHAR variable>, in any <C NCHAR
variable>, or in any <C NCHAR VARYING variable>, and the <large object length> specified in a
<C CLOB variable> that contains a CHARACTER SET specification or <C NCLOB variable> shall
be replaced by a length equal to the length in octets of PN, where PN is the <C host identifier> specified
in the containing <C variable definition>.
NOTE 446 — The <length> does not have to be adjusted for <C character type>s that specify “unsigned short” because
the units of <length> are already the same units as used by the underlying character set.
d) The syntax “NCHAR” in any <C NCHAR variable> and the syntax “NCHAR VARYING” in any <C
NCHAR VARYING variable> shall be replaced by “char”.
e) The syntax
SQL TYPE IS NCLOB (L)
for a given <C host identifier> Avn shall be replaced by
struct {
long hvn_reserved;
unsigned long hvn_length;
char hvn_datal(L];
} hvn
in any <C NCLOB variable>, where L is the numeric value of <large object length> as specified in
Subclause 5.2, “<token> and <separator>".
f) The syntax
SQL TYPE IS CLOB (L)
or the syntax
SQL TYPE IS BLOB (L)
for a given <C host identifier> Avn shall be replaced by:
struct {
long hvn_reserved;
unsigned long hvn_length;
char hvn_datalL];
} hvn
in any <C CLOB variable> or <C BLOB variable>, where L is the numeric value of <large object
length> as specified in Subclause 5.2, “<token> and <separator>".
g) The syntax
SQL TYPE IS UDTN AS PDT
shall be replaced by
ADT
in any <C user-defined type variable>, where ADT is the data type listed in the “C data type” column
corresponding to the row for SQL data type PDT in Table 17, “Data type correspondences for C”. ADT
1014 Foundation (SQL/Foundation) ©ISO/IEC 2003 - Al rights reserved
Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No

without licanse from IHS Not for Resale,2005/6/17 21:54:10 GMT

p 1 or

ISO/IEC 9075-2:2003 (E)
20.4 <embedded SQL C program>

shall not be “none”. The data type identified by UDTN is called the associated user-defined type of the
host variable and the data type identified by PDT is called the associated SQOL data type of the host
variable.

h) The syntax
SQL TYPE IS BLOB AS LOCATOR
shall be replaced by
unsigned long
in any <C BLOB locator variable>. The host variable defined by <C BLOB locator variable> is called
a binary large object locator variable.
i) The syntax
SQL TYPE IS CLOB AS LOCATOR
shall be replaced by
unsigned long
in any <C CLOB locator variable>. The host variable defined by <C CLOB locator variable> is called
a character large object locator variable.
j) The syntax
SQL TYPE IS <array type> AS LOCATOR
shall be replaced by
unsigned long
in any <C array locator variable>. The host variable defined by <C array locator variable> is called an
array locator variable. The data type identified by <array type> is called the associated array type of
the host variable.
k) The syntax
SQL TYPE IS <multiset type> AS LOCATOR
shall be replaced by
unsigned long
in any <C multiset locator variable>. The host variable defined by <C multiset locator variable> is
called a multiset locator variable. The data type identified by <multiset type> is called the associated
multiset type of the host variable.
1) The syntax
SQL TYPE IS <path-resolved user-defined type name> AS LOCATOR
shall be replaced by
unsigned long
©ISO/IEC 2003 — All rights reserved Embedded SQL 1015
Reproaucse by 15 under ioense win CSA S0k INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.4 <embedded SQL C program>

in any <C user-defined type locator variable>. The host variable defined by <C user-defined type
locator variable> is called a user-defined type locator variable. The data type identified by <path-
resolved user-defined type name> is called the associated user-defined type of the host variable.

m) The syntax
SQL TYPE IS <reference type>
for a given <C host identifier> Avn shall be replaced by
unsigned char hvn[L]
in any <C REF variable>, where L is the length in octets of the reference type.

The modified <C variable definition> shall be a valid C data declaration in the program derived from the
<embedded SQL C program>.

6) The reference type identified by <reference type> contained in a <C REF variable> is called the referenced
type of the reference.

7) The <character representation> sequence contained in a <C initial value> specifies an initial value to be
assigned to the C variable. It shall be a valid C specification of an initial value.

8) Except for array specifications for character strings, a <C variable definition> shall specify a scalar type.

9) Ina <C variable definition>, the words “VARCHAR”, “CHARACTER”, “SET”, “IS”, “VARYING”,
“BLOB”, “CLOB”, “NCHAR?”, “NCLOB”, “AS”, “LOCATOR?”, and “REF” may be specified in any
combination of upper-case and lower-case letters (see the Syntax Rules of Subclause 5.2, “<token> and
<separator>".

10) In a <C character variable>, a <C VARCHAR variable>, or a <C CLOB variable>, if a <character set
specification> is specified, then the equivalent SQL data type is CHARACTER, CHARACTER VARYING,
or CHARACTER LARGE OBJECT whose character set is the same as the character set specified by the
<character set specification>. In a <C NCHAR variable>, a <C NCHAR VARYING variable>, or a <C
NCLOB variable>, if a <character set specification> is specified, then the equivalent SQL data type is
NATIONAL CHARACTER, NATIONAL CHARACTER VARYING, or NATIONAL CHARACTER
LARGE OBIJECT whose character set is the same as the character set specified by the <character set
specification>. If <character set specification> is not specified, then an implementation-defined <character
set specification> is implicit.

11) Each <C host identifier> specified in a <C character variable> or a <C NCHAR variable> describes a fixed-
length character string. The length is specified by the <length> of the <C array specification>. The value
in the host variable is terminated by a null character and the position occupied by this null character is
included in the length of the host variable. The equivalent SQL data type is CHARACTER or NATIONAL
CHARACTER, respectively, whose length is one less than the <length> of the <C array specification> and
whose value does not include the terminating null character. The <length> shall be greater than 1 (one).

12) Each <C host identifier> specified in a <C VARCHAR variable> or a <C NCHAR VARYING variable>
describes a variable-length character string. The maximum length is specified by the <length> of the <C
array specification>. The value in the host variable is terminated by a null character and the position
occupied by this null character is included in the maximum length of the host variable. The equivalent SQL
data type is CHARACTER VARYING or NATIONAL CHARACTER VARYING, respectively, whose
maximum length is 1 (one) less than the <length> of the <C array specification> and whose value does not
include the terminating null character. The <length> shall be greater than 1 (one).

1016 Foundation (SQL/Foundation) ©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.4 <embedded SQL C program>

13) “short” describes an exact numeric variable. The equivalent SQL data type is SMALLINT.
14) “long” describes an exact numeric variable. The equivalent SQL data type is INTEGER or BOOLEAN.
15) “long long” describes an exact numeric variable. The equivalent SQL data type is BIGINT.
16) “float” describes an approximate numeric variable. The equivalent SQL data type is REAL.

17) “double” describes an approximate numeric variable. The equivalent SQL data type is DOUBLE PRECI-
SION.

Access Rules

None.

General Rules

1) See Subclause 20.1, “<embedded SQL host program>".

Conformance Rules

1) Without Feature B012, “Embedded C”, conforming SQL language shall not contain an <embedded SQL
C program>.

2) Without Feature S041, “Basic reference types”, conforming SQL language shall not contain a <C REF
variable>,

3) Without Feature S241, “Transform functions”, conforming SQL language shall not contain a <C user-
defined type variable>.

4) Without Feature $S232, “Array locators”, conforming SQL. language shall not contain an <C array locator
variable>.

5) Without Feature S233, “Multiset locators”, conforming SQL language shall not contain a <C multiset
locator variable>.

6) Without Feature S231, “Structured type locators”, conforming SQL language shall not contain a <path-
resolved user-defined type name> simply contained in a <C user-defined type locator variable> that iden-
tifies a structured type.

7) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a <C
BLOB variable>.

8) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a <C
CLOB variable>.

9) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a <C
BLOB locator variable>.

10) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a <C
CLOB locator variable>.

©ISO/IEC 2003 — All rights reserved Embedded SQL 1017

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.4 <embedded SQL C program>

11) Without Feature T071, “BIGINT data type”, conforming SQL language shall not contain a <C numeric
variable> that contains long long.

1018 Foundation (SQL/Foundation) ©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold t0:INFOTRIEVE, INC, W0277604

No reproduction or networking permitied without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.5 <embedded SQL COBOL program>

20.5 <embedded SQL COBOL program>

Function

Specify an <embedded SQL COBOL program>.

Format

<embedded SQL COBOL program> ::= !! See the Syntax Rules.

<COBOL variable definition> ::=
{ 01 |77 } <COBOL host identifier>
<COBOL type specification> [<character representation>...] <periods

<COBOL host identifier> ::= !! See the Syntax Rules.

<COBOL type specifications> ::=
<COBOL character type>
| <COBOL national character type>
| <COBOL numeric type>
| <COBOL integer type>
| <COBOL derived type specification>

<COBOL derived type specifications> ::=
<COBOL CLOB variable>

| <COBOL NCLOB variables>
| <COBOL BLOB variable>
| <COBOL user-defined type variable>
| <COBOL CLOB locator variables>
| <COBOL BLOB locator variables
| <COBOL array locator variables>
| <COBOL multiset locator variables>
| <COBOL user-defined type locator variables>
| <COBOL REF variables>

<COBOL character type> ::=
[CHARACTER SET [IS] <character set specification>]
{ pic | PICTURE } [1S] { X [<left paren> <length> <right paren>] }...

<COBOL national character type> ::=
[CHARACTER SET [IS] <character set specification>]
{ PIC | PICTURE } [IS] { N [<left paren> <length> <right paren>] }...

<COBOL CLOB variables> ::=
[USAGE [IS]] SQL TYPE IS CLOB <left parens> <large object length> <right paren>
[CHARACTER SET [IS] <character set specification>]

<COBOL NCLOB variable> ::=
[USAGE [IS]] SQL TYPE IS NCLOB <left paren> <large object length> <right parens
[CHARACTER SET [IS] <character set specification>]

<COBOL BLOB variable> ::=
[USAGE [IS]] SQL TYPE IS BLOB <left paren> <large object length> <right paren>

©ISO/IEC 2003 — All rights reserved Embedded SQL 1019

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from HS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.5 <embedded SQL COBOL program>

<COBOL user-defined type variable> ::=
[USAGE [IS]] SQL TYPE IS <path-resolved user-defined type names
AS <predefined type>

<COBOL CLOB locator variable> ::=
[USAGE [IS]] SQL TYPE IS CLOB AS LOCATOR

<COBOL BLOB locator variable> ::=
[USAGE [IS]] SQL TYPE IS BLOB AS LOCATOR

<COBOL array locator variable> ::=
[USAGE [IS] 1 SQL TYPE IS <array type> AS LOCATOR

<COBOL multiset locator variable> ::=
[USAGE [IS]] SQL TYPE IS <multiset type> AS LOCATOR

<COBOL user-defined type locator variable> ::=
[USAGE [IS]] SQL TYPE IS <path-resolved user-defined type name> AS LOCATOR

<COBOL REF variable> ::=
[USAGE [IS]] SQL TYPE IS <reference type>

<COBOL numeric type> ::=
{ PIC | PICTURE } [IS] S <COBOL nines specification>
[USAGE [IS]] DISPLAY SIGN LEADING SEPARATE

<COBOL nines specification> ::=
<COBOL nines> [V [<COBOL nines>]]
| V <COBOL niness>

<COBOL integer types> ::= <COBOL binary integers>

<COBOL binary integer> ::=
{ PIC | PICTURE } [IS] S<COBOL nines>
[USAGE [IS]] BINARY

<COBOL nines> ::= { 9 [<left paren> <length> <right paren> 1 }...

NOTE 447 — The syntax “N(L)” is not part of the current COBOL standard, so its use is merely a recommendation; therefore, the
production <COBOL national character type> is not normative in this edition of ISO/IEC 9075.

Syntax Rules

1) An <embedded SQL COBOL program> is a compilation unit that consists of COBOL text and SQL text.
The COBOL text shall conform to [ISO1989]. The SQL text shall consist of one or more <embedded SQL
statement>s and, optionally, one or more <embedded SQL declare section>s.

2) An <embedded SQL statement> in an <embedded SQL COBOL program> may be specified wherever a
COBOL statement may be specified in the Procedure Division of the <embedded SQL COBOL program>.
If the COBOL statement could be immediately preceded by a paragraph-name, then the <embedded SQL
statement> may be immediately preceded by a paragraph-name.

3) A <COBOL host identifier> is any valid COBOL data-name. A <COBOL host identifier> shall be contained
in an <embedded SQL COBOL program>.

1020 Foundation (SQL/Foundation) ... ©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Assaciation
Reproduced by IHS under license with CSA Soid to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.5 <embedded SQL COBOL program>

4) A <COBOL variable definition> is a restricted form of COBOL data description entry that defines a host
variable.

5) A <COBOL variable definition> shall be modified as follows before it is placed into the program derived
from the <embedded SQL COBOL program> (see the Syntax Rules of Subclause 20.1, “<embedded SQL
host program>").

a) Any optional CHARACTER SET specification shall be removed from a <COBOL character type>, a
<COBOL national character type>, a <COBOL CLOB variable>, and a <COBOL NCLOB variable>.

b) The <length> specified in any <COBOL character type> and the <large object length> specified in any
<COBOL CLOB variable> or <COBOL NCLOB variable> that contains a CHARACTER SET speci-
fication shall be replaced by a length equal to the length in octets of PN, where PN is the <COBOL
host identifier> specified in the containing <COBOL variable definition>.

NOTE 448 — The <length> specified in a <COBOL national character type> does not have to be adjusted, because the units
of <length> are already the same units as used by the underlying character set.

NOTE 449 — The syntax “N(L)” is not part of the current COBOL standard, so its use is merely a recommendation; therefore,
the production <COBOL national character type> is not normative in ISO/IEC 9075.

¢) The syntax
SQL TYPE IS CLOB (L)
or the syntax
SQL TYPE IS NCLOB (L)
or the syntax
SQL TYPE IS BLOB (L)
for a given <COBOL host identifier> HVN shall be replaced by:

49 HVN-RESERVED PIC S9(9) USAGE IS BINARY.
49 HVN-LENGTH PIC S9(9) USAGE IS BINARY.
49 HVN-DATA PIC X(L).

in any <COBOL CLOB variable> or <COBOL BLOB variable>.
d) The syntax
SQL TYPE IS UDTN AS PDT
shall be replaced by
ADT

in any <COBOL user-defined type variable>, where ADT is the data type listed in the “COBOL data
type” column corresponding to the row for SQL data type PDT in Table 18, “Data type correspondences
for COBOL”. ADT shall not be “none”. The data type identified by UDTN is called the associated
user-defined type of the host variable and the data type identified by PDT is called the associated SOL
data type of the host variable.

e) The syntax
SQL TYPE IS BLOB AS LOCATOR

©ISO/IEC 2003 - All rights reserved T Embedded SQL 1021

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.5 <embedded SQL COBOL program>

g)

h)

i)

)

shall be replaced by
PIC S9(9) USAGE IS BINARY

in any <COBOL BLOB locator variable>. The host variable defined by <COBOL BLOB locator
variable> is called a binary large object locator variable.

The syntax

SQL TYPE IS CLOB AS LOCATOR
shall be replaced by

PIC S9(9) USAGE IS BINARY

in any <COBOL CLOB locator variable>. The host variable defined by <COBOL CLOB locator
variable> is called a character large object locator variable.

The syntax

SQL TYPE IS <array type> AS LOCATOR
shall be replaced by

PIC S9(9) USAGE IS BINARY

in any <COBOL array locator variable>, The host variable defined by <COBOL array locator variable>
is called an array locator variable. The data type identified by <array type> is called the associated
array type of the host variable.

The syntax

SQL TYPE IS <multiset type> AS LOCATOR
shall be replaced by

PIC S9(9) USAGE IS BINARY

in any <COBOL multiset locator variable>. The host variable defined by <COBOL multiset locator
variable> is called a multiset locator variable. The data type identified by <multiset type> is called the
associated multiset type of the host variable.

The syntax

SQL TYPE IS <path-resolved user-defined type name> AS LOCATOR
shall be replaced by

PIC S9(9) USAGE IS BINARY

in any <COBOL user-defined type locator variable>. The host variable defined by <COBOL user-
defined type locator variable> is called a user-defined type locator variable. The data type identified
by <path-resolved user-defined type name> is called the associated user-defined type of the host variable.

The syntax

SQL TYPE IS <reference type>

1022 Foundation (SQL/Foundation) ©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from 1HS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.5 <embedded SQL COBOL program>

for a given <COBOL host identifier> HVN shall be replaced by
01 HVN PICTURE X (L)
in any <COBOL REF variable>, where L is the length in octets of the reference type.

The modified <COBOL variable definition> shall be a valid data description entry in the Data Division of
the program derived from the <embedded SQL COBOL program>.

6) The reference type identified by <reference type> contained in a <COBOL REF variable> is called the
referenced type of the reference.

7) The optional <character representation> sequence in a <COBOL variable definition> may specify a VALUE
clause. Whether other clauses may be specified is implementation-defined. The <character representation>
sequence shall be such that the <COBOL variable definition> is a valid COBOL data description entry.

8) A <COBOL character type> describes a character string variable whose equivalent SQL data type is
CHARACTER with the same length and character set specified by <character set specification>. If <char-
acter set specification> is not specified, then an implementation-defined <character set specification> is
implicit.

9) A <COBOL numeric type> describes an exact numeric variable. The equivalent SQL data type is NUMERIC
of the same precision and scale.

10) A <COBOL binary integer> describes an exact numeric variable. The equivalent SQL data type is
SMALLINT, INTEGER, or BIGINT.

Access Rules

None.

General Rules

1) See Subclause 20.1, “<embedded SQL host program>".

Conformance Rules

1) Without Feature B013, “Embedded COBOL”, conforming SQL language shall not contain an <embedded
SQL COBOL program>.

2) Without Feature S041, “Basic reference types”, conforming SQL language shall not contain a <COBOL
REF variable>.

3) Without Feature S241, “Transform functions”, conforming SQL language shall not contain a <COBOL
user-defined type variable>.

4) Without Feature S232, “Array locators”, conforming SQL language shall not contain a <COBOL array
locator variable>.

5) Without Feature $233, “Multiset locators”, conforming SQL language shall not contain a <COBOL multiset
locator variable>.

©ISO/IEC 2003 — All rights reserved T Embedded SQL 1023

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from HS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.5 <embedded SQL COBOL program>

6): Without Feature S231, “Structured type locators”, conforming SQL language shall not contain a <path-
- resolved user-defined type name> simply contained in a <COBOL user-defined type locator variable> that
¢ identifies a structured type.

7) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a
<COBOL BLOB variable>.

8) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a
<COBOL CLOB variable>.

9) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a
<COBOL BLOB locator variable>.

10) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a
<COBOL CLOB locator variable>.

1024 Foundation (SQL/Foundation) ©ISO/IEC 2003 - Al rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.6 <embedded SQL Fortran program>

20.6 <embedded SQL Fortran program>

Function

Specify an <embedded SQL Fortran program>.

Format

<embedded SQL Fortran program> ::= !! See the Syntax Rules.

<Fortran variable definition> ::=
<Fortran type specification> <Fortran host identifiers
[{ <comma> <Fortran host identifier> }...]

<Fortran host identifiers> ::= !! See the Syntax Rules.

<Fortran type specification> ::=
CHARACTER [<asterisk> <length>] [CHARACTER SET
[IS] <character set specifications>]
| CHARACTER KIND = n [<asterisk> <length>]
[CHARACTER SET [IS] <character set specifications>]
| INTEGER
| REAL
I DOUBLE PRECISION
| LOGICAL
| <Fortran derived type specification>

<Fortran derived type specification> ::=
<Fortran CLOB variable>
| <Fortran BLOB variable>
| <Fortran user-defined type variable>
| <Fortran CLOB locator variables
| <Fortran BLOB locator variables>
| <Fortran user-defined type locator variable>
| <Fortran array locator variables
| <Fortran multiset locator variables
| <Fortran REF variable>

- <Fortran CLOB variable> ::=
SQL TYPE IS CLOB <left paren> <large object length> <right parens
[CHARACTER SET [IS] <character set specification>]

. <Fortran BLOB variable> ::=
SQL TYPE IS BLOB <left paren> <large object length> <right parens>

<Fortran user-defined type variable> ::=
SQL TYPE IS <path-resolved user-defined type name> AS <predefined type>

<Fortran CLOB locator variable> ::=
SQL TYPE IS CLOB AS LOCATOR

<Fortran BLOB locator variable> ::=
SQL TYPE IS BLOB AS LOCATOR

©ISO/IEC 2003 — All rights reserved Embedded SQL 1025

Copyright Canadian Standards Association
Reproduced by HS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without ficense from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.6 <embedded SQL Fortran program>

<Fortran user-defined type locator variables> ::=
SQL TYPE IS <path-resolved user-defined type name> AS LOCATOR

<Fortran array locator variable> ::=
SQL TYPE IS <array type> AS LOCATOR

<Fortran multiset locator variables> ::=
SQL TYPE IS <multiset type> AS LOCATOR

<Fortran REF variable> ::=
SQL TYPE 1S <reference type>

Syntax Rules

1) An <embedded SQL Fortran program> is a compilation unit that consists of Fortran text and SQL text.
The Fortran text shall conform to [ISO1539]. The SQL text shall consist of one or more <embedded SQL
statement™>s and, optionally, one or more <embedded SQL declare section>s.

2) An <embedded SQL statement> may be specified wherever an executable Fortran statement may be spec-
ified. An <embedded SQL statement> that precedes any executable Fortran statement in the containing
<embedded SQL Fortran program> shall not have a Fortran statement number. Otherwise, if the Fortran
statement could have a statement number then the <embedded SQL statement> can have a statement
number.

3) Blanks are significant in <embedded SQL statement>s. The rules for <separator>s in an <embedded SQL
statement> are as specified in Subclause 5.2, “<token> and <separator>".

4) A <Fortran host identifier> is any valid Fortran variable name with all <space> characters removed. A
<Fortran host identifier> shall be contained in an <embedded SQL Fortran program>.

5) A <Fortran variable definition> is a restricted form of Fortran type-statement that defines one or more host
variables.

6) A <Fortran variable definition> shall be modified as follows before it is placed into the program derived
from the <embedded SQL Fortran program> (see the Syntax Rules Subclause 20.1, “<embedded SQL host
program>"’).

a) Any optional CHARACTER SET specification shall be removed from the CHARACTER and the
CHARACTER KIND=n alternatives in a <Fortran type specification>.

b) The <length> specified in the CHARACTER alternative of any <Fortran type specification> and the
<large object length> specified in any <Fortran CLOB variable> that contains a CHARACTER SET
specification shall be replaced by a length equal to the length in octets of PN, where PN is the <Fortran
host identifier> specified in the containing <Fortran variable definition>.

NOTE 450 — The <length> does not have to be adjusted for CHARACTER KIND=n alternatives of any <Fortran type
specification™>, because the units of <length> are already the same units as used by the underlying character set.

¢) The syntax
SQL TYPE IS CLOB {(L)
and the syntax

SQL TYPE IS BLOB (L)

1026 Foundation (SQL/Foundation) ©ISO/IEC 2003 ~ All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.6 <embedded SQL Fortran program>

for a given <Fortran host identifier> HVN shall be replaced by

INTEGER HVN_RESERVED
INTEGER HVN_LENGTH
CHARACTER HVN_DATA [<asterisk> L]

in any <Fortran CLOB variable> or <Fortran BLOB variable>, where L is the numeric value of <large
object length> as specified in Subclause 5.2, “<token> and <separator>".

d) The syntax
SQL TYPE IS UDTN AS PDT
shall be replaced by
ADT
in any <Fortran user-defined type variable>, where ADT is the data type listed in the “Fortran data
type” column corresponding to the row for SQL data type PDT'in Table 19, “Data type correspondences
for Fortran”. ADT shall not be “none”. The data type identified by UDTN is called the associated user-
defined type of the host variable and the data type identified by PDT is called the associated SQL data
type of the host variable.
e) The syntax
SQL TYPE IS BLOB AS LOCATOR
shall be replaced by
INTEGER
in any <Fortran BLOB locator variable>. The host variable defined by <Fortran BLOB locator variable>
: is called a binary large object locator variable.
" f) The syntax
SQL TYPE IS CLOB AS LOCATOR
shall be replaced by
INTEGER
in any <Fortran CLOB locator variable>. The host variable defined by <Fortran CLOB locator variable>
is called a character large object locator variable.
g) The syntax
SQL TYPE IS <path-resolved user-defined type name> AS LOCATOR
shall be replaced by
INTEGER
in any <Fortran user-defined type locator variable>. The host variable defined by <Fortran user-defined
type locator variable> is called a user-defined type locator variable. The data type identified by <path-
resolved user-defined type name> is called the associated user-defined type of the host variable.
©ISO/IEC 2003 — All rights reserved Embedded SQL 1027
Copyright Canadian Standards Association
Reproduced py {HS under Iicense wilh CsA Sold to:INFOTRIEVE, INC, W0277804

No or

d without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.6 <embedded SQL Fortran program>

h) The syntax
SQL TYPE IS <array type> AS LOCATOR
shall be replaced by
INTEGER

in any <Fortran array locator variable>. The host variable defined by <Fortran array locator variable>
is called an array locator variable. The data type identified by <array type> is called the associated
array type of the host variable.

i) The syntax
SQL TYPE IS <multiset type> AS LOCATOR
shall be replaced by
INTEGER

in any <Fortran multiset locator variable>. The host variable defined by <Fortran multiset locator
variable> is called a multiset locator variable. The data type identified by <multiset type> is called the
associated multiset type of the host variable.

j) The syntax
SQL TYPE IS <reference type>
for a given <Fortran host identifier> HVN shall be replaced by
CHARACTER HVN * <lengths>
in any <Fortran REF variable>, where <length> is the length in octets of the reference type.

The modified <Fortran variable definition> shall be a valid Fortran type-statement in the program derived
from the <embedded SQL Fortran program>.

7) The reference type identified by <reference type> contained in an <Fortran REF variable> is called the
referenced type of the reference.

8) CHARACTER without “KIND=n" describes a character string variable whose equivalent SQL data type
is CHARACTER with the same length and character set specified by <character set specification>. If
<character set specification> is not specified, then an implementation-defined <character set specification>
is implicit.

9) CHARACTER KIND=n describes a character string variable whose equivalent SQL data type is either
CHARACTER or NATIONAL CHARACTER with the same length and character set specified by <char-
acter set specification>. If <character set specification> is not specified, then an implementation-defined
<character set specification> is implicit. The value of » determines implementation-defined characteristics
of the Fortran variable; values of n are implementation-defined.

10) INTEGER describes an exact numeric variable. The equivalent SQL data type is INTEGER.
11) REAL describes an approximate numeric variable. The equivalent SQL data type is REAL.

12) DOUBLE PRECISION describes an approximate numeric variable. The equivalent SQL data type is
DOUBLE PRECISION.

1028 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold lo:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.6 <embedded SQL Fortran program>

13) LOGICAL describes a boolean variable. The equivalent SQL data type is BOOLEAN.

Access Rules

None.

General Rules

D

See Subclause 20.1, “<embedded SQL host program>".

Conformance Rules

1)

2)

3)

4)

3)

6)

7

8)

9)

Without Feature B014, “Embedded Fortran”, conforming SQL language shall not contain an <embedded
SQL Fortran program>.

Without Feature S041, “Basic reference types”, conforming SQL language shall not contain a <Fortran
REF variable>.

Without Feature S241, “Transform functions”, conforming SQL language shall not contain a <Fortran user-
defined type variable>.

Without Feature $232, “Array locators”, conforming SQL language shall not contain a <Fortran array
locator variable>.

Without Feature S233, “Multiset locators”, conforming SQL language shall not contain a <Fortran multiset
locator variable>.

Without Feature S231, “Structured type locators”, conforming SQL language shall not contain a <path-
resolved user-defined type name> simply contained in a <Fortran user-defined type locator variable> that
identifies a structured type.

Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a
<Fortran BL.OB variable>.

Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a
<Fortran CLOB variable>.

Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a
<Fortran BLOB locator variable>.

10) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a

<Fortran CLOB locator variable>.

©ISO/IEC 2003 - All rights reserved Embedded SQL 1029

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, iNC, W0277804
No reproduction or networking permitted without license from IHS Not for Resala,2005/6/17 21:54:10 GMT

ISO/TEC 9075-2:2003 (E)
20.7 <embedded SQL MUMPS program>

20.7 <embedded SQL MUMPS program>

Function

Specify an <embedded SQL MUMPS program>.

Format

<embedded SQL MUMPS program> ::= !! See the Syntax Rules.

<MUMPS variable definitions> ::=
<MUMPS numeric variable> <semicolon>
| <MUMPS character variable> <semicolons
| <MUMPS derived type specification> <semicolons>

<MUMPS character variable> ::=
VARCHAR <MUMPS host identifier> <MUMPS length specifications>

[{ <comma> <MUMPS host identifier> <MUMPS length specification> }...]
<MUMPS host identifiers> ::= !! See the Syntax Rules.
<MUMPS length specification> ::= <left paren> <length> <right parens

<MUMPS numeric variable> ::=
<MUMPS type specification> <MUMPS host identifiers
[{ <comma> <MUMPS host identifier> }...]

<MUMPS type specification> ::=
INT
| DEC [<left paren> <precision> [<comma> <scale>] <right paren>]
| REAL

<MUMPS derived type specification> ::=
i <MUMPS CLOB variable>
| <MUMPS BLOB variables>
| <MUMPS user-defined type variables
| <MUMPS CLOB locator variables
| <MUMPS BLOB locator variable>
| <MUMPS user-defined type locator variables>
| <MUMPS array locator variables
| <MUMPS multiset locator variables
| <MUMPS REF variablex>

<MUMPS CLOB variable> ::=
SQL TYPE IS CLOB <left paren> <large object length> <right paren>
[CHARACTER SET [IS] <character set specification>]

<MUMPS BLOB variable> ::=
SQL TYPE IS BLOB <left paren> <large object length> <right paren>

<MUMPS user-defined type variable> ::=
SQL TYPE IS <path-resolved user-defined type name> AS <predefined type>

<MUMPS CLOB locator variable> ::=

1030 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.7 <embedded SQL MUMPS program>

SQL TYPE IS CLOB AS LOCATOR

<MUMPS BLOB locator variable> ::=
SQL TYPE IS BLOB AS LOCATOR

<MUMPS user-defined type locator variable> ::=
SQL TYPE IS <path-resolved user-defined type name> AS LOCATOR

<MUMPS array locator variable> ::=
SQL TYPE IS <array type> AS LOCATOR

<MUMPS multiset locator variables> ::=
SQL TYPE IS <multiset type> AS LOCATOR

<MUMPS REF variable> ::=
SQL TYPE IS <reference type>

Syntax Rules

1) An <embedded SQL MUMPS program> is a compilation unit that consists of M text and SQL text. The
M text shall conform to [ISO11756]. The SQL text shall consist of one or more <embedded SQL statement>s
and, optionally, one or more <embedded SQL declare section>s.

2) A <MUMPS host identifier> is any valid M variable name. A <MUMPS host identifier> shall be contained
in an <embedded SQL MUMPS program>.

3) An <embedded SQL statement> may be specified wherever an M command may be specified.
4) A <MUMPS variable definition> defines one or more host variables.

5) The <MUMPS character variable> describes a variable-length character string. The equivalent SQL data
type is CHARACTER VARYING whose maximum length is the <length> of the <MUMPS length speci-
fication> and whose character set is implementation-defined.

6) INT describes an exact numeric variable. The equivalent SQL data type is INTEGER.

7) DEC describes an exact numeric variable. The <scale> shall not be greater than the <precision>. The
equivalent SQL data type is DECIMAL with the same <precision> and <scale>.

8) REAL describes an approximate numeric variable. The equivalent SQL data type is REAL.

9) A <MUMPS derived type specification> shall be modified as follows before it is placed into the program
derived from the <embedded SQL MUMPS program> (see the Syntax Rules of Subclause 20.1,
“<embedded SQL host program>").

a) Any optional CHARACTER SET specification shall be removed from a <MUMPS CLOB variable>.
b) The syntax
SQL TYPE IS CLOB (L)
and the syntax
SQL TYPE IS BLOB (L)
for a given <MUMPS host identifier> HVN shall be replaced by

©ISO/IEC 2003 — Al rights reserved Embedded SQL. 1031

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.7 <embedded SQL MUMPS program>

d)

INT HVN_RESERVED
INT HVN LENGTH
VARCHAR HVN_DATA L

in any <MUMPS CLOB variable> or <MUMPS BLOB variable>, where L is the numeric value of
<large object length> as specified in Subclause 5.2, “<token> and <separator>".

The syntax

SQL TYPE IS UDTN AS PDT
shall be replaced by

ADT

in any <MUMPS user-defined type variable>, where ADT is the data type listed in the “MUMPS data
type” column corresponding to the row for SQL data type PDT in Table 20, “Data type correspondences
for M”, ADT shall not be “none”. The data type identified by UDTN is called the associated user-
defined type of the host variable and the data type identified by PDT is called the associated SQL data
type of the host variable.

The syntax

SQL TYPE IS BLOB AS LOCATOR
shall be replaced by

INT

in any or <MUMPS BLOB locator variable>. The host variable defined by <MUMPS BLOB locator
variable> is called a binary large object locator variable.

The syntax

SQL TYPE IS CLOB AS LOCATOR
shall be replaced by

INT

in any <MUMPS CLOB locator variable>. The host variable defined by <MUMPS CLOB locator
variable> is called a character large object locator variable.

The syntax

SQL TYPE IS <path-resolved user-defined type name> AS LOCATOR
shall be replaced by

INT

in any <MUMPS user-defined type locator variable>. The host variable defined by <MUMPS user-
defined type locator variable> is called a user-defined type locator variable. The data type identified
by <path-resolved user-defined type name> is called the associated user-defined type of the host variable.

g) The syntax

1032 Foundation (SQL/Foundation)

T ©ISOEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IMS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No rep

without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

or

ISO/IEC 9075-2:2003 (E)
20.7 <embedded SQL MUMPS program>

SQL TYPE IS <array type> AS LOCATOR
shall be replaced by
INT

in any <MUMPS array locator variable>, The host variable defined by <MUMPS array locator variable>
is called an array locator variable. The data type identified by <array type> is called the associated
array type of the host variable.

h) The syntax
SQL TYPE IS <multiset type> AS LOCATOR
shall be replaced by
INT

in any <MUMPS multiset locator variable>. The host variable defined by <MUMPS multiset locator
variable> is called a multiset locator variable. The data type identified by <multiset type> is called the
associated multiset type of the host variable.

i) The syntax
SQL TYPE IS <reference type>
for a given <MUMPS host identifier> HVN shall be replaced by
VARCHAR HVN L
in any <MUMPS REF variable>, where L is the length in octets of the reference type.

The modified <MUMPS variable definition> shall be a valid M variable in the program derived from the
<embedded SQL MUMPS program>.

10) The reference type identified by <reference type> contained in an <MUMPS REF variable> is called the
referenced type of the reference.

Access Rules

None.

General Rules

1) See Subclause 20.1, “<embedded SQL host program>".

Conformance Rules

1) Without Feature B015, “Embedded MUMPS”, conforming SQL language shall not contain an <embedded

SQL MUMPS program>.
2) Without Feature S041, “Basic reference types”, conforming SQL language shall not contain a <MUMPS
REF variable>.
©ISO/IEC 2003 — Al rights reserved Embedded SQL 1033
Copyright Canadian Standards Association '
Reproduced by {HS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.7 <embedded SQL MUMPS program>

3)

4)

5)

6)

7)

8)

9

Without Feature $241, “Transform functions”, conforming SQL language shall not contain a <MUMPS
user-defined type variable>.

Without Feature S232, “Array locators”, conforming SQL language shall not contain a <MUMPS array
locator variable>.

Without Feature S233, “Multiset locators”, conforming SQL language shall not contain a <MUMPS mul-
tiset locator variable>.

Without Feature S231, “Structured type locators”, conforming SQL language shall not contain a <path-
resolved user-defined type name> simply contained in a <MUMPS user-defined type locator variable> that
identifies a structured type.

Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a
<MUMPS BLOB variable>.

Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a
<MUMPS CLOB variable>.

Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a
<MUMPS BLOB locator variable>.

10) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a and

<MUMPS CLOB locator variable>.

1034 Foundation (SQL/Foundation) T T ©ISOMEC 2003 — Al rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Soid to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.8 <embedded SQL Pascal program>

20.8 <embedded SQL Pascal program>

Function

Specify an <embedded SQL Pascal program>.

Format

<embedded SQL Pascal program> ::= !! See the Syntax Rules.

<Pascal variable definition> ::=
<Pascal host identifiers> [{ <comma> <Pascal host identifier> }...] <colon>
<Pascal type specifications> <semicolon>

<Pascal host identifier> ::= !! See the Syntax Rules.

<Pascal type specifications> ::=

PACKED ARRAY <left bracket> 1 <double period> <length> <right bracket>
OF CHAR [CHARACTER SET [IS] <character set specification>]

| INTEGER

| REAL

| CHAR [CHARACTER SET [IS] <character set specification>]

| BOOLEAN

| <Pascal derived type specifications>

<Pascal derived type specifications> ::=
<Pascal CLOB variable>
| <Pascal BLOB variable>
| <Pascal user-defined type variable>
| <Pascal CLOB locator variables
| <Pascal BLOB locator variable>
| <Pascal user-defined type locator variables
| <Pascal array locator variable>
| <Pascal multiset locator variables
| <Pascal REF variable>

<Pascal CLOB variable> ::=
SQL TYPE IS CLOB <left paren> <large object length> <right paren>
[CHARACTER SET [IS] <character set specification>]

<Pascal BLOB variable> ::=
SQL TYPE IS BLOB <left paren> <large object length> <right paren>

<Pascal CLOB locator variables> ::=
SQL TYPE IS CLOB AS LOCATOR

<Pascal user-defined type variable> ::=
SQL TYPE IS <path-resolved user-defined type name> AS <predefined type>

<Pascal BLOB locator variable> ::=
SQL TYPE IS BLOB AS LOCATOR

<Pascal user-defined type locator variable> ::=
SQL TYPE IS <path-resolved user-defined type name> AS LOCATOR

©ISO/IEC 2003 — All rights reserved Embedded SQL 1035

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or i itted without licanse from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.8 <embedded SQL Pascal program>

<Pascal array locator variable> ::=
SQL TYPE IS <array type> AS LOCATOR

<Pascal multiset locator variable> ::=
SQL TYPE IS <multiset type> AS LOCATOR

<Pascal REF variables> ::=
SQL TYPE IS <reference type>

Syntax Rules

1) An <embedded SQL Pascal program> is a compilation unit that consists of Pascal text and SQL text. The
Pascal text shall conform to one of [ISO7185] or [ISO10206]. The SQL text shall consist of one or more
<embedded SQL statement>s and, optionally, one or more <embedded SQL declare section>s.

2) An <embedded SQL statement> may be specified wherever a Pascal statement may be specified. An
<embedded SQL statement> may be prefixed by a Pascal label.

3) A <Pascal host identifier> is a Pascal variable-identifier whose applied instance denotes a defining instance
within an <embedded SQL begin declare> and an <embedded SQL end declare>.

4) A <Pascal variable definition> defines one or more <Pascal host identifier>s.

5) A <Pascal variable definition> shall be modified as follows before it is placed into the program derived
from the <embedded SQL Pascal program> (see the Syntax Rules of Subclause 20.1, “<embedded SQL
host program>").

a) Any optional CHARACTER SET specification shall be removed from the PACKED ARRAY OF
CHAR or CHAR alteratives of a <Pascal type specification> and a <Pascal CLOB variable>.

b) The <length> specified in the PACKED ARRAY OF CHAR alternative of any <Pascal type specifica-
tion> that contains a CHARACTER SET specification and the <large object length> specified in a
<Pascal CLOB variable> that contains a CHARACTER SET specification shall be replaced by a length
equal to the length in octets of PN, where PN is the <Pascal host identifier> specified in the containing
<Pascal variable definition>.

c) Ifany <Pascal type specification> specifies the syntax “CHAR” and contains a CHARACTER SET
specification, then let L be a length equal to the length in octets of PN and PN be the <Pascal host
identifier> specified in the containing <Pascal variable definition>. If L is greater than 1 (one), then
“CHAR?” shall be replaced by “PACKED ARRAY [1..L] OF CHAR”.

d) The syntax
SQL TYPE IS CLOB (L)
and the syntax
SQL TYPE IS BLOB (L)
for a given <Pascal host identifier> HVN shall be replaced by

VAR HVN = RECORD
HVN_RESERVED : INTEGER;
HVN_LENGTH : INTEGER;

1036 Foundation (SQL/Foundation) ©ISO/IEC 2003 - Al rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or i i without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.8 <embedded SQL Pascal program>

HVN _DATA : PACKED ARRAY [1..L] OF CHAR;
END;

in any <Pascal CLLOB variable> or <Pascal BLOB variable>, where L is the numeric value of <large
object length> as specified in Subclause 5.2, “<token> and <separator>".

e) The syntax
SQL TYPE IS UDTN AS PDT
shall be replaced by
ADT

in any <Pascal user-defined type variable>, where ADT is the data type listed in the “Pascal data type”
column corresponding to the row for SQL data type PDT in Table 21, “Data type correspondences for
Pascal”. ADT shall not be “none”. The data type identified by UDTN is called the associated user-
defined type of the host variable and the data type identified by PDT is called the associated SQL data
type of the host variable.

f) The syntax
SQL TYPE IS BLOB AS LOCATOR
shall be replaced by
INTEGER

in any <Pascal BLOB locator variable>. The host variable defined by <Pascal BLOB locator variable>
is called a binary large object locator variable.

g) The syntax
SQL TYPE IS CLOB AS LOCATOR
shall be replaced by
INTEGER

in any <Pascal CLOB locator variable>. The host variable defined by <Pascal CLOB locator variable>
is called a character large object locator variable.

h) The syntax
SQL TYPE IS <path-resolved user-defined type name> AS LOCATOR
shall be replaced by
INTEGER

in any <Pascal user-defined type locator variable>. The host variable defined by <Pascal user-defined
type locator variable> is called a user-defined type locator variable. The data type identified by <path-
resolved user-defined type name> is called the associated user-defined type of the host variable.

i) The syntax
SQL TYPE IS <array type> AS LOCATOR

©ISO/IEC 2003 - All rights reserved Embedded SQL 1037

Copyright Canadian Standards Association
Reproduced by IHS under liconse with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.8 <embedded SQL Pascal program>

shall be replaced by
INTEGER

in any <Pascal array locator variable>. The host variable defined by <Pascal array locator variable> is
called an array locator variable. The data type identified by <array type> is called the associated array
type of the host variable.

j) The syntax
SQL TYPE IS <multiset type> AS LOCATOR
shall be replaced by
INTEGER

in any <Pascal multiset locator variable>. The host variable defined by <Pascal multiset locator variable>
is called a multiset locator variable. The data type identified by <multiset type> is called the associated
multiset type of the host variable.

k) The syntax
SQL TYPE IS <reference type>
for a given <Pascal host identifier> HVN shall be replaced by
HVN : PACKED ARRAY [1..<length>] OF CHAR
in any <Pascal REF variable>, where <length> is the length in octets of the reference type.

The modified <Pascal variable definition> shall be a valid Pascal variable-declaration in the program
derived from the <embedded SQL Pascal program>.

: 6) The reference type identified by <reference type> contained in an <Pascal REF variable> is called the ref-
: erenced type of the reference.

-7) CHAR specified without a CHARACTER SET specification is the ordinal-type-identifier of PASCAL.
"~ The equivalent SQL data type is CHARACTER with length 1 (one).

8) PACKED ARRAY [1..<length>] OF CHAR describes a character string having 2 or more components of
the simple type CHAR. The equivalent SQL data type is CHARACTER with the same length and character
set specified by <character set specification>. If <character set specification> is not specified, then an
implementation-defined <character set specification> is implicit.

9) INTEGER describes an exact numeric variable. The equivalent SQL data type is INTEGER.
10) REAL describes an approximate numeric variable. The equivalent SQL data type is REAL.
11) BOOLEAN describes a boolean variable. The equivalent SQL data type is BOOLEAN.

Access Rules

None.

1038 Foundation (SQL/Foundation) ©ISO/IEC 2003 ~ All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold t0:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.8 <embedded SQL Pascal program>

General Rules

1

See Subclause 20.1, “<embedded SQL host program>".

Conformance Rules

1)

2)

3)

4)

5)

6)

7

8)

9)

Without Feature B016, “Embedded Pascal”, conforming SQL language shall not contain an <embedded
SQL Pascal program>.

Without Feature S041, “Basic reference types”, conforming SQL language shall not contain a <Pascal REF
variable>.

Without Feature S241, “Transform functions”, conforming SQL language shall not contain a <Pascal user-
defined type variable>.

Without Feature S232, “Array locators”, conforming SQL language shall not contain a <Pascal array
locator variable>.

Without Feature S233, “Multiset locators”, conforming SQL language shall not contain a <Pascal multiset
locator variable>.

Without Feature S231, “Structured type locators”, conforming SQL language shall not contain a <path-
resolved user-defined type name> simply contained in a <Pascal user-defined type locator variable> that
identifies a structured type.

Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a
<Pascal BLOB variable>.

Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a
<Pascal CLOB variable>.

Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a
<Pascal BLOB locator variable>.

10) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a

<Pascal BLOB variable>, <Pascal CLOB variable>, <Pascal CLOB locator variable>.

©ISO/IEC 2003 - All rights reserved Embedded SQL 1039

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.9 <embedded SQL PL/I program>

20.9 <embedded SQL PL/I program>

Function

Specify an <embedded SQL PL/I program>.

Format
<embedded SQL PL/I program> ::= !! See the Syntax Rules.
<PL/I variable definitions> ::=
{ DCL | DECLARE } <PL/I type specification> [<character representation>...] <semicolon>
| { <PL/I host identifier> | <left paren> <PL/I host identifier>
[{ <comma> <PL/I host identifier> }...] <right parens> }
<PL/I type specification> [<character representation>...] <semicolon>
<PL/I host identifier> ::= !! See the Syntax Rules.

<PL/I type specification> ::=
{ CHAR | CHARACTER } [VARYING] <left paren> <length> <right paren>
[CHARACTER SET [IS] <character set specification>]
| <PL/I type fixed decimal> <left paren> <precision> [<comma> <scale>] <right paren>
| <PL/I type fixed binary> [<left paren> <precision> <right parens]
| <PL/I type float binary> <left paren> <precision> <right parens
| <PL/I derived type specifications>

<PL/I derived type specification> ::=
" <PL/I CLOB variables
] <PL/I BLOB variable>
| <PL/I user-defined type variable>
| <PL/I CLOB locator variable>
| <PL/I BLOB locator variable>
| <PL/I user-defined type locator variables>
| <PL/I array locator variable>
| <PL/I multiset locator variables
| <PL/I REF variable>

<PL/I CLOB variable> ::=
SQL TYPE IS CLOB <left paren> <large object length> <right paren>
[CHARACTER SET [IS] <character set specification>]

<PL/I BLOB variables> ::=
SQL TYPE IS BLOB <left paren> <large object length> <right paren>

<PL/I user-defined type variable> ::=
SQL TYPE IS <path-resolved user-defined type name> AS <predefined type>

<PL/I CLOB locator variables> ::=
SQL TYPE IS CLOB AS LOCATOR

<PL/I BLOB locator variables> ::=
SQL TYPE IS BLOB AS LOCATOR

<PL/I user-defined type locator variable> ::=

1040 Foundation (SQL/Foundation) ©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold t0:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.9 <embedded SQL PL/I program>

SQL TYPE IS <path-resolved user-defined type name> AS LOCATOR

<PL/I array locator variable> ::=
SQL TYPE IS <array type> AS LOCATOR

<PL/I multiset locator variable> ::=
SQL TYPE IS <multiset type> AS LOCATOR

<PL/I REF variable> ::=
SQL TYPE IS <reference type>

<PL/I type fixed decimal> ::=
{ DEC | DECIMAL } FIXED
| FIXED { DEC | DECIMAL }

<PL/I type fixed binary> ::
{ BIN | BINARY } FIXED
| FIXED { BIN | BINARY }

<PL/I type float binarys> ::=
{ BIN | BINARY } FLOAT
| FLOAT { BIN | BINARY }

Syntax Rules

1) An <embedded SQL PL/I program> is a compilation unit that consists of PL/I text and SQL text. The PL/I
text shall conform to [ISO6160]. The SQL text shall consist of one or more <embedded SQL statement>s
and, optionally, one or more <embedded SQL declare section>s.

2) An <embedded SQL statement> may be specified wherever a PL/I statement may be specified within a
procedure block. If the PL/I statement could include a label prefix, the <embedded SQL statement> may
be immediately preceded by a label prefix.

3) A <PL/I host identifier> is any valid PL/I variable identifier. A <PL/I host identifier> shall be contained
in an <embedded SQL PL/I program>.

4) A <PL/I variable definition> defines one or more host variables.

5) A <PL/I variable definition> shall be modified as follows before it is placed into the program derived from
the <embedded SQL PL/I program> (see the Syntax Rules of Subclause 20.1, “<embedded SQL host pro-
gram>"),

a) Any optional CHARACTER SET specification shall be removed from the CHARACTER or CHAR-
ACTER VARYING alternatives of a <PL/I type specification>.

b) The <length> specified in the CHARACTER or CHARACTER VARYING alternatives of any <PL/I
type specification> or a <PL/I CLOB variable> that contains a CHARACTER SET specification shall
be replaced by a length equal to the length in octets of PN, where PN is the <PL/I host identifier>
specified in the containing <PL/I variable definition>.

c¢) The syntax
SQL TYPE IS CLOB (L)

and the syntax

©ISO/IEC 2003 - All rights reserved Embedded SQL 1041

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold t0:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.9 <embedded SQL PL/I program>

SQL TYPE IS BLOB (L)
for a given <PL/I host identifier> HVN shall be replaced by

DCL 1 HVN
2 HVN_RESERVED FIXED BINARY (31),
2 HVN_LENGTH FIXED BINARY (31),
2 HVN_DATA CHARACTER (<length>) ;

in any <PL/I CLOB variable> or <PL/I BLOB variable>, where L is the numeric value of <large object
length> as specified in Subclause 5.2, “<token> and <separator>".

d) The syntax
SQL TYPE IS UDTN AS PDT
shall be replaced by
ADT
in any <PL/I user-defined type variable>, where ADT is the data type listed in the “PL/I data type”
column corresponding to the row for SQL data type PDT in Table 22, “Data type correspondences for
PL/I”. ADT shall not be “none”. The data type identified by UDTN is called the associated user-defined
type of the host variable and the data type identified by PDT is called the associated SQL data type of
the host variable.
e) The syntax
SQL TYPE IS BLOB AS LOCATOR
shall be replaced by
FIXED BINARY (31)
in any <PL/I BLOB locator variable>. The host variable defined by <PL/I BLOB locator variable> is
called a binary large object locator variable.
f) The syntax
SQL TYPE IS CLOB AS LOCATOR
shall be replaced by
FIXED BINARY (31)
in any <PL/I CL.OB locator variable>. The host variable defined by <PL/I CLOB locator variable> is
called a character large object locator variable.
g) The syntax
SQL TYPE IS <path-resolved user-defined type name> AS LOCATOR
shall be replaced by
FIXED BINARY(31)
1042 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved
Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.9 <embedded SQL PL/I program>

in any <PL/I user-defined type locator variable>. The host variable defined by <PL/I user-defined type
locator variable> is called a user-defined type locator variable. The data type identified by <path-
resolved user-defined type name> is called the associated user-defined type of the host variable.

h) The syntax
SQL TYPE IS <array type> AS LOCATOR
shall be replaced by
FIXED BINARY (31)

in any <PL/I array locator variable>. The host variable defined by <PL/I array locator variable> is
called an array locator variable. The data type identified by <array type> is called the associated array
type of the host variable.

1) The syntax
SQL TYPE IS <multiset type> AS LOCATOR
shall be replaced by
FIXED BINARY (31)

in any <PL/I multiset locator variable>. The host variable defined by <PL/I multiset locator variable>
is called a multiset locator variable. The data type identified by <multiset type> is called the associated .
multiset type of the host variable. ;

j) The syntax
SQL TYPE IS <reference type>
for a given <PL/I host identifier> HVN shall be replaced by
DCL HVN CHARACTER (<length>) VARYING
in any <PL/I REF variable>, where <length> is the length in octets of the reference type.

The modified <PL/I variable definition> shall be a valid PL/I data declaration in the program derived from
the <embedded SQL PL/I program>.

6) The reference type identified by <reference type> contained in an <PL/I REF variable> is called the refer-
enced type of the reference.

7) A <PL/I variable definition> shall specify a scalar variable, not an array or structure.

8) The optional <character representation™> sequence in a <PL/I variable definition> may specify an INITIAL
clause. Whether other clauses may be specified is implementation-defined. The <character representation>
sequence shall be such that the <PL/I variable definition> is a valid PL/I DECLARE statement.

9) CHARACTER describes a character string variable whose equivalent SQL data type has the character set
specified by <character set specification>. If <character set specification> is not specified, then an imple-
mentation-defined <character set specification> is implicit.

Case:

©ISO/IEC 2003 - All rights reserved Embedded SQL 1043

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.9 <embedded SQL PL/I program>

a) If VARYING is not specified, then the length of the variable is fixed. The equivalent SQL data type
is CHARACTER with the same length.

b) If VARYING is specified, then the variable is of variable length, with maximum size the value of
<length>. The equivalent SQL data type is CHARACTER VARYING with the same maximum length.

10) FIXED DECIMAL describes an exact numeric variable. The <scale> shall not be greater than the <preci-
sion>. The equivalent SQL data type is DECIMAL with the same <precision> and <scale>.

11) FIXED BINARY describes an exact numeric variable. The equivalent SQL data type is SMALLINT,
* INTEGER, or BIGINT.

12) FLOAT BINARY describes an approximate numeric variable. The equivalent SQL data type is FLOAT
 with the same <precision>.

Access Rules

None.

General Rules

1) See Subclause 20.1, “<embedded SQL host program>”

Conformance Rules

1) Without Feature BO17, “Embedded PL/I”, conforming SQL language shall not contain an <embedded SQL
PL/I program>.

2) Without Feature S041, “Basic reference types”, conforming SQL language shall not contain a <PL/I REF
variable>.

3) Without Feature S241, “Transform functions”, conforming SQL language shall not contain a <PL/I user-
defined type variable>.

4) Without Feature S232, “Array locators”, conforming SQL language shall not contain a <PL/I array locator
variable>,

5) Without Feature S233, “Multiset locators”, conforming SQL language shall not contain a <PL/I multiset
locator variable>.

6) Without Feature S231, “Structured type locators”, conforming SQL language shall not contain a <path-
resolved user-defined type name> simply contained in a <PL/I user-defined type locator variable> that
identifies a structured type.

7) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a <PL/I
BLOB variable>,

8) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a <PL/I
CLOB variable>.

9) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a <PL/I
BLOB locator variable>.

1044 Foundation (SQL/Foundation) ©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under ficense with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
20.9 <embedded SQL PL/I program>

: 10) Without Feature T041, “Basic LOB data type support”, conforming SQL language shall not contain a <PL/I
: CLOB locator variable>.

©ISO/IEC 2003 — Ali rights reserved Embedded SQL 1045

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

" ISO/IEC 9075-2:2003 (E)

This page intentionally left blank.

1046 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or netwarking permitted without license from iHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
21.1 <direct SQL statement>

21 Direct invocation of SQL

21.1 <direct SQL statement>

Function

Specify direct execution of SQL.

Format

<direct SQL statement> ::= <directly executable statement> <semicolon>

<directly executable statement> ::=
<direct SQL data statement>
| <SQL schema statement>
| <SQL transaction statements
| <SQL connection statement>
| <SQL session statement>
| <direct implementation-defined statements>

<direct SQL data statement> ::=
<delete statement: searched>
| <direct select statement: multiple rows>
| <insert statements>
| <update statement: searched>
| <merge statements
| <temporary table declarations>

<direct implementation-defined statement> ::= !! See the Syntax Rules

Syntax Rules

1) The <direct SQL data statement> shall not contain an SQL parameter reference, SQL variable reference,
<dynamic parameter specification>, or <embedded variable specification>.

2) The <value specification> that represents the null value is implementation-defined.

3) The Format and Syntax Rules for <direct implementation-defined statement> are implementation-defined.

Access Rules

1) The Access Rules for <direct implementation-defined statement> are implementation-defined.

" ©ISO/IEC 2003 - All rights reserved Direct invocation of SQL 1047

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold t0:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
21.1 <direct SQL statement>

General Rules

1) The following <direct SQL statement>s are transaction-initiating <direct SQL statement>s:
a) <direct SQL statement>s that are transaction-initiating <SQL procedure statement>s.
b) <direct select statement: multiple rows>.
c) <direct implementation-defined statement>s that are transaction-initiating.

2) After the last invocation of an SQL-statement by an SQL-agent in an SQL-session:

a) A <rollback statement> or a <commit statement> is effectively executed. If an unrecoverable error has
occurred, or if the direct invocation of SQL terminated unexpectedly, or if any constraint is not satisfied,
then a <rollback statement> is performed. Otherwise, the choice of which of these SQL-statements to
perform is implementation-dependent. The determination of whether a direct invocation of SQL has
terminated unexpectedly is implementation-dependent.

b) Let.D be the <descriptor name> of any SQL descriptor area that is currently allocated within the current
SQL-session. A <deallocate descriptor statement> that specifies

DEALLOCATE DESCRIPTOR D
is effectively executed.
¢) All SQL-sessions associated with the SQL-agent are terminated.
3) Let S be the <direct SQL statement>.
4) A copy of the top cell of the authorization stack is pushed onto the authorization stack.

5) If S does not conform to the Format, Syntax Rules, and Access Rules for a <direct SQL statement>, then
an exception condition is raised: syntax error or access rule violation.

6) When Sis invoked by the SQL-agent:
Case:
a) IfSis an <SQL connection statement>, then:
i) The first diagnostics area is emptied.
i) S is executed.

iii) If S successfully initiated or resumed an SQL-session, then subsequent invocations of a <direct
SQL statement> by the SQL-agent are associated with that SQL-session until the SQL-agent
terminates the SQL-session or makes it dormant.

b) Otherwise:
i) If no SQL-session is current for the SQL-agent, then
Case:

1) If the SQL-agent has not executed an <SQL connection statement> and there is no default
SQL-session associated with the SQL-agent, then the following <connect statement> is
effectively executed:

1048 -Foundation (SQL/Foundation) ©ISO/IEC 2003 — Al rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
21.1 <direct SQL statement>

CONNECT TO DEFAULT

2) If the SQL-agent has not executed an <SQL connection statement> and there is a default
SQL-session associated with the SQL-agent, then the following <set connection statement>
is effectively executed:

SET CONNECTION DEFAULT

3) Otherwise, an exception condition is raised: connection exception — connection does not
exist.

Subsequent calls to an <externally-invoked procedure> or invocations of a <direct SQL statement>
by the SQL-agent are associated with the SQL-session until the SQL-agent terminates the SQL-
session or makes it dormant.

i) If an SQL-transaction is active for the SQL-agent, then S is associated with that SQL-transaction.
If §'is a <direct implementation-defined statement>, then it is implementation-defined whether
or not S may be associated with an active SQL-transaction; if not, then an exception condition
is raised: invalid transaction state — active SQL-transaction.

ii1) If no SQL-transaction is active for the SQL-agent, then
1) Case:

A) If Sis a transaction-initiating <direct SQL statement>, then an SQL-transaction is initi-
ated.

B) If Sis a <direct implementation-defined statement>, then it is implementation-defined
whether or not S initiates an SQL-transaction. If an implementation defines S to be
transaction-initiating, then an SQL-transaction is initiated.

2) If Sinitiated an SQL-transaction, then:
A) Let T be the SQL-transaction initiated by S.

B) Tis associated with this invocation and any subsequent invocations of <direct SQL
statement>s or calls to an <externally-invoked procedure> by the SQL-agent until the
SQL-agent terminates 7.

C) If S is not a <start transaction statement>, then
Case:

1)) If a <set transaction statement> has been executed since the termination of the
last SQL-transaction in the SQL-session (or if there has been no previous SQL-
transaction in the SQL-session and a <set transaction statement™> has been exe-
cuted), then the access mode, constraint mode, and isolation level of T are set as
specified by the <set transaction statement>.

II) Otherwise, the access mode, constraint mode for all constraints, and isolation
level for T are read-write, immediate, and SERIALIZABLE, respectively.

D) Tis associated with the SQL-session.

©ISO/IEC 2003 ~ All rights reserved Direct invocation of SQL 1049

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
21.1 <direct SQL statement>

iv) If S contains an <SQL schema statement> and the access mode of the current SQL-transaction
is read-only, then an exception condition is raised: invalid transaction state — read-only SQL-
transaction.

v) The first diagnostics area is emptied.
; vi) Sis executed.
7) Upon completion of execution, the top cell in the authorization stack is removed.

:8) If the execution of a <direct SQL data statement> occurs within the same SQL-transaction as the execution
of an SQL-schema statement and this is not allowed by the SQL-implementation, then an exception condition
is raised: invalid transaction state — schema and data statement mixing not supported.

9) Case:

a) If § executed successfully, then either a completion condition is raised: successful completion, or a
completion condition is raised: warning, or a completion condition is raised: no data.

b) If S did not execute successfully, then all changes made to SQL-data or schemas by the execution of
§ are canceled and an exception condition is raised.

NOTE 451 — The method of raising a condition is implementation-defined.

10) Diagnostics information resulting from the execution of S is placed into the first diagnostics area, causing
the first condition area in the first diagnostics area to become occupied.

NOTE 452 — The method of accessing the diagnostics information is implementation-defined, but does not alter the contents of
the diagnostics area.

Conformance Rules

1) Without Feature B021, “Direct SQL”, conforming SQL language shall not contain a <direct SQL statement>.

1050 Foundation (SQL/Foundation) ©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold lo:INFOTRIEVE, iINC, W0277804
No reproduction or networking permitted without licanse from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
21.2 <direct select statement: multiple rows>

21.2 <direct select statement: multiple rows>

Function

Specify a statement to retrieve multiple rows from a specified table.

Format

<direct select statement: multiple rows> ::= <cursor specification>

Syntax Rules

1) The <query expression> or <order by clause> of a <direct select statement: multiple rows> shall not contain
a <value specification> other than a <literal>, CURRENT_USER, CURRENT_ROLE, SESSION_USER,
SYSTEM_USER, CURRENT_PATH, CURRENT_DEFAULT_TRANSFORM_GROUP, or CUR-
RENT_TRANSFORM_GROUP_FOR_TYPE.

2) The <cursor specification> shall not contain an <updatability clause>.

Access Rules

None.

General Rules

1) Let Q be the result of the <cursor specification>.
2) Case:
a) If Q is empty, then a completion condition is raised: no data.

b) Otherwise, Q is not empty and Q is returned. The method of returning (is implementation-defined.

Conformance Rules

Norne.

“©ISO/IEC 2003 = All rights reserved Direct invocation of SQL 1051

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
Nor or ing permitted without license from IHS Not for Resale,2005/8/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)

This page intentionally left blank.

1052 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
22.1 <get diagnostics statement>

22 Diagnostics management

22.1 <get diagnostics statement>

Function

Get exception or completion condition information from a diagnostics area.

Format

<get diagnostics statement> ::=
GET DIAGNOSTICS <SQL diagnostics informations

<SQL diagnostics information> ::=
<statement information>
| <condition informations>

<statement information> ::=
<statement information item> [{ <comma> <statement information item> }...]

<statement information items> ::=
<simple target specification> <equals operator> <statement information item name>

<statement information item name> ::=
NUMBER
| MORE
| COMMAND_ FUNCTION
| COMMAND_FUNCTION_CODE
| DYNAMIC_ FUNCTION
| DYNAMIC_FUNCTION_CODE
| ROW_COUNT
| TRANSACTIONS_COMMITTED
| TRANSACTIONS_ROLLED BACK
| TRANSACTION ACTIVE

<condition informations> ::=
{ EXCEPTION | CONDITION } <condition number> <condition information item>
[{ <comma> <condition information item> }...]

<condition information item> ::=
<simple target specification> <equals operator> <condition information item name>

<condition information item name> ::=
CATALOG_NAME
| CLASS_ORIGIN
| COLUMN_NAME
| CONDITION_ NUMBER
| CONNECTION_NAME
| CONSTRAINT_ CATALOG

©ISO/IEC 2003 ~ All rights reserved Diagnostics management 1053

Copyright Canadian Standards Assaciation
Reproduced by |HS under license with CSA Soid to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/TEC 9075-2:2003 (E)
22.1 <get diagnostics statement>

| CONSTRAINT NAME
| CONSTRAINT SCHEMA
| CURSOR_NAME

| MESSAGE LENGTH
| MESSAGE_OCTET_LENGTH
| MESSAGE_TEXT

| PARAMETER_MODE
| PARAMETER NAME
| PARAMETER_ORDINAL_ POSITION
| RETURNED_SQLSTATE
| ROUTINE_CATALOG
| ROUTINE_NAME

| ROUTINE_SCHEMA
| SCHEMA_NAME

| SERVER_NAME

| SPECIFIC_NAME

| SUBCLASS_ORIGIN
| TABLE_NAME

| TRIGGER_CATALOG
| TRIGGER_NAME

| TRIGGER_SCHEMA

<condition number> ::= <simple value specifications>

Syntax Rules

1) The declared type of a <simple target specification> contained in a <statement information item> or
<condition information item> shall be the data type specified in Table 30, “<identifier>s for use with <get
diagnostics statement>”, for the corresponding <statement information item name> or <condition information
item name>.

2) The declared type of <condition number> shall be exact numeric with scale 0 (zero).

Table 30 — <identifier>s for use with <get diagnostics statement>

<identifier> Declared Type

COMMAND_FUNCTION variable-length character string with maximum length Lt
COMMAND_FUNC- exact numeric with scale 0 (zero)

TION_CODE

DYNAMIC_FUNCTION variable-length character string with maximum length Al

DYNAMIC_FUNCTION_CODE | exact numeric with scale 0 (zero)

MORE fixed-length character string with length 1
NUMBER exact numeric with scale 0 (zero)
1054 Foundation (SQL/Foundation) ©ISO/IEC 2003 - Al rights reserved
Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold t0:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
22.1 <get diagnostics statement>

<identifier>

Declared Type

ROW_COUNT

exact numeric with scale 0 (zero)

TRANSACTION_ACTIVE

exact numeric with scale 0 (zero)

TRANSACTIONS_COMMIT-
TED

exact numeric with scale 0 (zero)

TRANSAC-
TIONS_ROLLED_BACK

exact numeric with scale 0 (zero)

CATALOG_NAME

variable-length character string with maximum length L

CLASS_ORIGIN

variable-length character string with maximum length L

COLUMN_NAME

variable-length character string with maximum length L

CONDITION_NUMBER

exact numeric with scale 0 (zero)

CONNECTION_NAME

variable-length character string with maximum length L

CONSTRAINT_CATALOG

variable-length character string with maximum length L

CONSTRAINT_NAME

variable-length character string with maximum length L

CONSTRAINT_SCHEMA

variable-length character string with maximum length L

CURSOR_NAME

variable-length character string with maximum length L

MESSAGE_LENGTH

exact numeric with scale 0 (zero)

MESSAGE_OCTET_LENGTH

exact numeric with scale 0 (zero)

MESSAGE_TEXT

variable-length character string with maximum length L

PARAMETER_MODE

variable-length character string with maximum length 5

PARAMETER _NAME

variable-length character string with maximum length L

PARAMETER_ORDINAL_POSI-
TION

exact numeric with scale 0 (zero)

RETURNED_SQLSTATE

fixed-length character string with length 5

ROUTINE_CATALOG

variable-length character string with maximum length L

ROUTINE_NAME

variable-length character string with maximum length L

ROUTINE_SCHEMA

variable-length character string with maximum length L

©ISO/IEC 2003 — Al rights reserved Diagnostics management 1055

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA
No reproduction or networking permitied without license from IHS

Sold to:INFOTRIEVE, INC, W0277604
Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
22.1 <get diagnostics statement>

<identifier>

Declared Type

SCHEMA_NAME

variable-length character string with maximum length L

SERVER_NAME

variable-length character string with maximum length L

SPECIFIC_NAME

variable-length character string with maximum length L

SUBCLASS_ORIGIN

variable-length character string with maximum length L

TABLE_NAME

variable-length character string with maximum length L

TRIGGER_CATALOG

variable-length character string with maximum length L

TRIGGER_NAME

variable-length character string with maximum length L

TRIGGER_SCHEMA

variable-length character string with maximum length L

T Where L is an implementation-defined integer not less than 128.

Access Rules

None.

General Rules

1) Let DA be the first diagnostics area.

2) Specification of <statement information item> assigns the value of the specified statement information
item in DA to <simple target specification>.

a) The value of NUMBER is the number of exception or completion conditions that have been stored in
DA as a result of executing the previous SQL-statement other than a <get diagnostics statement>.

NOTE 453 — The <get diagnostics statement> itself may return information via the SQLSTATE parameter, but does not
modify the previous contents of D4.

b) The value of MORE is:

in DA.

Y | More conditions were raised during execution of the SQL-statement than there are condition areas

DA.

N | All of the conditions that were raised during execution of the SQL-statement have been stored in

¢) The value of COMMAND_FUNCTION is the identification of the SQL-statement executed. Table 31,
“SQL-statement codes” specifies the identifier of the SQL-statements.

1056 Foundation (SQL/Foundation)

Copyright Canadian Standards Association
Reproduced by IHS under ficense with CSA
No reproduction or networking permitted without license from IHS

©ISO/IEC 2003 - All rights reserved

Sold 10:INFOTRIEVE, INC, W0277804
Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
22.1 <get diagnostics statement>

d) The value of COMMAND_FUNCTION_CODE is a number identifying the SQL-statement executed.
Table 31, “SQL-statement codes” specifies the code for the SQL-statements. Positive values are reserved
for SQL-statements defined by ISO/IEC 9075; negative values are reserved for implementation-defined
SQL-statements.

e) The value of DYNAMIC_FUNCTION is a character string that identifies the type of the SQL-statement
being prepared or executed dynamically. Table 31, “SQL-statement codes”, specifies the identifier of
the SQL-statements.

f) The value of DYNAMIC_FUNCTION_CODE is a number that identifies the type of the SQL-statement
being prepared or executed dynamically. Table 31, “SQL-statement codes”, specifies the code for the
SQL-statements. Positive values are reserved for SQL-statements defined by ISO/IEC 9075; negative
values are reserved for implementation-defined SQL-statements.

Table 31 — SQL-statement codes

SQL-statement Identifier Code
<allocate cursor statement> ALLOCATE CURSOR 1 (one)
<allocate descriptor statement> ALLOCATE DESCRIPTOR 2
<alter domain statement> ALTER DOMAIN 3
<alter routine statement> ALTER ROUTINE 17
<alter sequence generator statement> ALTER SEQUENCE 134
<alter type statement> ALTER TYPE 60
<alter table statement> ALTER TABLE 4
<alter transform statement> ALTER TRANSFORM 127
<assertion definition> CREATE ASSERTION 6
<call statement> CALL 7
<character set definition> CREATE CHARACTER SET 8
<close statement> CLOSE CURSOR 9
<collation definition> CREATE COLLATION 10
<commit statement> COMMIT WORK 11
<connect statement> CONNECT 13
<deallocate descriptor statement> DEALLOCATE DESCRIPTOR 15
©ISO/IEC 2003 - All rights reserved Diagnostics management 1057
Conran e S s T —

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/TEC 9075-2:2003 (E)
22.1 <get diagnostics statement>

SQL-statement Identifier Code
<deallocate prepared statement> DEALLOCATE PREPARE 16
<delete statement: positioned> DELETE CURSOR 18
<delete statement: searched> DELETE WHERE 19
<describe statement> DESCRIBE 20
<direct select statement: multiple rows> SELECT 21
<disconnect statement> DISCONNECT 22
<domain definition> CREATE DOMAIN 23
<drop assertion statement> DROP ASSERTION 24
<€irop character set statement> DROP CHARACTER SET 25
<drop collation statement> DROP COLLATION 26
<drop data type statement> DROP TYPE 35
<drop domain statement> DROP DOMAIN 27
<drop role statement> DROP ROLE 29
<drop routine statement> DROP ROUTINE 30
<drop schema statement> DROP SCHEMA 31
<drop sequence generator statement> DROP SEQUENCE 135
<drop table statement> DROP TABLE 32
<drop transform statement> DROP TRANSFORM 116
<drop transliteration statement> DROP TRANSLATION 33
<drop trigger statement> DROP TRIGGER 34
<drop user-defined cast statement> DROP CAST 78
<drop user-defined ordering statement> DROP ORDERING 115
<drop view statement> DROP VIEW 36
<dynamic close statement> DYNAMIC CLOSE 37
<dynamic delete statement: positioned> DYNAMIC DELETE CURSOR 38

1058 Foundation (SQL/Foundation)

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA
No rep! jon or i 1 without ficense from |HS

©ISO/IEC 2003 — All rights reserved

Sold to:INFOTRIEVE, INC, W0277804
Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
22.1 <get diagnostics statement>

SQL-statement Identifier Code
<dynamic fetch statement> DYNAMIC FETCH 39
<dynamic open statement> DYNAMIC OPEN 40
<dynamic select statement> SELECT CURSOR 85
<dynamic single row select statement> SELECT 41
<dynamic update statement: positioned> DYNAMIC UPDATE CURSOR 42
<execute immediate statement> EXECUTE IMMEDIATE 43
<execute statement> EXECUTE 44
<fetch statement> FETCH 45
<free locator statement> FREE LOCATOR 98
<get descriptor statement> GET DESCRIPTOR 47
<hold locator statement> HOLD LOCATOR 99
<grant privilege statement> GRANT 48
<grant role statement> GRANT ROLE 49
<insert statement> INSERT 50
<merge statement> MERGE 128
<open statement> OPEN 53
<preparable dynamic delete statement: positioned> { PREPARABLE DYNAMIC DELETE | 54
CURSOR
<preparable dynamic update statement: positioned> | PREPARABLE DYNAMIC UPDATE | 55
CURSOR

<prepare statement> PREPARE 56
<release savepoint statement> RELEASE SAVEPOINT 57
<return statement> RETURN 58
<revoke privilege statement> REVOKE 59
<revoke role statement> REVOKE ROLE 129
<role definition> CREATE ROLE 61

©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproduced by tHS under license with CSA
No reproduction or networking permitted without license from IHS

Sold to:INFOTRIEVE, INC, W0277804
Not for Resale,2005/6/17 21:54:10 GMT

Diagnostics management 1059

ISO/IEC 9075-2:2003 (E)
22.1 <get diagnostics statement>

SQL-statement Identifier Code
<rollback statement> ROLLBACK WORK 62
<savepoint statement> SAVEPOINT 63
<schema definition> CREATE SCHEMA 64
<schema routine> CREATE ROUTINE 14
<select statement: single row> SELECT 65
<sequence generator definition> CREATE SEQUENCE 133
<set catalog statement> SET CATALOG 66
<set connection statement> SET CONNECTION 67
<set constraints mode statement> SET CONSTRAINT 68
<set descriptor statement> SET DESCRIPTOR 70
<set local time zone statement> SET TIME ZONE 71
<set names statement> SET NAMES 72
<set path statement> SET PATH 69
<set role statement> SET ROLE 73
<set schema statement> SET SCHEMA 74
<set session user identifier statement> SET SESSION AUTHORIZATION 76
<set session characteristics statement> SET SESSION CHARACTERISTICS | 109
<set session collation statement> SET COLLATION 136
<set transform group statement> SET TRANSFORM GROUP 118
<set transaction statement> SET TRANSACTION 75
<start transaction statement> START TRANSACTION 111
<table definition> CREATE TABLE 77
<transform definition> CREATE TRANSFORM 117
<transliteration definition> CREATE TRANSLATION 79
<trigger definition> CREATE TRIGGER 80
1060 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved
Repoduced by 15 inder foonss wih GSA S0 0INFOTRIEVE, INC, Wo217604

No reproduction or networking permitted without license from IHS Nol for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
22,1 <get diagnostics statement>

SQL-statement Identifier Code
<update statement: positioned> UPDATE CURSOR 81
<update statement: searched> | UPDATE WHERE 82
<user-defined cast definition> CREATE CAST 52
<user-defined type definition> CREATE TYPE 83
<user-defined ordering definition> CREATE ORDERING 114
<view definition> CREATE VIEW 84
Implementation-defined statements An implementation-defined character | ,.!
string value different from the value
associated with any other SQL-state-
ment
Unrecognized statements A zero-length string 0 (zero)
! An implementation-defined negative number different from the value associated with any other SQL-statement.

NOTE 454 — Other, additional, values are used in other parts of ISO/IEC 9075; please see the corresponding table in the
other parts of ISO/IEC 9075; for more information.

g) The value of ROW_COUNT is the number of rows affected as the result of executing a <delete statement:
searched>, <insert statement>, <merge statement>, or <update statement: searched> or as a direct result
of executing the previous SQL-statement. Let S be the <delete statement: searched>, <insert statement>,
<merge statement>, or <update statement: searched>. Let T be the table identified by the <table name>
directly contained in S.

Case:

i) If § is an <insert statement>, then the value of ROW_COUNT is the number of rows inserted
into T.

il) If Sis a <merge statement>, then let TR/ be the <target table> immediately contained in S, let
TR2 be the <table reference> immediately contained in S, and let SC be the <search condition>
immediately contained in S. If <merge correlation name> is specified, let MCN be “AS <merge
correlation name>"; otherwise, let MCN be a zero-length string.

Case:

1) If S contains a <merge when matched clause> and does not contain a <merge when not
matched clause>, then the value of ROW_COUNT is effectively derived by executing the
statement:

SELECT COUNT (*)
FROM TR1 MCN, TR2
WHERE SC

before the execution of S.

©ISO/IEC 2003 - Al rights reserved T Diagnostics management 1061

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from iHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
22.1 <get diagnostics statement>

2) If S contains a <merge when not matched clause> and does not contain a <merge when
matched clause>, then the value of ROW_COUNT is effectively derived by executing the
statement:

(SELECT COUNT (*)
FROM TR1 MCN
RIGHT OUTER JOIN
TR2
ON SC)

(SELECT COUNT (*)
FROM TR1 MCN, TR2
WHERE SC)

before the execution of S.

3) IfScontains both a <merge when matched clause> and a <merge when not matched clause>,
then the value of ROW_COUNT is effectively derived by executing the statement:

SELECT COUNT (*)
FROM TR1 MCN
RIGHT OUTER JOIN
TR2
ON SC

before the execution of S.

ili) If <correlation name> is specified, then let MCN be “AS <correlation name>"; otherwise, let
MCN be a zero-length string. If S is a <delete statement: searched> or an <update statement:
searched>, then

Case:

1) 1f S'does not contain a <search condition>, then the value of ROW_COUNT is the cardinality
of T before the execution of S.

2) Otherwise, let SC be the <search condition> directly contained in S. The value of
ROW_COUNT is effectively derived by executing the statement:

SELECT COUNT (*)
FROM T MCN
WHERE SC

before the execution of S.

The value of ROW_COUNT following the execution of an SQL-statement that does not directly
result in the execution of a <delete statement: searched>, an <insert statement>, a <merge
statement>, or an <update statement: searched> is implementation-dependent.

h) The value of TRANSACTIONS_COMMITTED is the number of SQL-transactions that have been
committed since the most recent time at which D4 was emptied.
NOTE 455 — See the General Rules of Subclause 13.3, “<externally-invoked procedure>", and Subclause 13.4, “Calls to an

<externally-invoked procedure>”. TRANSACTIONS_COMMITTED indicates the number of SQL-transactions that were
committed during the invocation of an external routine.

1062 Foundation (SQL/Foundation) T ©ISO/IEC 2003 — Al rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under ficense with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

3)

4)

©ISO/IEC 2003 - All rights reserved

ISO/IEC 9075-2:2003 (E)
22.1 <get diagnostics statement>

1) The value of TRANSACTIONS_ROLLED_BACK is the number of SQL-transactions that have been
rolled back since the most recent time at which DA was emptied.

NOTE 456 — See the General Rules of Subclause 13.3, “<externally-invoked procedure>”, and Subclause 13.4, “Calls to an
<externally-invoked procedure>". TRANSACTIONS_ROLLED_BACK indicates the number of SQL-transactions that were
rolled back during the invocation of an external routine.

j) The value of TRANSACTION_ACTIVE is 1 (one) if an SQL-transaction is currently active, and 0
(zero) if an SQL-transaction is not currently active.

NOTE 457 — TRANSACTION_ACTIVE indicates whether an SQL-transaction is active upon return from an external routine.

k) It is implementation-defined whether the identifier and code from Table 31, “SQL-statement codes”,
for <dynamic select statement> or <dynamic single row select statement> is used to describe a <dynamic
select statement> or <dynamic single row select statement> that has been prepared but has not yet been
executed dynamically.

If <condition information> is specified, then let N be the value of <condition number>. If N is less than 1
(one) or greater than the number of occupied condition areas in DA, then an exception condition is raised:
invalid condition number. If <condition number> has the value 1 (one), then the diagnostics information
retrieved corresponds to the condition indicated by the SQLSTATE value actually returned by execution
of the previous SQL-statement other than a <get diagnostics statement>. Otherwise, the association between
<condition number> values and specific conditions raised during evaluation of the General Rules for that
SQL-statement is implementation-dependent.

Specification of <condition information item> assigns the value of the specified condition information item
in the N-th condition area in DA to <simple target specification>.

a) The value of CONDITION_NUMBER is the value of <condition number>.

b) The value of CLASS_ORIGIN is the identification of the naming authority that defined the class value
of RETURNED_SQLSTATE. That value shall be 'ISO 9075' for any RETURNED_SQLSTATE whose
class value is fully defined in Subclause 23.1, “SQLSTATE?”, and shall be an implementation-defined
character string other than 'ISO 9075' for any RETURNED_SQLSTATE whose class value is an
implementation-defined class value.

¢) The value of SUBCLASS_ORIGIN is the identification of the naming authority that defined the subclass
value of RETURNED_SQLSTATE. That value shall be 'ISO 9075' forany RETURNED_SQLSTATE
whose subclass value is fully defined in Subclause 23.1, “SQLSTATE”, and shall be an implementation-
defined character string other than 'ISO 9075' for any RETURNED_SQLSTATE whose subclass value
is an implementation-defined subclass value.

d) The value of RETURNED_SQLSTATE is the SQLSTATE parameter that would have been returned
if this were the only completion or exception condition possible.

e) Ifthe value of RETURNED_SQLSTATE corresponds to warning with a subclass of cursor operation
conflict, then the value of CURSOR_NAME is the name of the cursor that caused the completion
condition to be raised.

f) If the value of RETURNED_SQLSTATE corresponds to integrity constraint violation, transaction
rollback — integrity constraint violation, or a triggered data change violation that was caused by a
violation of a referential constraint, then:

1) The values of CONSTRAINT_CATALOG and CONSTRAINT_SCHEMA are the <catalog
name> and the <unqualified schema name> of the <schema name> of the schema containing

Diagnostics management 1063

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

Nor

or

g permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
22.1 <get diagnostics statement>

the constraint or assertion. The value of CONSTRAINT_NAME is the <qualified identifier> of
the constraint or assertion.

ii) Case:

1) Ifthe violated integrity constraint is a table constraint, then the values of CATALOG_NAME,
SCHEMA_NAME, and TABLE_NAME are the <catalog name>, the <unqualified schema
name> of the <schema name>, and the <qualified identifier>, respectively, of the table in
which the table constraint is contained.

2) If the violated integrity constraint is an assertion and if only one table referenced by the
assertion has been modified as a result of executing the SQL-statement, then the values of
CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the <catalog name>, the
<unqualified schema name> of the <schema name>, and the <qualified identifier>, respec-
tively, of the modified table.

3) Otherwise, the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are
a zero-length string.

If TABLE_NAME identifies a declared local temporary table, then CATALOG_NAME is a
zero-length string and SCHEMA_NAME is “MODULE”.

g) Ifthe value of RETURNED_SQLSTATE corresponds to triggered action exception, transaction rollback
— triggered action exception, or a triggered data change violation that was caused by a trigger, then:

1) The values of TRIGGER_CATALOG and TRIGGER_SCHEMA are the <catalog name> and
the <unqualified schema name> of the <schema name> of the schema containing the trigger.
The value of TRIGGER_NAME is the <qualified identifier> of the <trigger name> of the trigger.

i) The values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the <catalog
name>, the <unqualified schema name> of the <schema name>, and the <qualified identifier>
of the <table name>, respectively, of the table on which the trigger is defined.

h) If the value of RETURNED_SQLSTATE corresponds to syntax error or access rule violation, then:
i) Case:

1) If the syntax error or access rule violation was caused by reference to a specific table, then
the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are

Case:

A) Ifthe specific table referenced was not a declared local temporary table, then the <catalog
name>, the <unqualified schema name> of the <schema name> of the schema that
contains the table that caused the syntax error or access rule violation, and the <qualified
identifier>, respectively.

B) Otherwise, the zero-length string, “MODULE”, and the <qualified identifier>, respec-

tively.
2) Otherwise, CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME contain a zero-
length string.
1064 Foundation (SQL/Foundation) ©ISO/IEC 2003 - All rights reserved
Copyright Canadian Standards Association
Reproduced by |HS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from HS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
22.1 <get diagnostics statement>

ii) If the syntax error or access rule violation was for an inaccessible column, then the value of
COLUMN_NAME is the <column name> of that column. Otherwise, the value of COL-
UMN_NAME is a zero-length string.

i) Ifthe value of RETURNED_SQLSTATE corresponds to invalid cursor state, then the value of CUR-
SOR_NAME is the name of the cursor that is in the invalid state.

j) If the value of RETURNED_SQLSTATE corresponds to with check option violation, then the values
of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the <catalog name>, the
<unqualified schema name> of the <schema name> of the schema that contains the view that caused
the violation of the WITH CHECK OPTION, and the <qualified identifier> of that view, respectively.

k) Ifthe value of RETURNED_SQLSTATE does not correspond to syntax error or access rule violation,
then:

i) If the values of CATALOG_NAME, SCHEMA_NAME, TABLE_NAME, and COL-
UMN_NAME identify a column for which no privileges are granted to the enabled authorization
identifiers, then the value of COLUMN_NAME is replaced by a zero-length string.

it) If the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME identify a table
for which no privileges are granted to the enabled authorization identifiers, then the values of
CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are replaced by a zero-length
string.

iii) If the values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CON-
STRAINT_NAME identify a <table constraint> for some table T and if no privileges for T are
granted to the enabled authorization identifiers, then the values of CONSTRAINT_CATALOG,
CONSTRAINT_SCHEMA, and CONSTRAINT_NAME are replaced by a zero-length string.

iv) If the values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CON-
STRAINT_NAME identify an assertion contained in some schema § and if the owner of S is
not included in the set of enabled authorization identifiers, then the values of CON-
STRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME are replaced
by a zero-length string.

1) If the value of RETURNED_SQLSTATE corresponds to external routine invocation exception,
external routine exception, SQL routine exception, or warning, then

i) The values of ROUTINE_CATALOG and ROUTINE_SCHEMA are the <catalog name> and
the <unqualified schema name>, respectively, of the <schema name> of the schema containing
the SQL-invoked routine.

il) The values of ROUTINE_NAME and SPECIFIC_NAME are the <identifier> of the <routine
name> and the <identifier> of the <specific name> of the SQL-invoked routine, respectively.

iii) Case:
1) If the condition is related to parameter P; of the SQL-invoked routine, then:
A) The value of PARAMETER_MODE is the <parameter mode> of P;.
B) The value of PARAMETER_ORDINAL_POSITION is the value of i.
C) The value of PARAMETER_NAME is a zero-length string.

©ISO/IEC 2003 - Al rights reserved Diagnostics management 1065

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
22.1 <get diagnostics statement>

2) Otherwise:
A) The value of PARAMETER_MODE is a zero-length string.
B) The value of PARAMETER_ORDINAL_POSITION is 0 (zero).
C) The value of PARAMETER_NAME is a zero-length string.

m) If the value of RETURNED_SQLSTATE corresponds to external routine invocation exception,
external routine exception, SQL routine exception, or warning, then the value of MESSAGE_TEXT
is the message text item of the SQL-invoked routine that raised the exception. Otherwise the value of
MESSAGE_TEXT is an implementation-defined character string.

NOTE 458 — An SQL-implementation may set this to <space>s, to a zero-length string, or to a character string describing
the condition indicated by RETURNED_SQLSTATE.

n) The value of MESSAGE_LENGTH is the length in characters of the character string value in MES-
SAGE_TEXT.

o) The value of MESSAGE_OCTET_LENGTH is the length in octets of the character string value in
MESSAGE_TEXT.

p) The values of CONNECTION_NAME and SERVER_NAME are respectively
Case:

i) If COMMAND_FUNCTION or DYNAMIC_FUNCTION identifies an <SQL connection
statement>, then the <connection name> and the <SQL-server name> specified by or implied
by the <SQL connection statement>.

ii) Otherwise, the <connection name> and <SQL-server name> of the SQL-session in which the
condition was raised.

q) Ifthe value of RETURNED_SQLSTATE corresponds to data exception — numeric value out of range,
data exception — invalid character value for cast, data exception — string data, right truncation, data
exception — interval field overflow, integrity constraint violation, or warning — string data, right
truncation, and the condition was raised as the result of an assignment to an SQL parameter during an
SQL-invoked routine invocation, then:

i) The values of ROUTINE_CATALOG and ROUTINE_SCHEMA are the <catalog name> and
the <unqualified schema name>, respectively, of the <schema name> of the schema containing
the routine.

i) The values of the ROUTINE_NAME and SPECIFIC_NAME are the <identifier> of the <routine
name> and the <identifier> of the <specific name>, respectively, of the routine.

iii) If the condition is related to parameter P; of the SQL-invoked routine, then:
1) The value of PARAMETER_MODE is the <parameter mode> of P;.
2) The value of PARAMETER_ORDINAL_POSITION is the value of i.

3) Ifan <SQL parameter name> was specified for the SQL parameter when the SQL-invoked
routine was created, then the value of PARAMETER_NAME is the <SQL parameter name>
of P;. Otherwise, the value of PARAMETER_NAME is a zero-length string.

1066 Foundation (SQL/Foundation) ©ISO/EC 2003 - All rights reserved

Copyright Canadian Standards Assogciation
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
22.1 <get diagnostics statement>

5) The values of character string items where not otherwise specified by the preceding rules are set to a zero-
length string.

NOTE 459 — There are no numeric items that are not set by these rules.
6) The General Rules of Subclause 9.2, “Store assignment”, apply to <simple target specification> and

whichever of <statement information item name> or <condition information item name> is specified, as
TARGET and VALUE, respectively.

Conformance Rules

1) Without Feature F121, “Basic diagnostics management”, conforming SQL language shall not contain a
<get diagnostics statement>.

2) Without Feature T511, “Transaction counts”, conforming SQL language shall not contain a <statement
information item name> that contains TRANSACTIONS_COMMITTED, TRANSAC-
TIONS_ROLLED_BACK, or TRANSACTION_ACTIVE.

©ISO/IEC 2003 — Al rights reserved Diagnostics management 1067

Copyright Canadian Standards Association
Reproduced by 1HS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No rep ion or networking itted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
22.2 Pushing and popping the diagnostics area stack

22.2 Pushing and popping the diagnostics area stack

Function

Define operations on the diagnostics area stack.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let OP be the OPERATION and let DAS be the STACK specified in an application of this Subclause.
2) Case:
a) If OPis “PUSH”, then
Case:

i) If the number of diagnostics areas in DAS is equal to the implementation-dependent maximum
number of diagnostics areas per diagnostics area stack, then an exception condition is raised:
diagnostics exception — maximum number of stacked diagnostics areas exceeded.

it) Otherwise, DAS is pushed and the contents of the second diagnostics area in DAS are copied to
the first.

- b) IfOPis “POP”, then the first diagnostics area is removed from DAS such that all subsequent diagnostics
areas in DAS move up one position, the second becoming the first, the third becoming the second, and
SO on.

Conformance Rules

None.

1068 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved

Copyright Canadian Standards Association
Reproduced by {HS under license with CSA Sold 10:INFOTRIEVE, INC, W0277804
No rep or ing permil without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
23.1 SQLSTATE

23 Status codes

23.1 SQLSTATE

The character string value returned in an SQLSTATE parameter comprises a 2-character class value followed
by a 3-character subclass value, each with an implementation-defined character set that has a one-octet character
encoding form and is restricted to <digit>s and <simple Latin upper case letter>s. Table 32, “SQLSTATE class
and subclass values”, specifies the class value for each condition and the subclass value or values for each class
value.

Class values that begin with one of the <digit>s '0", '1', '2', '3', or '4' or one of the <simple Latin upper case letter>s
'A','B','C", 'D, 'E', 'F', 'G', or 'H' are returned only for conditions defined in ISO/IEC 9075 or in any other
International Standard. The range of such class values are called standard-defined classes. Some such class
codes are reserved for use by specific International Standards, as specified elsewhere in this Clause. Subclass
values associated with such classes that also begin with one of those 13 characters are returned only for conditions
defined in ISO/IEC 9075 or some other International Standard. The range of such class values are called standard-
defined classes. Subclass values associated with such classes that begin with one of the <digit>s '5','6','7', '8',
or '9' or one of the <simple Latin upper case letter>s 'T', 'J', 'K', 'L', 'M", 'N', 'O, 'P", 'Q', 'R", 'S', 'T", 'U', 'V', 'W',
X', "Y', or 'Z' are reserved for implementation-specified conditions and are called implementation-defined
subclasses.

Class values that begin with one of the <digit>s '5','6', '7', '8', or'9' or one of the <simple Latin upper case letter>s
1,7, 'K, 'L, "M, 'N', ‘0", 'P','Q", 'R, 'S', 'T', 'U', "V, 'W', 'X", 'Y", or 'Z' are reserved for implementation-specified
exception conditions and are called implementation-defined classes. All subclass values except '000', which
means no subclass, associated with such classes are reserved for implementation-specified conditions and are
called implementation-defined subclasses. An implementation-defined completion condition shall be indicated
by returning an implementation-defined subclass in conjunction with one of the classes successfil completion,
warning, or no data.

If a subclass value is not specified for a condition, then either subclass '000' or an implementation-defined
subclass is returned.

NOTE 460 — One consequence of this is that an SQL-implementation may, but is not required by ISO/TEC 9075 to, provide subcodes
for exception condition syntax error or access rule violation that distinguish between the syntax error and access rule violation cases.

If multiple completion conditions: warning or multiple exception conditions, including implementation-defined
exception conditions, are raised, then it is implementation-dependent which of the corresponding SQLSTATE
values is returned in the SQLSTATE status parameter, provided that the precedence rules in Subclause 4.29.2,
“Status parameters”, are obeyed. Any number of applicable conditions values in addition to the one returned
in the SQLSTATE status parameter, may be returned in the diagnostics area.

An implementation-specified condition may duplicate, in whole or in part, a condition defined in ISO/IEC
9075; however, if such a condition occurs as a result of executing a statement, then the corresponding imple-
mentation-defined SQLSTATE value shall not be returned in the SQLSTATE parameter but may be returned
in the diagnostics area.

©ISO/IEC 2003 — All rights reserved Status codes 1069

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, iINC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
23.1 SQLSTATE

The “Category” column has the following meanings: “S” means that the class value given corresponds to suc-
cessful completion and is a completion condition; “W” means that the class value given corresponds to a suc-
cessful completion but with a warning and is a completion condition; “N” means that the class value given
corresponds to a no-data situation and is a completion condition; “X” means that the class value given corresponds
to an exception condition.

Table 32 — SQLSTATE class and subclass values

Category | Condition Class | Subcondition Subclass
X ambiguous cursor name 3C (no subclass) 000
X attempt to assign to non-updatable | O0U (no subclass) 000
column
X attempt to assign to ordering col- | OV (no subclass) 000
umn
cardinality violation 21 (no subclass) 000
connection exception 08 (no subclass) 000
connection does not exist 003
connection failure 006
connection name in use 002

SQL-client unable to establish 001
SQL-connection

SQL-server rejected establishment | 004
of SQL-connection

transaction resolution unknown 007

X cursor sensitivity exception 36 (no subclass) 000
request failed 002
request rejected 001
X data exception 22 (no subclass) 000
array data, right truncation 02F
array element error 02E
character not in repertoire 021
1070 Foundation (SQL/Foundation) B ©ISO/IEC 2003 — All rights reserved
Reprosced by S under loonse wih COA Soid WINFOTRIEVE, INC, W0277804

No rep! Yor permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
23.1 SQLSTATE

Category | Condition Class | Subcondition Subclass
datetime field overflow 008
division by zero 012
error in assignment 005
escape character conflict 00B
indicator overflow 022
interval field overflow 015
interval value out of range 0opP

invalid argument for natural loga- | 01E
rithm

invalid argument for power func- | 01F
tion

invalid argument for width bucket | 01G
Junction

invalid character value for cast | 018

invalid datetime format 007
invalid escape character 019
invalid escape octet 00D
invalid escape sequence 025

invalid indicator parameter value | 010

invalid interval format 006

invalid parameter value 023

invalid preceding or following size | 013
in window function

invalid regular expression 01B

invalid repeat argument in a sam- | 02G

ple clause
invalid sample size 02H
©ISO/IEC 2003 - All rights reserved Status codes 1071
Copyright Canadian Standards Association
Reproduced by IHS under I!csnsa w?lh CSA Sold to:INFOTRIEVE, INC, W0277804

No ion or p without licanse from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/NIEC 9075-2:2003 (E)
23.1 SQLSTATE

Category | Condition Class | Subcondition Subclass

invalid time zone displacement 009
value

invalid use of escape character | 00C

most specific type mismatch 00G
multiset value overflow 00Q
noncharacter in UCS string 029

null value substituted for mutator | 02D
subject parameter

null row not permitted in table 01C
null value in array target 00E

null value, no indicator parameter | 002

null value not allowed 004

numeric value out of range 003

sequence generator limit exceeded | 00H

string data, length mismatch 026
string data, right truncation 001
substring error 011
trim error 027
unterminated C string 024
zero-length character string 00F
X dependent privilege descriptors | 2B (no subclass) 000
still exist
X diagnostics exception 0z (no subclass) 000
maximum number of stacked 001
diagnostics areas exceeded
X dynamic SQL error 07 (no subclass) 000
1072 Foundation (SQL/Foundation) ©ISO/IEC 2003 - Al rights reserved
Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No ri or g p without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
23.1 SQLSTATE

Category | Condition Class | Subcondition Subclass
cursor specification cannot be 003
executed

data type transform function viola- | 00B

tion

invalid DATA target 00D
invalid DATETIME_INTER- 00F
VAL_CODE

invalid descriptor count 008
invalid descriptor index 009
invalid LEVEL value 00E

prepared statement not a cursor | 005
specification

restricted data type attribute viola- | 006

tion
undefined DATA value 00C
using clause does not match 001

dynamic parameter specifications

using clause does not match target | 002
specifications

using clause required for dynamic | 004
parameters

using clause required for result | 007
fields

X external routine exception 38 (no subclass) 000

containing SQL not permitted 001

modifying SQL-data not permitted | 002

prohibited SQL-statement 003
attempted

reading SQL-data not permitted | 004

... ©ISONEC 2003 — All rights reserved Status codes 1073

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold lo:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Rasale,2005/8/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
23.1 SQLSTATE

Category | Condition Class | Subcondition Subclass
X external routine invocation 39 (no subclass) 000
exception
null value not allowed 004
X feature not supported 0A (no subclass) 000
multiple server transactions 001
X integrity constraint violation 23 (no subclass) 000
restrict violation 001
X invalid authorization specification | 28 (no subclass) 000
X invalid catalog name 3D (no subclass) 000
X invalid character set name 2C (no subclass) 000
X invalid condition number 35 (no subclass) 000
X invalid connection name 2E (no subclass) 000
X invalid cursor name 34 (no subclass) 000
X invalid cursor state 24 (no subclass) 000
X invalid grantor oL (no subclass) 000
X invalid role specification 0P (no subclass) 000
X invalid schema name 3F (no subclass) 000
X invalid schema name list specifica- | OE (no subclass) 000
tion
invalid collation name 2H (no subclass) 000
invalid SQL descriptor name 33 (no subclass) 000
invalid SQL-invoked procedure | OM (no subclass) 000
reference
invalid SQL statement name 26 (no subclass) 000
invalid SQL statement identifier | 30 (no subclass) 000
invalid target type specification | 0D (no subclass) 000

1074 Foundation (SQL/Foundation) o

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA

No reproduction or networking permitted without license from IHS

Soid to:INFOTRIEVE, INC, W0277804
Not for Resale,2005/6/17 21:54:10 GMT

©ISO/IEC 2003 - All rights reserved

ISO/IEC 9075-2:2003 (E)
23.1 SQLSTATE

Category | Condition Class | Subcondition Subclass

X invalid transaction initiation 0B (no subclass) 000

X invalid transaction state 25 (no subclass) 000
active SQL-transaction 001

branch transaction already active | 002

held cursor requires same isola- | 008
tion level

inappropriate access mode for 003
branch transaction

inappropriate isolation level for | 004
branch transaction

no active SQL-transaction for 005
branch transaction

read-only SQL-transaction 006
schema and data statement mixing | 007
not supported
invalid transaction termination 2D (no subclass) 000
X invalid transform group name 0S (no subclass) 000
specification
X locator exception OF (no subclass) 000
invalid specification 001
N no data 02 (no subclass) 000
no additional dynamic result sets | 001
returned
X prohibited statement encountered | OW (no subclass) 000
during trigger execution
X Remote Database Access HZ (See Table 33, “SQLSTATE class

codes for RDA”, for the definition
of protocol subconditions and
subclass code values)

X savepoint exception 3B (no subclass) 000
©ISO/IEC 2003 - All rights reserved Status codes 1075
Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
23.1 SQLSTATE

Category | Condition Class | Subcondition Subclass
invalid specification 001
too many 002

X SQL routine exception 2F (no subclass) 000

function executed no return state- | 005
ment

modifying SQL-data not permitted | 002

prohibited SQL-statement 003
attempted

reading SQL-data not permitted | 004

successful completion 00 (no subclass) 000
X syntax error or access rule viola- | 42 (no subclass) 000
tion
X target table disagrees with cursor | 0T (no subclass) 000
specification
X transaction rollback 40 (no subclass) 000
integrity constraint violation 002
serialization failure 001

statement completion unknown 003

triggered action exception 004

triggered action exception 09 (no subclass) 000

triggered data change violation | 27 (no subclass) 000

w warning 01 (no subclass) 000
additional result sets returned 00D

array data, right truncation 02F

attempt to return too many result | 00E

sets
cursor operation conflict 001
1076 Foundation (SQL/Foundation) ©ISO/IEC 2003 - All rights reserved
Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Soid 10:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
23.1 SQLSTATE

Category | Condition Class | Subcondition Subclass

default value too long for informa- | 00B
tion schema

disconnect error 002

dynamic result sets returned 00C

insufficient item descriptor areas | 005

null value eliminated in set func- | 003

tion
privilege not granted 007
privilege not revoked 006

query expression too long for 00A
information schema

search condition too long for 009
information schema

statement too long for information | O0F

schema
string data, right truncation 004
X with check option violation 44 (no subclass) 000
©ISO/IEC 2003 - Al rights reserved ... Statuscodes 1077

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
23.2 Remote Database Access SQLSTATE Subclasses

23.2 Remote Database Access SQLSTATE Subclasses

ISO/IEC 9075 reserves SQLSTATE class 'HZ' for Remote Database Access errors, which may occur when an
SQL-client interacts with an SQL-server across a communications network using an RDA Application Context.
[1S09579], [ISO8649], and [ISO10026] define a number of exception conditions that shall be detected in a
conforming ISO RDA implementation. This Subclause defines SQLSTATE subclass codes for each such con-
dition out of the set of codes reserved for International Standards.

If an implementation using RDA reports a condition shown in Table 33, “SQLSTATE class codes for RDA”,
for a given exception condition, then it shall use the SQLSTATE class code 'HZ' and the subclass codes shown,
and shall set the values of CLASS_ORIGIN to 'ISO 9075' and SUBCLASS_ORIGIN as indicated in Table 33,
“SQLSTATE class codes for RDA”, when those exceptions are retrieved by a <get diagnostics statement>.

An implementation using client-server communications other than RDA may report conditions corresponding
to the conditions shown in Table 33, “SQLSTATE class codes for RDA”, using the SQLSTATE class code
'HZ' and the corresponding subclass codes shown. It may set the values of CLASS_ORIGIN to 'ISO 9075' and
SUBCLASS_ORIGIN as indicated in Table 33, “SQLSTATE class codes for RDA”. Any other communications
error shall be returned with a subclass code from the implementation-defined range, with CLASS_ORIGIN set
to 'ISO 9075' and SUBCLASS_ORIGIN set to an implementation-defined character string.

A Remote Database Access exception may also result in an SQL completion condition defined in Table 32,
“SQLSTATE class and subclass values” (such as '40000', transaction rollback); if such a condition occurs,
then the 'HZ' class SQLSTATE shall not be returned in the SQLSTATE parameter, but may be returned in the
Diagnostics Area.

Table 33 — SQLSTATE class codes for RDA

SQLSTATE | Subclass Origin
Class
HZ ISO/IEC 9579
1078 Foundation (SQL/Foundation) ©ISO/IEC 2003 - All rights reserved
Copyright Canadian Standards Association
Reproduced by {HS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No reproduction or networking permitted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)

24.1 Claims of conformance to SQL/Foundation

24 Conformance

24.1

Claims of conformance to SQL/Foundation

In addition to the requirements of ISO/IEC 9075-1, in Clause 8, “Conformance”, a claim of conformance to
this part of ISO/IEC 9075 shall:

1) Claim conformance to at least one of:

Feature BO11, “Embedded Ada”

Feature B012, “Embedded C”

Feature B013, “Embedded COBOL”
Feature B014, “Embedded Fortran”
Feature B015, “Embedded MUMPS”
Feature B016, “Embedded Pascal”

Feature BO17, “Embedded PL/1”

Feature B111, “Module language Ada”
Feature B112, “Module language C”
Feature B113, “Module language COBOL”
Feature B114, “Module language Fortran”
Feature B115, “Module language MUMPS”
Feature B116, “Module language Pascal”
Feature B117, “Module language PL/I”

2) A claim conformance to at least one of:

Feature B121, “Routine language Ada”
Feature B122, “Routine language C”
Feature B123, “Routine language COBOL”
Feature B124, “Routine language Fortran”
Feature B125, “Routine language MUMPS”
Feature B126, “Routine language Pascal”

Feature B127, “Routine language PL/I”

©ISO/IEC 2003 - All rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804
or N .

No rep ion

d without license from IHS Not for Resale,2005/6/17 21:54.10 GMT

Conformance 1079

ISO/IEC 9075-2:2003 (E)

24.1 Claims of conformance to SQL/Foundation

— Feature B128, “Routine language SQL”

24.2 Additional conformance requirements for SQL/Foundation

An SQL-implementation that claims conformance to a feature in this part of ISO/IEC 9075 shall also claim

conformance to the same feature, if present, in ISO/IEC 9075-11.

An SQL-implementation that claims conformance to Feature T061, “UCS support”, shall:

— Conform to ISO/IEC 10646-1:2000 at some specified level.

— Provide at least one of the named character sets UTF8, UTF16, and UTF32.

— Provide, as the default collation for each such character set, a collation that conforms to ISO/IEC 14651:2001
at some level.

24.3 Implied feature relationships of SQL/Foundation

Table 34 — Implied feature relationships of SQL/Foundation

Feature Feature Name Implied Implied Feature Name
ID Feature
1D
B032 Extended dynamic SQL B031 Basic dynamic SQL
B034 Dynamic specification of cursor B031 Basic dynamic SQL
attributes
B111 Module language Ada E182 Module language
B112 Module language C E182 Module language
B113 Module language COBOL E182 Module language
B114 Module language Fortran E182 Module language
B115 Module language MUMPS E182 Module language
B116 Module language Pascal E182 Module language
BI117 Module language PL/I E182 Module language
F381 Extended schema manipulation F491 Constraint management

1080 Foundation (SQL/Foundation)

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA

No reproduction or networking permitted without license from iHS

©ISO/IEC 2003 — All rights reserved

Sold 10:INFOTRIEVE, INC, W0277804
Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
24.3 Implied feature relationships of SQL/Foundation

Feature Feature Name Implied Implied Feature Name
ID Feature
ID

F451 Character set definition F461 Named character sets
F521 Assertions F491 Constraint management
F691 Collation and translation F695 Translation support
F691 Collation and translation F690 Collation support
F693 SQL-session and client module colla- | F690 Collation support

tions
F711 ALTER domain F251 Domain support
F721 Deferrable constraints F491 Constraint management
F801 Full set function F441 Extended set function support
S024 Enhanced structured types S023 Basic structured types
S041 Basic reference types S0s1 Create table of type
S043 Enhanced reference types S041 Basic reference types
S051 Create table of type S023 Basic structured types
S081 Subtables S051 Create table of type
S092 Arrays of user-defined types S091 Basic array support
S094 Arrays of reference types 5041 Basic reference types
S094 Arrays of reference types S091 Basic array support
S095 Array constructors by query S091 Basic array support
S096 Optional array bounds S091 Basic array support
Si11 ONLY in query expressions S051 Create table of type
S201 SQL-invoked routines on arrays S091 Basic array support
5202 SQL-invoked routines on multisets | S271 Basic multiset support
5231 Structured type locators S023 Basic structured types
S232 Array locators S091 Basic array support

©ISO/IEC 2003 — Al rights reserved

Copyright Canadian Standards Association
Reproduced by IHS under license with CSA

No reproduction or networking permitted without ficense from IHS

Conformance 1081

Sold to:INFOTRIEVE, INC, W0277804
Not for Resale,2005/6/17 21:54:10 GMT

ISO/IEC 9075-2:2003 (E)
24.3 Implied feature relationships of SQL/Foundation

Feature Feature Name Implied Implied Feature Name
ID Feature
ID

S233 Multiset locators S271 Basic multiset support

S242 Alter transform statement S241 Transform functions

S272 Multisets of user-defined types S271 Basic multiset support

S274 Multisets of reference types S041 Basic reference types

S274 Multisets of reference types S271 Basic multiset support

S275 Advanced multiset support S271 Basic multiset support

T042 Extended LOB data type support T041 Basic LOB data type support

T061 UCS Support F461 Named character sets

T061 UCS support F690 Collation support

T122 WITH (excluding RECURSIVE) in | T121 WITH (excluding RECURSIVE) in
subquery query expression

T131 Recursive query T121 WITH (excluding RECURSIVE) in

query expression
T132 Recursive query in subquery T122 WITH (excluding RECURSIVE) in
subquery

T132 Recursive query in subquery T131 Recursive query

T173 Extended LIKE clause in table defini- | T171 LIKE clause in table definition
tion

T212 Enhanced trigger capability T211 Basic trigger capability

T332 Extended roles T331 Basic roles

T511 Transaction counts F121 Basic diagnostics management

T571 Array-returning external SQL- S201 SQL-invoked routines on arrays
invoked functions

T572 Multiset-returning external SQL- S202 SQL-invoked routines on multisets
invoked functions

T612 Advanced OLAP operations T611 Elementary OLAP operations

1082 Foundation (SQL/Foundation) ©ISO/IEC 2003 — All rights reserved
Copyright Canadian Standards Association
Reproduced by IHS under license with CSA Sold to:INFOTRIEVE, INC, W0277804

No r ion or networking itted without license from IHS Not for Resale,2005/6/17 21:54:10 GMT

	Copyright Warning & Restrictions
	Chapter 17: Connecton management
	Chapter 18: Session management
	Chapter 19: Dynamic SQL
	Chapter 20: Embedded SQL
	Chapter 21: Direct invocation of SQL
	Chapter 22: Diagnostics management
	Chapter 23: Status codes
	Chapter 24: Conformance

