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I Prcfoce

analysis courses. The text is designed primarily for undergraduate and graduate

students in mathematics, sciences, engineering, and computer science. It explores -
the mathematical and computational aspects of the subject of numerical analysis, and
its major themes are the development, analysis, implementation, and intelligent use of
numerical methods and related software.

The text may be used for either the one-semester numerical methods course or for
the two-semester numerical analysis course. Mathematical prerequisites for its use in a
methods course are at least one year of the college calculus sequence and coursework
in the fundamentals of matrix algebra. Mathematical prerequisites for its use in an
analysis course include at least three semesters of the college calculus sequence (through
multivariable calculus), linear algebra, and an introduction to differential equations.
Students should also be familiar with at least one programming language.

Although users of numerical methods come from a variety of disciplines and back-
grounds, all have some goals in common. Following are the major goals of a numerical
analyst (1) to design algorithms specific to an application situation, (2) to implement
the algorithms in a given computing environment, and (3) to understand the purpose
and limitations of available mathematical software. In order to facilitate effective use
of numerical methods for solving problems, numerous mathematical software packages
and systems have been developed over the past several years. However, a truly effective
use of any available piece of software requires a considerable amount of computational
experience with it. These three major goals could be accomplished with (a) a theoretical
knowledge of the subject of numerical analysis, (b) a knowledge of available software
and computing environments, and (c) a lot of computational experience.

Theoretical knowledge enables the numerical analyst to understand the problem
being solved so that he or she can derive, analyze, and test a numerical method for its
solution. Such knowledge must also include error analysis of numerical methods and
an idea of when a given numerical method will perform well or poorly. A knowledge
of the available software and computing environments is of practical significance to
the users of numerical methods and will enable them to become “intelligent users”
of mathematical software. This knowledge is especially important because a standard
program may not be directly useful for the solution of many real problems. An intelligent
user of numerical methods should be in a position to adapt standard programs for new
situations he or she encounters or to develop new methods as may be warranted. An

T he material in this text derives from the lecture notes of a variety of numerical
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important aspect of computing environments is the finite precision arithmetic of actual
computations as opposed to the exact arithmetic assumed in theoretical discussions.
Computational experience bridges the gap between the theoretical discussions and
the expected or unexpected behavior of numerical methods when applied to practical
problems. Quite often computational experience is also helpful to determine whether a
mathematical model accurately represents the physical problem of interest.

This text exposes students to the development, analysis, and implementation of
numerical methods for the solution of standard mathematical problems that arise in
many disciplines. Theory is emphasized as much as software development and com-
putational experience. We hope students will gain more practical knowledge using this
approach. Adequate theoretical discussion is included in order to explain the behavior
of numerical methods on different kinds of problems. Students are given ample oppor-
tunity to investigate numerical methods via hand computation, program development,
and experimentation. Individual instructors may encourage the use of high-quality soft-
ware packages or systems such as IMSL, Mathcad, Mathematica, Matlab, and NAG for
experimentation purposes. The text does not, however, discuss these items.

Organization

Sections of the text marked by a star—in the table of contents and within the text—
may be skipped in the methods course with no loss of continuity. We will call these
sections starred sections, and the others unstarred. The one-semester methods course
may be taught using only the unstarred sections in Chapters 1-8. The entire text may
be used for the two-semester analysis course. The following diagram shows the chapter
dependencies within the text.
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Chapter 9
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Rather than follow the syntax of a particular programming language such as Fortran
or Pascal, we present algorithms in a generic notation to enable students to code the
algorithms in a programming language of their own choice. Sources of mathematical
software presently available for different kinds of computers are discussed in the Soft-
ware Survey section at the end of each chapter. An Instructor’s Manual is available
with the text. The manual includes program listings for all the algorithms and detailed
solutions to all exercises in the text. A 34" disk, formatted for the DOS platform, is sup-
plied with the Instructor’s Manual. The disk contains the solutions to all the computer
exercises and the programs corresponding to the algorithms described in the text. The
programs are written in Fortran, Pascal, and C.
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he theory of projectiles is a subject of interest to students of elementary physics.
The height y(x) reached by a projectile at distance x from the point of projection
is given by

8 2

y(x) = (tana) - x — 2(vp cos ar)? X

(1.1)
where vy is the initial velocity and « is the angle of projection. (See Fig. 1.1.)

Corresponding to @ = /3, vp = 100 m/s, and g = 9.8 m/s?, the height y(x) for
x = 500 determined by (1.1) is

9.8

. (500)* ~ 376 m.
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Figure 1.1 Locus of a projectile.

Itis an important task of a physicist to determine how small inaccuracies in the parameters
involved in the calculations affect the final result. This is frequently called sensitivity
analysis or perturbation analysis. For instance, consider decreasing vo by 2% in the
present calculation. Then, vy = 98 m/s, and the height.y(x) for x = 500 determined by
(1.Dis

9.8
2(98 - 0.5)2

Therefore, the result has decreased roughly by 5.32%. On the other hand, if we let
vo = 100, and consider decreasing @ by 2%, we have o = 0.987/3, tane ~ 1.6512,
cosa ~ 0.5180, and

y(500) = 500+/3 — . (500)% &~ 356 m.

9.8
y(500) = 500(1.6512) — > - (500)% ~ 369 m.

2(100 - 0.5180)
Note that this corresponds to a decrease of only 1.86%. Thus, in this example, a small
change in vy affects the result much more than does a small change in «.

When there are many parameters involved, it may not be practical to consider
the effect of “changing” one parameter at a time. Moreover, in physical studies the
“changes” in many parameters may occur simultaneously as measurement errors or
uncertainties. The study of effects of small changes in the data arises naturally in the
design of numerical methods for solving mathematical problems.

The subject of numerical analysis deals with the design, implementation, testing, and
analysis of numerical methods. In this book, we will consider a variety of mathematical
problems for which numerical methods will be developed and analyzed. This chapter .
contains a brief review of selected topics from elementary calculus, along with an
introduction to the basic ideas related to error analysis, computer arithmetic, propagation
of errors, convergence and stability of computations, algorithms, and programming.
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1.1.1 REVIEW OF CALCULUS

This book assumes that you are familiar with the basic concepts of real and com-
plex number systems, limits and continuity, sequences and series, and differentiation
and integration, which are normally covered in the undergraduate calculus and analyt-
ical geometry sequence. A short review of some of these topics is given in Appendix
A. For the last three chapters, a knowledge of ordinary and partial differential equa-
tions is assumed. This section contains a review of some basic theorems from calculus
that will be used frequently in the book. Most of the results are presented unrefer-
enced and are available in standard undergraduate calculus textbooks (for example, see
Berkey [4]).

1.1 (Intermediate-Value Theorem)

Suppose f(x) is a continuous function on the interval {a, b], and K is any number
between f(a) and f(b). Then there exists a number ¢ € [a, b] such that f(c) = K. (See
Fig. 1.2.) m]

A formal proof of this theorem is not usually given in the basic calculus course, but
is available in most advanced calculus texts (for example, see Fulks [7]). However, this
result is intuitively clear. For example, consider the altitude H (f) of an airplane at time
¢ minutes after takeoff. Clearly, at ¢ = 0 we must have H = 0. Because of the physical
situation, it is clear that H(¢) is a continuous function of ¢. Hence, if H is 10,000 feet
at t = 10 and 20,000 feet at ¢ = 15, then the plane must reach every altitude between
10,000 feet and 20,000 feet between t = 10 and ¢ = 15.

Figure 1.2 Intermediate-value theorem.
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1.2 (Rolle’s Theorem)

Suppose f(x) is a continuous function on the interval [a, b] and f is differentiable
on (a, b). If f(a) = f(b), then there exists at least one number c € (a, b) such that
f'(c) = 0. (See Fig. 1.3.) |

We now illustrate the use of the two theorems with some examples. Suppose f(x)
is a given function. A number x* for which f(x*) =0 is called a solution of the
equation f(x) = 0, or more commonly a root of f(x) = 0. The task of locating a root
of f(x) =0, which arises quite often in various contexts, is called the rootfinding
problem. The simplest way to solve the rootfinding problem is to sketch the graph of
f(x) and locate x* as a point at which the graph of f(x) intersects the x-axis. In other
words, we must search for x* on the x-axis. Where do we start searching, and for how
long? Theorems 1.1 and 1.2 may be used to obtain some clues!

SOLUTION

Show that the equation x3 — 2x — 5 = 0 has a solution in the interval [2, 3].

Let f(x) = x3 — 2x — 5, and note that f(x) is continuous on the interval [2, 3]. Then
-1 = f(2) <0< f(3) = 16. With K = 0 in Theorem 1.1, we may conclude that there
is a number ¢ € [2, 3] such that f(c) = 0. A

SOLUTION

Show that the equation x3 4 4x + k = 0, where k is any real number, has exactly one
real root.
Let f(x) = x® + 4x + k. For large positive x, f(x) is positive, and for large negative x,
f(x) is negative. Hence, by Theorem 1.1, there exists a number ¢ such that f(c) = 0;
i.e., there is at least one real root for the equation x> + 4x + k = 0.

Suppose f(x) = 0 has more than one real root. Consider two such roots, say a and
b. Then, f(x) is a continuous function on the interval [a, b] with f(a) = f(b) = 0.

Sf(@) 1]

Figure 1.3 Rolle’s theorem.
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Then, by Theorem 1.2 there must be a point ¢ € (a, b) such that f'(c) = 0. However,
since f(x) = x>+ 4x + k, at any real number ¢ we have f "(c) = 3c? + 4, which is
always positive—a contradiction. Therefore, f(x) = 0 must have only one real root. A

Note that Theorems 1.1 and 1.2 provide only clues regarding the roots of f(x) =
they do not provide any means for obtaining the roots. We will consider numerical
methods for solving the rootfinding problem in detail in Chapter 2.

By applying Theorem 1.2 successively to f, f',- -+, f (=1) we obtain the following
theorem.

1.3 (Generalized Rolle’s Theorem)

Suppose f(x) is a continuous function on the interval [a, b, and f is n times differen-
tiable on (a, b). If f(x) =0 at the n + 1 distinct numbers Xo, X1, * . Xp in [a, b, then
there exists a number ¢ € (a, b) such that f®(c) = O

SOLUTION

[ THEOREM |

[ THEOREM |

Suppose f(x) and g(x) are two functions that are n times continuously differentiable
on the interval [a, b]. Suppose there exist n + 1 distinct numbers xo, X1, -+, X in
[a, b] such that f(x;) = g(x;) fori =0, 1, -- -, n. Then show that there exists a number

¢ € (a, b) such that f™@(c) = g™ (c).

Define h(x) = f(x) — g(x). Then h(x) is n times continuously differentiable on [a, b]

and h(x) = Oatthen + 1 distinct points xo, X1, - - - , X,. Then, by Theorem 1.3, it follows

that there exists a number ¢ € (a, b) such that A®(¢) = 0. That is, f®(c) = g™ (c).
A

In the analysis of numerical methods, the behavior of errors in computations is im-
portant. Usually we obtain expressions for errors that involve values of certain functions
or their derivatives at some unknown points. The following theorems are often useful
for obtaining bounds or estimates for such error expressions.

1.4 (Extreme-Value Theorem)

Suppose f(x) is a continuous function on the interval [a, b]. Then there exist numbers
¢y and c; in [a, b] with the property that for all x in [a, b, f(c1) < f(x) < f(c2). O

The proofs for Theorems 1.5 through 1.8 are given in Appendix A.

1.5 (Weighted Mean-Value Theorem for Sums)

Suppose f (x) is a continuous function on the interval [a, b). Let xy, X3, - -+, Xa be points
in [a, b), and let wy, wa, - - - w, be real numbers all of one sign. Then there exists a
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number c € [a, b] such that

3w fe) =f© ) w
=1 j=1

SOLUTION

[ THEOREM |

Remark

Let f(x) be continuous on [a, b]. Let § = Y7, f(x;), where xy, x3, - -+, xa € [a, b].
Show that there exists a number ¢ € [a, b] such that § = n f(c). '

Note that Theorem 1.5 applies to this situation with w; = 1for j = 1,2,---,n. A

1.6 (Integral Mean-Value Theorem)

Suppose f(x) is a continuous function on the interval [a, b], w(x) is an integrable
function on [a, b], i.c.,

b
f w(x)dx < oo,
a

and w(x) does not change sign on [a, b). Then there exists a number c € [a, b] such
that

b b
/ w(x) f(x)dx =f(c)f wix)dx. O

For w(x) = 1, Theorem 1.6 guarantees the existence of a number ¢ € [a, b] such that

1 b
flo= -b——f f(x)adx. (1.2)
_a a

The right member of (1.2) is usually referred to as the average value of the function
f(x). (See Fig. 1.4.) Note that the hypothesis that w(x) is of one sign is essential in

y=fx)

fey
P

()

Figure 1.4 Average value.
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Theorem 1.6. For example, the theorem does not hold for f(x) = x and w(x) = x on
the interval [—1,1]. &

SOLUTION

Show that flz(l -x)x—-2)f(x)dx = %f(c) for sorﬁe number ¢ € {1, 2].

Theorem 1.6 applies with w(x) = (1 —x)(i —2). Notice that w(x) >0 on [1,2].
Therefore,

2 2 1 .
f. (1—x)(x —2) f () dx = () fl (1= ~2) dr = £ F©).

SOLUTION

| THEOREM |

Consider | 13 w(x) f(x) dx. Can Theorem 1.6 be directly applied to this integral with
w(x) = (x — 1)(x — 2)(x — 3) to obtain a result similar to Example 1.5?

\
No, Theorem 1.6 does not apply to this integral because the function w(x) = (x —
1)(x — 2)(x — 3) changes sign in the interval [1, 3]. A

Taylor’s Theorem and the associated Taylor series are among the most important
tools in numerical analysis. The theorem gives a simple method for approximating func-
tions f (x) by polynomials. The proof of Taylor’s Theorem makes use of the fundamental
theorem of calculus. The Mean-Value Theorem for Derivatives is a particular instance
of Taylor’s Theorem and will be presented first.

1.7 (Mean-Value Theorem for Derivatives)

Suppose f(x) is a continuous function on the interval [a, b}, and f is differentiable on
(a, b). Then there exists a number c € (a, b) such that

f(b) - fla)
a.

fl@) =——

(See Fig. 1.5.)

SOLUTION

Find the value of the number ¢ guaranteed by Theorem 1.7 (Mean-Value Theorem for

1
Derivatives) for the function f(x) =x + p over the interval [2, 3].

f(x) is continuous on [2, 3] and differentiable on (2, 3)—hence Theorem 1.7 applies.
There is a number c in (2, 3) such that

L fO =D _ (1 _ (.15
-5 =r0=L220 _(5:3)-(2+3) -3

Hence, c¢? = 6 and ¢ = /6. (The value corresponding to the negative sign of the squaré
root does not lie in (2, 3) and therefore is not guaranteed by Theorem 1.7.) A
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Py
P

Figure 1.5 Mean-value theorem for derivatives.

Successive application of the fundamental theorem of calculus to f, f',---, f®,
and a careful integration by parts result in Taylor’s Theorem.

1.8 (Taylor's Theorem)

Suppose f (x) has n + 1 continuous derivatives on [a, b, and x is some point in [a, b].
Then, for all x € [a, b), there exists £(x) in the interval containing xo and x satisfying

fx) = Py(x) + Rpy1(x),

where
i/ (’l)
Pu(x) = f(x0) + (x — x0) f'(xo) + (x — xo)zf_z(TxQ ISP | n('xo)
- F®(xo)
=2 -t
" FeDE X))
w6 ‘ ,
Ru () = (¢ =30 o

P,(x) is called the n't-degree Taylor polynomial !for Jf about xp and Rp4(x) is
called the remainder term associated with P, (x). The infinite series obtained by taking
the limit of P,(x) asn — oo is called the Taylor series for f about xo. When xo = 0, the
Taylor polynomial and series are often referred to as the Maclaurin polynomial and the
Maclaurin series, respectively. The remainder term is also called the truncation error,
indicating the error involved in using a truncated or finite summation to approximate the
sum of an infinite series.
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Figure 1.6 Taylor’s theorem.

\ Use Taylor’s Theorem (Theorem 1.8) to determine the Taylor polynomial of degree n

for f(x) = Inx about xo = 1. Determine also the remainder term.

With f(x) = Inx and xo = 1, one obtains f (xo) = 0, f'(x0) = 1, f"(x0) = —1, f" (x0)
=2, f™(xp) = —6, etc. In general,

fP@) = (=)"" 2 = D!
Hence, Inx = P,(x) + Rp41(x) with

Y -1)3 - 1"
P,,(x)=(x—1)—(x ) +(x ) +...+(_1)"—1(_x__),
2 3 n
(x - l)n+l 1
Rpt1(x) = (—1)"'—n_'*_l—w.
for some & between 1 and x. (See Fig. 1.6.) A

Consider using the preceding Taylor polynomial to approximate In1.1. Withn = 4
and x = 1.1, we obtain

Inl.1=0.1-

©.n? 0 ©On* ©D’1
2 3 4 5 &'

= 0.095308333 + % x 107° /&3

for some & between 1 and 1.1. It is clear that { x 1075/8% < § x 107 =2 x 10°°.
We may then consider 0.095308333 as an approximation to In 1.1 with an error less
than 2 x 1075, The exact value of In 1.1 is 0.095310179, showing that the actual differ-
ence between the exact and the approximate values is [0.095310179 — 0.095308333| ~
1.85 x 10~%, which is consistent with the bound obtained above.
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Determine the degree n that will assure an accuracy of 10~ when In 1.5 is approximated
by P,(1.5) using the result of Example 1.8.

(x — 1)n+l
n+1 §n+l

Since R,41(x) = (-1)" for some & between 1 and x, we wish to achieve

n+1
IRua(15)] < O <10%

which is poésible forn > 7. That is, P;(1.5) yields an approximation to within 10~3 for
Inl.5. A

It is also possible to express a function of two variables by using a polynomial and a
remainder term. Let f(x, y) and all of its partial derivatives of orders less than or equal
to n + 1 be continuous in some neighborhood of the point (xo, ¥o). Let

x=xp+a, y=y+B8, F@)=f(xo+ta,y+tp)for0<r<1.

Thus the function f (x, y) in two variables has been expressed in terms of F (¢), a function
in the one variable ¢. Since f(x, y) and all of its partial derivatives of orders less than or
equal to n + 1 are continuous, F (¢) and all its derivatives with respect to ¢ of orders less
than or equal to n + 1 are continuous as well (as functions of ¢). Further, since 7 =0
corresponds to the point (xo, yo), we may use Theorem 1.8 (Taylor’s Theorem) to express
F(t) as a polynomial in ¢ (around ¢ = 0) along with a remainder term. Finally, since
F(1) = f(x, y), putting t = 1 in the resulting expressions will yield the polynomial and
remainder term for f(x, y).
We have

12

+
F(f)—F(0)+tF'(0)+ F"(0)+ +— F‘”’( )+(_3r1—)'F("+D(9)

= - ® 0 (n+1) (g
Zk,F O+ == +1)'F ©)

for some @ with 0 < 6 < t. Therefore,

1
= ® @+ g
fy=F1)= E k'F (0)+( +1)F ©)

/
for some § with 0 < 0 < 1. It is easily seen that F(0) = f(xo, yo). Next, let us examine
the derivatives of F(t). We have

F'(t)= a%(xo +ta,yo+18) + ﬁg—g'(xo +ta, yo + 1),
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which yields
9 3
FO =7l (o, 0+ ﬁ-aé(xo, )
d d
= [(aa +ﬂa—y’) f] (xo0, yo)
2 ]
= [((x - xo)a— +@- yo)—) f] (x0, ¥0)-
x ay _
Similarly,

2
axady

/7 82
F'(t) = azﬁ f(xo + ta, yo + tB) + 2ap fxo+ta, yo +1B)

32
+ ﬁzgff(xo + ta, yo + 1)

[ ) 3 \?
= (a—+ﬁ—~) S| (xo +te, yo +18).
ox ay

In the above simplification, we have used the idea that

AN AV AL
(5¥) (5) T axiayl’

F"(0) = i+ —?—)2 ( )
= (aax ‘Bay S| (x0, Yo

3 3\?
= ((x—xo)—a +(y—yo)-> S 1 Cxo, yo).
X ay

Then, by induction it follows that

Therefore,

3 a\
F®0) = [((x —xo)a—x +@- )’0)5)' f] (xo0, yo)

3 9 n+1
F(""‘l)(e) = [((x - xo)a + (y - )’0)5;) f] (Sv 77)7

with § = xp + 8(x — xp), and 1 = yp + 6(y — yo) for some 6 satisfying0 <6 < 1. It
is clear that § is between xo and x, and 7 is between yp and y. Combining these ideas,

we obtain the following theorem.
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[THEOREM | 1.9 (Taylor's Theorem in Two Dimensions)

Suppose f(x,y) isn+ 1times continuously differentiable for all (x, y) in some neigh-
bourhood D of a point (xo, Yo). Then, for any (x,y) € D, we have

f(x9 )’) = Pu(x, y) + Rn+l(x» }’),

where

| 9 3\
P, »= ;:; il [((x - xo)-a-; +@- yo)$> f] (x0, o) (1.3)
1 P a n+l
Ru1(6, ) = Ty ((x —x0)p-+ 0 - )'0)5;) fi&n 04
for some & between xo and X, and some n between yo and y. ‘ a

Note that the binomial theorem yields
N 3\ &k i o
— xp)— —vy)— | = — xnYi (y = yo) —————
((x %)=+ (y = y0) By) j§=0 (J) (x —x0)" = ¥ 50T

Thus we may rewrite (1.3) and (1.4) as

P.(x,y) = 1y (k)( Ye=i( ) *f ( 1.8
(X, y) = kz o ,-E_ i) x0)" 'O =0 5y X0, Y0)» (1.5q)
1 41 +imj i
= — i (y = yo) —————
Rpy1(x,y) (n+1)!,-§ ( i )(x x0) (y — y0) ax,,Jr,_jayj(tE,n).

(1.5b)

Determine the Taylor polynomial of degree 2 for
fx,y) =cosm(x+y)

around (0, 1). Determine the remainder term.

SOLUTION From (1.5a) we have

i) ]
Py(x,y) = f(x0,¥0) + (x — xo)gi:(xo, o)+ (y — )’o)%(xo, yo)

1 8?2
+57 [(x - xo)25—;;(xo, ¥0) +2(x — x0)(y — y0)

32 f
axdy (x0, Yo)
32

+ (- }’0)23—4(&), YO)] . (1.6a)
y
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With f(x, y) =cos w(x + y) and (x¢, yo) = (0, 1) wehavex —xg=x,y —yo=y — 1,
and -
2

f(xo,)’O)="l, ox z(xO’ )’0)—7’
af 2
o y = 0, ) - 2$
i (x0, y0) Fyrm 3y (x0, yo) =7
0 92
—f(xo, yo) =0, —J';-(xo, Yo) = m?
dy dy

Then, from (1.6a) it follows that
? '
P(x,y)=—1+ 7(x +y-1)72%

For the remainder term, we use (1.5b) to write

1 9 N
Ry(x,y) = 33[0: - xo)sa—g(é, m +3(x — %0)*(y = Yo) ang

é.n

3G — 5000 = Pl m) + (5 — Rl S (s,n)] (1.6b)

axdy?

Note that we require all the third order partial derivatives to be evaluated at the point (£, 7)
for some & between x and x and some 7 between yp and y. We alsohave & = xo + 0(x —
xp) =6x,and n = yo+6(y — yo) = 1 +8(y — 1), with 0 < 8 < 1. Note that each of
the third order partial derivatives equals 7> sinw (¢ + n) = A3 sinw (1 + 6 (x + y — 1)).
Then, from (1.6b) it follows that

3
Ra(x, y) = -7-;-'-(x +y—13sinm(l +6(x +y — 1)).

1. Show that the equation x = 27 has a solution in the interval [0, 1].
Show that the equation 2x =7* has a solution in the interval [2, 3].

3. Show that the function f(x) = x* — 4x% — 20x has a relative minimum in the
interval {2, 3].

4. If f(x) = (x — 2)cos ZX, show that f'(x) = O for some x € [1, 2]. Do not differ-
entiate f(x).

5. Show that f’(x) = 0 for some x € [0,2], if f(x) =2x — 1+ 2cos X Do not
differentiate f(x).

6. Suppose f(x) is a continuous function on the interval [a, b], and f’ exists on
(a, b). Show that if f'(x) # O for all x € (a, b), then there can exist at most one
point p such that f(p) =

7. Show that the equation x = 2™* has exactly one real solution.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Show that the equation 2x> + 3x® + 2x + k = 0 has exactly one real solution,
regardless of the value of the constant k.

Show that there is a number ¢ € [0, 4] such that:

f"(c) =0for f(x) =(x — D(x—2)(x — 3). Do not differentiate f(x).

Show that there is a number ¢ € [—2, 3] such that:

"~ f"(c) =0for f(x) = xsin(x —2)In(x + 3). Do not differentiate f(x).

In Theorem 1.6 (Integral Mean-Value Theorem), let w(x) = e™*, f(x) = x2, and
[a, b] = [0, 1). Find the number ¢ guaranteed by the theorem and verify that c lies
in (0, 1).

Suppose g(x) is continuous on [a b). Then show that *

(b —a)’

20 g(0) for some ¢ € [a, b].

f (x — a)(b — x)°g(x) dx =
a

In each of the following, determine whether the hypotheses of the Mean-Value
Theorem for Derivatives (Theorem 1.7) are satisfied or not. If satisfied, determine
the number ¢ guaranteed by the theorem. If not, explain why.

a. fx)=+1-x2, [abl=[-11]

b. f(x)=|x-2|, [a,b) =1, 3]

e. fx)y=x¥%  [a,bl=[-8,8]

d f@)=—7 [a,b] =[1,2]

Ineach of the following, determine whether the hypotheses of the Mean-Value
Theorem for Derivatives (Theorem 1.7) are satisfied or not. If satisfied, determine
the number ¢ guaranteed by the theorem. If not, explain why.

a. f(x)=x4/5, {a, bl =1[-1,32]

b. f(x)=x*, [a, b] = [0, 32]

c. f(x)"lx—2l [a,b] = [2,3]

Use the Mean-Value Theorem for Derivatives to establish the following mequah—
ties.

a. [sinx —siny| < |x —y|

b. |¢f—¢| <|x—y|forallx,y <0

Use the Mean-Value Theorem for Derivatives to establish the following inequali-
ties.

4 b4

a |x—yl < Itanx—-tanylfor—-i- <x,y< 3

b. my"lx—y) <x"—y" <mx"l(x—-y)for0<y=<x, m=1

Find the Taylor polynomial of degree four for f(x) = e* sinx around xo = 0.

Show the remainder term.

Find the Taylor polynomial of degree four for f(x) = e* cosx around xo = 0.

Show the remainder term.

Use the Taylor polynomials of degree three and four for f(x) = +/1+ x around

xo = 0 to approximate 4/1.1. Obtain an error bound for your approximation in

each case.

Use the Taylor polynomials of degree three and four for f(x) = (1 + x)*/2 around
= 0 to approximate (1.1)>/2. Obtain an error bound for your approximation in

each case.
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21. Find the degree of the Taylor polynomial around xy = O that could be used to
approximate e* for all x in the interval {0, 1] to an accuracy of 5 decimal places.

22. Find the degree of the Taylor polynomial around x4 = O that could be used to
approximate e%* for all x in the interval [0,1] to an accuracy of 5 decimal places.

23. Expand f(x, y) = cos x sin y as a Taylor polynomial of degree two around (xo, yo)
= (0, n/2).

24. Make use of Taylor’s theorem for functions of two variables to determine linear
and quadratic approximations first to (a) f(x,y) = (1 4+ x — y)'/> and then to

(b) f(x, y) = /(1 +2x)/(1 + y) for small values of x and y.

1.1.2 ROUND-OFF ERROR

In any computation, errors could result from several sources. The most common sources
are human errors, or mistakes and blunders. Clearly, mistakes and blunders are outside
the scope of numerical analysis! The major sources of errors of interest to numerical
analysts are (i) uncertainty in data, (ii) round-off, and (iii) mathematical truncation.

Laboratory measurements using instruments with specified precision generally re-
sult in data containing uncertainty or experimental errors. The study of how such an
initial uncertainty or error in the data propagates in the course of a computation is
central to numerical analysis. Errors arising from the machine representation of real
numbers and arithmetic performed on them, known as round-off errors, also interest
the numerical analyst. The basic techniques used in the study of experimental errors and
round-off errors are the same. However, the uncertainty in the data can be much larger
than round-off in general. Mathematical truncation errors arise from the approximations
applied in the numerical solution of a problem—such as replacing infinite processes
with finite ones or replacing noncomputable problems with computable ones. These are
the principal sources of errors of interest to numerical analysts in almost all classes
of problems (with the possible exception of numerical linear algebra, where rounding
errors are the major sources of errors). We will discuss truncation errors arising in the
various numerical methods in the following chapters.

Humans perform calculations using the decimal number system. In the decimal
number system, a positive number a is represented by

a=Zak10",
k

where o are called the digits of a (o = 0, 1, 2, - - -, 9), and 10 is the base of the number
system used. For example, the number written as 3465.37 represents

3-1°4+4-10°+6-10' +5-10°+3-10"1 +7- 1072

Most computers use the base-2 (or binary) number system, or a simple variant of it such
as 8 or 16. When the base-2 number system is used, the digits are 0 and 1. For example,
the number (1101.0011); (the subscript 2 is used to denote that base-2 number system
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is being used) may be determined as ‘
(1101.0011); =1-22 +1-22+0-2' +1-2°40-271 +0.22+ 1.2 +1.27
= 13.1875.

Similarly, the digits in the base-16 number system are 0,1,---,9, A, .-, F (where
A, ---, F are used to denote 10, - - -, 15). For example, the number (23 A.D);6 may be
determined as ' -

(23A.D);6=2-162+3-16' +10-16° +13- 16~! = 570.8125.

The representation of a real number could be a nonterminating sequence of digits,
depending on the base used (for example, consider the number % in the decimal or
binary number system). However, since performing calculations on the computer calls
for a uniform representation for numbers of greatly varying magnitude, there is usually
a limit to the number of digits that may be used to represent a number. For representing
integers, such a limit will affect only the range of integers representable on the computer.
On the other hand, for real numbers it will also affect the precision of the representation.
For example, note that a real number such as 0.1, which is exactly represented in the
decimal number system, does not have an exact representation using a finite number of
digits in the binary number system. This inherent limitation due to the finite precision
in the representation then affects the accuracy of calculations as well. We will refer
to arithmetic done on the computer as “finite-precision arithmetic.” In this section, we

- will use B to denote the base of the arithmetic, and assume B = 10 in the numerical

examples.
In the base-B number system, a real number x is represented in its floating-point
form as '

x = £(0.didz - - - dn)p B°,

where (0.d1d; - - - d,)p is a fraction in the base- B number system, called the mantissa, e is
an integer called the exponent, and 7 is the number of digits carried in the representation
of x. This form for x # 0 is said to be normalized if d; # 0 (if x were zero, all d; will
be zero). For example, the IBM 3000 series of computers use

B=16 n=6 —64<e<63,
and the CDC 6000 machines use
B=2 n=48 —975<e<107L

Numerical analysis is concerned with the analysis of errors in numerical calcula-
tions. The following definition shows two commonly used error measures.

l . ‘
If x4 is an approximation to x, then
absolute error in x4 = Abs(x4) = |x — x4l,

relative error in x4 = Rel(x) = Abs(x4)/|x|.



Calculate the absolute and relative errors given the following:

a. x =0.200 x 10!, x4 = 0.210 x 10!. The absolute error is 0.1 and the relative error
is 0.5 x 1071,

b. x=0.200 x 104, x4 = 0.210 x 10™*. The absolute error is 0.1 x 10~5 and the
relative error is 0.5 x 1071,

e. x=0200x 10%,x4 = 0.210 x 10°. The absolute erroris 0.1 x 10? and the relative
error is 0.5 x 1071, %

As indicated by the preceding example, the absolute error depends on the size of x
and may be misleading. Therefore, it may be more meaningful to measure errors relative
to x.

If the mantissa of a given number contains more than » digits in its exact representa-
tion, then it must be shortened to n digits in some way so that it can be represented on the
machine, thus limiting the precision in the representation. There are two commonly used
ways of shortening a number whose mantissa is longer than »n digits, called chopping
and rounding. The error that results from chopping or rounding a given number to the
precision of the computer is commonly referred to as round-off error.

Let x = 475.846. If x were to be represented by an approximation x4 using only 5 digits
in the mantissa in base-10 arithmetic, then

x4 = 475.84 is obtained by chopping,
x4 = 475.85 is obtained by rounding. , #

In the following, we formally describe the procedures used for chopping and round-
ing for the decimal number system. Suppose the exact decimal (8 = 10) representation
of x has a normalized floating-point form

X = :!:O.dldz “ee dndn+1dn+2 <. x 10°.
By chopping x to n digits we mean replacing x with
XA = :I:O.dldz ] 'd,, X 109,

which amounts to simply throwing away all the digits after d,, in the exact representation
of x. By rounding x to n digits we mean replacing x with

_ |+0.didy - -d, x 107, if 0<dy <5;
AT 1 £0.didz- - dy +0.00---01) x 10°,  if 5 <dyys < 10.

As aresult, whenever d,+; > 5, we will add one to d, and round up; otherwise, we will
simply chop off all but the first n digits and truncate.
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For a computer using n-digit base-f arithmetic, if we let fi(x) denote the floating-
point representation of x whose exact representation has a normalized floating-point
form

x = +(0.d1ds - - - dpdps1dni2- - )p X B,
then
fix) = £O0.dyds - - - dn)p x B°,

when chopping is used, and

Ay = |EOda i)y x B if 0 du <&
+[(0.didy - - dp)p + (0.00---01)g] x B¢,  if £ <dpyi<$B

when rounding is used. In any case, whether we chop or round, it is clear that a certain
error is committed when x is replaced by fi(x). The difference between x and fl(x) is
called the round-off error in x. The round-off error depends on the size of x and is
therefore best measured relative to x. Suppose we write

Ax) =x(1+39) (1.7

where 8 = §(x) is some number which dependson x. Then we can bound 8 independently
of x. The notation of (1.7) is attributed to Wilkinson [19].
For chopping,

lx = AAGx)| = (0.0- - - Odnt1dn42 - - )p % B°
= (0.dns1dnz--)p X B
S ﬂe—n.
Therefore the relative error in fl(x) is

k—f| _ B

|x| ~ (0.dvdy-- -)5 X ﬂe
B _F
= (0.100--) B!
from which we obtain
x — fi(x) —n
o = EIO  gion .8

x|
Similarly, for rounding, we proceed by cases in order to obtain the error in fi(x). For the
case corresponding to 0 < dpy1 < E we obtain
Ix —A(x)| = (0.0-- - Odpy1dni2 - )p X B°
= O.dps1dniz-+)p X B
1
2

=

ﬁe—".
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Therefore the relative error in fl(x) is
kAl 1 g
|x] ~ 20.did, -- -)ﬁ X Be

1B 1B
2(0.100--)5 28!

from which we obtain

8| = ——— < g™ (1.9)

For the case corresponding to g < dp4+1 < B we have
Ix = ()| = (0.0 - - Odny1dns2 - -)p X B¢ — (0.00---01) x B
= |0-dut1dns2--)p x B = (0.10--)p x 7"
= [(1.00- )5 = (0.dus1dnsa--)p] x B
1
< _gen,
=38

Therefore the relative error in fI(x) is

[x —A(x)]| <1 g
lxI T 2(0.didy---)g x B¢
- l ﬂ—n _ lﬂ—n
= 2(0.100---)5 21
from which we obtain
18] = '_JE_:M < 1,31-", (1.9b)
|x| 2

From (1.8), (1.9a), and (1.9b) we conclude that the relative round-off § satisfies |5| < &,
where

B, for chbpping;
&= 3B'",  for rounding.

In the decimal number system, since 8 = 10, the maximum relative error in the rep-
resentation of a real number using n digits is then 10" when chopping is used and
0.5 x 10'~" when rounding is used. Therefore, the worst-case round-off effects due to
rounding will be roughly half the worst-case round-off effects arising due to chopping.
However, because of the additional work involved in the rounding process, many com-
puters use chopping. It is clear that the quantity £ depends on n, and hence the machine
being used. Therefore, it is frequently referred to-as the machine epsilon. Formally
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defined, the machine epsilon for any given computer is the smallest positive floating-
point number & for which fi(1 + &) > 1. For the IBM 3000 series machines mentioned
earlier, & = 163, and for the CDC 6000 machines it is 27%.

Computers that accept Fortran programs are expected to provide two kinds of
floating-point numbers. The first, called single precision numbers, have mantissas
roughly half as long as those for the second kind, called double precision numbers.
In any case, the exponent e is limited to arange m < e < M for certain integers m and
M. Whenever 0 < |x| < ™1, the machine indicates an underflow condition and sets x
to zero in most systems; whenever |x| > BM, an overflow condition is indicated and on
most systems the computation is halted. For example, on the IBM 3000 series computers,
for all numbers x satisfying 0 < |x| < 1675 an underflow condition is indicated, while
for |x| > 165 an overflow condition is indicated. In the discussions to follow, we will
assume that the numbers we are dealing with do not cause an underflow or an overflow
condition.

Finally, the concept of significant digits is often used in place of the relative error. .
An approximation x4 is said to have m significant digits with respect to the exact value
x if m is the largest nonnegative integer for which

lx — xal < -l-ﬁl_m.
|x1 2

In the decimal number system, we say a number has m significant digits if m is the largest
nonnegative integer for which the relative error in the number is less than 5 x 107,

Consider x = 0.02136 and x4 = 0.02147 (8 = 10). Then

Ix —xal _ 0.00011
x| ~ 0.02136

1
~ 0.00515 < 510‘-2 =5x1072.

Therefore, x4 has two significant digits with respect to x. ]

Consider x = 25.486 and x4 = 25.484 (8 = 10). Then

[x —xal _ 0.002

= ~78x107° <5x 107
x| 25.486 S

Therefore, x4 has four significant digits with respect to x. #

For more extensive treatment of computer arithmetic, see standard textbooks on
computer architecture such as Mano [17] and Hwang [13]. ‘

While the finite-precision representation of floating-point numbers results in an
inherent round-off error, performing arithmetic on the computer results in the propaga-
tion of the round-off. This is mainly because, in general, the result of an arithmetic
operation performed on two floating-point numbers of the same length fails to be
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a floating-point number of the same length. For example, if x = 3 = (0.300) x 10!,
y = (0.852) x 107, and z = 4 = (0.400) x 10!, then

x + y = (0.3000000852) x 10!  and = (0.133-..) x 10",

x|~

Therefore, an error introduced at any step during a computation may be amplified or
reduced in subsequent operations. This is called the propagation of errors.

Let x and y be the exact values of two numbers with corresponding machine
representations x4 and y4. Let % denote one of the operations +, —, x, or /. Then,
Al(xa * y4) will be the actual result obtained, whereas the exact value must be x * y,
since the machine version of an arithmetic operation usually includes rounding or
chopping. Hence the error in the computation is

x*y—fllxa*xys) = (x %y —xa%ya) + (xa % ya —fl(xa * ya)). (1.10)

The first term in parentheses on the right side of (1.10) is called the propagated error,
and the second term is the round-off error. The round-off error is easily bounded by
using (1.8) for chopping, or (1.9a) and (1.9b) for rounding.

Different approaches have been explored in order to estimate propagated errors
in computations. The first computational method for estimating propagated errors is
known as interval arithmetic. In interval arithmetic, each number is represented by a
pair of machine numbers, a lower bound and an upper bound. The result of every basic
operation is then realized as an interval. The following example will illustrate the use of
interval arithmetic in obtaining propagated errors.

Suppose x4 = 2.34 and y4 = 1.71 approximate x and y, respectively, using 3-digit
decimal rounding arithmetic. Then, for the product xy, we obtain the approximation
Axaya) =A(2.34 x 1.71) = fi(4.0014) = 4.00. Hence, the round-off error in the last
step is 0.0014. To obtain the propagated error, we proceed as follows. We have

[x —2.34] <0.005 and |y—1.71] <0.005,
or, equivalently,
2335<x <2345 and 1.705 <y <1.715.
Therefore,
3.981175 < x x y < 4.021675.
For the propagated error we have
—0.020225 < xy — xay4 < 0.020275. W
The main objections to usingvinterval arithmetic are that it requires too much
computational time, and that the error bounds obtained may be too exaggerated.

In order to determine the effect of an individual error on the final answer in a
computation, we may proceed as follows: Suppose x4 is the approximate value used
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in place of the exact number x, and the final answer depends on x as f(x). If f(x)is
differentiable, the Mean-Value Theorem for Derivatives (Theorem 1.7) yields

f@) = fxa)+ fE)x —x4) (1.11)

for some £ between x and x4. Since x and x4 are usually very close, from (1.11) we
obtain .

Abs(f(x4)) = | f(x) — fGxl = Lf'E)- li —xal = |f'(x0)] - Abs(xa). (1.12)
For example, consider f(x) = +/x. Then f'(x) =1 /24/%. Therefore, from (1.12) we

obtain Abs{(,/%2) ~ Abs(x4)/2./x4. For the relative error we have .
Abs(/x4) Abs(xa) 1 1
Rel(\/x4) = = . = — - Rel(xa).
(vx4) e N TN T (xa)

In other words, the relative error in /X2 is about half the relative error in x4 irrespective

_of the size of x. Therefore, taking the square root may be considered a safe operation,

since it reduces the relative error in the argument.

In a similar manner, the error propagation in a computation depending on two
variables can be studied. For example, suppose x4 and y, are the approximate values
used in place of the exact numbers x and y, and the final answer depends on x and y as
f(x,y). If f(x,y) is differentiable with respect to x and y, Theorem 1.9 may be used
to obtain

£, y) =~ fxa, ya) + fx@a, ya)(x = xa) + fy(xa, Y)Y = Y4)
where f, = 8f/0x and f, = 9f/dy, respectively. Therefore,

AbS(f (x4, y&)) % | fx(xa, ya)| - Abs(xa) + | fy(xa, ya)| - AbS(ya)- (1.13)

Let’s consider an example.

The formula for the net capacitance when two capacitors of values x and y are connected
in series (see Fig. 1.7) is

xy
z= .
x+y

Suppose the measured values of x and yare x4 =2.71 uF*and y4 = 3.14 uF, rounded
to three digits. Determine the propagated error in the calculation

XAYA

ZA = .
XA+ Yya

* Capacitances are measured in farads, and pF stands for microfarads.
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A~ @&

xX+y

Figure 1.7

Let z = f(x,y) = xy/(x + y). Then, differentiating partially with respect to x and y
respectively yields

_r
(= +y)?’
_x
(x+y)?’

Sxx,y) =

fy(xv y) =

which result in fi(x4, ya) =~ 0.288103 and f,(xa, ya) = 0.214599. Therefore, by
(1.13) it follows that

Abs(z4) & (0.288103)Abs(x4) + (0.214599)Abs(y,).

With Abs(x4) = Abs(y4) = 0.005, we have Abs(z4) ~ 0.00251351. A

1. Convert the following numbers to their decimal equivalents.
a. (101101.101), .
b. (2AB.EF)ss
c. (2057.34)g
d. (.1010101---),
e. (10101 ---01); with the parentheses enclosing k digits.
2. Convert the following numbers to their decimal equivalents.
a. (.10101-..01); with the parentheses enclosing k digits
b. (.1001100110011---);
C. (.FOFOF“-)m
3. Calculate the absolute error and the relative error given that

a x= é, x4 = 0.1667

1
b. x=%0, xa = 16.67

4. Calculate the absolute error and the relative error given that
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10.

11.

12.

13.

| =

, xa=0.1429

00
b. x= T, XA = 14.29

a x=

— ]

For the following numbers x and x,, determine how many significant digits there
are in x4 with respect to x.

a. x=257.03, x4 = 257.028

b. x = 0.025703, x4 = 0.025713

c¢. x =34.7186, x4 = 34.7286

For the following numbers x and x4, determine how many significant digits there
are in x4 with respect to x. '

a. x =457.0271, xa = 457.03

b. x = 0.0457027, x4 = 0.0457017

c. x =54.4126, x4 = 54.4016

Compute using three-digit decimal arithmetic with rounding.

a. 16.3+0.0893

b. (173.+0.753) — (158. + 15.0)

¢. 0.0182 x 197.

Compute using three-digit decimal arithmetic with rounding. Estimate the propa-

gated errors in each case.
2 4
a. '5- 5
1 3 3
> (5 - ﬁ) *%
¢ Ix%
5 3

The numbers given below are correctly rounded to the number of digits shown. For
each computation, determine the smallest interval in which the true result must lie.
a. 1.0053 +0.357

b. 45.78 —11.673

c. (2.717) x (3.843)

d. 7.143/1.414

The numbers given below are correctly rounded to the number of digits shown. For
each computation, determine the smallest interval in which the true result must lie.
a. 2.1057+0.0313

b. 4.572-11.673

c. (2.609) x (1.213)

d. 1.732/2.236

Let f(x) =b* for some positive constant b. Estimate the propagated error
|b* — b*4| using Equation (1.12).

Let f(x)=sinkx for some constant k. Estimate the propagated error
|sinkx — sin kx4 | using Equation (1.12).

Consider the following function evaluations in which the arguments are correctly
rounded to the number of digits shown. Estimate the propagated error and the
corresponding relative error in each computation. '
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a. sin(2.413)
b. In(2.4134)

14. Consider the following function evaluations in which the arguments are correctly
rounded to the number of digits shown. Estimate the propagated error and the
corresponding relative error in each computation.

a. +/0.1224
b. 437

15. The ideal gas law is stated as PV = nRT, in which R is a constant for all gases.
The value R is known with some uncertainty described by

R =83135+c¢, lel < 0.002.

Assuming P = V = n = 1, determine the uncertainty in the value of T calculated
by using PV = nRT, resulting from the uncertainty in R.

16. The sides of a right triangle are x and y, and the hypotenuse is z. If x4 = 3.15 and
ya = 2.78 are the approximate values of x and y rounded to three digits, determine
the absolute and the relative errors in the length z4 of the hypotenuse calculated

by using z4 = /x5 + y3.

1.2 Practice

In this section, we will discuss the practical issues of vital importance to all numerical
computing. The notion of convergence is very important in analysis. Basic concepts of
the derivative, integral, and continuity are defined in terms of convergent sequences, and
elementary functions are defined by convergent series. It turns out that convergence is an
essential concept in numerical analysis as well. For example, consider solving numeri-
cally the rootfinding problem f(x) = 0. Let the desired root be a. A numerical method
usually produces a sequence o,a2, - - - of numbers converging to . The process of ob-
taining each member of this sequence is called iteration, and the members o themselves
are called iterates. In general, any numerical method that produces a sequence of iterates
@y,0, - - - may be used to determine o to any desired accuracy merely by calculating «,
for a large enough n. However, it is often very difficult to estimate n, the number of iter-
ations required to achieve a prescribed accuracy, since the desired solution « is usually
unknown for real-life problems. The larger the n, the more accurate we expect the com-
puted results to be. On the other hand, the computed results may be affected adversely by
the propagation of errors as the number of iterations increases. An important concept that
is often used to describe how errors propagate is called stability. In this section, we will
discuss the formal notions of stability and convergence as related to numerical methods.

1.2.1 STABILITY AND CONVERGENCE

We begin by considering the basic arithmetic operations. Errors may be magnified due to
a single arithmetic operation. Note that (1.13) may be used to determine the propagated
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error in arithmetic operations by setting f(x,y) =x +y, xy, and x/y. According
to (1.13), '

Abs(f (x4, ya)) ~ | fx (x4, ya)IAbs(xa) + | fy (x4, ya)|Abs(ya).
Therefore, since fx(x,y) = fy(x,y) =1 for f(x,y) =x+y, we obtain
Abs(x + ya) = Abs(xa) + Abs(ya)-

In a similar manner, the other operations may be analyzed. We obtain

Abs(xa £ ya) = Abs(x4) + Abs(ya), (1.14q)
Abs(xaya) = |y|Abs(xa) + |x|Abs(ya), {1.14b)
Abs(x/ya) % 11/y|Abs(xa) + |x/y*|Abs(y4)- 1.14¢)
For the relative errors we have
Ab Ab ‘
Rel(xa % ya) & s(xa) + Abs(y4) (1.150)
lx £ yi »
Rel(xaya) ~ Rel(xa) + Rel(ya), (1.15b)
Rel(xa/ya) =~ Rel(xa) + Rel(ya)- : (1.15¢)

It is evident from (1.14b) that the absolute error in the product x4y could be much
larger than the absolute error in x4 or ya, especially when either x or y is fairly large in
size. However, as seen from (1.15b), the relative error in the product is at worst equal to
the sum of the relative errors in x4 and ya.

Similarly, from (1.14c) it follows that the absolute error in the quotient x4 /y4 could
be much larger than the absolute error in x4 or ya, especially when y is fairly small in
size, while, as seen from (1.15¢), the relative error in the quotient is at worst equal to
the sum of the relative errors in x4 and ya.

Finally, it is evident from (1.14a) that the absolute error in x4 =+ y, is at most equal
to the sum of the absolute errors in x4 and y4, while, as seen from (1.15a), the relative
error in x4 £ y4 may be much larger than the relative error in x4 or y4. For example,
suppose we wish to calculate the number z = x — y and we have only approximations
x4 and y4 to x and y which are good to, say, k digits. Then z4 = xa — Y4 will also be
an approximation to z which is good to k digits as long as x and y do not agree to one
or more digits. When x and y agree to one or more digits, there will be cancellation of
digits in the subtraction, resulting in fewer good digits in z4. The following numerical
example will illustrate this fact.

Let x4 = (0.34523412) x 102 and y4 = (0.34522301) x 10? be approximations to x
and y correct to seven significant digits. Then, in eight-digit decimal floating-point
arithmetic,

24 = xa — ya = (0.1111000) x 1072

is the exact difference between x4 and y,4. However, z4 is good only to three significant
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digits as an approximation to z, since the fourth digit was obtained from the eighth digits
of x and y, which were in error. In other words, even though the absolute error in z
is at most the sum of the absolute errors in x and y, the relative error in z4 is about
10,000 times the relative error in x4 or y4. This phenomenon is referred to as loss of
significance or catastrophic cancellation. - 4

In summary, the preceding discussion indicates that for both multiplication and
division, relative errors do not propagate rapidly; however, the absolute errors may
propagate rapidly when we multiply by a very large number or divide by a very small
number. On the other hand, for addition and subtraction, the absolute errors do not
propagate rapidly but the relative errors may propagate, especially when we compute
the difference between nearly equal quantities, resulting in the loss of several significant
digits. Therefore, it is necessary to be watchful of such situations in large calcula-
tions since loss of significance can give rise to gross inaccuracy. In some situations,
it is possible to avoid the loss of significant digits. We illustrate this by the following
examples.

Vi4+x-—1

Consider evaluating —————— for x = 0.0001 using finite-precision decimal arith-

metic withn =4,5,6,7, gr 8 digits in the mantissa and chopping. With four or five
digits in the mantissa, we obtain a value zero for the given expression. With six digits
and chopping, we obtain a value 0.4; with seven and eight digits, we obtain 0.49 and
0.499, respectively. As the number of digits carried in the arithmetic is increased, the
computed result seems to approach 0.5. Then what is going wrong when fewer digits
are carried in the arithmetic? Since /1 + x is very close to 1 for small values of x,
the desired evaluation will involve differencing nearly equal quantities. Consequently,
the results obtained will not be all that good when very few digits are carried in the
computation.

However, it is possible to obtain reasonably accurate results if the expression to be
evaluated is rewritten in a form that does not involve differencing nearly equal quantities.
For example, rationalizing the numerator of the expression given, we obtain

Vi+x—=1 Jl+x-1 J14+x+1 1
x  x VIitx+1 1+/T+x
From this expression, we obtain the answer 0.5 using only four digits in the mantissa

and chopping. With five, six, seven, and eight digits, we obtain the answers 0.5, 0.49999,
0.4999877, and 0.49998752, respectively. %

Thus we have avoided the loss of significant digits in the given expression by
rewriting it in a form that does not involve differencing nearly equal quantities. Quite
often, Taylor’s series expansions are very useful in this regard. For example, consider
evaluating the function f(x) = 1 — cosx for very small values of x. Multiplying and
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dividing f(x) by 1 4 cosx yields
1+cosx 1—cos’x  sin’x

1+cosx 1+4cosx 1+4cosx’

f(x)=(1—cosx) -

The last expression does not involve differencing nearly equal quantities. W_e could have
also avoided the differencing of nearly equal quantities in the original expression by
using the Taylor’s series expansion for cos x around 0. Then, f(x) becomes

2 4 ,
f(x)=1_(1_i;_'+.’.‘__...)

X

Evaluate for x = 10~ using six-digit decimal arithmetic and chopping.

The answer is 0.6 if we evaluate directly using the given expression. However, since 5*
and 3* are both very close to 1 for small values of x, we will be differencing nearly
equal quantities. We may rewrite 5 and 3* as ¢%* and e3~, respectively, and use
Taylor’s series expansion for e®* to rewrite the two exponentials. Using

a2x2
_1+ax+—'é"—+
we obtain
2.2
5"=e““5)“=1+(ln5)x+(ln§)'x 4o,
and
(In )2 2
3 =e®¥ =14+ (In3)x + +-
Therefore,
2
5* —3* =[(In5) — (In3)]x + [(n5)* — (1n3)2]1;-|+...,
and
L

= In(5/3) + [(!n5)? - (n3)”] 5, + higher order terms.

Using only the first term on the right side of the last expression yields a value of
0.5108 - - - for the given expression. Alternately, we could increase the number of digits
carried in the arithmetic and evaluate the expression directly. For example, using eight
digits, we obtain a value of 0.511 for the given expression by direct evaluation. A

TGy SR P N »
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The familiar quadratic formula for the solution of the equation ax*+bx+c=0
provides another example where loss of significant digits could occur. The roots of the
quadratic equation ax? + bx + ¢ = 0 are given by the formula

—b+ +/b? —4ac
Y

Assume that 5> — 4ac > 0 and b > 0, and we wish to obtain the root of smaller magni-
tude. That is, we wish to calculate '
a _ —b++b* —4ac
W= -1 (1.16)
2a

Note that b and +/b? — 4ac will agree to several places whenever 4ac is much smaller
than b%. Hence, if finite-precision arithmetic is used, the root x> will be obtained
with fewer correct digits than were used in the calculation. Now, by rationalizing the
numerator in (1.16) we obtain

L _ b VB —dac (-b- VB = 4ac)
2a (—b. — /b% — 4ac)

B — (b —4a0)
—~2a(b + V/b% —dac)’
Further simplification yields
RO . (1.170)
b++/b? - 4dac

Similarly, if b < 0, the root
@ _ —b- /b2 —4ac
e T a

will suffer from the loss of significant digits in its computation. Once again, rationaliza-
tion yields

L0 —b— Vb2 —4ac (=b++/b* —4ac)
2a (=b + +/b% — 4ac)
_ b% — (b — 4ac)
T —2a(b— /b —4dac)

Further simplification yields

—2c
b — /b7 —dac’
Note that there will be no differencing nearly equal quantities in the computations -

~ corresponding to (1.17a) and (1.17b), and thus the loss of significant digits will be
avoided. Combining these general ideas for both the roots of the equation corresponding

x? = (1.17b)
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tob > 0 and b < 0, we may compute the roots using the formulas

2 g =2 sign(b)v/b? — 4ac
b + sign(b)v/b* — dac 2a '
where
) 1, if b > 0;
sign(b) = l-—l, ifb <0.

Consider solving x2 + 72x + 1 = 0, whose exact roots are

o —R+VIE=4 o -12-JTP -4
= and x* = ———————.
2

* 2

On simplifying, we get
x® = —36 + /1295 and x® = —36 — +/1295.
Using six-digit decimal arithmetic, +/1295 ~ 35.9861, so that
1v/1295 — 35.9861| < 0.00005.
Using +/1295 = 35.9861, we now obtain the roots
xP = —0.0139 and x = -71.9861.

Therefore,

[Abs(x{)| < 0.00005,

|Abs(x?)| < 0.00005,

0.00005 _ _3
)| = So0139 3.6 x 10™°, and
0.00005
)
IRel(x, 1 = 775861

In other words, even though the number used for +/1295 is good to six digits, the relative
error in xf‘l) is very high, indicating fewer correct digits. Note that xf) involves only the
addition of nearly equal quantities and hence does not give rise to any difficulties in its

computation. We could improve the answer for xf:) by using (1.17a) and obtain

IRel(x{

A~ 6.95 x 107,

-2 -1
(M
Xy = = = —1/71.9861 = —0.0138916
RTINS T A
rounded to six digits. For the error in the new xf,‘) we have
1

|Abs(x")| < [x® —

+ — (—0.0138916)|,

-1 -~
71.9861 71.9861

1 -8
Abs (71.9861)\ +5x107%,

=
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and
1 5x 1078
1 My < R
IRel(xs DI < |Rel (71.9861 )l + 00138916’
<6.95x 1077 +3.60 x 107,
<43 x 1075,
which is of the order of the relative error in x(AZ). E

Another situation in which loss of significance errors occurs is the addition of many
numbers of large magnitude and varying sign to obtain a result that is much smaller. An
example illustrating this will be given in the next subsection. '

All our examples indicate that accurate results can be obtained by carrying enough
digits in the arithmetic. However, it is not easy to know in advance how many digits need
to be carried in the arithmetic in order to obtain reasonably accurate results. It is generally
hoped that the precision built into the computer system is good enough so that there is
no need to worry about rounding errors. But, since such a hope is neither justified nor
fulfilled by any computer system, it is necessary to perform some mathematical analysis
of the computational scheme used. With such an analysis, it may become much easier
to assert that, within some reasonable limits, the numerical results obtained are indeed
the results that were originally sought. ,

Next, we consider the propagation of errors as the number of arithmetic operations
increases. Errors propagate in different ways. Some errors may decay and may not affect
the accuracy much. Other errors may grow to an unacceptable extent and invalidate the
computations completely. Suppose we denote the growth of an initial error ¢ after n
steps by E, (). If

|En(e)] = Cne

for some constant C independent of n, the error growth is said to be linear. However, if
E.(¢) behaves like

|En(e)] ~ ks

for some constant k > 1, we say that the error growth is exponential.

Linear error growth is acceptable in most situations, and is usually not dangerous.
In contrast, exponential error growth is dangerous and should be avoided whenever
possible. Accordingly, a numerical method that exhibits a linear error growth is said to
be stable, and a method that exhibits an exponential error growth is said to be unstable
(see Fig. 1.8).

Consider generating the sequence p, = (1/3)", n > 0 recursively by either

1 .
Pn = '3_pn—ls n=> 11 Do = lv ("‘a)
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y
4 Exponential growth
® E,=k"
[ ]
[ ]
[ ]
* Linear growth
° v ¢ " E,=Cne ‘
| ° , = ¢ n =
61 d T [l L L L *
1 T T T X
2 4 6 8

Figure 1.8 Linear and exponential error growth.

or

11

Pn =4Pn-1 — — Pn-2, n=>2, p=1p=

1.19
9 (1.19)

W =

If six-digit floating-point decimal arithmetic with rounding is used, rounding error
introduced by replacing 1/3 with 0.333333 will result in an error of only around
(0.333333)" x 10~ in the n'™ term of the sequence when (1.18) is used. Since this
error decays as n increases, we may conclude that (1.18) is stable.

~ Next, let us consider the relation (1.19). A recursive relation of the form (1.19) is
often called a recurrence relation or a difference equation. The difference equation
may be used to obtain a general description of p, in terms of . This relationship is called
the solution of the difference equation. For a general discussion on solving difference
equations, refer to Liu [16). For the present example, in order to see what p, the formula
(1.19) generates, we simply substitute p, = «" in (1.19) and obtain the equation

11 1 11
e d=e-3) -5 -
o +9 3 3 0,

from which we conclude that the recurrence relation (1.19) generates p, = " for
a = 1/3 or @ = 11/3. A general solution to (1.19) is given by

1\" 11\"
pn=C (5) +C2(-§*) ,

where C; and C, are constants determined by the values of py and p;. For the case we are
interested in, where pp = 1 and p; = 1/3, we must have C; = 1 and C; = 0. However,
when six-digit floating-point decimal arithmetic with rounding is used, po = 1 and p,
= 0.333333. These conditions yield C; = 0.100000 x 10! and C, = —0.100000 x
1076, Since C; is not exactly zero, however small it may be, its contribution to pj
will result in an error of the form C,(11/3)". Thus the error growth in the scheme (1.19)
is exponential, indicating an unstable computation. This is confirmed by the computed
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Table 1.1
n exact computed (1.19)
3 0.370370 x 10! 0.370340 x 107!
4 0.123457 x 10! 0.123350 x 107!
5 0.411523 x 1072 0.407630 x 102
6 0.137174 x 1072 0.122910 x 102
7 0.457247 x 1073 —0.657400 x 10~*
8 0.152415 x 1073 —0.176519 x 1072

values shown in Table 1.1, which shows that the computed value of p, becomes negative
for n > 7 while the exact value is always positive. #

As we mentioned earlier, a numerical method often produces a sequence of iterates
converging to the desired answer. When several methods are available for solving a
given problem, we usually choose a method that converges the “fastest.” The following
definition is useful for comparing the convergence rates of sequences.

1.2

Suppose the sequence {a,}°., converges to a number a. We say that the rate of conver-
gence is O(B,) (read “big oh of B,”), or at least of order B, provided B, B2, -+ is a
sequence such that, for some constant K independent of n,

|C¥ - an'
[Bnl
and we write o, = a + O(Bp).

< K for sufficiently large n,

Consider the sequences a, = (n + 2)/n? and &, = (n + 5)/n3. It is clear that lir{.\o a,
n—
=0and lim &, = 0. '
n—00
However, as seen in Table 1.2, the sequence &, converges to zero faster than the
sequence a,. For, if we let 8, = 1/nand B, = 1/ n?, we have

o, —0f (n+2)/n*-0 _n+2<3
B | 1/n T n =7

&":0 _ (n+5)/n3_0‘=n+5 <,
Bn 1/n? n ~

indicating that (n + 2)/n? =0+ O(1/n) and (n + 5)/n® =0 + 0(1/n?). Since 1/n?
approaches zero faster than 1/n, we may conclude that &, converges faster than . #
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Table 1.2

n Qp Gn

1 3.000000 6.000000

2 1.000000 0.875000

3 0.555556 0.296296

4 0.375000 - 0.140625

5 0.280000 0.080000

6 0.222222 0.050926

7 0.183673 0.034985

8 0.156250 0.025391 ‘

The concept of convergence rates for sequences may be generalized for functions in
the following manner. This generalization is often convenient, since numerical methods
may be studied in terms of an index n as n — 0o, or a continuous parameter h = 1/n-
ash— 0.

1.3

Suppose linb F(x) = L. Thentherate of convergence of F (x) to L is said to be O(G(x)),
X—>

or at least of order G (x), provided G(x) is a function such that for some constant K > 0
independent of x,

|F(x) - L|
IG(x)|
and we write F(x) = L + O(G(x)).

< K for sufficiently small x > 0,

SOLUTION

Determine the rate of convergence of

sinx — x + %
Fix)= ———
x
asx — 0.
By repeated application of L’Hopital’s rule (Appendix A), we see that

1
hm Fx) = 0"

To determine the rate of convergence, we proceed as follows. Using Taylor’s Theorem
(Theorem 1.8) to expand sin x around x = 0, we get

3 5 7
sinx = x — x_ + J;' + i— (- cos(E(x))) (1.20)
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for some £ (x) between 0 and x. From (1.20) we obtain

x3 S 7

. x x
sinx —x + — =10 "7 cos(§(x)),
which gives
sinx — x + 1 1
F(x) = ——xg—— =120 " 71" 2 cos(§(x))
so that
F(x) - 1;

ICOS(E(x))I <=

x? - 7'

Thus F(x) = 35 + O(x?), and we conclude that F(x) approaches its limit as fast as x?
approaches zero as x — 0. ' A

1. Inorder to determine the x-intercept of the line joining the two pomts (x0, Yo) and
(x1, y1) in the x-y plane, we may use

_ Xoy1 — X1)o
-
or
X1 — X
x=xo—( 1~ Xo)Yo
yi—Yo

Use each of these formulas and three-digit rounding arithmetic to calculate the
x-intercept of the line joining the points (xo, yo) = (2.78, 1.61) and (x,y) =
(5.91, 3.41). Explain which formula is better and why.

2. The two equations

12.85x +9.47y = 4.190 (1.21a)
7.20x + 5.23y = 2.500 (1.21b)

have the unique solution x = 1.8, y = —2.0. The most commonly used method
for solving such equations is to multiply equation (1.21a) by the coefficient of y
in equation (1.21b), multiply equation (1.21b) by the coefficient of y in equation
(1.21a), and difference the two resulting equations. Then we have

[(5.23)(12.85) — (9.47)(7.20)]x = (5.23)(4.190) — (9.47)(2.500).

a. Perform the above computations using four-digit decimal arithmetic and
rounding, and obtain the values of x and y.

b. Perform the above computations using four-digit decimal arithmetic and chop-
ping, and obtain the values of x and y.
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10.

11.

¢. Explain why the computed values of x and y are significantly different from
the exact values.

Calculate f(x) =

for x = 1.3 x 10™* using five-digit decimal arithmetic

with rounding. Rewrite f (x) in a form that avoids the loss of significant digits and
evaluate f(x) for x = 1.3 x 10~ once again. Compare the two results obtained.

Calculate f(x) = =%

forx = 1.3 x 10~* using five-digit decimal arithmetic

with rounding. Rewrite f(x) in a form that avoids the loss of significant digits and
evaluate f(x) for x = 1.3 x 10~ once again. Compare the two results obtained.
Rewrite each of the following expressions to avoid any possible loss of significance
errors in their evaluation at the indicated values of x:

(sinx/x)?
———— forx nearw
14 cosx
x — —
b. e—-—%——i for x near 0
x
1
¢. —— —1forxnear0
1+x

Rewrite each of the following expressions to avoid any possible loss of significance
errors in their evaluation at the indicated values of x:
a. sin3x — sinx for x near 0
b. (14 x)/3 —1 for x near 0
¢. +/x2+4+1— x for very large x
Use five-digit arithmetic with rounding to determine the roots of x> — 60x + 1 = 0
correct to five digits. Use +/899 = 29.983.
Use five-digit arithmetic with rounding to determine the roots of 2x% — 205x + 3
= 0 correct to five digits. Use +/42001 = 204.94.
Consider generating the sequence {p,}32,, where p, = (1/3)", using the recur-
rence relations

5 1

i pn= gPr-1 " gPr-2 Po= 1, pp=1/3,and

. 5 4
n p,= §Pn—l - §Pn—21 po=1, pi=1/3.

Determine whether each of these procedures is stable.
Consider generating the sequence {p,}:2,, where p, = (2/3)", using the recur-
rence relations .

, 5 1
L pn= gpn—l - §Pn—2, bo = 1, p1= 2/3,and
14 8

ii. pn=—Zpn1— P2 Po=1 p=2/3.

3 3
Determine whether each of these procedures is stable.
Investigate the validity of the quotation from Mrs. La Touche given at the beginning
of this chapter by evaluating the sum }i,(l/ i?) first as % + % +o Flﬁ and
then as g5 + 735 + -+ + 7. both using three-digit chopping arithmetic. Explain
the results.
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12. Investigate the validity of the quotation from Mrs. La Touche glven atthe begmnmg
of this chapter by evaluatmg the sum Z 1/ i?) first as — + +ot —— and
then as 100 + 81 +- 41 1» both using three-digit choppmg anthmetxc Explam

the results.
. l—cosx .
13.  We know that lm(l) ————= = 0. What is the rate of convergence?
x>

x
14. We know that lim (cos x + 1x?) = 1. What is the rate of convergence?
x—>0

1.2.2 ALGORITHMS AND PROGRAMMING

Physical phenomena are frequently described by mathematical problems. The process
of obtaining a mathematical problem, called the mathematical model corresponding to
the physical phenomenon, is known as formulation. This is the first and foremost stage
in problem solving.

Since mathematical models usually make simplifying assumptions about the phys-

- jcal situations they model, and different models tend to make different assumptions, a .
single physical phenomenon may be modeled by several mathematical models. There is
usually no such thing as the best model for describing a situation. Once formulated, a
mathematical model is often used to predict the behavior of the corresponding physical
situation. Therefore, the validity of a model may be decided based on how closely it
reproduces the characteristics of the underlying physical phenomenon, and based on the
accuracy of its predictions. The analysis and validation of a mathematical model require
the solution of the mathematical problem that the model yields. Most practical situations
are described by mathematical problems that are not readily solvable analytically, and
numerical computations have become an essential part of the solution process. Thus, the
second stage in problem solving is the design and selection of an algorithm based on a
numerical method for the mathematical problem described by the mathematical model.
The term algorithm means a complete and unambiguous sequence of steps leading to
the solution of a mathematical problem. ‘

The next stage is the implementation of the algorithm as a computer program in
a programming language. Finally, the actual execution of the computer program with
various sets of input values constitutes the last stage.

Frequently, errors in the formulation are discovered through numencal experimen-
tation. Hence a numerical analyst often plays a significant role in refining or improving
a mathematical model. The design, selection, implementation, execution, and experi-
mentation of an algorithm are the major tasks of a numerical analyst. '

Nowadays, since a wide variety of mathematical software is readily available, the
implementation stage might seem unnecessary. However, while it is very easy to use
available software in principle, it is not so easy in practice. Therefore, the numerical
analyst is challenged with another important but difficult task, namely, the “intelligent
use” of a standard numerical technique or software for a specific application or situation.
In order to accomplish these tasks, the numerical analyst must be aware of the difficul-
ties that might arise due to the computing environment (such as the limited precision
arithmetic available on the computer), or due to the limitations of an available piece of
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software (such as its storage requirements). The selection of an algorithm requires an
understanding of how errors may arise and propagate during its execution. On the other
hand, the selection of suitable software requires an understanding of the limitations and
efficiency of a particular implementation of the algorithm chosen.

The object of an algorithm in this textbook is to implement a numerical procedure
to compute an approximate solution to a problem. In presenting a mathematical problem
for computer solution, we should provide the proper input and specify what kind of
output is expected. We will use the algorithm notation of Knuth [15]. Each algorithm
presented in the text will be given an identifying number (e.g., 1 in the example to
follow) and a name (SUM in the example) and the steps in the algorithm will be labeled
by numbers within parentheses ((1), (2), etc.).

Let us consider the evaluation of the sum
n
Zxk =x1+x2+:+ x4,
k=1

where n and the numbers x;, xz - - - X, are given. An algorithm for this computation is
shown below. ]

A list of input and output variable names follows the name of the algorithm (similar
to the subprogram notation in a programming language). A bold face lower case letter
will be used to denote a one-dimensional array, and an upper case letter will be used
to denote a two-dimensional array. Each step begins with an explanatory comment for
that step. Assignments are written using the < (read “gets”) operator. The end of an
algorithm is identified by a M. The standard for-loop, while-loop, if: - -then- - -else, and
repeat-loop constructs will be used as the basic control structures. Goto statements
will be used occasionally, making use of the labels of various steps in the algorithm.
Algorithm 1 illustrates the notation.

The algorithm SUM may be translated to a subprogram, which assumes that the
input parameter n and the array x have been assigned values by a main program. Given
below are a Fortran subprogram for SUM and a main program calling the subprogram.
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Y 2 e e s 2 XX XXX XSS X2 R 2222 222 2 2 X 2 2 2 2]
*

* Subprogram for Algorithm 1 (SUM)

*

YL R R R R X R R XXX IS 2222 222 2 2 2 2 2 2
*

subroutine sum(x, n, result)
*

**%* Daeclarationsg ******
*

real result, x(10)
integer k, n

whwe Tnitialize ***wsww
result = 0.0
*kk* Accumulate *v¥rkkes

do 10k =1, n
result = result + x(k)
10 continue

* ek k Output (222 122

write (*, 100) result
return
100 format( ’ The desired sum is ’, £5.1)

end
Y 2 R XX 223X YIS S22 A 2R3 22 2 2 2 2 22

Y XY I 22 X R2 X223 22233222X 22222222 222 2 222 R 2 At bl sl dd
*

* Main program to invoke sum
»*

I i R e s e X XTI T2 2 S XSRS 22 22 2 2 2 2 2 2 2
*

program add
*

**** Daclarations ***xkrkidn
*

real answer, values(10)
integer index, count

#*%* prompt and Obtain Input #*#*%**#*%

write (*, 100)

read (*, *) count

write (*, 200) )
read (*, *) (values(index), index = 1, count)

*k%% Call Subprogram sum ******d¥
call sum(values, count, answer)

***+ Terminate Program ****ka&d
*
stop
100 format( ’ Please input number of terms (n) : '/,
200 format( ’ Please input the n values to be added

end
P Y 2 2 2 2R XXX XYY 22 S22 22 X222 2 2 2 2 2 22

$)

.
.

. $)

39
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Withn = 5 and
(xli X2, X3, X4, xS) = (11 _23 39 Oy 5),
this program prints a sum of 7. %
For the remaining algorithms in this chapter, we will provide only the subprograms
corresponding to the algorithms, and not the main programs. The translation of algo-

rithms into subprograms will be left as an exercise in the other chapters. Let us consider
a somewhat nontrivial example next.

We wish to develop an algorithm for evaluating In(1.5) using the Taylorpolyﬁomial
Py (x) (of degree N) for In(1 + x) around x¢ = 0. We have

N o 1\k+l
P~(x)=2(—ll—x",

k=1 k
(_1)N+2 1 N
R = +1
|Rn+1(x)] N+l ATE)”
1 N+1
< — .
SNFL =

The algorithm for the computation of In(1 + x) is given below.

LGORITHM 2

In order to obtain In(1.5), we should use x = 0.5 as input to Algorithm 2. Suppose
that we wish to use a sufficiently large N for which

[In(1.5) — Py(0.5)| < tolerance. (1.22)
This would mean that the algorithm for solving this problem should test whether the
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condition (1.22) is satisfied, and terminate when it is satisfied. Since the remainder term
is a measure of the error in the approximation, it is sufficient to check whether the next
term being added is smaller than tolerance. A Fortran translation of Algorithm 2 is
given below.

2RI IS SRS A2 222222 2 a2 A A 222 2 il Al ddd
*

* Subprogram for Algorithm 2 (SERIES)

*

KRR ERRRRAAR R AR A AR AR RRR R AR AR RRRI RSN AR bbb dd
*

subroutine series(x, tol, result, nmax)
*

wkkkker® Daclarations **ewsekirs

*
real x, tol, result, term, power
integer n, nmax, sign

:******* Initialize (X322 X2 22X

*

' result = 0.0

n=1

term = x
power = X
gign = -1

*
el d kR Main Loop khkhkbhhddh
*

7 continue
sign = - sign
result = result + sign * term
power = power * x
term = power/(n+l)
*

**xkx*4* Ragult Acceptable ? **¥k&kiw
*
if (abs(term).lt.tol) then
write (*,100) n, result
return
else
n=n+1
endif

*

wkwkdrdr Number of Iterations Exceeded? ***¥*¥*¥#x+
*

if (n. le. nmax) GOT0'7
write (*,200)

return
100 format(’ 'log(l.5) using ’/,13,’ terms is ’,£8.5)
200 format (’ Sorry, computations unsuccessful’)

end

*
RRERRRRRRRRRRRA RS R R R AN AR A AR AR SRR b hhdd

Note that the smaller the tolerance, the larger the number of terms (N) needed. Thus
N may be arbitrarily large. Therefore, it becomes necessary to define the maximum
‘amount of computation we are willing to perform, based on cost considerations. For
the present problem, this may be accomplished simply by providing an upper bound for
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N, say, nmax. When the required value of N exceeds nmax, the algorithm may be
designed to print a message saying that the computations did not terminate successfully.
It is useful to incorporate a stopping technique in each algorithm so that infinite looping
may be avoided. We will do this throughout the textbook.

It is assumed that the main program that calls the subprogram will supply the
values of x, tolerance, and nmax. For example, corresponding to In 1.5, we have
x = 0.5. With nmax = 20, the program produces a result of 0.40553 using 9 terms with
tolerance = 1074, 0.40546 using 12 terms with tolerance = 1075, and 0.40547
using 15 terms with tolerance = 1075. :

The next two examples will illustrate loss of significance and error propagation.
They will also illustrate the need for experimentation.

Consider the evaluation of e~'° using the Maclaurin expansion for e*. The Maclaurih
polynomial Py (x) (of degree N) and the corresponding remainder term (or truncation
error) are given by

N xk
OEDIE
. k=1 7"

N+1
&M

[Ryp1(x)| = Wi |

9

XN+l

&L | ——
N+ D!

I, forx < 0.

Thus in order to obtain an approximation for e™*, we compute Py(—x), by choosing
N large enough so that |[Ry41(x)| < tolerance, where tolerance is a specified
error tolerance. An algorithm for this computation follows.

LGORITHM 3
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For the present example, the algorithm will evaluate

_ ., (10 (=107 (=10)"
Py(=10) = 1+ = + 5+ +

(1.23)

for a large enough N to satisfy
|RN+1(—=10)| < [(=10)¥*!/(N + 1)!| < tolerance.

Corresponding to a tolerance of 10~° we obtain N = 34, since |(—10)*/(35!)| ~
9.678 x 107%. On the other hand, the computed value of P34(—10) is —6.509318 x 1075,
while the exact value of e~ is around 4.539993 x 10~5. Note that e~ can never be
negative for any value of x, and we have obtained a negative result! Clearly, this dis-
crepancy does not arise due to a large truncation error, because the algorithm checks the
truncation error against the prescribed tolerance.

Shown in Table 1.3 are the summands in (1.23), and the partial sum obtained after
each summand is added to exp in the algorithm. Note that while the magnitude of the
final result e~'° is relatively small, several of the summands that contribute to this result
are very large. As a matter of fact, while they eventually cancel out, it is these large
terms that determine the number of significant digits in the final result. This phenomenon,
which Henrici [11] named smearing, arises whenever the magnitudes of the terms in a
summation are considerably larger than the sum itself. This situation is frequently the
case when a series with alternating or mixed signs is accumulated.

There are two possible remedies for this situation. First, note that e~ = 1/¢°.
Therefore, we could form the series for ¢'?, which does not involve cancellation of

Table 1.3

k term exp k term exp

0 1.000000 1.000000 18 156.192100 54.499940
1 —10.000000 —9.000000 19 -82.206380 —27.706440
2 50.000000 41.000000 20 41.103190 13.396750
3 —166.666700 —125.666700 21 —19.572950 —~6.176195
4 416.666700 291.000000 22 ~ 8.896794 2.720599
5 —833.333400 —542.333400 23 —3.868171 —1.147572
6 1388.889000 846.555500 24 1.611738 0.4641658
7 —1984.127000 -—1137.572000 25 —0.6446952 —0.1805294
8  2480.159000  1342.587000 26 0.2479597 0.06743029
9 2755732000 -1413.145000 27 —0.09183693 —0.02440664
10 2755.732000  1342.587000 28 0.03279890 0.008392263
11 -2505.211000 -1162.624000 29 —-0.01130997 —0.002917704
12 2087.676000 925.052200 30 0.003769989 0.0008522850
13 —1605.905000 —680.852400 31 —0.001216126  —0.0003638406
14 1147.075000 466.222300 32 0.0003800392  0.00001619864
15 -764.716500 —298.494200 33 —0.0001151634 —0.00009896477
16 477.947800 179.453600 34 0.00003387159 —0.00006509318
17 -281.145800 —101.692200 35 —0.000009677598
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terms with alternating signs. Using a tolerance of 10> we obtain !0 = 22026.47 with
35 terms, which yields e~10 ~ 4.5399921 x 10~. Secondly, the algorithm EXPON
may be used to calculate e, and ¢~'® may be obtained using e~10 = (¢~)'. Using
a tolerance of 10~°, we obtain e~! ~ 0.3678819 with 9 terms, which yields e710 ~
4.5402964 x 10~5. The latter result is somewhat inferior because of the exponentiation
operation involved in (e~1)!°. However, with a tolerance of 10-6, we obtain ™! &~
0.3678792 with only 10 terms, and e~'® ~ 4.5399932 x 10-5. Note that such simple
remedies may not be available for other series with terms of mixed signs. %

Consider the evaluation of

1
I, = f x"e*Vdx (1.29)
0
for some n > 1. Note that I} = 1/e ~ 0.3678794. Using integration by parts for the
right member in (1.24) yields

x=1

1 1
f x"e*ldx = x"e* ! - n[ " le*ldx.
0 x=0 0

In other words,

I,=1=nl,_;. (1.25q)

Suppose we wish to obtain /;,. Starting with I; = 1/e, we may use (1.25a) to evaluate
I recursively. We obtain the results shown in Table 1.4.

In particular, note that the computed value for I3 is ~ —4.310974. This is impossible
— the value of I, could never become negative, because the integrand is nonnegative
over the entire interval of integration for all n. Moreover,

1 1 1
f x"e""‘dxsf x"dx = —. -
0 0 n+1

Therefore, we must have Ij; < 1/12 = 0.083333. The error in I;; is magnified (multi-
plied by 12) in the calculation of Iy, since I;z = 1 — 1214, resulting in a negative value
for 1. This gets worse as n increases. In order to see this more clearly, let us consider

Table 1.4

n ,n n 'n

1 03678795 7 0.1124296
2 02642411 8 0.1005630
3 02072767 9 0.0949326
4 0.1708932 10 0.0506744
5 0.1455340 11 0.4425812
6 0.1267958 12 —4.3109740
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I3 and 1,. We have
L=1-3L=1-3(1-2})=-24+ @Y,
and
Li=1-4L=1—-4(-2+@3Y)=9-@NH1.

By induction, it is easily seen that the round-off error in /7 = 1/e gets magnified by a
factor of n! in the calculation of ,. To avoid this instability, let us rewrite (1.25a) as

1-1,
n

Ii_y = (1.25b)
and evaluate Iy, backwards, starting from a large n. For example, since I < 1/21 =~
0.048, we may begin by setting Ip = 0 in (1.25b), and compute I9, i3, . .., I12. The
initial error (a rather large error), gets divided by 20 x 19 x - - - 13 and thus gets reduced
considerably. In fact, we obtain I}, ~ 0.07177325. This is consistent with the fact that
I, <1/13 2 0.0769, and I3 < 1/14 ~ 0.0714. ‘ w

The two previous examples showed that it is useful to explore alternate methods of
calculation and validate our computational results. In the process, it may be necessary
to make use of the properties of the problem itself. Recall that we used the fact that
e™* = 1/e* = (e~!)* in Example 1.26, while we rewrote the recurrence relation (1.25a)
in the form (1.25b) in Example 1.27. Those examples illustrate the following basic ideas
concerning scientific computing in general.

Implementing algorithms as computer programs is a very important part of scientific
computing. A numerical analyst should be aware of several aspects of programming.
(i) the programming language, (ii) the computer system being used, (iii) the process
of debugging and verification of results, and (iv) organization and clear description of
computations. Computer programs for numerical methods are usually written in a high-
level programming language. Structured languages such as Fortran 77, Pascal, and C help
create code that is easy to write, document, understand, debug, and modify if necessary.
The accuracy of the numerical solution to a problem is generally not affected by the
programming language used. Practical considerations such as the storage space required
and execution time will become important when we wish to translate an algorithm into a
computer program. The use of packaged mathematical software is becoming increasingly
popular. We should consider such software items as available tools and understand the
principles of the tools. Therefore, computational experience comes through writing code
as well as experimenting with available mathematical software. Once an algorithm or
software item has been selected, we must study the accuracy of the results, possible
sources of error, and their effect on the final answer, and estimate the rounding and
truncation errors so that the numerical results can be interpreted properly. It will also
be helpful to carry out adequate accuracy checks in order to test the applicability of a
specific algorithm to a specific problem.

Here are some specific suggestions for good programming practice:

* Always write out an algorithm for the computations desired. Check the algorithm
by applying it to a typical yet simple problem for which the exact answer is
known. '
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o When translating algorithms into computer programs in the language of your
choice, developa program so that it can handle a general situation, as opposed
to a specific instance of the problem. Remember that a program written for a
particular set of numbers must be completely rewritten for another set.

« In order to assist in debugging and understanding how a program operates, you
should output enough intermediate results. Make the output self-explanatory by
labeling each quantity printed out.

« Echo-printing the input is a useful practice.

« Document your programs adequately so that they may be easily understood by
anyone or yourself at a later time. However, avoid extensive commenting.

« If the algorithm for solving a specific problem turns out be large, construct the
entire program by building subprograms that correspond to various steps in the
algorithm. Divide the algorithm into steps which translate into subprograms that
are reasonably small, say less than a page, so that the program becomes more
easily readable. This will also facilitate easy debugging. Debug and test each
subprogram separately, and then together.

These suggestions are by no means exhaustive. We have not discussed specific ways
to program in one language or another in order to keep the treatment very general.

[ cOMPUTER EXERCISES ]

1. Use the following program segment to determine the machine epsilon for your
computer system.

**************************************************
*
* Program Segment for Machine Epsilon
*
************************************ﬁ*************
*
subroutine maceps (epslon)
*
wknnkrdd Tnitialize #¥¥wkwwrkddiid
*
epslon = 1.0
*
hkhkhhd Main Loop Y2222 2232222 2
*

* continue
epslon = epslon/2.0
if (epslon + 1.0 .gt. 1.0) goto 7
epslon = 2.0 * epslon
return

end
*

**************************************************
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Write an algorithm in the notation of the text to compute the sum § = 2110:1 2k,
Translate your algorithm to a computer program in a language of your choice, and
execute your program.

Write an algorithm in the notation of the text to compute the expression

n i
-1
e=3 "' [
i=1 j=1

assuming that xy, x2, - - -, x,,and y;, ¥2, - - -, y are given. Translate your algorithm
to a computer program in a language of your choice, and execute your program.
Construct an algorithm that takes as input an integer n (n > 1), (n + 1) real
numbers ag, a,, -« + , an, and another real number x, and produces as output the
sum

P=ay+aix +ax®+ - +ap_1x"' +a,x".
Translate your algorithm to a computer program in a language of your choice, and

execute your program.
Consider the conversion of a positive decimal integer x to its binary equivalent. If

x = (apQp_1 - - - A140)2,
then
x=ay, -2 +ap1- 2"+ 4a;-2' +ay-2°.

Thus we obtain the following algorithm for the conversion.

In this algorithm, the x mod 2 operation corresponds to taking the remainder while
the x -+ 2 operation corresponds to taking the quotient when x is divided into 2.
Translate this algorithm into a computer program, and test it for (a) x = 51, (b)
x = 1023, and (c) x = 513.
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6.

Consider the conversion of a positive decimal fraction x < 1to its binary equiva-
lent. If

= (@123 " * )2,
then
x =a ~2“+a2-2'?+a3-2"3+--~‘

Thus we obtain the following algorithm for the conversion.

In this algorithm, the int(2x) operation corresponds to taking the integer part of
2x while the frac(2x) operation corresponds to taking the fractional part of 2x.
Translate this algorithm into a computer program, and test it for (a) x = .625, (b)
x=.,and (c)x=.7.

Translate the algorithm EXPON into a computer program in a language of your
choice, and use it to repeat the computations of Example 1.26. Use the same
program to compute (2) e~12 (b) e'2.

Incorporate the modifications suggested at the end of the discussion in Example
1.26, and develop a computer program for the computation of e™* for a large
positive x. Use your program to compute ¢~12, Compare with the result obtained
in Exercise 7, and with the exact result.

Write a computer program to carry out the computation in (1.25b) for the evaluation
of I;,. Experiment with the starting value /3. Observe what happens when you
start with (a) Ig = 10, (b) Izo = 100. Do not use subscripted variables.

1.3 DISCUSSIONS

*1.3.1 LITERATURE SURVEY

Computer arithmetic is important to scientific programmers who want to produce
portable software that will yield numerical results of reasonable accuracy. In this chapter,
we have discussed only floating-point arithmetic, since it is the form of arithmetic used
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in today’s computers. Hwang [13] gives a complete introduction to floating-point arith-
metic of computers. Various other forms of computer arithmetic have been explored. We
have already discussed the use of interval arithmetic in the study of rounding errors. In-
terval arithmetic has grown rapidly in the last decade, and it has now become a subject in
its own right, called interval analysis. An introduction to the methods and applications of
interval analysis may be found in Moore [18] and Alefeld and Herzberger [2]. However,
as indicated earlier, interval arithmetic is not widely used in practice because it requires
a considerable amount of computational effort and may produce greatly exaggerated er-
ror bounds. Another form of arithmetic, known as rational number arithmetic, involves
the use of a rational number system instead of the real number system. Specialized
rounding procedures are available for representing a real number that is not rational.
Techniques using rational-number arithmetic are given in Henrici [9] and Gregory and
Krishnamoorthy [8]. The objections that apply to interval arithmetic also apply here.
Finally, a third form of arithmetic, known as range arithmetic, has been studied. In this
form of arithmetic, we keep track of the number of “good” significant digits at each
stage of a computation. At the end of the computation, we will have an answer and
an indication of how many digits in the answer are “good.” This method has the same
flavor as interval arithmetic and hence the same objections apply here as well. Range
arithmetic is dealt with in Aberth [1].

Error propagation, especially with respect to rounding errors, is an important aspect
of numerical computations. The current results and techniques are due to Wilkinson [19].
In the statistical approach, the rounding error is estimated based on the assumption that
the local rounding errors are either uniformly or normally distributed between their ex-
treme values. While this method provides an adequate mathematical theory of rounding
errors, it involves a considerable amount of mathematical analysis and requires additional
computer time. Further details on the statistical approach may be found in Henrici [10].

Other general references on numerical analysis include Isaacson and Keller [14],
Conte and De Boor [6], Atkinson [3], Hildebrand [12], and Burden and Faires [5].
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8. Gregory, R. T., and Krishnamoorthy, E. V., Methods and Applications ofError—Free
Computations, Springer-Verlag, New York, 1984.

9. Henrici, P, “A subroutine for computation with rational numbers,” J. ACM 3
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50

Chapter 1 Preliminaries

10. Henrici, P, Elements of Numerical Analysis, John Wiley & Sons, New York,
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11. Henrici, P., Essentials of Numerical Analysis, John Wiley & Sons, New York,
1982. ,

12. Hildebrand, F., Introduction to Numerical Analysis, McGraw-Hill, New York,
1966. ' '

13. Hwang, K., Computer Arithmetic, John Wiley & Sons, New York, 1979.

14. Isaacson, E., and Keller, H., Analysis of Numerical Methods, John Wiley & Sons,
New York, 1966. ’ : ‘

15. Knuth,D.E., The Art of Computer Programming, Vol. 1, Fundamental Algorithms,
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1974. ;
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18. Moore, R. E., Methods and Applications of Interval Analysis, SIAM Studies in
Applied Mathematics, SIAM Publications, Philadelphia, 1979.

19. Wilkinson, J. H., Rounding Errors in Algebraic Processes, Prentice-Hall, Engle-
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1.3.2 SOFTWARE SURVEY

The development of mathematical software is becoming increasingly important, espe-
cially with the advancement of technology for the design of computers. Rice [23] and
Cowell [20] are useful sources of information on mathematical software. In recent years,
microcomputers and supercomputers have given much more significance to numerical
computations and mathematical software development. Software items originally devel-
oped for mainframe computers are currently available for microcomputers as well. At
the other end of the spectrum, design and analysis of numerical algorithms for super-
computers is a very active area of research today. Rodrigue [24] gives a recent account of
numerical methods for scientific computing in a parallel computing environment. Parter
[22] and Ortega and Voigt [21] give some idea about how a variety of physical prob-
lems lend themselves to supercomputing environments. In addition to the vast amount
of mathematical software available for numerical methods, computer algebra systems
have emerged in the recent years and are widely used by numerical analysts and applied
mathematicians. MACSYMA, REDUCE, and muMATH are some of the computer alge-
bra systems available today. One of the most recent and powerful mathematical software
systems is Mathematica, which is available on a variety of machines. A description of
Mathematica may be found in Wolfram [25].

20. Cowell, W. R., ed., Sources and Development of Mathematical Software, Prentice-
Hall, Englewood Cliffs, N. J., 1984.

21. Ortega, J., and Voigt, R., “Solution of partial-differential equations on vector and
parallel computers,” SIAM Rev., 27 (1985).

22. Parter, S., ed., Large Scale Scientific Computation, Academic Press, New York,
1984.
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Rice, J. R., Numerical Methods, Software, and Analysis, McGraw-Hill, New York,
1983.

Rodrigue, G., Parallel Processing for Scientific Computing, SIAM Publications,
Philadelphia, 1988.

Wolfram, S., Mathematica: A System for Doing Mathematics by Computer, Addi-
son Wesley, Reading, Mass., 1988.

103.

3 CHAPTER SUMMARY

In this chapter, we have reviewed some fundamentals of calculus and discussed the
computer representation of numbers. The origin and propagation of rounding errors were
studied. Concepts of stability and convergence were introduced. We also introduced the
algorithm notation that will be used in this book.

L

IL
1L

Iv.

VI

The following theorems of calculus were stated without proofs:
(1.1) Intermediate-Value Theorem.
(1.2) Rolle’s Theorem.
(1.3) Generalized Rolle’s Theorem.
(1.4) Extreme-Value Theorem.
(1.5) Weighted Mean-Value Theorem for Sums.
(1.6) Integral Mean-Value Theorem.
(1.7) Mean-Value Theorem for Derivatives.
(1.8) Taylor’s Theorem.
Proofs of Theorems 1.5 through 1.8 are given in Appendix A.
Taylor’s Theorem in Two Dimensions was stated and proved.

The terms absolute error and relative error were defined.
The bounds
——-——-———-——lx —fix)l <pl fry chopping
x
and - 1
Lzt (5] < -p for rounding
X 2
were derived.

The propagated error in function evaluations and arithmetic operations was
studied. ;

It was pointed out that loss of significance or catastrophic cancellation may occur
when we compute the difference of nearly equal quantities. We emphasized that it
may be worthwhile to rewrite expressions for evaluation whenever we anticipate
such differencing. Rationalization and Taylor’s theorem were identified as useful
tools in this regard.

Stable and unstable computations were distinguished by studying the error
growth | E,,| after n steps. In particular, we considered

a. |E,| = Cne,

b. {E,|~ k"¢ forsome k > 1,
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VIL

VIIL

where (1) corresponds to linear growth and (2) corresponds to exponential
growth. A computation that exhibits linear growth of error is stable, and a
computation that exhibits exponential error growth is unstable.

We introduced convergence concepts for sequences and functions as related to
numerical analysis.

2 Wewrite @, = a -+ O(fy) if 222!

1B

that the rate of convergence of a,, :o a is at least of B.-
Fx)-L
b. We write F(x) = L + 0(G(x)) if %I——'
x > 0 and say that the rate of convergence of F(x) to L as x — 0 is at least
of order G(x).
We illustrated the algorithm notation of the text by means of several simple
examples. We also offered programming suggestions.

< K for sufficiently large n and say

< K for sufficiently small

REVIEW EXERCISES

1.

W

o

o N

10.

Let £ (x) be a continuous function with f(1) = —3 and f(2) = 10. Does the graph
of f(x) intersect the x-axis at some number ¢ € [1, 2]? Why, or why not?

Let f(x) be continuous and differentiable on [2, 3], and let f(2) = f(3). What
does Rolle’s Theorem permit us to conclude?

Does Rolle’s Theorem apply to f (x) = |x} on [—1, 1]? Why, or why not?

What properties of f(x) = (x — 3) sin(x — 5) In x permit us to conclude that there
is a number ¢ € [1, 6] for which f”(c) = 0?

Why doesn’t the Integral Mean-Value Theorem (Theorem 1.6) apply to the case
f(x) = x3 and w(x) = sinwx on [—1, 1]?

Let f(x) be a continuous function on [a, b] with the property that | f'(x)| < M
for each x € [a, b]. Use the Mean-Value Theorem for Derivatives (Theorem 1.7)
to show that for any x;, x; € [a, b]

|f(x1) = fOx2)] < Mlx; — xaf.

Obtain the quadratic and cubic Taylor polynomials for f(x) = x* around xp = 1.
Obtain the Taylor polynomial of degree 3 for f(x) = sinx around xo = 0. Use
your polynomial to find an approximation to sin0.02. Estimate the error in your
approximation. Compare with the exact result.

Determine the linear and quadratic Taylor polynomials for each of the follow-
ing:

a. f(x,y)=¢€"siny, (x0, o) = (0,0)

b. f(x,y)=¢e"cosy, (x0, y0) = (0,0)

Convert the following numbers into their decimal equivalents.

a. (110010.01),

b. (A2D.BC)6

c. (102132.43)3

o A
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For the following numbers x and x,, determine how many significant digits there
are in x4 with respect to x.

a. x = 156.23, x4 = 156.224

b. x =0.0027517, x4 = 0.0027507

Compute using four-digit arithmetic with chopping.

a. % + g
b. % X g
Repeat Exercise 12 with rounding
Let f(x) = x'/3. Estimate the propagated error lx‘/ 3 — x| using (1.12).
-1
Evaluate for x = 0.0001 using 3, 4, 5, 6, and 7-digit decimal arithmetic and

chopping. ngrite the expression so as to avoid loss of significance, and evaluate
using 3, 4, 5, 6, and 7-digit decimal arithmetic and chopping once again.

Determine the roots of x2 + 80x + 1 = O correctto 5 digits. Use +/1599 = 39.987.
Determine whether the following scheme for generating p, = (%)" is stable or not.

10 }
Pn = Pn_1 — 9P Po= L, pr=2/7

We know that lin}) In(1 — x) + xe*/2 = 0. What is the rate of convergence?
x—

Write an algorithm in the notation of the text to evaluate sin x for a given x, using
its Taylor series expansion around x, = 0.

Computer Exercises

20.

We wish to evaluate the integral

1 n
x
I, = dx
" ./o x+5
for some integern > 0. Corresponding ton = O we have I, = In 1.2 & 0.1823215.
a. Forn > 0, show that

1
I, = i 51,4. {1.26q)

b. Write acomputer program to evaluate I 10 using (1.26a). Do not use subscripted |
variables. Start with 7, = 0.1823215.
¢. Note that (1.26a) may be rewritten as

1
(z - ’")
I =

= —t 1.26b,

5 ( ‘)
Write a computer program to evaluate I using (1.26b). Start with Iy = 0. Ex-
periment with various starting values for Ip. For example, let (i) I,p = 0.1, and
(il) Ly = 0.005.
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21. Consider using either of the two Maclaurin series

x2 x3 o8] xk
1 —_— = 11
n(l+x)=x-Z+3 - ;( D,
x2 3 °°xk
Il =x) = =X — —— — — — e+ = — -,
n(l — x) X3 3 ;k

for the computation of natural logarithms. The first series converges for —1 < x <
1, while the second one converges for —1 < x < 1. In order to compute In0.7, for
example, we may put x = —0.3 in the first series, or put x = 0.3 in the second one.
Write computer programs to use either series for the computation of Inz for any
z € (=1, 1). Your program should use a prescribed tolerance ¢ and a maximum
number of terms. Output the desired logarithm, and the number of terms needed
to achieve the desired accuracy.
Note that the two preceding series may be combined to yield

14+x x3 20, x2k-1
=2 -+ )= .
ln(l—x) (x+3+ ) 2;%—1

Natural logarithms may be obtained using this new series as well. ‘For exam-
ple, in order to compute In0.7, we let (1 +x)/(1 —x) = 0.7 and obtain x ~
—0.176470588. Write a computer program to use this third series for the compu-
tation of In z for any z € (—1, 1). Your program should use a prescribed tolerance
¢ and a maximum number of terms. Output the desired logarithm, and the number
of terms needed to achieve the desired accuracy.

Use all three programs to compute In0.7,In1.2, and In2. Use ¢ = 1073,

SUGGESTIONS FOR FURTHER STUDY

The following problem is concerned with the rate of convergence of a series, and hence
the computing time required to sum the series. The series we wish to consider is given
by

<1
S=§n—2—ﬁ.

It is useful to know that computing the sum S directly on the computer is a waste of
computer time. For example, determine how many terms will be necessary in order to
compute S to within 10~1°. The purpose of this study is to show that some mathematical
analysis before performing the actual computations is highly helpful.

1. First, we could make use of the known sum
00 2

1
T=Zﬁ=%'

n=1
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Instead of computing S directly, we may compute the series correspondingto T — S.
Call this sum S). Then, clearly S = T — S;. Determine how many terms will be
necessary in order to compute S; to within 10~!%, Write a computer program to
evaluate Sy, and then S.

2. The idea in 1 may be extended further to the calculation of S;. For this purpose, we
could make use of the known sum

201
V= ;r;’—

Instead of computing S; directly, we may compute the series corresponding to
V — 8. Call this sum S,. Then, clearly S; = V — §,. Determine how many terms
will be necessary in order to compute S, to within 1010, Write a computer program
to evaluate S,, and then S; and S.

Thus number may be said fo rule the whole world of quantity, and the four rules of
arithmetic may be regarded as the complete eqmpment of the mathematician.

James Clerk Maxwell
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borrower can afford to pay?
If we let x be the interest rate per pay period, A the amount of mortgage, P the
amount of each payment, and n the number of pay periods, then the unknown rate x

go. .
Page 78, Pennsylvania Drivers’ Manual

, roblems like the following frequently arise in day-to-day life. A 30-year home
’ mortgage in the amount of $40,000 is needed. The borrower can afford house
payments of at most $400 per month. What is the greatest interest rate the
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satisfies the ordinary annuity equation given by

P 1
A=;[l—m] (2.1)

In terms of the unknown x, (2.1) may be written in the form f (x) = 0 for some function
f(x). Determining the value of x for which f(x) = 0 is equivalent to finding the point
of intersection of the graph of f(x) with the x-axis.

In this chapter, we will consider the numerical solution of the general class of
problems given by a nonlinear equation of the form

fx)=0, (2.2)

in which f(x) is any continuously differentiable real valued function of a single real
variable x. This is called the rootfinding problem. The values of x for which the
equation f(x) = 0 is satisfied are called the roots of f(x) = 0 or the zeros of f(x).
The solution of (2.2) by analytical means is almost always impossible, except in rare
cases such as those in which f (x) is a factorable polynomial. Instead, the most commonly
used methods for the solution of (2.2) are iterative; that is, they consist of computing
successive values, each depending on one or more previous -values, and (we hope)
converging to a root. Almost all iterative methods for solving f(x) = 0 require one or
more initial guesses for the desired solution. The methods considered in this chapter
will be called two-point methods or one-point methods, depending on whether they
require two initial guesses or one. We will also study methods for the case where f(x)
is a polynomial, since polynomial equations arise in many applications. This is called
the polynomial rootfinding problem. In a later chapter, we will consider the numerical
solution of systems of nonlinear equations.

To begin with, we will consider methods that need two starting guesses for the solution.
Among these, we will first consider those methods that start with an interval enclosing the
desired solution, and proceed to obtain a sequence of enclosing intervals of decreasing
width. Such methods are called enclosure methods or bracketing methods. If f(x)
is continuous on [a, b] and f(a)f(b) < 0, then by Theorem 1.1 (Intermediate-Value
Theorem) there exists at least one zero of f(x) in [a, b]. (Note that the condition
f(a) f(b) <0 is equivalent to requiring f(a) and f(b) to be of opposite sign.) It is
common practice to choose the interval [a, b] so that it contains only one root a of

f(x)=0.

2.1.1 BISECTION METHOD

Consider solving the equation x> — 2x — 5 = 0.Let f(x) = x®> — 2x — 5. Then f(2) =
-1, f(3) = 16, and f(2) f(3) < 0.-Hence, there must exist at least one number « €
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[2, 3] such that f(a) = 0. Further, since f'(x) = 3x2 -2 >0 for all x € [2,3], by
Theorem 1.2 (Rolle’s Theorem) there is at most one number « such that f(o) = 0 in
[2, 3]. Suppose now that we approximate o by the midpoint x(¥ of the interval [2, 3].
Then we have

a ~ x = 2.5 with absolute error < 0.5.

Since 0 # f(2.5) = 5.625 and f(2) f(2.5) < 0, itis clear that @ must be bétween 2and
2.5. If a is approximated once again by the midpoint x® of the interval [2, 2.5], we get

a ~ x® = 2.25 with absolute error < 0.25.
Then ' ’ ‘
F(2) = —1 <0 < 1.890625 = £(2.25),

from which it is clear that 2 < a < 2.25. This process may be continued until we are
satisfied with the approximation obtained for the root. The method of finding the root of
a given equation by bisecting an interval in each step is called the bisection method.
The bisections are normally carried out until the interval enclosing the root becomes
“small.” A tolerance limit £ > 0 may be specified in order to define “small” precisely. In
addition, when programming for the bisection method or any other iterative method, it is
helpful to include a bound on the number of iterations permitted. Suppose this number
is called maxit; then the bisections may be stopped after maxit iterations, whether or not

. the approximations converged to a root to within the tolerance specified. This precaution

prevents infinite looping in a computer program, which may be caused by the divergence
of the method or by incorrect coding.

Solve x3 — 2x — 5 = 0 for a root in the interval [2, 3] by the bisection method.

The results corresponding to & = 1076 are shown in Table 2.1. The solution of x> — 2x —
5 = 0 correct to 9 decimal places is 2.094551481. From the computations summarized
in Table 2.1, we only know that after 20 iterations, the maximum absolute error is ~
2.0945530 — 2.0945521| = 0.0000009 < 107%. In fact, the approximate root obtained
at the 17 iteration is much closer to the correct solution. However, there is no way we

could have known this without knowing the exact solution a! A
Table 2.1
k a b x* f(x*)
1 2.0000000 3.0000000 2.5000000 5.6250000
2 2.0000000 2.5000000 2.2500000 1.8906250
3 2.0000000 2.2500000 2.1250000 0.3457031
4 2.0000000 2.1250000 2.0625000 —0.3513183
5 2.0625000 2.1250000 2.0937500 —0.0089416
6 2.0937500 2.1250000 2.1093750 0.1668358
7 2.0937500 2.1093750 2.1015625 0.0785622
8 2.0937500 2.1015625 2.0976563 0.0347149
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‘Table 2.1 (continued)

k a b x* f(x*)

9 2.0937500 2.0976563 2.0957032 0.0128632
10 2.0937500 2.0957032 2.0947266 0.0019547
11 2.0937500 2.0947266 2.0942383 —0.0034949
12 2.0942383 2.0947266 2.0944682 —0.0009296
13 2.0944682 2.0947266 2.0946045 0.0005918
14 2.0944682 2.0946045 2.0945435 —0.0000890
15 2.0945435 2.0946045 2.0945740 0.0002513
16 2.0945435 2.0945740 2.0945587 0.0000805
17 2.0945435 2.0945587 2.0945511 —0.0000043
18 2.0945511 2.0945587 2.0945549 0.0000381
19 2.0945511 2.0945549 2.0945530 0.0000170
20 2.0945511 2.0945530 2.0945521 0.0000069

The following result shows exactly how the interval length decreases from one
iteration to the next.

2.1

Let f(x) be a continuous function on [a,b), and let f(a)f(b) <O0. Let a be the
exact solution of f(x) = 0. Then the approximations x™ produced by the bisection
method satisfy

b-a

o — x™| < TR

n>1. (2.3d

Let a, and b, denote the end points of the enclosing interval after n — 1 bisec-
tions (see Fig. 2.1). Since x™ = (a, + b,)/2, and since « € (an, b,), it follows that
| —x™| < (b, — a,)/2. Finally, since b, — a, = (b — a)/2""!, Equation (2.3) fol-
lows immediately. A

SOLUTION

Use Theorem 2.1 to estimate the number of bisections N required to obtain an enclosing
interval for a root of some f(x) = 0 such that the error is guaranteed not to exceed 1075.
Assume that the starting interval [a;, b;] has length 1. In other words, by — a; = 1.

Let « be the desired root, and N the number of bisections required. Then, x*? satisfies

x(n)l < (b1 —a1)

| - N

Thus we require

27Ny —a) =27"Y <107C.



Chopter 2 Rooffinding

y
A
o y=fx)
f t > x
a X0 b
f(a)'r NO) é
a o by
—
a O by
——
a3 by
Figure 2.1 Bisection method.
Therefore,
6
—Nlogy,,2 < —6, or N > __long ~ 19.9.

Hence, at least 20 iterations are required. Note that this is exactly what happened in
Example 2.1. A

The inequality (2.3) implies that the sequence {x™} converges to « at the same
rate as {2} converges to zero, or simply x” = & + O (2™"). However, note that (2.3)
gives only a bound on the error in the approximation. In general, the errors could be
smaller than the bounds. Therefore, the number of iterations estimated as in Example
2.2 could be much higher than the actual number of iterations required.

We conclude this section with an algorithm for the bisection method.
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Even though the bisection method is conceptually simple and easy to implement,
it suffers from severe drawbacks. For complicated functions or for larger starting in-
tervals, the bisection method may converge very slowly. Further, a good intermediate
approximation may go unnoticed. However, since this method does always converge to
a solution, it is commonly used as a “starter” for more efficient methods in order to get
a reasonably accurate solution much faster.

1. It is useful to sketch the graph of f(x) first in order to solve f(x) = 0. Sketch
the graph of f(x) = x> — 9x? + 24x — 15 and determine intervals of unit length
enclosing the solutions of f(x) = 0. [Hint: Start by first finding the intervals on
which f(x) is monotonically increasing. Identify the critical points, and determine
where the graph is concave up and concave down.]

2. Graph f(x) = x* + 2x3 — 1 and determine intervals of unit length enclosing the
solutions of f(x) =

3. Solvetheequatione* — 3x = Oforarootin the interval [1, 2] by using the bisection
method. Iterate until the width of the enclosing interval is less than 1073,

4. Solve the equation x3 + x> — 3x — 3 = 0 for a root in the interval [1, 2] by using
the bisection method. Iterate until the width of the enclosing interval is reduced to
1072, '

5. Determine how many bisections are needed in order to reduce the enclosing interval
from [0, 1] to an interval of width less than 10~ when solving the equation
3x +sinx — ¢* = 0 for arootin [0, 1].

6. Determine how many bisections are needed in order to obtain an interval of width
less than 10> enclosing a root of the equation tan x = x, starting from the interval
[4, 4.5].

7. Using the bisection method, determine the roots of the equations in Exercises 5
and 6 to within 103, [Hint: Note that the value of x must be in radians.]

8. Solve x3 —2x2 —5 =0 for a root in the interval [2, 3] by using the bisection
method. Iterate until the enclosing interval has width less than 1073,

| COMPUTER EXERCISES

9.. Write a computer program for the algorithm BISECT. Test your program on
Exercises 3, 4, 5, 6, and 8. Use ¢ = 107°, -

10. Use the bisection method to determine 71/3 correct to within 1076, [Hint: Let
fy=x"-1]

11. Determine /17 using the bisection method. Use &£ = 1075,

12. Each of the following functions f(x) is such that f(0) f(1) < 0. Use BISECT
and iterate until a root of f(x) =0is obtamed to within & = 10~5. Which point
does the method yield as the root?

a. f(x)=cosl0x
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1
b. = —
fx) P
1, forx <025
© f(x)‘[-l, forx > 0.25

13. Solve the ordinary annuity equation (2.1) for the situation described at the begin-
ning of Section 2.1 by using the bisection method. Use & = 1075.

14. Determine by the bisection method where the cubic y = x> —x + 1 and the
parabola y = 2x? intersect. Use & = 1075.

15. For each of the following equations, determine a root in the indicated intervals by
using the bisection method. Iterate until the enclosing interval has width less than
107,

a. *—x-1=0in(1,2]

b. x—2*=0in[0,1]}

c¢. ¥*+4x2-10=0in[1,2]
d x*-2x2-5=0in[2,3]

16. Consider solving the equation x + 2coswx + 0.5 = 0 by using BISECT. [Hint:
x is in radians.]

a. Determine a root of the equation in [0.5, 1.5}, using £ = 1075.
b. Suppose that step (5) of the algorithm BISECT is changed to

if f(b)f(x*) > Othenb < x" elsea « x*.

Use this new version of BISECT to solve the equation for a root in the interval
- [05,1.5) Implement this version as a computer program.
c. Explain the difference between the answers obtained in (a) and ().

2.1.2 REGULA-FALSI METHOD

It is evident that the bisection method makes no particular use of the value of f(x)at
any point of interest; it uses only the sign of f(x) in the selection of an appropriate
interval containing the root. It may be helpful to take into account the actual value of
£ (x) at any point under inspection. For instance, in Example 2.1, since f(2) = —1 and
f(3) = 16, it is reasonable to expect the root to be closer to 2 than to 3. Hence, instead
of considering the mid-point of [2, 3] (i.e., the “average” of the end points 2 and 3), it
may be useful to consider a “weighted average” of 2 and 3. The regula-falsi or “false
position” method sets

O = 3-1f@1+2-1fQ)
F@I+1fO
Since f(2) and f (3) are of opposite sign, (2.4) takes the simple form
3 SO=2f0)
f@Q-f3 °’

(2.4)

which yields

3(—-1)—2(16) 35
m - = — R
x GG 7 2.0588.
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Then f(2.0588) ~ —0.3911 indicates that the root lies in the interval [2.0588, 3]. °
Repeating the process one more time for the interval [2.0588, 3] yields

L@ = 3(~0.3911) — (2.0588)(16) _ 34.114
- (~0.3911) — (16) ~ 16.391

Now, since f(2.0813) =~ —0.1468, we may conclude that the root lies in the interval
[2.0813, 3]. Hence, if we denote by [ay, bi] the interval enclosing the root after k — 1
jterations, then the regula-falsi method obtains the next approximation x® for the root
by setting

~ 2.0813.

_ (b —a) f (@)
fbe) — flax)’

The sign of £ (x®’) may be used to determine whether the root lies in the interval [ax, x®]
orin [x®, by], after which (2.5) may be applied once again and x**+! determined. This
may be repeated until we are satisfied with the approximate root obtained. It is easily
verified that x® as given by (2.5) is the point of intersection of the straight line joining the
points (ag, f(ax)) and (b, f(by)). Hence, we may conclude that during each iteration,
the regula-falsi method approximates the root of f(x) = 0 by replacing f (x) with the
secant line joining the two points (@, f(a)) and (b, f (b)), where [a, b] is an interval
bracketing the root (see Fig. 2.2). As a result, unlike the bisection method, the regula-
falsi method does not produce an interval of “small” width enclosing the root. Therefore,
it becomes necessary to formulate general stopping criteria.

Let {x™} denote the sequence of approximations produced by a numerical method
for the solution of f(x) = 0. Then we may test whether

® =g (2.5)

x® —x®D <¢ or (2.6a)
If™)| <e, (2.6b)

for a prescribed tolerance ¢ > 0. However, both of these tests may sometimes lead

y
A
fla+

y=fx)

L) (v} T Ll
foT

Figure 2.2 Regula-falsi method.
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fo erroneous conclusions! For example, if x® — x@~D = 1/n, the test (2.6a) will be
satisfied for n > 1/¢. However, the sequence {x™} actually diverges. Next, suppose

1
fO)=R-x),a=2,xM=2- ~ It is easy to see that | f(x®)| < 1072 for all

n > 1, whereas o — x®| < 1072 requires n > 100. Hence, the test (2.6b) may indicate
convergence long before the approximations actually approach the desired limit! In the
absence of any additional information on f(x) and «, the following ° relatlve error”
criterion may be more appropriate than (2.6a) or (2.6b).

x® — x@D)

(n) .
o <e, x\™ #£0, (2.7)

where ¢ > 0 is the prescribed error tolerance. Frequently, (2.7) is used in the form.
x® — x@=D| < g]x®|. (2.8)

In the algorithms to follow, we will use the termination criterion (2.8).

ALGORITHM 7

Solve x3 — 2x — § = 0 for a root in the interval [2, 3] by the regula-falsi method.

Table 2.2 shows the results obtained corresponding to £ = 1075, A

Note that the approx1mat10n x® always lies to the left of the root & in this example.
This is because f (x) is increasing and concave upward on the interval [ay, b1] = [2, 3],
and the secant line is always above the graph of f (x). Similarly, when f (x) is decreasing
and concave downward, x* would always lie to the right of «, and the secant line below
the graph of f(x). If the graph of f(x) has significant curvature between a; and by, the
method will be very slow! (See Fig. 2.3.)
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Table 2.2

k a b x* f(x*)
1 2.0000000 3.0000000 2.0588235 —0.3907999
2 2.0588235 3.0000000 2.0812637 —0.1472041
3 2.0812637 3.0000000 2.0896392 —0.0546765
4 2.0896392 3.0000000 2.0927396 —0.0202029
5 2.0927396 3.0000000 2.0938837 —0.0074505
6 2.0938837 3.0000000 2.0943055 —0.0027457
7 2.0943055 3.0000000 2.0944608 —0.0010116
8 2.0944608 3.0000000 2.0945181 —0.0003727
9 2.0945181 3.0000000 2.0945392 —0.0001373

10 2.0945392 3.0000000 2.0945470 —0.0000506

11 2.0945470 3.0000000 2.0945498 —0.0000186

12 2.0945498 3.0000000 2.0945509 —0.0000069

fla)+

y=fx)

: —x

fb1

Figure 2.3 Regula-falsi method may be slow.

Modified Regula-Falsi Method. A quick remedy to the situation just described is to
replace the secant lines with lines of smaller slope until x* falls to the opposite side of
the root. This is done by replacing the value of f(x) at the stagnant point with f(x)/2.
(See Fig. 2.4). This is called the modified regula-falsi method.

Solve x3 —2x — 5 =0 for a root in the interval [2, 3] by the modified regula-falsi
method.
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Table 2.3 shows the results obtained corresponding to £ = 107°. A
Table 2.3

k a b x* f(x*)

1 2.0000000 3.0000000 2.0588235 -0.3907999

2 2.0588235 3.0000000 2.1026586 0.0909011

3 2.0588235 2.1026586 2.0943866 —0.0018404 "

4 2.0943866 2.1026586 2.0945507 —0.0000084

5 2.0945507 2.1026586 2.0945522 0.0000083

6 2.0945507 2.0945522 2.0945515 0.0000000

We conclude this section with an algorithm for the modified regula-falsi method.

1. Solve cosx — x = 0 for a root in [0, /2] by using the regula-falsi method. Use
the termination criterion (2.8) with ¢ = 1073, [Note: x is in radians.]

2. Solve the equation x® — x — 1 = 0 for a root in [1, 2] by usmg the regula-falsi
method. Use the termination criterion (2.8) with & = 1072,

‘3. Solve the equation e* — 3x = 0 forarootin [1,2] by using the regula-falsn method.
Use (2.8) with £ = 1073,
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B{COE

{ y=fx)

A/ @ /:

} { > X

a | bl=b2=b3

f (m)T

Figure 2.4 Modified regula-falsi method.

4.

5.

Solve the equation x> — x — 1 = 0 for a root in [1, 2] by using the regula-falsi
method. Use (2.8) with & = 1073,

Solve the equation x + 2cosx + 0.5 = 0 for a root in [0.5, 1.5] by using the
regula-falsi method. Use (2.8) with ¢ = 1073. [Note: x is in radians.]

COMPUTER EXERCISES ]

10.

11.

12.

13.

Write a computer program for the algorithm REG-FALSI. Use your program to
solve the equations of Exercises 1t0 5. Use ¢ = 1075,

Solve the equation x> + x? — 3x — 3 = 0 for a root in [1, 2] by using the regula-
falsi method. Use (2.8) withe = 1076,

Use the regula-falsi method to determine 7/ correct to within 107°. [Hint: Let
fx)=x*-1]

Solve the equation e* cos x = 1 for a root in the interval [1.2, 1.5] by using the
regula-falsi method. Use (2.8) with & = 107%.

Solve the equation x* — 2x> — 4x? +4x +4 = 0 for a root in the interval (a)
[—2, —1], (b) [0, 21, (¢) [2, 3], and (d) [—1, O] by using the regula-falsi method. -
Usee = 1073.

Write a computer program for the algorithm MOD-REG-FAL. Use your program
to solve the equations of Exercises 1 to 5 and 7 to 10, with ¢ = 1076,

Solve the ordinary annuity equation (2.1) for the situation described at the begin-
ning of Section 2.1 by using the regula-falsi and modified regula-falsi methods.
Use (2.8) with & = 1075. ’

Solve each of the following equations by the modified regula-falsi method. Note
that your solutions must be approximations to the value of . Use your own initial
guesses, and & = 1076,
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a. sin%:l

_1
b. cos§_§
c. sini:cosf
d. tan’f:l
2.1.3 SECANT METHOD -

The secant method is another natural modification of the regula-falsi method that
replaces f(x) with the secant and does not necessarily bracket the root during every
iteration. Thus it begins with two initial guesses (not necessarily enclosing the root) and
produces successive approximations from them. Let the two initial guesses be x© and.
x®_ Then the equation of the secant line joining @O, F(x@)) and (x©, fFxD)) is

My — ©

The secant line intersects the x-axis at

e f(x(l))(x(l) — x)
fG®) — fx@)
For the next iteration, we may simply set x©@ = x® and xV = x* and calculate the

next approximation x*. (See Fig. 2.5.)
We are now ready to present an algorithm for the secant method.

(2.9)

<

y=f0x)

Y
»

NOR fre)
feD L

£

Figure 2.5 Secant method.
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ALGORITHM 9

Solve x? — 2x — 5 = 0 by the secant method starting with x©® =2 and x® = 3.

SOLUTION Table 2.4 shows the results obtained corresponding to & = 107%. It is obvious from
the table that the secant method yields the root much faster than the bisection, the
regula-falsi, and the modified regula-falsi methods. ‘ A
Table 2.4
k x(0 x" x* f(x*)
1 2.0000000 3.0000000 2.0588235 -0.3907999
2 3.0000000 2.0588235 2.0812637 —0.1472041
3 2.0588235 2.0812637 2.0948241 0.0030438
4 2.0812637 2.0948241 2.0945494 —0.0000229
5 2.0948241 2.0945494 2.0945515 0.0000001

1. Solve each of the following equations for a root in the indicated interval by using
the secant method. In each case, use the end points of the interval as starting values.
Use the termination criterion (2.8) with & = 10>,

a. cosx —x = 0in [0, /2] [Note: x is in radians]
b. x6—x—-1=0in[1,2]
¢. ¢€—=3x=0in[l,2]

2. Solve each of the following equations for a root in the indicated interval by using
the secant method. In each case, use the left end point and the mid-point of the
interval as starting values. Use the termination criterion (2.8) with ¢ = 1073,

a. x’+x2-3x-3=0in[1,2]
b. €fcosx =1in[1.2, 1.5]
¢. x+2cosmx +0.5=0in[0.5, 1.5] [Note: x is in radians]
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| COMPUTER EXERCISES

3. Write a computer program for the algorithm SECANT. Use your program to solve
the equations of Exercises 1 and 2. Use & = 1076,

4. Use the secant method to deterrmne 7173, with £ = 1075, Use your own initial
guesses. [Hint: Let f(x) = x3-1]

5. Determine +/17 using the secant method. Let x©@ = 4, x® = 3. Use ¢ = 1075.

6. Solve the equation x* — 2x3 — 4x? + 4x + 4 = 0 for a root in the interval (a) [-2,
—1], ) [0, 2], (c) [2, 3], and (d) [—1, 0] by using the secant method. Use the right
end point and the mid-point of each interval as the starting values. Use.e = 107S.

7. Solve each of the following equations by using the secant method. Note that your
solutions must be approximations to the value of &. Use your own initial guesses,

and £ = 1075,
a. siny =1
b. cos3 = %
c. sini =cos%
d. tanj =1

2. 2 One-PomI Methods )

" The methods discussed in this section, Newton’s method and fixed-point iteration, will
require only one initial guess (as opposed two required by the bisection, regula-falsi, and
secant methods) for the solution of f(x) = 0. Also presented in this section is a general
framework for the analysis of one-point iteration methods. The section will conclude
with a discussion of some special situations arising in the solution of f(x) = 0 by these
methods.

2.2.1 NEWTON'SMETHOD

Instead of working with the secant line joining two points on the graph of y = f(x),
Newton’s method uses the tangent at one point on y = f(x). Therefore, it requires only
one initial guess instead of two. Let the initial guess be x®. Then the equation of the
tangent at (x@, f(x©@)) is

y = fGD) = D) —xO).

This tangent line intersects the x-axis at

oo FED)

}W . {2.10)
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y=fx)

FoHT+
x(0)

&

faO)+

Figure 2.6 Newton’s method.

For the next iteration, we may simply set x® = x* and obtain the next x* by using
(2.10) once again. (See Fig. 2.6.)

Solve x® — 2x — 5 = 0 by Newton’s method starting with @ = 2.
Newton’s method yields the formula

(x(O))3 —2x0® 5

* o _
* 3Oy —2

for the equation f(x) = x3 —2x — 5 = 0. Table 2.5 shows the results obtained corre-
sponding to an error tolerance of &€ = 1075. 1t is obvious from the table that Newton’s

method is even faster than the secant method. A
Table 2.5
k x0 £(x9) £(x10)) x*
1 2.0000000 —1.0000000 10.0000000 2.1000000
2 2.1000000 0.0610000 11.2300000 2.0945681
3 2.0945681 0.0001857 11.1616468 2.0945515
4

2.0945515 0.0000000 11.1614377 2.0945515
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ALGORITHM 10

Newton’s method happens to be a particular instance of a more general method
known as fixed-point iteration, which will be discussed in the next subsection.

1. Solve each of the following equations by using Newton’s method, starting with the
indicated value of x©@. Use & = 1072.
a. x¥}-22-5=0,x0=2
b. x6—x—1=0,x9=1
c. &£-3x=0,x9=2

2. Solve each of the following equations by using Newton’s method, starting with the
indicated value of x©@. Use & = 1073.
a. de*cosx=1x0=1
b. x34+4x2-10=0,x0=2
c. x+2cosmx+05=0,x@=1

3. Use Newton’s method to determine 7'/3 correct to within 10~*. [Hinz: Let f(x) =
x=1]

4. Determine /17 by using Newton’s method. Let x©@ = 4. Use ¢ = 107,

[ COMPUTER EXERCISES ]

5. Write a computer program for the algorithm NEWTON. Use your program to
solve Exercises 1 to 4. Use ¢ = 1075,
6. The diode equation

i=IL"? -1

determines current i (in amperes) through a diode, where I is the saturation
current (in amperes), 6 is the diode variable, and v is the voltage across the
diode. A junction diode for which I; = 20 uA and 6 = 0.052 must also satisfy
the equation v 4 10*i = 4. Find the current i (in amperes) through the diode by
using Newton’s method. Use i = I;v/6 to obtain an initial approximation. [Note:
A = 1076 ampere]
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The van der Waals equation
a
(P+Vi> (V —b) =nRT

generalizes the ideal gas law PV = nRT, where R = gas constant = 0.08205
l-atm/mole-°K and n is the number of moles of gas. For isobutane, a = 12.87
atm/1? and b = 0.1142 1. Using Newton’s method, determine the volume of 1 mole
of isobutane at a temperature T = 313°K and a pressure of 2 atm. Use the ideal
gas law to obtain an initial guess.

In the analysis of the antisymmetric buckling of beams, a factor ¢ known as the
stability factor must be determined. It is known that ¢ satisfies 0 < ¢ < /2, and

6cos¢p = ydsing,

where y depends on the geometry and the critical stress on the beams. Determine
¢ given y = 0.1,0.5, 1, and 5 by using Newton’s method. Use your own initial
guesses, and £ = 1073,
The resistance R(i) in the following electrical network varies with the current i
through it according to

RG) = A+ Bi*2,
By Ohm’s law, V = R(i) - i. Determine i, given V = 5, A = 100, and B = 10.

v R()

According to Archimedes’ law, when a solid of density o is placed in a liquid
of density p, it will sink to a depth & that displaces an amount of liquid whose
weight equals the weight of the solid. For a sphere of radius r, Archimedes’ law
translates to

1 4
5—7:(3rh2 - h3)p = —3-Jtr3o.

Givenr =5, p = 1, and 0 = 0.6, determine h.

2.2.2 FIXED-POINT ITERATION

The method discussed in this subsection is suitable for equations expressed in the form

x =g(x)

for some function g(x).
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2 . I
A number a is said to be a fixed-point of a function g(x) if d = g(a).
In other words, a solution to the equation x = g(x) is called a fixed-point of g(x).

| THEOREM |

PROOF

The function g(x) = x2 has fixed points at 0 and 1, since g(0) =0 and g(1) = L.
Therefore, x = 0 and x = 1 are the solutions of the equation x = g(x) = x2. #

Let us first establish the relationship between the process of obtaining the fixed-
point of a function g(x) and the rootfinding problem f(x) = 0. For this purpose, we
note that the roots of f(x) = 0 correspond to the solutions of the equation x = g(x)
when g(x) = x — f(x). For example, the equation f(x) = x — x> = 0 may be solved
by obtaining the fixed-points of g(x) = x2. Therefore, if a fixed-point for any given
function g(x) could be determined, then every rootfinding problem f(x) = 0 could be
solved as well, by simply setting g(x) = x — f(x). We will first consider some results
regarding the existence and uniqueness of fixed-points in general.

2.2 _
Suppose g(x) is a continuous function on [a, b] satisfying
a<gx)<b forall a<x<b. (2.11)

Then g(x) has a fixed-point in [a, b]. (See Fig. 2.7.) 0O

When g(a) = a or g(b) = b, the existence of a fixed-point is obvious. Therefore it
suffices to consider the case corresponding to g(a) # a and g(b) # b.Inthiscase, since g
maps [a, b]into itself, we must have g(a) > a and g(b) < b. Defining h(x) = g(x) — x,

b+ F————

| I y=gx)

a+ o —

Y
*

Figure 2.7 Existence of a fixed-point.
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we see that ~(a) > 0 and A(b) < 0. By Theorem 1.1 (Intermediate-Value Theorem),
there is an & € (a, b) for which h(x) = 0, so @ = g(x). A

The condition (2.11) is sometimes denoted by g([a, b]) < [a, b]. The notation g(a, bD
is used to denote the set {g(x) | x € {a, b}}. The condition (2.11) is only sufficient but
not necessary for a fixed-point to exist in the interval [a, b]. %

SOLUTION

Remark

|_THEOREM |

Does Theorem 2.2 guarantee the existence of a fixed-point for g(x) = x3 in the interval

@ [~3, 31, () [0, 1], and (c) [0, 2]?

The fixed-points of g(x) = x> are x = 0, x = —1, and x = 1. We consider (a), (b), and
(c) separately.

a. We have
11 1 11
e((-2:)=[-%d<c[-31]
Therefore, Theorem 2.2 guarantees the existence of a fixed-point for g(x) =x3in
the interval [— 2, 2] The fixed-point x = 0 is the only fixed-point in [— 2, 2]
b. We have
g([0, 1) = [0, 1] € [0, 1].

Therefore, Theorem 2.2 guarantees the existence of a fixed-point for g(x) = x3 in
the interval [0, 1]. In this case, the fixed-points x = 0 and x = 1 are both in [0, 1].
¢. We have

&([0,2]) = [0, 8] £ [0, 2].

Therefore Theorem 2.2 does not guarantee the existence of a fixed-point for g(x) =
x3 in the interval [0, 2]. However, g(x) has two of its fixed-points, x =0andx = 1,
in the interval {0, 2]. r A

Example 2.8 shows that while (2.11) may be used to detect the existence of a fixed-point,
it is not useful for determining whether there is only one or more fixed-points in a given
interval [a, b]. Moreover, it shows that (2.11) is only sufficient but not necessary for the
existence of a fixed-point. The following result shows the conditions for the existence
of a unique fixed-point. $

2‘3

Let g(x) be continuous on [a, b]. Suppose g(x) satisfies (2.11), and assume that there
exists a constant k > 0 such that

lg'x) <k <1 forallx € [a,b). 2.12)
Then g(x) has a unique fixed-point a. € [a,b]. - O
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Since g([a, b]) C [a, b}, it follows from Theorem 2.2 that there is a number « € [a, b]
such that @ = g(«). Suppose now that there are two numbers, say &, B € [a, b], with

a=g@ and p=g(p).
Then, by the Mean-Value Theorem for Derivatives (Theorem 1.7),
lo — Bl = lg(@) — g(B) = 1g'®)] - l(a@ = Bl

for some £ between « and 8. Since 1§ (x)] <« < 1forallx € [a, b], (2.12) is equivalent
to .

'

la — Bl < kla — Bl < la — B,

a contradiction. Therefore, @ = B. ' ' Y 3

As the following examples will illustrate, the condition (2.12) is sufficient but not
necessary for a unique fixed-point to exist. ’

Does Theorem 2.3 guarantee the existence of a unique fixed-point for g(x) = x3 in the
interval (a) [~} 31, () [0, 1], and (¢) [-1, 117

The fixed-points of g(x) = %3 are x =0, x = —1, and x = 1. We consider the three
cases separately.
a. We have
117y 11 11
g(-33)=[-%3lcl-2:]

Also, since g'(x) = 3x2, we have |g'(x)| < % < 1. Hence, Theorem 2.3 guarantees

the existence of a unique fixed-point for g(x) = x* in the interval (—1. 1] The
fixed-point x = 0 is the only fixed-point in -3, 31
b. We have

g([0,1) =[0,1] < [0, 1].

Also, since g'(x) = 3x2, it is clear that |g’(x)| > 1 for |x| = 1 /«/5 ~ 0.577. In
other words, for x > 1/ /3, we have |g’(x)| £ 1. Therefore, Theorem 2.3 does not
guarantee the existence of a unique fixed-point for g(x) = x3 in the interval [0, 1].
However, the fixed-points x = 0 and x = 1 are both in [0, 1].

¢. Wehave

g(-1, 1) =[-1,11 c[-1,1].

As before, since g'(x) = 3x2, we see that [g’(x)] =1 for |x| > 1 /ﬁ ~ 0.577.
Therefore, |g'(x)| # 1 for some x € [—1, 1]. We conclude that Theorem 2.3 does
not guarantee the existence of a unique fixed-point for g(x) = x> in the interval
[—1, 1]. However, all three fixed-points, x =0, x = —1,and x = 1, of g(x), are in
the interval [—1, 1]. A
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SOLUTION

SOLUTION

2
Determine whether g(x) = 3 — — has a unique fixed-point in the interval [1.5, 3.0].
X

. 2 . . . -
Since g(x) = 3 — — monotonically increases with x, it is easy to see that
x

g([1.5,3.0]) = [g(1.5), g(3.0)] = [g,' 3] C[1.5,3.01

Hence (2.11) is satisfied. Then, since g’(x) = 2/x* > 0 decreases monotonically with
increasing x, we have |g'(x)| < |g'(1.5)| = g < 1, thus satisfying (2.12). By Theorem
2.3, we may conclude that g(x) has a unique fixed-point in [1.5, 3.0]. A

Does Theorem 2.3 guarantee the existence of a unique fixed-point for g(x) = 4=~ in the
interval [0, 1]?

Since g(x) = 47* monotonically decreases with increasing x, it is clear that g ([0, 1]) =
[g(1), g(0)] = [0.25, 1] C [0, 1]. Therefore, by Theorem 2.2, there is at least one fixed-
point for g(x) in [0, 1]. Now, g’(x) = —4*In4 yields g/(0) = —1.386- - -. In other
words, |g'(x)| # 1 for some x € [0, 1]. Therefore, Theorem 2.3 does not guarantee a
unique fixed-point in [0, 1]. However, since g(x) is monotonic, the fixed-point in [0, 1]
is indeed unique. (See Fig. 2.8.) A

For the functions g(x) = x? and g(x) = x> considered in the preceding examples,
it is easy to determine the fixed-points analytically by solving the algebraic equations
corresponding to x = g(x). For general functions g(x), it may be possible only to

Figure 2.8 Unique fixed-point for g(x) = 47" in [0, 1].
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y=8k)
)T =
g+ -

Figure 2.9 Fixed-point iteration.

obtain an approximation to the fixed-point. In order to obtain such an approximation, an
iteration scheme described by

x(n+1) = g(x(ﬂ))’ n=0,1,--- (2.13)

may be used, starting with an initial guess x©. If the sequence {x™}%2,

some e, and g(x) is continuous, then by Theorem A.1 (see Appendix A),

approaches

o = lim x®*) = lim gx™) =g (ﬂlim x"')) = gla),
n—>o0 n—>o0 —>00
or simply ¢ = g(a). In other words, if the iterates produced by (2.13) converge to a
number a, then ¢ is a fixed-point of g(x). The scheme corresponding to (2.13) is called
fixed-point iteration (see Fig. 2.9).
We are now ready to present the fixed-point iteration method as an algorithm.

ALGORITHM 1
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As mentioned earlier, we may rewrite the equation f(x) = 0 in the form x = g(x)
for some g(x) so that a fixed-point of g(x) is a root of f(x) = 0. There may be many
ways in which this can be accomplished. In other words, there may be several different
possibilities for the function g(x) that facilitate the use of fixed-point iteration. In any
case, Algorithm 11 may be used to solve the rootfinding problem for f(x) = 0 once an
appropriate g(x) has been chosen. Thus it becomes necessary to decide what constitutes
a proper selection of g(x). Let us begin with a simple example.

Consider solving x> — 5 = 0. Suppose we rewrite this equation as x = 5/x, so we
have g(x) = 5/x. Then, with x©@ = 2, the scheme x™+V = g(x™) will generate a
nonconverging sequence of iterates (alternating between 2 and 2.5). In other words,
g(x) = 5/x is not a very good choice. #

Consider solving the equation f(x) = x> —2x — 5 =0 for a root in [2, 3]. We first
rewrite f(x) = 0 in the form x = g(x) in two different ways as follows.

x3-5
x=g1(x) = 2 (2.14a)
x=gx) = (2x+5)"". (2.14b)
Then we iterate using x"*D = g;(x™) and x*+D = g2(x®) forn=0,1, -, start-

ing with x©@ = 2, The computed iterates are shown in Table 2.6. Further calculations
show that (2.14a) produces a diverging sequence of negative numbers, and (2.14b)
produces a converging sequence. In eight iterations, (2.14b) produces numbers ap-
proaching 2.0945515, which is a very good approximation to a root of the equation
x3 — 2x — 5 = 0. In other words, g>(x) is an appropriate choice for the convergence of

fixed-point iteration, while g; (x) is not. %
Table 2.6
n+1 gr{xim) ga(x")

1 1.5000000 2.0800838
2 —0.8125000 2.0923507
3 —2.7681885 2.0942170
4 —13.1061307 2.0945007
5 ~-1128.1243667 2.0945438

The following result may be used to determine whether a particular choice for g(x)
is appropriate for fixed-point iteration. : '



80

[ THEOREM |

PROOF
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2.4

Let g(x) be continuous on [a, b]. Suppose g(la,b]) S [a,b], and |g'(X)| <k < 1 for
all x € [a, b). Then the iterative scheme ( 2.13) will converge to the unique fixed-point
« € [a, b] for any choice of initial approximation x© ¢ [a, b}, and

K.n

_K|xf”—-x(°)|. o 2a9)

o — x| <

(]

&

Since g(la, b)) C [a, b}, x© € [a, b] = x® & [a, b] for all n. Further,
| jo = 2@} = |g(@) — g = efer — 5D,
By induction, it follows that
la —x®| < k" — 9, n>1. (2.160)
Asn — 00, k" — 0, thereby showing x® — a. For the bound (2.15), we have
lo = x| = |a — x4 x® = xQ) < ke =291 + Ix® — x©@,

which gives
1
e —x©@| < 1—__—;|x“’ - x9, (2.16b)

Then, (2.16a) and (2.16b) together yield (2.15). (See Fig. 2.10.) A
We call a function g(x) that satisfies the hypotheses of Theorems 2.2 through 24 on
an interval [a, b] a contraction mapping on [a, b]. Therefore, Theorem 2.4 essentially

y y
s

e

y=8x)

g1

gxo) T A

Figure 2.10 Convergence of fixed-point iteration.





