

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

GEN-ACCELERATION:
PIONEERING WORK FOR HARDWARE ACCELERATOR

GENERATION USING LARGE LANGUAGE MODELS

by
Durga Lakshmi Venkata Deepak Vungarala

Optimizing computational power is critical in the age of data-intensive applications

and Artificial Intelligence (AI)/Machine Learning (ML). While facing challenging

bottlenecks, conventional Von-Neumann architecture with implementing such huge

tasks looks seemingly impossible. Hardware Accelerators are critical in efficiently

deploying these technologies and have been vastly explored in edge devices. This study

explores a state-of-the-art hardware accelerator; Gemmini is studied; we leveraged the

open-sourced tool. Furthermore, we developed a Hardware Accelerator in the study

we compared with the Non-Von-Neumann architecture. Gemmini is renowned for

efficient matrix multiplication, but configuring it for specific tasks requires manual

effort and expertise. We propose implementing it by reducing manual intervention and

domain expertise, making it easy to develop and deploy hardware accelerators that

are time-consuming and need expertise in the field; by leveraging the Large Language

Models (LLMs), they enable data-informed decision-making, enhancing performance.

This work introduces an innovative method for hardware accelerator generation by

undertaking the Gemmini to generate optimizing hardware accelerators for AI/ML

applications and paving the way for automation and customization in the field.

GEN-ACCELERATION:
PIONEERING WORK FOR HARDWARE ACCELERATOR

GENERATION USING LARGE LANGUAGE MODELS

by
Durga Lakshmi Venkata Deepak Vungarala

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Helen And John C. Hartmann Department Of Electrical And Computer
Engineering

December 2023

APPROVAL PAGE

GEN-ACCELERATION:
PIONEERING WORK FOR HARDWARE ACCELERATOR

GENERATION USING LARGE LANGUAGE MODELS

Durga Lakshmi Venkata Deepak Vungarala

Dr. Shaahin Angizi, Dissertation Advisor Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Durgamadhab Misra, Committee Member Date
Professor and Chair of Electrical and Computer Engineering, NJIT

Dr. Cong Wang, Committee Member Date
Associate Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:

Degree:

Date:

Date of Birth:

Place of Birth:

Durga Lakshmi Venkata Deepak Vungarala

Master of Science

December 2023

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,

New Jersey Institute of Technology, Newark, NJ 2023

• Bachelor of Technology in Electronics and Communication Engineering,
DVR & Dr. H.S. MIC College of Technology, Kanchikacherla, AP, 2022

Major: Electrical Engineering

Presentations and Publications:

[1] D. Vungarala, M. Morsali, S. Tabrizchi, A. Roohi, and S. Angizi,“Comparative Study
of Low Bit-width DNN Accelerators: Opportunities and Challenges, ” IEEE
66th International Midwest Symposium on Circuits and Systems (MWSCAS),
Phoenix, Arizona, USA, Aug 6-9, 2023 (Accepted)

[2] C. Wang, D. Vungarala, K. Navarro, N. Adwani and T. Han, ”The Pinch
Sensor: An Input Device for In-Hand Manipulation with the Index Finger
and Thumb,” ”2023 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM), Seattle, WA, USA, 2023, pp. 822-827, doi:
10.1109/AIM46323.2023.10196268.

iv

You are what you believe in. You become that which you
believe you can become.

The Bhagavad-gita

v

ACKNOWLEDGMENT

I am immensely grateful to my professor, Dr. Shaahin Angizi, Assistant Professor

of Electrical and Computer Engineering at the New Jersey Institute of Technology

in Newark, for his invaluable guidance and support throughout my research journey.

Without his help, I would not have been able to undertake this project.

 Many thanks should also go to the defense committee members Dr.

Durgamadhab Misra, Professor and Chair of Electrical and Computer

Engineering, Dr. Cong Wang, Associate Professor, Electrical and Computer

Engineering, New Jersey Institute of Technology, Newark, New Jersey, who

generously provided the knowledge and expertise.

This endeavor would not have been possible without the support of my family,

especially my mother, Sarala Devi; father, Simha Chalam, for their endless love and

support; and brother, Manoj, for making me the person I am today. I also extend

my gratitude towards my cousins, who were constantly making me better. I am also

grateful to my dear, loving friends who kept supporting me continuously in the ups

and downs throughout my life and helped me reach this stage.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Background . 1

1.1.1 Von-Neumann Architecture . 1

1.1.2 Innovative Architectures Beyond Von-Neumann 2

1.2 Survey on the Large Language Model for Hardware Design 3

1.3 Motivation . 4

1.4 Thesis Organization . 4

2 HARDWARE ACCELERATORS . 6

2.1 Types of Hardware Accelerators . 6

2.1.1 Field Programmable Gate Arrays 6

2.1.2 Graphics Processing Units (GPUs) 7

2.1.3 Application-Specific Integrated Circuits (ASICs) 8

2.2 Gemmini . 9

2.2.1 Rocket Chip . 9

2.2.2 Architecture . 10

2.2.3 Gemmini Template Configuration 11

2.2.4 Modules of Gemmini SoC . 12

2.2.5 Software Stack . 13

2.2.6 Advantages . 14

2.2.7 Processing-in-Memory . 14

2.3 Non-Von-Neumann architecture . 15

3 RESEARCH AND IMPLEMENTATION 17

3.1 Comparative Study of Low Bit-width DNN Accelerators: Opportunities
and Challenges . 17

3.1.1 Gemmini Generated Accelerators 17

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

3.1.2 PIM-based Accelerator . 18

3.2 Comparative Analysis . 19

3.2.1 Experiment Setup . 19

3.2.2 Results . 20

3.2.3 Security Implications . 23

4 AUTOMATING HARDWARE ACCELERATORS 25

4.1 Large Language Models . 25

4.1.1 Statistical Language Models (SLM) 25

4.1.2 Neural language Models (NLM) 26

4.1.3 Pre-trained Language Models (PLM) 26

4.1.4 Large language Models (LLM) 26

4.2 Limitations in the Utilization of Gemmini 27

4.3 Understanding Large Language Model Training 28

4.4 Parameters in Constructing the Database 29

5 FRAMEWORK FOR THE LARGE LANGUAGE MODEL 31

5.1 Generating the Database using Gemmini 31

5.1.1 Bottlenecks in Our Approach 32

5.1.2 Working of Large Language Model 33

6 CONCLUSION . 35

viii

LIST OF TABLES

Table Page

3.1 Execution Time and Speedup Comparison for Under-Test Platforms . . 21

3.2 Power Consumption Comparison for Under-Test Platforms 22

ix

LIST OF FIGURES

Figure Page

1.1 Harvard Architecture. 2

2.1 Field Programmable Gate Arrays Top level hierarchy. 7

2.2 GPU block level implementation. 7

2.3 Architrcture of Standard Graphic Processing Unit. 8

2.4 Gemmini’s template: (a) Overview of Gemmini , (b) Two-level spatial
array. 10

2.5 Modules in Gemmini. 13

2.6 Spatial architectures generated by Gemmini: (a) Systolic Spatial Array,
(b) Parallel Vector Engines. 15

2.7 Non-Von-Neumann Architecture. 15

3.1 PSRAM chip with 8T SRAM cell as the operand memory and the
proposed single-cycle logic-SA design. 18

3.2 Execution time of under-test platforms in 2 configurations. 21

3.3 Power consumption of under-test platforms in 2 configurations. 22

5.1 A family cluster. 31

5.2 Implementation of the Large Language Model. 33

x

CHAPTER 1

INTRODUCTION

Deep Neural Networks (DNNs) have transformed the landscape of artificial intel-

ligence (AI), showcasing impressive capabilities across diverse applications such as

machine translation, computer vision, and natural language processing. Coping with

the substantial computational needs of DNNs has sparked considerable exploration

into hardware acceleration methods. The conventional Von-Neumann architectures,

known for their distinct partition of computation and memory, encounter challenges

in effectively managing the extensive data movement and memory access demands

imposed by DNNs.

1.1 Background

To overcome the limitations of Von-Neumann architectures [1–3], researchers have

explored various hardware acceleration techniques, including spatial array accel-

erators and specialized architectures for DNNs. Spatial array accelerators [3] integrate

processing elements directly into memory, reducing data movement overhead and

improving memory bandwidth. Specialized DNN architectures, such as GPUs and

Tensor Processing Units (TPUs), optimize the hardware for the specific computations

involved in DNNs.

1.1.1 Von-Neumann Architecture

The Von-Neumann architecture, also known as the Princeton architecture, is the

foundational model for most modern computers. The computation unit (CPU) and

the memory unit are separated and communicated by a data bus as shown in the Fig.

1.1. This architecture is the building block for a wide range of computing systems,

from personal computers to supercomputers. However, the increasing complexity and

1

computational demands of modern applications, such as machine learning and others

with, particularly those involving large datasets and parallel processing, have exposed

limitations in the Von-Neumann architecture.

CPU
Main

memory

instruction fetch

data transfer

data transfer

Figure 1.1 Harvard Architecture.

1.1.2 Innovative Architectures Beyond Von-Neumann

In the realm of Non-Von-Neumann architectures, we depart from the conventional

model that separates computation and memory, a hallmark of Von-Neumann

architectures. This departure involves seamlessly integrating processing elements

directly into the memory infrastructure. The primary objective is to curtail

data movement overhead and enhance memory bandwidth, thereby ushering in

substantial performance enhancements, especially for applications with elevated

memory access demands. A noteworthy illustration of this departure is found in

Processing-In-Memory (PIM) architectures, where processing elements are interwoven

within the very fabric of memory, facilitating in-memory computations.

PIM architectures bring about several advantages in contrast to traditional

Von-Neumann counterparts: 1. Reduced Data Movement: The integration of

processing elements into memory significantly diminishes the necessity for transferring

data between distinct components, effectively minimizing data movement overhead.

2. Enhanced Memory Bandwidth: PIM architectures grant direct access

to memory, resulting in elevated memory bandwidth and reduced latency.

2

3. Increased Parallelism: Accommodating a multitude of processing

elements, PIM architectures foster parallel execution of computations, leading to

noteworthy performance enhancements.

Beyond PIM, a spectrum of emerging Non-Von-Neumann architectures includes:

Near-Sensor Computing (NSC) Placing processing elements in close proximity

to memory reduces data movement as studied at [4], although integration directly

into the memory fabric is not a central feature.

Logic-in-Memory (LIM) Here, logic gates seamlessly blend with memory, paving

the way for more intricate in-memory computations.

Reconfigurable Processing Units (RPUs) These flexible hardware accelerators

can be tailored to execute a diverse array of computations, making them adaptable

to the unique demands of Non-Von-Neumann architectures [5].

Collectively, these Non-Von-Neumann architectures offer promising avenues to

surmount the constraints posed by traditional Von-Neumann structures, presenting

opportunities for heightened performance and energy efficiency across demanding

computing applications.

1.2 Survey on the Large Language Model for Hardware Design

ChipGPT is a novel language model that Chang et al. recently introduced [6],

[7].Emerging from the intersection of artificial intelligence and hardware design,

ChipGPT offers a novel approach to chip development. By leveraging the power

of large language models, ChipGPT translates natural language specifications into

Verilog code, automating the initial stages of hardware design and significantly accel-

erating the development process. This groundbreaking technology holds immense

3

potential to revolutionize the chip industry, democratizing chip design and enabling

engineers to focus on higher-level tasks.

In parallel, Shailja et al. [8] put forth a research with a fine-tune pre-trained

LLMs on Verilog datasets collected from Github and textbooks. This fine-tuning

enables the LLMs to adapt specifically to the intricacies of Verilog code generation.

Evaluates framework then analyzes the generated code for both correctness and

compliance with Verilog syntax, providing a comprehensive assessment of the LLMs’

performance.

1.3 Motivation

The motivation behind this research lies in simplifying the development and

deployment of hardware accelerators. We aim to reduce the manual intervention

and expertise traditionally required in this domain. To achieve this, we propose

leveraging Large Language Models (LLMs), which empower a more accessible and

data-informed approach to decision-making, ultimately enhancing performance.

This work is an innovative pioneering work in method for hardware accelerator

generation. By harnessing Gemmini’s capabilities, we aspire to automate and

customize the creation of optimizing hardware accelerators tailored for AI/ML

applications. Through this endeavor, we pave the way for a future where the

complexities of hardware accelerator development are streamlined, allowing for

broader accessibility and efficiency in the field.

1.4 Thesis Organization

This thesis is organized into several chapters, each focusing on specific aspects of the

research and implementation. The organization is as follows:

Chapter 1: Introduction In this chapter, we provide an overview of the

background, including the Von-Neumann architecture and innovative architectures

4

beyond it. We also conduct a survey on the utilization of Large Language Models

(LLMs) for hardware design, highlighting the motivation behind our research.

Chapter 2: In this chapter we explore various types of hardware accelerators,

including Field Programmable Gate Arrays (FPGAs), Graphics Processing Units

(GPUs), Application-Specific Integrated Circuits (ASICs), and Non-Von-Neumann

Processing-in-Memory. A detailed exploration of Gemmini, a state-of-the-art

hardware accelerator, is presented, covering its architecture, software stack, and

benefits.

Chapter 3: Here, we conduct a comparative study of low bit-width Deep

Neural Network (DNN) accelerators, focusing on Gemmini generated accelerators

and a Processing-in-Memory (PIM)-based accelerator. A comprehensive comparative

analysis, including experiment setup, results, and security implications, is provided.

Chapter 4: This chapter explores the role of Large Language Models (LLMs)

in automating hardware accelerators. We discuss limitations in the utilization of

Gemmini and propose a database generation approach for LLM training, outlining

key considerations in database construction.

Chapter 5: In this section, we present our contributions, emphasizing how

Gemmini an accelerator generation tool is leveraged as a crucial component in

automating the hardware accelerator development. We delve into extracting the

modules from the SoC in Verilog outputs and its specific focus on input and training

of the LLM.

Chapter 6: The thesis concludes with a summary of findings, highlighting

the innovative approach for hardware accelerator generation and its implications for

AI/ML applications. Future directions and potential areas for improvement are also

discussed.

5

CHAPTER 2

HARDWARE ACCELERATORS

To overcome the Von-Neumann architecture bottlenecks such as memory wall and

achieving the high-level parallelism to deploy Machine Learning and Artificial

intelligence applications, hardware accelerators [1–3] are developed as a specialized

computing device designed to perform tasks more efficiently than general-purpose

processors. Unlike general-purpose computers, including machine learning, scientific

computing, and data analytics, they are used in many applications with high-level

parallelism. In this chapter, the following is discussed.

2.1 Types of Hardware Accelerators

Hardware accelerators can be classified into several categories based on their design

and functionality. Some of the most common types of hardware accelerators include:

2.1.1 Field Programmable Gate Arrays

FPGAs are programmable logic devices that can be configured to perform specific

tasks. They are highly flexible and can be reprogrammed to perform different tasks.[9,

10]

Design Contemporary FPGAs have ample logic gates and Random Access Memory

(RAM) blocks to implement complex digital computations. FPGAs can be used to

implement any logical function that an ASIC can perform. The ability to update the

functionality after shipping, partial re-configuration of a portion of the design and

the low non-recurring engineering costs relative to an ASIC design (notwithstanding

the generally higher unit cost), offer advantages for many applications

6

Figure 2.1 Field Programmable Gate Arrays Top level hierarchy.
Source: [11].

2.1.2 Graphics Processing Units (GPUs)

Hardware Perspective: GPUs are specialized processors optimized for parallel

execution, featuring thousands of cores, high-bandwidth memory, and dedicated units

for graphic tasks. This architecture enables efficient handling of complex calculations

and rendering, making them ideal for graphics processing and other computationally

intensive workloads.

GPU
MemoryGPU

instruction fetch

data transfer

data transfer

Figure 2.2 GPU block level implementation.

Advantages: GPUs offer significant advantages over CPUs, including faster

graphics rendering, improved performance for parallel applications, increased energy

7

efficiency, and reduced workload on the CPU. These benefits have led to their

widespread adoption in diverse fields, including gaming, scientific research, and

machine learning.

Figure 2.3 Architrcture of Standard Graphic Processing Unit.

The colour convention is that green represents the computational units or core

and blue signifies the memory, light blue depicts control units.

2.1.3 Application-Specific Integrated Circuits (ASICs)

Application-Specific Integrated Circuits (ASICs) are specialized electronic chips

designed and built for a particular application or task. Unlike general-purpose

processors like CPUs, which are designed for a broad range of functionalities, ASICs

are meticulously crafted to address specific needs and requirements. This inherent

focus translates to significant advantages in terms of efficiency, performance, and

cost. In deploying these for their applications few areas can be customized such as

the architecture, power consumption, area on chip, performance.

8

2.2 Gemmini

Gemmini is an hardware accelerator development tool consists of architecture that

offers full-system and full-stack integration of the DNN accelerator. Full-system

integration considers the impact of the SoC and the operating system running on it.

System-level effects that degrade the accelerator’s performance must be considered

in such integration. Some of these reasons are attributed to the system’s memory

hierarchy. In this hierarchy, each accelerator possesses its own memory, known as the

scratchpad, while the Rocket core or the CPU has its cache. Each core has access to

shared memory, and cache hits/misses significantly influence performance.

The integration also considers performance effects caused by Memory Management

Units (MMU). Operating system issues, such as context switching between threads

and interrupts, are all system-level factors that affect the accelerator’s performance.

With Full-stack integration, Gemmini provides a programming stack that allows

acceleration programming using higher-level APIs like the ONNX runtime. It also

provides access to low-level ISA.

2.2.1 Rocket Chip

Looking into the accelerator requires understanding the SoC or the full system

integration provided with the assistance of the Rocket Chip generator. This

integration involves a set of parameterized chip-building libraries to generate various

SoC variants.

The Gemmini project encompasses two distinct host CPU configurations. One

is a low-power, in-order Rocket core, and the other is a high-performance, out-of-order

BOOM [12] core.

9

2.2.2 Architecture

Gemmini accelerators are based on a spatial architecture that utilizes systolic arrays

to perform matrix multiplications, which are the core operations of Deep Neural

Networks (DNNs). Systolic arrays are a type of parallel processing architecture

that efficiently exploits data parallelism and locality to achieve high performance.

Gemmini’s systolic arrays are designed to be highly configurable, allowing designers

to trade off performance, energy efficiency, and area to suit specific application

requirements.

Core

L1 I+D

CPU

L2

DRAM

Gemmini

 Controller

Local TLB

Dependency Mgmt

DMA Engine

Scratchpad
Bank 0

Bank K

Transposer im2col

Tile

ReLu

Bitshift
Accumulator

SRAM

+

Pooling

Engine

++

Matrix Scalar

Multiplier

+++

RoCC

PTW

PE PE

PE PE

PE PE

RoCC

Cmd

(a)

(b)

Tile Tile Tile

Tile Tile Tile Tile

Spatial Array

Figure 2.4 Gemmini’s template: (a) Overview of Gemmini , (b) Two-level spatial
array.
Source: [3].

Systolic Core Gemmini’s spatial array design adopts a two-level hierarchy to

offer a versatile template for different structures. Initially, the spatial array consists of

tiles interconnected through explicit pipeline registers. Each of these individual tiles

can be further subdivided into an array of Processing Elements (PEs). PEs within the

same tile are connected combinationaly without pipeline registers. Each PE executes

a single Multiply-Accumulate (MAC) operation per cycle, utilizing either the weight

or the output stationary dataflow.

10

Data Movement The inputs are supplied to the systolic array, and the

generated outputs are stored in scratchpads, which are composed of banked SRAM.

A DMA engine facilitates data transfer from the main memory to these scratchpads.

The local memory, or scratchpad, has several rows identical to the number of

Processing Elements (PEs) in a row of the systolic array. This means a 4x4 systolic

array would have four rows in the scratchpad memory. The accumulator stores the

calculation output and is more expansive, as the Multiply-Accumulate (MAC) results

would require more bits for representation.

Load Pipeline Gemmini includes three load instructions for moving Inputs,

Weights, and biases. These instructions are used to transfer matrices of the size of

the systolic array from the main memory to the scratchpad.

Execution The execution of the actual matrix multiplication involves two

distinct instructions. The Preload instruction is responsible for loading the stationary

data, such as Weights for Weight Stationary data flow and biases from the Output

Stationary dataflow. Following the Preload instruction, the Compute instruction is

used to perform multiplication on the stationary data that has been loaded.

2.2.3 Gemmini Template Configuration

The GemminiConfig.scala file establishes the default configuration for Gemmini, and

the subsequent parameters within this file outline the characteristics of the systolic

core to be synthesized.

Important parameters:

%Supports both WS and OS dataflows

dataflow: Dataflow.Value = Dataflow.BOTH,

% Creates 16 x 16 Systolic Array

tileRows: Int = 1,

tileColumns: Int = 1,

meshRows: Int = 16,

meshColumns: Int = 16,

11

% Specify the data types for different parts of the accelerator

inputType: T,

spatialArrayOutputType: T,

accType: T,

% Define the number of banks in the scratchpad and accumulator

sp_banks: Int = 4,

acc_banks: Int = 2,

% Total memory in terms of KiB

sp_capacity: GemminiMemCapacity = CapacityInKilobytes(256),

acc_capacity: GemminiMemCapacity = CapacityInKilobytes(64),

2.2.4 Modules of Gemmini SoC

The Gemmini hardware is divided broadly into three “controllers”: one for “execute”

instructions, another for “load” instructions, and a third for ”store” instructions.

Execute Controller This module executes “execute”-type ISA commands,

such as matrix multiplications. It incorporates a systolic array for dot-products and

a transposer.

The ExecuteController instantiates the MeshWithDelays module, which includes

the SystolicArray (Mesh module) and a Transposer. The MeshWithDelay module

processes the three matrices (A, B, and D) one row at a time per cycle and outputs

the result C = A ·B +D one row at a time per cycle.

Two dataflows are supported:

• Weight Stationary: In weight-stationary mode, the B values are ”preloaded”

into the systolic array, and A and D values are sequentially fed through.

• Output Stationary: In output-stationary mode, the D values are ”preloaded”

into the systolic array, and A and B values are fed through.

Store Controller This module’s instructions are to move data from Gemmini’s

private SRAMs into the main memory. In this module, operations such as ”max-

12

polling” instructions are performed because the Gemmini performs pooling when

moving the unpooled data from the private SRAMs into the main memory

Load Controller This module assigns instructions to move data from the main

memory into Gemmini’s private scratchpad or accumulator.

The generated Verilog consists of Gemmini SoC, which we need to understand.

The top module consists of 506 submodules that make up the system. In the entire

system, we like to focus on the Gemmini module. This module follows a hierarchy, and

specifically, we look at the implementation of the execute control since that consists

of the Processing Elements and the operation controlling as illustrated in the Fig.2.5.

Figure 2.5 Modules in Gemmini.

2.2.5 Software Stack

Gemmini’s software stack provides a comprehensive set of tools for programming,

simulating, and deploying generated accelerators. The software stack includes a

compiler that translates DNN models into Gemmini’s ISA, a simulator that allows

13

developers to test and debug their code before deploying it to hardware, and a runtime

system that manages the execution of DNN models on the accelerator.

2.2.6 Advantages

Gemmini offers several benefits over traditional DNN accelerators:

Flexibility: Gemmini’s flexible architectural template allows designers to explore

a wide range of configurations to find the optimal design for their specific application.

Full-stack visibility: Gemmini provides full-stack visibility into the performance

and efficiency of DNN accelerators, allowing developers to identify and optimize

bottlenecks. Gemmini is an open-source project, which allows researchers and

developers to contribute to its development and extend its capabilities.

Gemmini’s template is shown in Fig.2.4(a). With a spatial array architecture

at the heart of the system, the template uses the 2-D array of Tiles consisting of

the 2-D array of Processing Elements (PE) (shown in Fig.2.4(b)) that are responsible

to process multiply-accumulate (MAC) operations in parallel. To optimize the area,

power, and performance trade-offs, the size of the spatial array can be adjusted.

Computationally, the two-level hierarchy of Gemmini supports the implementation of

a fully pipelined Tensor Processing Unit-like architecture or an NVDLA-like parallel

vector engine inside the tiles as illustrated in Fig.2.6. These are connected with

different connectivities between MAC units and do four multiply-accumulates per

cycle. The systolic array’s inputs and outputs are held in an SRAM scratchpad.

A DMA engine facilitates the transfer of data between the main memory and the

scratchpad.

2.2.7 Processing-in-Memory

On the other side, digital Processing-in-Memory (PIM) architectures as shown in Fig.

2.7, potentially offering a solution to the memory wall challenge, have been widely

14

Figure 2.6 Spatial architectures generated by Gemmini: (a) Systolic Spatial Array,
(b) Parallel Vector Engines.

explored at the edge devices [13–16]. The key notion behind PIM is to realize certain

operations in memory by leveraging the inherent parallel computing mechanism and

exploiting large internal memory bandwidth. It could lead to remarkable savings in

off-chip data communication energy and latency. A PIM architecture should not only

enable DNN acceleration but also other data-intensive applications, including graph

processing, data encryption, etc. [17, 18].

Main
MemoryCPU

Processing in-Memory Architecture

Compute
sub-arrays

instruction fetch

Figure 2.7 Non-Von-Neumann Architecture.

2.3 Non-Von-Neumann architecture

In the DNN acceleration domain, for instance, the Neural Cache [16] presents

an 8T transposable SRAM bit-cell and supports digital bit-serial in-cache MAC

operation. XNOR-SRAM [19] accelerates ternary-XNOR-and-accumulate operations

in binary/ternary DNNs without row-by-row data access. C3SRAM [20] leverages

15

capacitive-coupling computing to perform XNOR-and-accumulate operations for

binary.

16

CHAPTER 3

RESEARCH AND IMPLEMENTATION

.

3.1 Comparative Study of Low Bit-width DNN Accelerators:

Opportunities and Challenges

A comparative study of Gemmini generated ASIC accelerators that follow classic Von-

Neumann architecture are developed, another emerging platform [21] is considered

along with other state of the art GPU and FPGA in quest to find the robust

architectures in metrics such as execution time and power consumption

3.1.1 Gemmini Generated Accelerators

These spatial array architectures are cloned and interfaced with the Gemmini

template files from Gemmini’s open-sourced GitHub. It is developed in Chipyard

Environment using Chisel hardware description language [22]. The generated

Gemmini accelerators in this work are developed as systolic array-based matrix multi-

plication designs optimized for energy efficiency and for achieving high throughput

via exploiting data-level parallelism. The accelerators are supported by add-on

computation units, including activation functions (ReLU), bitshift, pooling engine,

accumulator SRAM, and matrix scalar multiplier to process DNN workloads fully. We

develop various spatial array tiles of 16×16, 32×32, and 64×64 to run while inferring

to a DNN topology with the CPU: Rocket Custom Coprocessor Interface (rocket) as

a RISC-V machine [3].

17

3.1.2 PIM-based Accelerator

The overall architecture of the under-test PIM platform is shown in Fig. 3.1(a), where

each memory bank consists of multiple memory sub-arrays that are repurposed to

perform not only memory operations but also in-memory computing based on a set

of circuit-level designs. Every sub-array is developed on top of the recently taped-out

generic and programmable in-SRAM computing design [21] as shown in Fig. 3.1,

which is built on an 8T-SRAM array and can execute all 2- and 3-input Boolean logic

operations (OR/NOR, AND/NAND, XOR/XNOR, NOT).

Figure 3.1 PSRAM chip with 8T SRAM cell as the operand memory and the
proposed single-cycle logic-SA design.
Source: [23].

The PIM design benefits from the charge-sharing feature of the conventional

8T SRAM cell on the Read Bit-Line (RBL) to achieve different logic operations. As

shown in Fig. 3.1(b), by activating three different memory rows via Read Word Line

(RWL), e.g., RWL0-RWL2, the RBL remains pre-charged only if all data stored in

the selected cells are in ‘0’ state which results in deactivating read access transistors

(T8). In contrast, if one or more of the selected SRAM cells store ‘1’, the related

T8s activate, and consequently the RBL discharges through them. The discharge

voltage value of the RBL is associated with the combination of the values stored in

SRAM cells, the activation period of T8s, and the supply voltage. The voltage value

18

on the RBL is measured through the presented Logic-SA design which is capable of

performing logic operations by selecting various voltage references (Fig. 3.1(c)). As

shown, the re-configurable Logic-SA consists of three sub-SAs with different voltage

references (i.e., VRef1<VRef2<VRef3) to perform distinct logic functions. In this way,

after the activation of two or three memory rows, the voltage that remains on

the RBL is compared to the reference voltages of sub-SAs. As a result, (N)OR3,

(MAJ)MIN, and (N)AND3 logic outputs are produced simultaneously, as shown

in Fig. 3.1(c). Moreover, the XOR3’s output is the same as the OR3’s output

when the majority output is ‘0’. In contrast, when the output of the majority

is ‘1’, XOR3’s output is equal to AND3. Therefore, to implement XOR3, a 2:1

multiplexer with MAJ output as the selector is utilized. The Boolean logic of such

an in-memory XOR3 can be given as XOR3 = MAJ(Si, Sj, Sk).AND(Si, Sj, Sk)+

MIN(Si, Sj, Sk).OR(Si, Sj, Sk). With these functions, the PIM platform can readily

support low-bit-width DNN operations in various configurations. We develop a

hardware mapping interface employing C++ to quantize the trained weights and then

map them into 128×128 sub-arrays. We use a parallelism degree of 128 sub-arrays.

As for data mapping, we follow the bit-serial in-cache acceleration mechanism in [16],

which provides high performance and supports various bit-widths for weight and input

values.

3.2 Comparative Analysis

3.2.1 Experiment Setup

Platforms: The under-test platforms consist of Gemmini’s accelerators with spatial

array tiles of 16×16, 32×32, and 64×64 indicated by Ge16, Ge32, and Ge64,

respectively, and the generic processing-in-SRAM accelerator in [21]. Moreover,

we use the high-end NVIDIA RTX A2000 with 104 third-generation tensor cores

that can deliver 63.9 TFLOPS performance and the low-end PYNQ-Z2 board [24]

19

that uses a Xilinx Zynq-7000 SoC containing an XC7Z020-1CLG400C FPGA for

comparison. Dateset: For the evaluations, we exploit the CIFAR-10 [25] dataset

with 50,000 32×32 color images for training and 10,000 images for validation. Model:

To have a reasonable comparison among the under-test platforms, we consider a

similar Convolutional Neural Network (CNN) topology to run CIFAR-10 consisting

of 6 - 3×3 convolutional layers (with 64-64-128-128-256-256 channels) followed by

3 fully-connected layers. The CNN also includes 2 - 2×2 max-pooling layers after

the second and fourth layers. Bit-width configuration: We consider 2 bit-width

configurations of weight and input <W:I> = (<1:1>, and <2:2>) for the evaluation.

The 8-bit gradient is applied to all configurations. Training: The DoReFa-Net

open-source algorithm [26] that utilizes bit-wise convolution of fixed-point integers

is used for training. The CIFAR-10 dataset underwent 500 epochs of training

and validation. The model was optimized using the Adam optimizer, with various

configurations and a learning rate of 0.001.

3.2.2 Results

Execution time: The execution time required to process the CNN model is reported

in Fig. 3.2 for various under-test designs. We observe the superior performance

of the PIM to process low-bit-width CNN compared to other designs. PIM offers

an execution time of 0.002ms and 0.011ms respectively for <1:1>, and <2:2>

configurations, whereas the fastest Gemmini’s generated accelerator (Ge64) takes

∼6× longer execution time to process the same CNN. PIM design also achieves∼158×

and ∼98× speed up compared with the GPU and FPGA, respectively, on average

across two configurations. The key architectural constraint of the PIM accelerator is

the number of activated sub-arrays that can work in tandem. The more sub-arrays are

involved, the shorter execution time and higher power consumption are anticipated.

20

As for the generated accelerators, the main constraint is the under-utilization of PE

elements that lead to longer execution time.

<1:1> <2:2>
10-3

10-2

10-1

100
Ex

ec
ut

io
n

tim
e

(m
s)

Ge16
Ge32
Ge64
PIM
FPGA
GPU

Figure 3.2 Execution time of under-test platforms in 2 configurations.

Table 3.1 Execution Time and Speedup Comparison for Under-Test Platforms

Design Execution Time (ms) Speedup vs. PIM

PIM (<1:1>) 0.002 -

PIM (<2:2>) 0.011 -

Ge64 ∼0.012 ∼6x slower PIM

GPU ∼0.316 ∼158x slower than PIM

FPGA ∼0.204 ∼102% slower than PIM

Power Consumption: Our estimated on-chip power consumption results for

various platforms are reported in Fig. 3.3. To measure the power consumption

of Gemmini’s accelerators, the extracted HDL code is synthesized with the Design

Compiler in an industry-standard 45nm library. For the FPGA platform, a voltage

tester multimeter with a range of 3.7-30V and 0-4A current measurement capability

is used as an intermediary device between the power source and the board. For the

GPU platform, NVIDIA’s system management interface is used. To exclude power

costs due to cooling, voltage regulators, etc., the results are then conservatively scaled

by 50%. Since no existing framework currently supports fixed-point CNNs on GPUs,

21

floating-point results are aggressively scaled by O = W×I. Our result underlines

the power efficiency of the PIM platform as opposed to other under-test platforms.

We observe the PIM consumes 1.41W and 2.12W power to process the whole CNN

on <1:1>, and <2:2> configurations, respectively. The PIM platform reduces the

power consumption on average by a factor of 2.5 compared to Gemmini’s accelerators.

Besides, PIM lowers the power consumption respectively by a factor of 18.5× and

14.7× compared to GPU on the two configurations. Compared to the FPGA platform,

PIM obtains ∼40% on power efficiency. It is noteworthy that while Ge64 is, in fact,

the fastest-generated accelerator, it consumes the highest power consumption.

<1:1> <2:2>
100

101

102

Po
w

er
 (W

)

Ge16
Ge32
Ge64
PIM
FPGA
GPU

Figure 3.3 Power consumption of under-test platforms in 2 configurations.

Table 3.2 Power Consumption Comparison for Under-Test Platforms

Platform Power Consumption (W) Power Efficiency vs. PIM

PIM (<1:1>) 1.41 -

PIM (<2:2>) 2.12 -

Ge64 ∼4.14 ∼2.5x higher than PIM

GPU ∼28.62 ∼18.5x higher than PIM

FPGA ∼70.6 ∼40% higher than PIM

22

3.2.3 Security Implications

Although third-party accelerators are gaining popularity, their design is independent

of the CPU and operating system, which means they may pose security risks.

Moreover, since the accelerators depend on commands from a host, the CPU’s

security measures may be bypassed potentially. There is a large space for threats

in ASIC accelerators [27–30]. The virtual memory provided by Gemmini can prevent

any unauthorized components from accessing sensitive data. Gemmini, similar to

some other accelerators, can be helpless against side-channel attacks. Side-channel

attacks exploit the physical characteristics of the device, like power consumption or

electromagnetic discharges, to obtain sensitive data. Hardware Trojans are fraudulent

modifications to a design that can be included during the design or manufacturing

process. These Trojans are capable of disclosing private data, obstructing system

operation, or granting illegal access to the system. Since Gemmini is a complicated

system with several components and interacts with other hardware and software

systems, hardware Trojans may easily infect it. However, the Gemmini architecture

also provides several opportunities. Since the Gemmini design is open-source, for

instance, the community can audit and verify it, which can assist in identifying

and resolving vulnerabilities. The security of the Gemmini architecture may also

be increased by integrating it with additional security methods like access control

and encryption.

On the other side, the PIM accelerators typically use localized and stationary

weights that are subject to various side-channel attacks. It has been recently

demonstrated that the attacker can readily extract DNN model information from

power trace measurements having no prior knowledge of the network topology [31, 32].

PIM may be vulnerable to memory-based attacks, such as buffer overflow attacks

[33], which could compromise the integrity of the data being processed. For example,

DRAM-based PIM designs [34] can be vulnerable to row-hammer attacks, where

23

attackers can repeatedly access specific rows of memory to cause bit flips in adjacent

memory cells. Generally, because the computation and memory are integrated, any

vulnerability in the memory system could potentially be exploited to attack the

computation unit. However, PIMs can also pave the way for new attack mitigation

and protection techniques. Although the processor is typically considered the trusted

base for encryption, high-assurance computing systems with attested and verified

memory logic can rely on it for encryption. In such a design, PIM can be used

for encryption without the need to send the data all the way to the processor chip,

decrypt it, and then encrypt it again with a new key before writing it back. Instead,

encryption can be performed directly on the spot.

24

CHAPTER 4

AUTOMATING HARDWARE ACCELERATORS

4.1 Large Language Models

Based on our findings in Chapter 3, we have identified Non-Von-Neumann archi-

tectures as a potential solution to overcome the bottleneck barrier and create more

efficient circuits. Our team is interested in exploring the potential of Artificial

Intelligence and its Large Language Model to research and develop robust circuits.

In this chapter, we delve into the origins of Large Language models, their training

process, and the requirements for crafting them for our needs from the hardware

dimension perspective. The realization of language models can be divided into four

different stages of development.

4.1.1 Statistical Language Models (SLM)

Emerging in the 1990s, Statistical Language Models (SLMs) [35–37] utilize statistical

learning techniques to predict the next word based on the preceding context, adhering

to the Markov assumption. These models, also known as n-gram language models

(e.g., bigram and trigram models), utilize a fixed context length (n). Though

widely applied in information retrieval (IR) [38, 39] and natural language processing

(NLP) [40–42], SLMs face the”curse of dimensionality” where estimating high-order

models becomes increasingly challenging due to the exponential growth in transition

probabilities required. To address this data sparsity issue, specialized smoothing

techniques like backoff estimation [43] and Good-Turing estimation [44] have been

developed.

25

4.1.2 Neural language Models (NLM)

Neural language models (NLMs) [45] revolutionized NLP by using neural networks

like multi-layer perceptrons and recurrent neural networks to analyze word sequences.

They introduced the concept of ”distributed word representation,”where words are

represented by vectors, and enabled the learning of effective features for NLP tasks. A

unified, end-to-end solution for various NLP tasks was developed using NLM concepts.

Additionally, word2vec, a shallow neural network, demonstrated the effectiveness of

distributed word representations across a variety of NLP tasks. By applying NLP for

representation learning beyond just word sequence modeling, these studies have had

a profound impact on the field of NLP.

4.1.3 Pre-trained Language Models (PLM)

Early attempts like ELMo [46] and BERT pioneered the use of bi-directional Long

Short Term Memory (LSTM) and Transformer architectures with self-attention

mechanisms to capture context-aware word representations. These pre-trained models

with general-purpose semantic features significantly improved NLP performance and

established the”pre-training and fine-tunin” learning paradigm. This has led to the

development of numerous Large Language Models (PLMs) with various architectures

and improved pre-training strategies, all requiring fine-tuning for specific downstream

tasks.

4.1.4 Large language Models (LLM)

Researchers have observed that scaling Pre-trained Language Models (PLMs) by

increasing their size or the size of their training data often leads to better performance

on downstream tasks, following a trend known as the scaling law [47]. Several studies

have investigated the performance limits of PLMs by training increasingly larger

models, including the 175B-parameter GPT-3 and the 540B-parameter PaLM.

26

Large language models (LLMs) have been successfully applied to a wide

variety of tasks, often outperforming state-of-the-art methods. While their power

in generating HDL code has undergone comprehensive investigation [6], [7], their

capacity for designing high-performance and energy-efficient deep-learning hardware

acceleration remains unexplored. In this work, we propose a new approach for prompt

optimization aiming at eliciting knowledge from prior art of the design of hardware

accelerators such as using the OpenAI’s Generative Pre-trained Transformer (GPT)

with a capability to understand the human languages and perform operations has

acclaimed its name as ChatGPT [48]. We achieve this through designing multi-shot

prompts. These are optimized to select the most relevant prior work to the problem

of interest and will command ChatGPT to produce a desired design. The design is

then verified using external verification tools.

4.2 Limitations in the Utilization of Gemmini

Gemmini, as proposed in Genc et al.’s work [3], represents a high-speed matrix

multiplication accelerator with the potential to deliver and improve performance

enhancements. For Gemmini to be utilized the potential limitations should be

considered.

The limitations of Gemmini would be (1) Mastery in tools like chisel [49]

a Scala embedded language and the Chipyard framework [50] is needed. (2) To

utilize Gemmini effectively, one must have a deep understanding of its low-level

design. This transition from high-level programming language to its architecture can

be quite challenging, particularly for hardware engineers, creating a steep learning

curve.(3)Gemmini and similar architectural accelerators[2, 51] have limitations

when focused on flexibility. Gemmini relies on memory access for data transfer,

which affects both performance and energy efficiency[52]. Specifically, this results

in:(i) load/store instructions utilizing valuable processor time, impacting overall

27

performance. (ii)These instructions consume more energy compared to direct register

accesses, leading to higher energy costs [52].

4.3 Understanding Large Language Model Training

Large language model needs to be trained using a large dataset, Structured on

unstructured data for the LLM (Language Model for Hardware Description) to

operate optimally in generating Hardware Description Language (HDL) represen-

tations of accelerators, a critical prerequisite is the availability of a well-curated and

diverse dataset. This dataset serves as the foundation upon which the LLM hones its

ability to comprehend and generate accurate hardware descriptions. Large language

models come in diverse forms, differentiated primarily by their training methods

and intended applications.They can be categorized into three main types: zero-shot

models, fine-tuned models, and edge models. Each type offers distinct advantages

and characteristics, catering to specific applications.

Zero-shot Models: Zero-shot LLMs are trained on a vast corpus of text

and code, enabling them to generate responses to a wide range of prompts and

questions without any additional training. Their versatility makes them suitable for

diverse tasks, including question answering, text summarizing, and creative writing.

However, their performance may not be optimal for highly specialized domains or

tasks requiring context-specific knowledge.

Fine-tuned Models: Fine-tuned models are derived from zero-shot LLMs by

subjecting them to additional training on specific data sets or tasks. This targeted

training process allows them to develop more profound domain expertise and achieve

higher accuracy within their designated applications. However, they typically have a

smaller scope and are less versatile than their zero-shot counterparts.

Edge Models: Edge models are a specialized subset of fine-tuned models

designed to operate on resource-constrained devices such as smartphones and edge

28

computing systems. They are typically much smaller and require less computational

power than other LLM types, making them suitable for real-time applications. Their

scope is often confined to a specific task or domain, enabling them to provide

immediate feedback based on user input.

In this study, we are trying to implement a Multi-short approach for a Fine-

tuned Model, which will be detailed in the next chapter 5.

LLMs for hardware design: A review of the few existing works ChipGPT

[6], [7] In a study et al., [8] sources of Verilog is taken and then given as inputs with

the code and the questions from the widely used opensourced text books

The process of database generation for LLM training involves meticulous

curation of relevant information and examples representative of the targeted hardware

accelerators. This dataset should encompass a wide range of architectures, function-

alities, and design paradigms to ensure the LLM’s adaptability to various scenarios.

4.4 Parameters in Constructing the Database

The construction of a database for training any artificial intelligence model requires

careful consideration of several critical parameters in which few are stated below for

our Large Language Model in hardware domain.

Architectural Diversity The dataset must cover a spectrum of hardware

accelerator architectures, ranging from conventional designs to state-of-the-art innovations.

This diversity ensures that the LLM learns to handle a broad array of design patterns

and can adapt to emerging trends in hardware acceleration.

Functional Complexity: To enable the LLM to handle intricate hardware

functionalities, the dataset should incorporate examples of accelerators with varying

levels of complexity. This includes designs for diverse applications such as machine

learning, signal processing, and scientific computation.

29

Programming Paradigms: Since the LLM is tasked with generating HDL

code from natural language descriptions, the dataset should encompass a variety of

programming paradigms. This includes the description of HDL that are generated to

make sure it is learning or referring to the corresponding code to make the learninig

more efficient, enabling the LLM to understand and translate diverse input sources.

Performance Metrics: The dataset should include information about the

performance metrics of different accelerators. This helps the LLM learn to optimize

not only for correctness but also for efficiency, taking into account factors like

throughput, latency, and power consumption.

Edge Cases and Constraints: Including examples that represent edge cases

or scenarios with specific constraints is crucial. This ensures that the LLM can handle

unique design challenges and limitations, fostering robustness in its output.

Once the dataset is meticulously constructed, the LLM undergoes a training

process where it learns to associate natural language descriptions with corresponding

HDL representations. The training involves iterative exposure to examples from the

dataset, allowing the model to refine its understanding and improve its capacity to

generate accurate and contextually relevant HDL code.

30

CHAPTER 5

FRAMEWORK FOR THE LARGE LANGUAGE MODEL

The development of domain-specific Large Language Models (LLMs) for our hardware

domain necessitates the creation of a specialized training dataset. This chapter

delves into the generation of such a dataset, exploring various clustering techniques,

detailing the LLM training framework, and addressing the challenges encountered

during implementation.

5.1 Generating the Database using Gemmini

Gemmini, implemented in Chisel, stands as a cornerstone in our pursuit of advancing

hardware accelerator descriptions. Since it is a hardware accelerator generator tool,

we focus on tweaking its modifiable parameters and extracting the various methods

of differently structured hardware accelerators to create a robust training database.

By leveraging the verilator tool [53], Gemmini transforms abstract Chisel code into

tangible implementations. This process generates essential components comprising C

system files and corresponding Verilog code, culminating in a comprehensive System-

on-Chip (SoC) design. Fig 5.1 represents how the clustering and classification of the

family are defined.

Figure 5.1 A family cluster.

31

Here, the heart of the gemmini, the systolic array responsible for the matrix

multiplication, Multiply and Accumulate (MAC) operation, are considered the head

while defining a set in our database. In this study, we are calling it a family. A family

comprises different variations of the same spatial array accelerators but in different

variations since they all have different parameters, as shown in Fig 5.1. Any fixed

constant can be the dataflow or the ACC TYPE, or any other parameters can be

changed. Each family consists of 24 different accelerators, and we can consider them

as points in a cluster. Now, we have 8 families in this study, totaling 192 different

data points and eight different clusters for our model to train.

5.1.1 Bottlenecks in Our Approach

In our research, the limelight falls squarely on the hardware accelerator component.

The major advantage of the gemmini is that it can be generated as a complete System-

on-Chip (SoC) here the Verilog code provided by the verilator tool comprises of

hundreds of thousands of lines making it physically impossible for us to train our

LLM since there are certain limitations as token inputs which is discussed in the

following sections this data is very large to infer the training can be compromised

ideally an LLM can take upon few hundreds of lines to train for one example and can

take many of such but in our case the one data point to load is itself enormous in

size. To overcome this, we have considered to neglect the full-system and extracting of

only the Gemmini Hardware Accelerator alone from 508 Verilog modules in the entire

SoC. It is now of few thousand lines not an ideal case as we discussed, an be reliable

if carefully fed to the LLM. A python code has been implemented in extracting the

Gemmini Verilog module.

After observing the module, we have found it is instantiating for different

modules declared in the main file (SoC), making our work even more difficult. The

Gemmini module is calling approximately ∼ 104 modules. We have stripped the code

32

snippets from every family branch and created a pool of knowledge for our LLM to

learn. We have a proposal for our model creation.

5.1.2 Working of Large Language Model

A database is also referred to as a pool of knowledge. Abundant Gemmini Verilog

files and their description are stored in it along with applications they can deploy.

A pre-trained model is taken to train with our database in a (prompt, code) so

learning of our model can be optimized. Fig 5.2 illustrating the entire diagram from

the training to the end tape-out.

prompt: ”A gemmini with a spatial array of 2x2 means with the meshRows

and meshColumns of 2 with accumulator input of 32-bit SINT and spatial

array output as 10 SINT with dataflow of BOTH consisting of training

convolution, max-pooling, and non-linear activation function.”

Above mentioned prompt is an example with which the Verilog code is complemented.

Figure 5.2 Implementation of the Large Language Model.

The pre-trained model after training can now be called a Fine-Tuned Model in

which our desired inputs are given as prompts based on our application. We expect it

33

to generate an HDL code, in this case, a Verilog corresponding to our input request.

It is then verified manually with the existing descriptions. If true, the results are

stored in a new database, which can proceed to fabrication and IC; if false, then the

error is identified and is reverted to the Fine-Tuned model as (error, code) error

consists of where and why the error exists, we assume that the training process might

have been different or the model tried out of the box and failed. Such a feedback

system enables us to create an ideal model for our implementation.

34

CHAPTER 6

CONCLUSION

In the culmination of this master’s thesis, our exploration began with a compre-

hensive investigation into hardware accelerators residing within both Von-Neumann

and Non-Von-Neumann architectural frameworks. We scrutinized the innovative

Processing-In-Memory (PIM) chip documented by [21], unraveling latent potentials

and accentuating key features. Our findings invite our academic community, urging

a more profound exploration into the intricacies of Non-Von-Neumann (NVM)

architectures.

Shifting our focus toward practical implementation, we harnessed the formidable

capabilities of Large Language Models (LLMs) to deploy hardware accelerators. This

endeavor led to the creation of a meticulously curated library housing Hardware

Description Language (HDL) representations of accelerators, establishing a standardized

repository for future research endeavors. However, it is not without challenges, as the

quantification of the extensive token input demanded by the Large Language Model

revealed inherent bottlenecks. These challenges, a testament to the rigorous nature of

our pursuit, underscore the need for further refinement and exploration in the realm

of LLM capabilities.

This thesis serves as a foundation, unraveling the complexities of spatial array

accelerators and their integration with Large Language Models and a framework

is proposed in implementing it. The presented library contributes to the existing

body of knowledge. It paves the way for future innovations in hardware accelerator

development and LLM applications within the realm of Von-Neumann architectures.

35

BIBLIOGRAPHY

[1] Renzo Andri et al. Yodann: An ultra-low power convolutional neural network

accelerator based on binary weights. In ISVLSI, pages 236–241. IEEE, 2016.

[2] Yu-Hsin Chen et al. Eyeriss: An energy-efficient reconfigurable accelerator for

deep convolutional neural networks. IEEE journal of solid-state circuits, 52(1):

127–138, 2016.

[3] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav

Prakash, Jerry Zhao, Daniel Grubb, Harrison Liew, Howard Mao, et al.

Gemmini: Enabling systematic deep-learning architecture evaluation via full-

stack integration. In 2021 58th ACM/IEEE Design Automation Conference

(DAC), pages 769–774. IEEE, 2021.

[4] Sepehr Tabrizchi, Mehrdad Morsali, Shaahin Angizi, and Arman Roohi. Nese:

Near-sensor event-driven scheme for low power energy harvesting sensors. In

2023 IEEE International Symposium on Circuits and Systems (ISCAS), pages

1–4, 2023. doi: 10.1109/ISCAS46773.2023.10181329.

[5] Shaojun Wei, Xinhan Lin, Fengbin Tu, Yang Wang, Leibo Liu, and Shouyi

Yin. Reconfigurability, why it matters in ai tasks processing: A survey of

reconfigurable ai chips. IEEE Transactions on Circuits and Systems I: Regular

Papers, 70(3):1228–1241, 2023. doi: 10.1109/TCSI.2022.3228860.

[6] Kaiyan Chang, Ying Wang, Haimeng Ren, Mengdi Wang, Shengwen Liang,

Yinhe Han, Huawei Li, and Xiaowei Li. Chipgpt: How far are we from natural

language hardware design. arXiv preprint arXiv:2305.14019, 2023.

[7] Pablo Antonio Mart́ınez, Gregorio Bernabé, and José Manuel Garćıa. Code

detection for hardware acceleration using large language models. arXiv preprint

arXiv:2307.10348, 2023.

36

[8] Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin

Tan, Ramesh Karri, Brendan Dolan-Gavitt, and Siddharth Garg. Benchmarking

large language models for automated verilog rtl code generation. In 2023 Design,

Automation Test in Europe Conference Exhibition (DATE), pages 1–6, 2023.

doi: 10.23919/DATE56975.2023.10137086.

[9] Chenren Xu, Shuang Jiang, Guojie Luo, Guangyu Sun, Ning An, Gang Huang,

and Xuanzhe Liu. The case for fpga-based edge computing. IEEE Transactions

on Mobile Computing, 21(7):2610–2619, 2020.

[10] Saman Biookaghazadeh, Ming Zhao, and Fengbo Ren. Are fpgas suitable for

edge computing? In {USENIX} Workshop on Hot Topics in Edge Computing

(HotEdge 18), 2018.

[11] Mar 2022. URL https://www.geeksforgeeks.org/xilinx-fpga-architecture/.

[12] UC Berkeley. Chipyard. https://chipyard.readthedocs.io/en/latest/Generators/BOOM.html,

2023. Accessed on 1 Nov 2023.

[13] Shaahin Angizi et al. Cmp-pim: an energy-efficient comparator-based processing-

in-memory neural network accelerator. In DAC, pages 1–6, 2018.

[14] Shubham Jain et al. Rx-caffe: Framework for evaluating and training deep neural

networks on resistive crossbars. arXiv preprint arXiv:1809.00072, 2018.

[15] Shaahin Angizi et al. Imce: Energy-efficient bit-wise in-memory convolution

engine for deep neural network. In ASP-DAC, pages 111–116. IEEE, 2018.

[16] Charles Eckert et al. Neural cache: Bit-serial in-cache acceleration of deep neural

networks. In ISCA, pages 383–396. IEEE, 2018.

[17] Shuangchen Li et al. Pinatubo: A processing-in-memory architecture for bulk

bitwise operations in emerging non-volatile memories. In DAC, pages 1–6, 2016.

37

[18] Shubham Jain et al. Computing in memory with spin-transfer torque magnetic

ram. IEEE TVLSI, 26(3):470–483, 2017.

[19] Shihui Yin et al. Xnor-sram: In-memory computing sram macro for

binary/ternary deep neural networks. IEEE Journal of Solid-State Circuits, 55

(6):1733–1743, 2020.

[20] Zhewei Jiang et al. C3sram: An in-memory-computing sram macro based on

robust capacitive coupling computing mechanism. IEEE Journal of Solid-State

Circuits, 55(7):1888–1897, 2020.

[21] Amitesh Sridharan et al. A 1.23-ghz 16-kb programmable and generic processing-

in-sram accelerator in 65nm. In ESSCIRC, pages 153–156. IEEE, 2022.

[22] Jonathan Bachrach et al. Chisel: Constructing hardware in a scala embedded

language. In DAC, page 1216–1225, 2012.

[23] Amitesh Sridharan, Shaahin Angizi, Sai Kiran Cherupally, Fan Zhang, Jae-

Sun Seo, and Deliang Fan. A 1.23-ghz 16-kb programmable and generic

processing-in-sram accelerator in 65nm. In ESSCIRC 2022- IEEE 48th

European Solid State Circuits Conference (ESSCIRC), pages 153–156, 2022. doi:

10.1109/ESSCIRC55480.2022.9911440.

[24] Xilinx. Python productivity for zynq, 2018. URL http://www.pynq.io/.

[25] Alex Krizhevsky et al. The cifar-10 and cifar-100 datasets. URL

https://www.cs.toronto.edu/ kriz/cifar.html.

[26] Shuchang Zhou et al. Dorefa-net: Training low bitwidth convolutional neural

networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

38

[27] Lena E Olson et al. Security implications of third-party accel-

erators. IEEE Computer Architecture Letters, 15(1):50–53, 2016. doi:

10.1109/LCA.2015.2445337.

[28] Mihir Bellare et al. Security of symmetric encryption against mass surveillance.

In CRYPTO, pages 1–19. Springer, 2014.

[29] Scott Spanbauer. Pentium bug, meet the ie 4.0 flaw. PC World, 16(2):55–55,

1998.

[30] Sangho Lee et al. Stealing webpages rendered on your browser by exploiting gpu

vulnerabilities. In 2014 IEEE S&P, pages 19–33, 2014. doi: 10.1109/SP.2014.9.

[31] Ziyu Wang et al. Side-channel attack analysis on in-memory computing

architectures. IEEE TETC, 2023.

[32] Sina Sayyah Ensan et al. Scare: Side channel attack on in-memory computing

for reverse engineering. TVLSI, 29(12):2040–2051, 2021.

[33] David Larochelle and David Evans. Statically detecting likely buffer

overflow vulnerabilities. In USENIX Security. Version: http://www. usenix.

org/events/sec01/larochelle. html, 2001.

[34] Ranyang Zhou, Sepehr Tabrizchi, Arman Roohi, and Shaahin Angizi. Lt-pim: An

lut-based processing-in-dram architecture with rowhammer self-tracking. IEEE

Computer Architecture Letters, 21(2):141–144, 2022.

[35] Jianfeng Gao and Chin-Yew Lin. Introduction to the special issue on statistical

language modeling, 2004.

[36] Ronald Rosenfeld. Two decades of statistical language modeling: Where do we

go from here? Proceedings of the IEEE, 88(8):1270–1278, 2000.

39

[37] Andreas Stolcke. Srilm-an extensible language modeling toolkit. In Seventh

international conference on spoken language processing, 2002.

[38] Xiaoyong Liu and W Bruce Croft. Statistical language modeling for information

retrieval. Annu. Rev. Inf. Sci. Technol., 39(1):1–31, 2005.

[39] ChengXiang Zhai et al. Statistical language models for information retrieval

a critical review. Foundations and Trends® in Information Retrieval, 2(3):

137–213, 2008.

[40] Scott M Thede and Mary Harper. A second-order hidden markov model for part-

of-speech tagging. In Proceedings of the 37th annual meeting of the Association

for Computational Linguistics, pages 175–182, 1999.

[41] Lalit R Bahl, Peter F Brown, Peter V de Souza, and Robert L Mercer. A tree-

based statistical language model for natural language speech recognition. IEEE

Transactions on Acoustics, Speech, and Signal Processing, 37(7):1001–1008, 1989.

[42] Thorsten Brants, Ashok C Popat, Peng Xu, Franz J Och, and Jeffrey Dean.

Large language models in machine translation. 2007.

[43] Slava Katz. Estimation of probabilities from sparse data for the language model

component of a speech recognizer. IEEE transactions on acoustics, speech, and

signal processing, 35(3):400–401, 1987.

[44] William A Gale and Geoffrey Sampson. Good-turing frequency estimation

without tears. Journal of quantitative linguistics, 2(3):217–237, 1995.

[45] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic

language model. Advances in neural information processing systems, 13, 2000.

[46] Justyna Sarzynska-Wawer, Aleksander Wawer, Aleksandra Pawlak, Julia

Szymanowska, Izabela Stefaniak, Michal Jarkiewicz, and Lukasz Okruszek.

40

Detecting formal thought disorder by deep contextualized word representations.

Psychiatry Research, 304:114135, 2021.

[47] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,

Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling

laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

[48] URL https://chat.openai.com.chat/.

[49] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,

Rimas Avižienis, John Wawrzynek, and Krste Asanović. Chisel: Constructing

hardware in a scala embedded language. In DAC Design Automation Conference

2012, pages 1212–1221, 2012. doi: 10.1145/2228360.2228584.

[50] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar

Karandikar, Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan

Pemberton, Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia

Shao, Krste Asanović, and Borivoje Nikolić. Chipyard: Integrated design,

simulation, and implementation framework for custom socs. IEEE Micro, 40

(4):10–21, 2020. doi: 10.1109/MM.2020.2996616.

[51] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A flexible

accelerator for emerging deep neural networks on mobile devices. IEEE Journal

on Emerging and Selected Topics in Circuits and Systems, 9(2):292–308, 2019.

[52] Sung Kim, Morteza Fayazi, Alhad Daftardar, Kuan-Yu Chen, Jielun Tan,

Subhankar Pal, Tutu Ajayi, Yan Xiong, Trevor Mudge, Chaitali Chakrabarti,

David Blaauw, Ronald Dreslinski, and Hun-Seok Kim. Versa: A 36-

core systolic multiprocessor with dynamically reconfigurable interconnect and

memory. IEEE Journal of Solid-State Circuits, 57(4):986–998, 2022. doi:

10.1109/JSSC.2022.3140241.

41

[53] Wilson Snyder. Verilator and systemperl. In North American SystemC Users’

Group, Design Automation Conference, 2004.

42

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Hardware Accelerators
	Chapter 3: Research and Implementation
	Chapter 4: Automating Hardware Accelerators
	Chapter 5: Framework for the Large Language Model
	Chapter 6: Conclusion
	Bibliography

	List of Tables
	List of Figures

