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ABSTRACT

DATA-DRIVEN 2D MATERIALS DISCOVERY FOR
NEXT-GENERATION ELECTRONICS

by
Zeyu Zhang

The development of material discovery and design has lasted centuries in human

history. After the concept of modern chemistry and material science was established,

the strategy of material discovery relies on the experiments. Such a strategy

becomes expensive and time-consuming with the increasing number of materials

nowadays. Therefore, a novel strategy that is faster and more comprehensive is

urgently needed. In this dissertation, an experiment-guided material discovery

strategy is developed and explained using metal-organic frameworks (MOFs) as

instances. The advent of ⇡-stacked layered MOFs, which o↵er electrical conductivity

on top of permanent porosity and high surface area, opened up new horizons for

designing compact MOF-based devices such as battery electrodes, supercapacitors,

and spintronics. Structural building blocks, including metal nodes and organic linkers

in these electrically conductive (EC) MOFs, are recognized and taking permutations

among the building blocks results in new systems with unprecedented and unexplored

physical and chemical properties. With the ultimate goal of providing a platform

for accelerated material design and discovery, here the foundation is laid for the

creation of the first comprehensive database of EC MOFs with an experimentally

guided approach. The first phase of this database, coined EC-MOF/Phase-I, is

composed of 1,057 bulk and monolayer structures built by all possible combinations

of experimentally reported organic linkers, functional groups, and metal nodes.

A high-throughput (HT) workflow is constructed to implement density functional

theory calculations with periodic boundary conditions to optimize the structures and

calculate some of their most relevant properties. Because research and development



in the area of EC MOFs has long been su↵ering from the lack of appropriate

initial crystal structures, all of the geometries and property data have been made

available for the use of the community through an online platform that was developed

during the course of this work. This database provides comprehensive physical

and chemical data of EC-MOFs as well as the convenience of selecting appropriate

materials for specific applications, thus accelerating the design and discovery of

EC MOF-based compact devices. Machine learning (ML), a technique of learning

patterns of numerical data and making predictions, can be utilized in material

discovery. Taking advantages of the EC-MOF Database, ML is adopted to predict

property data that needs expensive calculations according to the crystal structures

only. The implementation of ML is much faster than the HT workflow when the

number of structures increases constantly.
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A single spark can start a prairie fire.

Zedong Mao
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CHAPTER 1

INTRODUCTION

Chemistry, often referred to as the central science, has a rich and fascinating

history that spans thousands of years. It is the branch of science that explores the

composition, properties, and transformations of matter. From ancient civilizations’

alchemical pursuits to the modern scientific advancements, chemistry has played a

pivotal role in shaping our understanding of the world. The story of chemistry begins

in ancient times, with the first known experiments conducted by early civilizations

such as the Egyptians, Greeks, and Chinese. These early practitioners focused on

practical applications, such as metalworking, pottery, and medicine. Alchemy, a

precursor to modern chemistry, emerged during the Hellenistic period in Alexandria,

Egypt. Alchemists sought to transmute base metals into gold and discover the

philosopher’s stone, believed to grant endless wealth. The Renaissance period marked

a turning point for chemistry, as it transitioned from the mystical realm of alchemy

to a more scientific discipline. In the 17th century, Robert Boyle’s publication of

”The Sceptical Chymist” challenged traditional alchemical beliefs and emphasized

the importance of rigorous experimentation and observation [118]. Boyle’s work

laid the foundation for the modern scientific method, which would revolutionize

the field of chemistry. The 18th century witnessed the emergence of quantitative

chemistry. Antoine Lavoisier, often referred to as the ”Father of Modern Chemistry,”

introduced precise measurements and the concept of chemical elements. Lavoisier’s

experiments on combustion and his formulation of the law of conservation of mass

transformed chemistry into a quantitative science. His work also contributed to the

development of the periodic table of elements. In the next century, John Dalton’s

atomic theory, which proposed that matter is composed of indivisible particles
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called atoms, revolutionized our understanding of the structure of matter. Dmitri

Mendeleev’s development of the periodic table, organizing elements based on their

atomic properties, provided a systematic framework for classifying and predicting

the behavior of elements. Over the past one hundred years, chemistry underwent a

series of transformative advancements. The field of organic chemistry flourished with

the discovery of new synthetic methods and the elucidation of complex molecular

structures. The development of quantum mechanics provided a deeper understanding

of atomic and molecular interactions.

Today, modern chemistry continues to push boundaries, with advancements

in nanotechnology, materials science, and environmental chemistry. Chemists are

exploring sustainable energy sources, designing new drugs, and developing innovative

materials with unique properties. The field has become increasingly interdisciplinary,

collaborating with biology, physics, engineering and computer science to address

complex scientific challenges. One prominent challenge in the fields of chemistry and

material science is how to find the best compound for a given purpose? Discovery

of new compounds generally relies on the knowledge, experience and intuition of

scientists. However, most of the advances still rely on trial-and-error experimentation

which requires significant cost and time [68]. Especially, with the rapid increasing

number of new compounds, a comprehensive search among all possible candidates

becomes an impossible task. In recent years, computational chemistry approaches

have been significantly improved by the advance of new theories/methodologies

and computing software/hardware. The accuracy and e�ciency of computational

methods turn them to comparable tools to experimental approaches and promise

unprecedented breakthroughs in discovering new compounds. In the past decade,

artificial intelligence (AI) has led a technological revolution in this field. AI is

the science and engineering of making intelligent machines, especially intelligent

computer programs that can address complicated tasks like language translation,
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autopilot and website management. It has also shown a promising future in

sciences where AI techniques are applied to give guidance to scientists by AI’s

unique views. In this dissertation, we will introduce a state-of-the-art pathway for

discovering new materials which combines computational chemistry tools, advanced

programming and AI techniques. Such an approach integrates the experimental

findings and hypothetical systems to provide a comprehensive picture of the target

compounds. We will utilize in approach in investigating the inherent properties and

future potential applications of an intriguing class of materials, known as metal

organic frameworks (MOFs), in next-generation electronics. In Chapter 1, we will

cover the background of MOF materials, theory of computational chemistry and

machine learning techniques. In Chapter 2, the structure-function correlation of

two-dimensional (2D) MOFs is investigated, which provides some insights about the

electrical conductive behavior transition due to structural flexibility. In Chapter

3, we will introduce our newly-developed electrically-conductive (EC)-MOF/Phase-I

Database which is a platform that allows users to search the desired MOF, download

the structures and get the property data of the material. In Chapter 4, machine

learning (ML) techniques are implemented for materials discovery purposes based on

this database. The predictions made by our models shows the e↵ectiveness of our data

and also great potentials of ML on saving the computational resource. Concluding

remarks are provided in Chapter 5.

1.1 Metal Organic Frameworks

1.1.1 Traditional metal organic frameworks

The interests in metal organic frameworks (MOFs), also called porous coordination

polymers at that time, starts around 1990 when Hoskins and Robson set the basis

for the future of MOFs [60, 59]. The term MOF itself was popularized by the work

of Yaghi et al. around 1995 where a layered Co-trimesate with reversible sorption
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properties was synthesized [163, 162]. Later, the most studied MOFs, MOF-5 and

HKUST-1 (shown in Figure 1.1), were reported by Li et al. [88] and Chui et al.

[24] who emphasized their extraordinary properties including great stability and rich

porosity. In modern definition, MOFs are a class of porous crystalline materials

Figure 1.1 Composition and structures of MOF-5 (a) and HKUST-1 (b). The color
coding is gray for Zinc, blue for Copper, red for Oxygen, Brown for Carbon and white
for Hydrogen.

obtained through a process usually referred to as reticular synthesis [161]. Selected

metal nodes and organic linkers, also called secondary building units (SBUs), are

connected via strong coordination bonds to form ordered and permanently porous

architectures [164]. As shown in Figure 1.1, MOF-5 was synthesized by di↵using

triethylamine into a solution of zinc and 1,4-benzenedicarboxylate acid (H2BDC)

under the presence of dimethylformamide (DMF), chlorobenzene and hydrogen

peroxide. Similarly, the reaction between copper(II) cations and benzene-1,3,5-

tricarboxylic acid (TMA-H3) produces HKUST-1 MOF. All following reported MOFs
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wer synthesized in similar manners. The modular nature of MOFs provided numerous

opportunities to tailor their physical and chemical characteristics, which has led

to more than 110,000 stable MOFs reported to date according to the Cambridge

Structural Database (CSD) [46]. Their high surface area and permanent porosity

have stimulated a spectrum of applications in gas adsorption/storage [136, 137], water

treatment [120, 149], and catalysis [28, 102, 103, 105, 166], to name a few.

1.1.2 Electrically conductive metal organic frameworks

Most of traditional MOFs exhibit low electrical conductivity with large band gaps

which limits their further utilization in electronics and optical devices [144]. The main

approaches to improve the electrical conductivity of MOFs stand at the two charge

transport pathways in MOFs: through-bond and through-space. More specifically,

through-bond charge transfer requires a good overlap of bonding orbitals from

the metal nodes and organic linkers and through-space charge transfer needs an

appropriate spatial overlap between ⇡ conjugated systems. Through-bond pathway is

mostly realized in the MOFs with 1D SBUs like MOF-74 and its analogues consisting

of (-M-O-)1 chains [124]. The electrical conductivity of such MOFs is measured

between 1.4 ⇥ 10�14 to 3.2 ⇥ 10�7 S/cm [159]. Considering the electronegativity

of oxygen atoms, the electron gas is localized leading to a low conductivity. Sun

et al. reported that substitution of (-M-O-)1 chains with (-M-S-)1 chains will

improve the conductivity of the materials by increasing the metal-ligand covalency

[139]. Through-space charge transfer focuses on the interaction between organic

ligands instead of metal and ligand. The through-space pathway is mainly realized

by the ⇡-⇡ stacking where the distance between organic ligands is critical to

the conductivity. MOFs with La(III) cations and tetrathiafulvalene tetrabenzoate

(TTFTB) linkers were reported as conductive materials by Xie et al [157]. By

applying di↵erent experimental conditions, MOFs with three di↵erent topologies
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were synthesized where their main di↵erence is the distance between ⇡-⇡ stacking

as shown in Figure 1.2 The distance at the stacking directions is 3.60 Å, 4.083 Å and

Figure 1.2 Crystal structure of (a) La4(HTTFTB)4, (b) La(HTTFTB) and
(c) La4(HTTFTB)3. Copyright 2019 Royal Society of Chemistry.

7.072 Å for La4(HTTFTB)4, La(HTTFTB) and La4(HTTFTB)3, respectively. This

increasing distance is accompanied by a decrease in electrical conductivity which

is measured for them as 2.5 ⇥ 10�6, 9 ⇥ 10�7 and 1 ⇥ 10�9 S/cm, respectively.

In some special cases of MOFs, when pairing transition metals with chelating

functional groups, charge transfer through extended conjugation is another possible

pathway. MOFs with such structures are proposed to be metal organic analogues

of graphene due to the similarity of extend ⇡-d conjugation in the MOFs and

the sp2 hybridization in graphene. Generally, such MOFs possess two-dimensional

(2D) structures and the extended conjugation occurs within the ab plane. To

synthesize these 2D MOFs, ⇡ conjugation and redox-noninnocent chelating groups

such as ortho-diols, -diamines and -dithiols are necessary in the organic linkers,

as shown in Figure 1.3(a). Many organic ligands are partially oxidized during

solvothermal growth, introducing charge carriers into the as-synthesized frameworks,

which makes this pathway a dominant mechanism in 2D MOFs. The discovery 2D

layered MOFs in 2012 introduced one important class of electrically conductive (EC)

MOFs and opened a new research direction in this area [58]. 2D layered MOFs
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Figure 1.3 (a) Redox series of 2-, 1-, and 0 charge states for a deprotonated
catecholoid fragment, a common motif in conductive MOFs with extended conju-
gation. (b) Charge Transfer via Extended Conjugation Pathway. Copyright 2020

American Chemical Society.

contain ortho-substituted ⇡-conjugated organic linkers coordinated to (usually) early

3d transition metal nodes, forming extended ⇡-conjugated 2D sheets. Weak van der

Waals interactions allow stacking of these 2D sheets to form bulk crystalline materials

with one-dimensional channels in the stacking direction. This architecture provides

necessary paths for charge transport along both in-plane (extended conjugation) and

out-of-plane (through-space) directions [169]. In 2012, the first 2D layerer MOF

consisting of highly conjugated tricatecholate, 2,3,6,7,10,11-hexahydroxytriphenylene

(H12C18O6, HHTP) and Co(II) and Ni(II) cations was synthesized via solvothermal

self-assembly, as shown in Figure 1.4. Inspired by this pioneering work, more and

more 2D MOFs with conjugated systems have been synthesized. The number of

such materials keeps increasing since they can provide the high surface area like

traditional MOFs and electrical conductivity at the same time. These new 2D MOFs

with excellent electrical conductivity and magnetic properties are introduced as viable

candidates for field-e↵ect transistors [155], supercapacitors [90], superconductors [63],

spintronics [33] and cathode materials in di↵erent metal-ion batteries [143]. A brief
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Figure 1.4 (a) High-magnification HR-TEM image of Ni-HHTP-1. Copyright 2012
American Chemical Society. (b) Built model for NiHHTP. Color code: Ni, blue; O,
red; C, brown; H, white.

timeline of representative 2D MOFs with their reported electrical conductivities is

show in Figure 1.5

Figure 1.5 A brief timeline of representative 2D MOFs with their reported electrical
conductivity.

1.2 Theoretical Aspects and Details

1.2.1 Schrödinger equation

In the late 17th century, Sir Isaac Newton formulated the famous laws of motion

that relates the motion of a macroscopic object to the forces applied on it. These

laws laid the foundation for classical mechanics and revolutionized our understanding

of the physical world. They had become the basis for studying motion, force,
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and interaction between objects in scientific research, engineering design, and

technological advancements. However, in the 20th century, scientists found that

the classical mechanics cannot describe the behavior of small objects like photons,

electrons or light nuclei. To explain the behavior of such microscopic particles a

new form of mechanics, named quantum mechanics, was developed by the e↵orts of

generations of great scientists. In 1803, British polymath Thomas Young established

the wave theory of lights based on the observation of double-slit experiments. Later,

Max Planck proposed his hypothesis that energy is radiated and absorbed in discrete

“quanta”, which precisely describes the observation of black-body radiation. Inspired

by this idea, Niels Bhor applied the concept of quantization of energy to electrons

in hydrogen atoms and successfully predicted the spectral lines of hydrogen. Albert

Einstein further developed this idea to show that the electromagnetic wave can be

also treated as particles with discrete energy and frequency levels. Modern quantum

mechanics was born in 1925 when Werner Heisenberg, Max Born, and Pascual Jordan

invented the matrix mechanics [55]. And one year later, Erwin Schrödinger introduced

the wave mechanics which is well-known as the time-dependent Schrödinger equation

(TDSE) [130] whose general form is:

ih̄
@

@t
 (r, t) = Ĥ (r, t) (1.1)

where i is the imaginary number and h̄ is the reduced Planck constant.  (r, t) is the

wavefunction that depends on position, i.e., three-dimensional vector r, and time t.

Ĥ is the Hamiltonian operator corresponding to the total energy of the system:

Ĥ = � h̄

2m
r2 + V (r, t) (1.2)

where the first term is kinetic energy and the second term is the potential energy. m

is the mass of the particle and r is the Laplace operator which can be expressed as
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following in Cartesian coordinates:

r2 =
@2

@x2
+

@2

@y2
+

@2

@z2
· (1.3)

Due to the complicated nature of TDSE, i.e., simultaneous dependence on position

and time, many applications of quantum mechanics to chemistry rely on an approach

called separation of variables to divide the total wavefunction to two functions that

separately depend on position and time:

 (r, t) =  (r)f(t)· (1.4)

This allows us to solve time-independent Schrödinger equation (TISE):

Ĥ (r) = � h̄

2m
r2 (r) + V (r) (r) = E (r) (1.5)

to obtain the energy of the system E subject to time-independent wavefunction

 (r). Time-evolution part will be separately added if one is interested in the

dynamics simulations. However, finding an exact solution of TISE for a many-electron

system like a molecule is too complicated so that some approximations were created

to simplify the problem. One significant approximation is Born–Oppenheimer

approximation which says nuclei and electrons can be treated separately because

nuclei are much heavier than electrons and in the time-scale of movements of electrons

the positions of nuclei can be appropriately assumed fixed [15]. Thus, we only need

to solve TISE for the electrons in a system. The TISE for a system with N number

of electrons can be written as:

Ĥ (r) =

"
� h̄

2m

NX

i=1

r2
i
+

NX

i=1

V (ri) +
NX

i=1

X

j<i

U(ri, rj)

#
 (r) = E (r) (1.6)

where E is the ground state energy of the system and terms in the brackets are kinetic

energy of electrons, potential energy of each electron due to the fixed nuclei and the
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interaction energy between di↵erent electrons. The wavefuntion  (r) now is the wave

function of N electrons which can be expressed as:

 (r) =  (r1, r2, · · · , rN) (1.7)

1.2.2 Hartree-fock method

Although the nuclei is fixed in the system according to the Born–Oppenheimer

approximation, solving TISE of electrons still needs more theoretical considerations

to balance the accuracy and e�ciency of the calculations. A pioneering methodology

in this regards is called Hartree-Fock (HF) method. The basic assumption in the HF

method is that the N electron wavefunction can be considered as a product of the

individual wavefunctions of each electrons, the so-called Hartree Product

 (r1, r2, · · · , rN) =  (r1) (r2) · · · (rN)· (1.8)

Further, since each electron has an up or down spin, or spin ↵ and �, respectively,

the concept of spin orbitals were introduced. A space-spin coordinate X = {r,!} is

used to replace the position vector r and the notation of spatial wavefunctions  (r)

is also replaced by �(X). The N electron wavefunction can be re-written using the

space-spin coordinates:

 (r1, r2, · · · , rN) = �1(X1)�2(X2) · · ·�N(XN)· (1.9)

Finally, the HF method had to satisfy the antisymmetry principle, that is a

wavefunction describing fermions (electrons) should be antisymmetric with respect

to the interchange of any set of space-spin coordinates. This was achieved by

representing the product of individual wavefunctions with a matrix form. i.e., Slater
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determinant, as shown below:

 (r1, r2, · · · , rN) =
1p
N

2

66666664

�1(X1) �2(X1) · · · �N(X1)

�1(X2) �2(X2) · · · �N(X2)

...
...

. . .
...

�1(XN) �2(XN) · · · �N(XN)·

3

77777775

(1.10)

Notably, the movement of an electron is still considered independent of all other

electrons except the Coulomb repulsion due to the average positions of all electrons.

As a result, Hartree-Fock method is referred as an independent particle model or a

mean field theory and it only partially accounts for electron correlation.

1.2.3 Density functional theory

The purpose of solving TISE is calculating the ground state energy of a system.

But, one should note that an exact set of electron positions, r1, r2, · · · , rN , cannot

be observed, the so-called Heisenberg uncertainty principle. The quantity that can

be measured instead is the probability of finding N electrons at one specific set of

position as following

p(r1, r2, · · · , rN) =  ⇤(r1, r2, · · · , rN) (r1, r2, · · · , rN) (1.11)

The wavefunction of the N electron system can be further separated into the

wavefunction of individual electron. Also, distinguishing each electron one by one

is not relevant to our purpose, finding the ground-state energy. Hence, a summation

over the probability of single electron wavefuntions gives the density of electrons:

n(r) = 2
NX

i=1

 ⇤(r) (r)· (1.12)

The factor of 2 in Equation 1.12 is due to the spin states of electrons and

Pauli exclusion principle. Hence, it is possible to use electron density instead of
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wavefunction to describe a system. This basic assumption led to the development

of density functional theory (DFT) based on two theorems proved by Kohn and

Hohenberg in 1965 [76]. The two Hohenberg–Kohn theorems say (1) The ground-state

energy from Schrödinger’s equation is a unique functional of the electron density, (2)

the electron density that minimizes the energy of the overall functional is the true

electron density corresponding to the full solution of the Schrödinger equation. In

terms of a single electron wavefunction, the true functional described by the first

theorem can be written as:

E [{ i}] = Eknown [{ i}] + EXC [{ i}] (1.13)

The Eknown term can be expanded as:

Eknown [{ i}] = � h̄2

m

NX

i=1

Z
 ⇤
i
r2 id

3r +

Z
V (r)n(r)d3r +

e2

2

Z Z
n(r)n(r

0
)

|r� r0 | + Eion

(1.14)

where the terms are the electron kinetic energies, the Coulomb interactions between

the electrons and the nuclei, the Coulomb interactions between pairs of electrons,

and the Coulomb interactions between pairs of nuclei. All other quantum e↵ects that

are not counted in the terms calculated in Eknown is counted in the term EXC , the

exchange-correlation functional, compared to the true functional. In practice, the

realization of DFT is based on the Kohn-Sham (KS) approach which is a variant

of Hartree-Fock method [76]. The KS equation is the non-interacting Schrödinger

equation of a fictitious system of non-interacting electrons that generate the same

density as any given system of interacting electrons. Hence, the right electron density

can be expressed in a way that involves solving a set of equations in which each

equation only involves a single electron. The KS equation can be written as


� h̄2

2m
r2 + V (r) + VH(r) + VXC(r)

�
 i(r) = ✏i i(r) (1.15)
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where ✏i is the energy according to the single electron wavefunction  i(r). The

potential noted as V (r) is the interaction between the single electron and all nuclei in

the system. The VH , Hartree potential, describes the the Coulomb repulsion between

the single electron and the total electron density defined by all electrons in the system

VH(r) = e2
Z

n(r
0
)

|r� r0 |d
3r

0 · (1.16)

The VXC defines exchange and correlation contributions to the single electron

equations and can be also defined as derivative of the exchange-correlation energy

VXC(r) =
@EXC(r)

@n(r)
· (1.17)

To solve the KS equation, an initial, trial electron density n0(r) is needed. Using this

density, a single electron wavefunction can be calculated according to the KS equation

(1.15). Then, a new electron density n1(r) can be calculated as Equation 1.12. In the

next step, we compare the two electron densities to see whether they are the same

density. If same, the density is the ground state electron density and we can use

it to calculate ground state energy. If not, another loop of calculating density and

wavefunction will be implemented until the densities from two adjacent loops are the

same. In a practical way, a convergence criterion will be set in the unit of energy, and

if the energy di↵erence between two adjacent loops falls below the pre-set criterion,

we will consider it as the true ground state electron density. Because it is impossible

to calculate the exactly true density in a DFT calculation.

1.2.4 Ab initio molecular dynamics

While DFT calculations provide accurate information regarding electron configuration

and system energy, they do not adequately capture the dynamic nature of a molecular

system. In particular, in materials with flexible structures, the inherent dynamical

motions of the material can significantly influence their physical and chemical
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properties. Therefore, employing molecular dynamics (MD) simulations becomes

crucial in investigating the dynamic behaviors of such systems [65]. The MD method,

widely employed a to investigate various systems, involves numerically solving the

classical Newton equations of motion for a given system, considering appropriate

boundary conditions and an initial state. MD simulations provide a means to compute

both equilibrium thermodynamic properties and dynamical behavior of the system

at finite temperature. The accuracy and reliability of MD simulations significantly

depend on the specification of forces within the system. In practice, these forces are

often determined using an empirical model known as a ”force field.” The force field

approach has demonstrated remarkable success in accurately describing the behavior

of a diverse range of systems. There are several di↵erent types of force fields, in

the most common format, it invovles bonded potentials, angle potentials, torsion

potentials, and nonbonded terms

E = Ebond + Eangle + Etorsion + Enonbond· (1.18)

These terms capture the interactions and energies associated with bonded atoms,

angles, torsions, as well as nonbonded interactions, including van der Waals and

electrostatic forces [1]. In many cases, conventional force fields used in MD simulations

do not explicitly incorporate electronic polarization e↵ects and may have limited

capability in accurately capturing chemical reactivity. Consequently, the methodology

of ab initio molecular dynamics (AIMD) is frequently employed as an alternative

approach. AIMD utilizes quantum mechanical methods, such as DFT, to calculate

the forces and energies on atoms and molecules during the simulation. These

calculations are based on the fundamental laws of quantum mechanics and consider

the electronic structure and interactions explicitly as was explained in the previous

sections. By incorporating electronic polarization e↵ects and accurate treatment

of chemical reactivity, AIMD provides a more rigorous description of the system’s
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behavior. AIMD simulations allow for the investigation of properties, reactions, and

processes that depend crucially on electronic polarization and quantum mechanical

e↵ects. Although AIMD simulations are computationally more demanding compared

to classical MD simulations, they o↵er valuable insights into the behavior of complex

systems, particularly in cases where accurate treatment of electrons, their polarization

and charge transfer is essential.

1.3 Data-Driven Technology for Material Discovery

Novel chemical compounds or materials with extraordinary properties are synthesized

and applied in all aspects of our society. So far, scientists have created more than 108

materials for various application purposes since modern chemistry was established [9].

In the past century, scientists used to control reactions by imparting a desired property

in a material using external stimuli. Nowadays, designing a material with desired

property for a target application becomes more and more challenging because we are

expecting a novel material to meet our needs in di↵erent aspects simultaneously. For

example, for a novel battery material we expect it to show high thermal stability,

high energy density, and high power density while being environmentally friendly

and cheap. This means not one but many properties are need to align properly

so that the material can be utilized in real applications. Di↵erent properties are

annoyingly correlated which means we cannot treat them individually. Although

great achievements have been made in designing materials, most of experiemnts along

the way rely on the ”trial-and-error” process which require vast investment of time

and money [95]. The implementation of experiments depends on human knowledge,

chemical intuition and low throughput trials [9]. Just like we cannot read every paper

in one research area, there is a limit for human knowledge and recognition. E�cient

and comprehensive search for novel materials require a more automated manner that
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utilizes the power of computational chemistry, data science and artificial intelligence

(AI) to be applied on a vast collection of materials, i.e., a database, at the same time.

1.3.1 Development of material databases

A database is an organized collection of structured information, or data, typically

stored electronically in a computer system. To get a board view of what we

already have in the 108 materials, we need a container to collect the information

of them which we call a material database. The earliest material database should be

the Cambridge Structural Database (CSD) launched in 1965 [46] which provides a

repository of experimental crystal structure information. Till now, CSD has become

a well-developed database that contains over 1.2 million experimental structures.

Such huge amount of data provides us the ability to screen the results, then find

the best path for our goals. Inorganic Crsytal Structure Database (ICSD) was

founded in 1970s at the Institute for Inorganic Chemistry of the University of Bonn,

Germany [167]. The number of inorganic crystals now has reached over 281,000.

Another well-known database, Material Project (MP), is initiated in 2013 and now

there are 154,718 materials that are contributed from researchers all over the world

[67]. Other than the databases that cover a broad range of materials, databases

for specific classes of materials are also often reported. The Protein Data Bank

provides structural data of biological macromolecules. Computational 2D Material

Database (C2DB) includes mainly two-dimensional materials [10, 119]. Di↵ering

from the database from experimental results, there are Quantum MOF (QMOF)

database and Open Quantum Materials Database (OQMD) that provides results

based on quantum mechanical calculations [122, 126]. The development of di↵erent

material databases greatly help and boost the material design and discovery by

providing enormous data and information. The field of computational chemistry
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and computational assisted materials discovery is rapidly growing by combining the

advantages of material databases and tools from data science.

1.3.2 High-throughput computing

High-throughput (HT) methods have been applied in both experimental and compu-

tational research. The first systematically combinatorial synthesis was reported

decades ago which shows the idea of HT methods [9]. HT processes conduct

automation experiments in a feasible large-scale repetition to find the best material

from an enormous number of possible candidates. With the development of material

databases, a tool that can comprehensively screen all data points is needed due

to the limitation of manual search as depicted in the comic below by Benayad et

al. where scientists are looking for a needle in a haystack [9]. In computational

Figure 1.6 Classical experimental approach versus HT experimentation approach.
Copyright 2021 Wiley Online Library.

chemistry, power of HT can greatly increase the e�ciency of research by avoiding the

manual calculations and extracting results because computational researchers always

deal with hundreds or thousands of materials at the same time. Establishment and

implementation of HT workflow will be explained in Chapter 3 in detail.
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1.3.3 Machine learning techniques

Quantum mechanical calculations are a powerful tool with good accuracy, but they

are still expensive in term of CPU time. For example, we need to use 4403 SUs to

calculate the electrical conductivity of a system with 100 atoms. Translating this

to a temporal context, if a single CPU is utilized, it would necessitate an estimated

duration of 4403 hours (183 days) to complete the calculations. It is impossible and

unnecessary to iterates such expensive calculations over all structures in a database.

A viable alternative is using machine learning (ML) technique [141] to save time

and computing resources. ML is a sub-field of AI that focuses on the development of

algorithms and models which are capable of learning patterns and making predictions

or decisions based on input data. In the field of materials science and discovery, ML

has emerged as a powerful tool for analyzing large datasets and learning valuable

insights to guide the design of new materials. A dataset which can be treated as a

matrix consists of m rows of instances and in each row (instance), there are columns

of data values. For a specific research purpose, we recognize one column of values

as the target of each instance that we want ML model to predict, then we select

n columns (features or descriptors) from the rest to form our training data which

can be expressed as X = [x1,x2, · · · ,xm]T where x is a instance. For each instance,

xi = [xi

1, x
i

2, · · · , xi

n
, ]. Each instance will have a target data y so that a m⇥ 1 vector,

y = [y1, y2, · · · , ym]T , represents the target data of all instances. Furthermore, we

need a hypothesis function h(xi) to compute a value according to the input features

of i-th instance. We have di↵erent forms of hypothesis in ML models and one of

them, a linear function, has the following form:

h(xi) = ✓0 + ✓1x
i

1 + ✓2x
i

2 + · · ·+ ✓nx
i

n
(1.19)

where ✓i is the parameter that will be optimized during training which can be

integrated to a vector with n + 1 dimension, ✓ = [✓0, ✓1, · · · , ✓n]. The error of i-th
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instance is:

h(xi)� yi (1.20)

For m instance, the total error of hypothesis h(X) can be computed by a summation

which we call it loss function:

J(✓) =
mX

i=1

f(h(xi)� yi) (1.21)

where function f() is an extra function that converts the computed error into di↵erent

forms applied by di↵erent ML models. The final goal is to minimize the loss function

J so that the computed values (predictions) from the hypothesis get close to the

target values. In most of ML models, predictions are made as the principles above

and the main di↵erence is the form of the hypothesis and loss function.

Tasks of ML can be simply categorized into two parts, supervised and

unsupervised learning. Other learning method like semi-supervised learning, reinforced

learning or active learning can be adopted depending on the usage. Supervised

learning indicates ML models are trained by labeled datasets. This category of

tasks can be further divided into two types according to the forms of the target.

If we need the ML model to classify the instances in a dataset into specific number

of classes, then it is a classification type. If we need the ML model to compute a

value for each of the instance, it should be a regression type. Unsupervised learning,

on the other hand, uses unlabeled datasets and focuses on separating instances into

di↵erent classes according to their features without users supervision. As shown in

Figure 1.7, a complete implementation of ML can be divided into three steps: (1) data

pre-processing, (2) Training and testing the model and (3) make predictions. Before

we train an ML model, data pre-processing is needed because di↵erent numerical scale,

significant numbers and distribution between features can cause a misleading during

minimizing the loss function. Also, too many number of features, that may contain
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Figure 1.7 A machine learning workflow includes di↵erent steps of data pre-
processing, training, testing and evaluating the model.

replicated features or highly similar features, can cause serious over-fitting problem

so that a feature selection process is necessary. In the second step, the processed data

will be split into training set and test set at a fixed ratio. Training set is used to train

the model and find the best set of ✓ that minimize the loss function. To avoid the

error induced by splitting, cross-validation is adopted to assess the model performance

more objectively. During cross-validation, the training set is further evenly divided

into k smaller sets and we call such situation as k-fold cross-validation. A 10-fold

cross-validation is shown in Figure 1.8. For each one out of the ten small sets is used

Figure 1.8 An illustration of a 10-fold cross-validation.

as validation set to assess the performance and the training will be repeated 10 times.

The final performance is computing by taking the average of ten training loops. After

the loss function is minimized according to the training set, the test set is used to
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assess the performance of the model. When implementing ML in research, multiple

ML models will be attempted and the best model will be selected according to the

performance scored by the test set.
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CHAPTER 2

METAL-TO-SEMICONDUCTOR TRANSITION IN
TWO-DIMENSIONAL METAL-ORGANIC FRAMEWORKS

2.1 Discrepancy in the Literature on Conductive Behavior of 2D MOFs

Tuning electronic properties of 2D MOFs for any specific application can be a

complicated challenge due to the flexibility of the layered structure held together

via rather weak van der Waals interactions. We have recently characterized three

categories of dynamical motions in 2D MOFs as well as deformation sites [104, 133]

which can directly a↵ect both intra- and inter-layer charge transport. The continuous

strive for unravelling the electronic characteristics of 2D MOFs is most illustrated

in the case of Ni3(HITP)2, HITP= 2,3,6,7,10,11-hexaiminotriphenylene (Figure 2.1),

which was first synthesized and introduced as a semiconductor by Dincǎ and coworkers

[131]. While all following theoretical studies categorized Ni3(HITP)2 as metallic

[20, 38, 171], it was utilized to build the first 2D MOF-based field-e↵ect transistor

(FET) device emphasizing on its semiconducting character [155]. A subsequent

theoretical study suggested that the discrepancy between theory and experiment is

rooted in the presence of defects in experimental samples while theoretical studies

were carried out on pristine models [37]. Specifically, it was estimated that manually

displacing 2D layers with respect to each other would weaken the ⇡� ⇡ stacking and

as a result an energy gap of 15-100 meV would appear along the interlayer direction

[37]. This is not the end of story though. A very recent experimental study by

Day et al. reported the synthesis of metallic Ni3(HITP)2 single rods [30] while still

emphasizing on semiconducting nature of Ni3(HITP)2 pellets reported in 2014. [131]

In short, Ni3(HITP)2 showcases the existence of a very close structural-electronic

properties relationship in 2D MOFs. Another historical example is Ni3(HIB)2, HIB

= hexaiminibenzene, which was synthesized as the first metallic 2D MOF in 2017

[35] while recent reports emphasize on its intrinsic semiconducting nature with a
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Figure 2.1 Layered structure of Ni3(HITP)2 (HITP = 2,3,6,7,10,11-
hexaiminotriphenylene) 2D MOF with the unit cell and HITP linkers highlighted.

band gap of 0.49 eV. [57] The message of the short history of conductive 2D layered

MOFs briefly stated above is not discrepancy but, a rich material genome that o↵ers a

spectrum of potential applications. The pressing challenge here is to have a road map

for this class of materials whose electrical conductivity is largely influenced by their

flexible and varying structure rather than composition. In pursuit of such road maps,

here, we leverage a variety of computational toolbox to (1) provide an appropriate

input crystal structure and density functional for electronic structure calculations;

(2) characterize the electronic and structural features a↵ecting charge transport

pathways/mechanisms; and (3) unravel the correlation between temperature-induced

flexibility of 2D MOFs and their intrinsic electrical conductivity. We show that the

flexibility, originating from a variety of intrinsic dynamical motions and deformations,

a↵ect the intra- and inter-layer conductivity to di↵erent degrees. In this work, we
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study Ni3(HITP)2 as an archetypal conductive 2D MOF but the produced physical

insights by no means are restricted to this material. Computational details of this

are presented in the next section. Section 2.3 provides the results and the associated

discussions. Future outlooks are provided in Section 2.4 with our main findings

summarized in Section 2.5.

2.2 Computational Details

2.2.1 Input crystal structure

Electronic band structure calculations of 2D MOFs are prone to significant variability

due to the lack of single-crystal information since almost all experimental measurements

have been carried out on polycrystalline pellets. [158] Computational studies have

relied on building and minimizing a monolayer of the 2D MOF, then stacking

similar layers and manually moving them along the stacking direction as well as

the ab plane in order to approximately reproduce the unit cell features inferred

from powder X-Ray di↵raction measurements. [20, 21, 35, 37, 38, 131] Such

approaches [35, 57] are susceptible to numerous errors as one can not guarantee

accurate probing of the whole phase-space and visiting all the stationary points

in order to locate the true local minima on the potential energy surfaces of the

studied 2D MOFs. We propose to avoid any adcohism in electronic band structure

calculations by starting from the only experimentally available single-crystal for

2D MOFs which is the hexagonal crystal structure of Co3HHTP2 [58] (HHTP

= 2,3,6,7,10,11-hexahydroxytriphenylene). We built a crystal structure shown in

Figure 2.2 comprised of two layers and a total of 150 atoms for Ni3(HITP)2 MOF by

(1) removing the alternate Co3(HHTP)(H2O)12 layers, (2) removing all solvent (water)

molecules and hydration water from the Co3(HHTP)2(H2O)6 layers, and (3) replacing

Co2+ with Ni2+ and hexahydroxytriphenylene linkers with hexaiminotriphenylene.
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Figure 2.2 Optimized structure of Ni3(HITP)2 MOF by PBE-D3 functional.

Next, periodic electronic structure calculations were performed to minimize both

cell vectors and atomic positions using the periodic boundary conditions. This

brings us to the next computational dilemma in dealing with 2D MOFs which is

the choice of an appropriate exchange-correlation functional. Since the layers in

bulk 2D MOFs are stacked via rather weak van der Waals interactions, the correct

description of these interactions is of utmost importance. Therefore, we conducted

a benchmark study on minimized cell vectors and atomic positions obtained using

di↵erent exchange-correlation density functionals starting with the widely employed

Perdew-Burke-Ernzenhof (PBE) [114] functional within the generalized gradient

approximation (GGA) formalism.

In addition, we tested the performance of the revised version of PBE (RPBE)

[49], PBE for solids (PBEsol) [116] and the non-local van der Waals density functional

(vdW-DF) [5, 86, 129] combined with a series of dispersion correction schemes in the

form of PBE functional with Grimm’s damped D2 and D3 dispersion corrections

[44]. The double-zeta valence with polarization (DZVP-MOLOPT) basis set and

core-electron pseudo potentials according to the Geodecker-Teter-Hutter (GTH)
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Table 2.1 Computed Cell Vectors (a and c in Å) as well as Interlayer
(d in Å) and Slipping Distances (ds in Å)1 in Ni3(HITP)2 2D MOF Using
Di↵erent Density Functionals and Dispersion Correction Schemes and the
DZVP-MOLOPT Basis Set

XC functional a (Å) c (Å) d (Å) ds (Å)

PBE 21.923 16.912 8.552 0.264

RPBE 22.460 17.016 9.407 0.570

PBEsol 22.272 18.283 9.002 0.543

vdW-DF 22.037 8.067 3.810 0.716

PBE-D2 21.774 6.493 3.223 1.472

PBE-D3 21.774 6.644 3.299 1.441

Sheberla et al. 21.75 6.66 3.33 ⇠1.8

Day et al. NA NA 3.3 NA

1
ds =

p
(x1 � x2)2 + (y1 � y2)2 where xi and yi are coordinates of Ni

atoms in two di↵erent layers.

formulation [41, 51, 77] was used as implemented in CP2K version 7.1 [64]. The energy

cuto↵ is set to 500 Ry and the convergence criterion of self-consistent field (SCF)

computation is set to 1⇥10�5. Table 1 lists the computed cell vectors, inter-layer

distances (d), and slipping distances of two layers with respect to each other (ds) in the

ab plane obtained using all considered density functionals compared to the available

experimental data. Pure GGA functionals, i.e., PBE, RPBE, and PBEsol, result

in similar a vectors to the 21.75 Å value inferred from PXRD measurements [131].

However, all three functionals overestimate the computed c vectors by 10 Å (⇡ 17

Å compared to 6.66 Å from PXRD, Table 2.1) due to not accounting for dispersion

corrections in these layered materials. The vdW-DF functional provides a better

accuracy than the PBE series [73], resulting in a computed c vector of 8.067 Å and d

of 3.810 Å (Table 2.1). Adding Grimm’s damped D2 and D3 dispersion corrections

[44] to the PBE functional produces even better agreement with experimentally
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inferred results than vdW-DF reducing d to the striking range of 3.223 and 3.299

Å, respectively. Comparison of ds values of ⇠1.45 Å shows that these two functionals

have the closest agreement with the experimentally inferred value of ⇠1.8 Å[131].

Overall, based on these results, we choose PBE-D3 as the method of choice throughout

this work.

2.2.2 Periodic ab initio molecular dynamics simulations

Accurate simulation of structural dynamics in flexible materials such as ⇡�stacked 2D

layered MOFs has many implications on their chemical stability and reactivity in both

gas phase and aqueous solutions. Di↵erent electrical properties such as band gaps and

band structures obtained using static 0 K optimized structures completely neglect

the e↵ects of external stimuli such as temperature on overall dynamical flexibility

and electrical conductivity of the studied material. In order to provide a realistic

estimation of the band gap and electrical properties of flexible layered 2D MOFs

subject to temperature-induced structural dynamics we performed periodic ab initio

molecular dynamics (AIMD) simulations starting from the 1⇥1⇥1 optimized unit cells

at the DFT level using our elected dispersion corrected PBE-D3 density functional.

By comparing electrical properties of the resulted structures from AIMD simulations

to the ones obtained from the 0 K static calculations one can disentangle the e↵ect of

incorporation of structural dynamics on the overall electrical properties of these highly

flexible materials. For these simulations, the experimentally determined temperature

and pressure of 293 K and 1 atm with a time step of 1 fs and a total production time

of 8 ps were used. A lower cuto↵ of 300 Ry was used in all AIMD simulations to

make them more tractable. The equations of motion were propagated in the isobaric-

isothermal (NPT) ensemble to allow the simulation boxes to vary and hence the layers

move along the c direction (breathing movement) and along the ab plane (slipping

movement). The temperature was controlled by using the canonical sampling through
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velocity rescaling (CSVR) thermostat [16]. Analysis of the trajectories reveals that

the thermodynamic equilibrium is reached within the first 1 ps of the simulations as

shown in Figure 2.3. All periodic AIMD simulations were performed using CP2K

version 7.1 [64].

Figure 2.3 The temperature (a) and energy (b) equilibriums are reached after 1ps
during the AIMD simulation.

2.2.3 Electronic band structure calculations

Periodic electronic structure calculations were performed at the PBE-D3 level as

implemented in Vienna ab initio simulation package [80, 81, 78, 79]. Interactions

between electrons and ions were described by Projector Augmented Wave (PAW)

potentials [12, 82] with the energy cuto↵ of PAW potentials set to 500 eV. Hubbard

U approach (DFT+U) is adopted to treat the d states of the Ni transition metals.

In this study, only the di↵erence between coulomb term U and exchange term J,
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defined as Ueff = U � J , is taken into consideration with the value of Ueff set

to 6.7 eV for Ni [98] and 10.0 eV for Zn [151]. Gaussian smearing was adopted

in all calculations with a smearing width of 0.05 eV. The convergence criteria

were 10�5 for SCF calculations and 10�6 for electronic property calculations. The

k-point mesh in the Monkhorst-Pack scheme was set to 2⇥2⇥6 in the SCF part and

twice denser in following calculations for the hexagonal unit cell. Electronic band

structure calculations adopt the k-path in Figure 2.4. Spin polarized calculations

were performed for all systems.

Figure 2.4 Phase space paths for Ni3(HITP)2 system. Same paths were used for
Zn3(HITP)2.

2.3 Results and Discussion

To examine the relationship between flexibility and charge mobility in 2D MOFs,

and to provide a guideline for fine-tuning MOF band gap openings, we compare

the band structures as well as atomic-orbital projected density of states (pDOS)

at 0 K vs. 293 K. First, it should be noted that the extension of layers in the

ab plane vs. their stacking in the c direction leads to extended-conjugation vs.

through-space charge transport (CT) pathways. Intra-layer extended-conjugation in

2D MOFs is the result of pairing transition metals with organic linkers containing
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chelating functional groups, such as hexa-substituted triphenylenes and benzenes.

Conjugation of the transition metal d orbitals with the extended ⇡ � ⇡ system of

the functional groups and organic core of the ligands has been known to be the main

route of charge delocalization in 2D MOFs [131, 18, 62, 35, 32, 30]. However, it is not

easy to disentangle extended-conjugation from through-space CT pathway between

layers especially for triphenylenes linkers with a large ⇡-conjugation that might favor

the latter mechanism over the former. Although recent studies are paying more

attention to through-space conductivity in 2D MOFs [135], the role of inter-layer

⇡ � ⇡ interactions in charge delocalization of the bulk structures remains to be fully

elucidated. Our analysis of Ni3(HITP)2 electronic band structures at 293 K reveals the

rather high sensitivity of the electrical conductivity to thermally-induced structural

deformations and displacements of layers. Since these dynamical motions can a↵ect

both intra- and inter-layer CT pathways, first we disentangle the contributions

of extended ⇡ � d conjugation and through-space ⇡ � ⇡ interactions in charge

delocalization subject to these geometrical features. We project these contributions

on di↵erent building blocks of 2D MOFs, namely organic linkers and transition

metal centers, to investigate how the character of the corresponding frontier orbitals

correlate the flexibility of the framework to its electrical conductivity.

2.3.1 Metallic/semiconducting boundary: dependence on the nature of
the frontier orbitals

The PBE-D3 optimized Ni3(HITP)2 at 0 K shows slipping of layers with respect

to each other in the ab plane which is consistent with its previously characterized

slipped-parallel stacking configuration [131, 20]. The layers are nearly planar allowing

for an extended ⇡�d and ⇡�⇡ conjugation along the layers. The C-N-Ni-N dihedral

torsion of the two ligands around the central Ni atom in the ab plane is very close to

180⇠ 177leadingtonearlysquareplanarSBUs, seeF igure 2.5(a).
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Figure 2.5 The optimized structure of (a) Ni3(HITP)2 and (b) Zn3(HITP)2 2D
MOF at 0 K. (c) Representative equilibrated Ni3(HITP)2 structures at 293K.

Figure 2.6a illustrates the band structures and projected density of states

(pDOS) diagrams of Ni3(HITP)2. We note that although similar calculations have

been already reported, e.g. in Ref. [38], however, the employed structures there

were obtained by manually displacing the layers with respect to each other in the

ab plane without minimizing the cell vectors and atomic positions afterward. We,

on the contrary, obtained these results from a careful construction of an input

crystal structure and minimizing both the atomic positions and cell vectors using

our validated PBE-D3 functional, hence, avoiding any bias in the obtained results.

As such, we provide a full explanation of our results which based on this robust

methodology paint a di↵erent detailed picture of the band structure and pDOS

diagrams of Ni3(HITP)2 compared to previous studies. Bands in MK� region of

Figure 2.6a exhibit a relatively large dispersion away from the Fermi level yet, the

conduction band minimum (CBM) is found to drop below the valence band maximum

(VBM) for k ! 0 along the K-� line. This aspect is di↵erent from bands in Ref. [38]
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Figure 2.6 Band structure diagrams and pDOS profiles of (a) Ni3(HITP)2 2D MOF
at 0 K; (b) convergence to the Ni3(HITP)2 mono-layer by increasing the inter-layer
distance to 5 Å; and (c) exclusion of the extended ⇡ � d conjugation in Zn3(HITP)2
system at 0 K. The computed pDOS profiles are separated into two groups of orbitals
with z component, far right panels, and orbitals with x and y character, far left
panels. The insets in the far left panels are schematic representation of planar layers
in Ni3(HITP)2 vs. stepped layers in Zn3(HITP)2. The arrows " and # represent
spin-up and -down, respectively.
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which show two conically-shaped valleys meeting at ⇠ E0 close to the corner of the

first Brillouin zone (BZ), similar to Dirac points observed in graphene bands [125, 31].

In contrast, our band diagram displays a semimetallic signature [72] for an indirect

band gap opening, qualitatively equivalent to a semiconducting signature with the

di↵erence that VBM and CBM do not energetically overlap. In this regard, we point

out that although the semimetallic/metallic boundary in these structures is di�cult

to define, from a semiconducting point of view the band gap can be easily tuned, for

instance by slightly varying the inter-layer distance. Figure 2.6a also demonstrates

the band structure of Ni3(HITP)2 at the LHA region where, again, we can see a

semimetallic behaviour. Here, we notice another di↵erence between this band diagram

and the one reported in Ref. [38] as we find an intra-band splitting at the minimum of

the conduction band. This e↵ect probably is due to the spin degeneracy lift originated

from spin–orbit coupling (SOC) under symmetry breaking along the LHA line (i.e.,

because of the slipping of layers in the ab plane), resulting in Rashba e↵ect activation

[173]. In fact, in the case of metal halide perovskites, it is shown that when the SOC

is enhanced the Rashba e↵ect may decrease the minimum of the conduction band

resulting in a smaller band gap energy [70]. This topic goes beyond the scope of

the present work but will be discussed in more details in our future studies. The

far right panel of Figure 2.6a shows that the pDOS near the Fermi level is almost

fully contributed by the pz orbitals of the C and N atoms as well as the delocalized d

orbitals of the Ni transition metals. A closer look at frontier orbitals shows that the

two dyz and dxz orbitals of Ni which lie almost along Ni�N bonds, see the figure on

top of Table 1, are the ones contributing to the Fermi level and create an intra-layer

extended ⇡ � d conjugation CT pathway. This is due to the close to perfect planar

layers in Ni3(HITP)2 at 0 K which provides optimum overlap between the transition

metal dyz and dxz orbitals and the pz orbitals of the organic linkers.
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Focusing on the out-of-plane band structure of Ni3(HITP)2 in Figure 2.6a,

one can see large band dispersions within the ��A region indicating strong ⇡ � ⇡

interactions between layers as expected from the triphenylene linkers with their large

⇡ systems. As mentioned before, the role of through-space ⇡ � ⇡ interactions on

CT in 2D MOFs is not as widely acknowledged as extended ⇡ � d conjugation. To

disentangle these two competing CT pathways we analyzed the electronic structure of

two extreme cases. Figure 2.6b illustrates the band structure and pDOS diagrams of

the optimized Ni3(HITP)2 at 0 K when the inter-layer distance is increased from the

original 3.299 Å to 5 Å in an attempt to suppress the ⇡ � ⇡ interactions between

the layers. Figure 2.6c exhibits the band structure and pDOS diagrams of an

alternative framework where Ni2+ atoms are replaced with Zn2+ creating Zn3(HITP)2

2D MOF. Here, in contrary to the d8 electronic configuration of Ni2+ in square planar

coordination environment the filled d10 configuration of Zn2+ causes the SBU to act as

a nodal plane separating the redox active triphenylene linkers and thereby disrupting

the extended ⇡�d conjugation and intra-layer CT pathway. Analysis of the electronic

structure subject to increasing the inter-layer distance along the c direction has

been previously carried out on a crystal structure where the layers were manually

displaced in the ab plane [38]. It was shown that both valence and conduction band

minima locations may change by increasing the inter-layer distance, suggesting a

possible strategy to tune the semiconducting properties in Ni3(HITP)2, for instance

by flattening valence and conduction bands. Our calculated band diagram at 5.0 Å,

Figure 2.6b still shows band dispersions within the ��A region indicating that van

der Waals interactions between layers has a much longer range than what presumed

before. It can be said with certainty that unlike graphene, the bulk structure of 2D

MOFs with hexa-substituted triphenylene linkers possess relatively good conductivity

in both the intra- and the inter-layer directions. Nevertheless, flattening of the

valence and conduction bands in the ��A region is promising a narrow band-gap
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semiconductor should the inter-layer distance be increased beyond 5.0 Å where the

structure will eventually converge to the mono-layer level. Further analysis of the

band diagrams shown in Figure 2.6b reveals that increasing the inter-layer distance

not only a↵ects through-space but also extended-conjugation CT pathway. The band

structure along the LHA region shows a semiconducting signature where there is a

gap opening between the top of the valence band and the bottom of conduction band

at the point A. Therefore, our findings show that a structural change in the stacking

direction, let it be by deformations, slipping of layers or change of the inter-layer

distance, a↵ects the charge mobility through-space and through extended-conjugation

pathways, suggesting a way to adjust or even switch between the intra-layer vs.

inter-layer conductive anisotropy in 2D MOFs. We will show in the next section

that the intrinsic dynamical motions in 2D MOFs turn these structural changes to

an inherent characteristics of these materials which can greatly a↵ect their overall

electrical conductivity.

Comparison between optimized structures of Ni3(HITP)2 and Zn3(HITP)2

shows a stark di↵erence in stacking of the layers. While these layers are almost planar

in Ni3(HITP)2 they adopt a stepped form in Zn3(HITP)2 due to the absence of ⇡� d

conjugation, see schematic representations in the insets of Figure 2.6c and optimized

structures in Figure 2.5(b). As shown in Figure 2.6c, one can see a band-gap opening

as big as ⇠1 eV in the intra-layer MK� region, clearly signaling a semiconducting

nature for this material in the ab plane. Interestingly, the lack of the intra-layer ⇡�d

conjugation is accompanied by stronger inter-layer ⇡ � ⇡ interactions which causes

0.5 Å shrinking in the optimized c vector compared to the analogues Ni3(HITP)2

system (i.e., from 6.644 Å to 6.143Å). This confirms the interconnection/competition

between the two CT pathways where weakening of one may result in strengthening of

the other. Out-of-plane band diagram shows that deep valence bands cross the Fermi

level in the ��A region demonstrating lower e↵ective masses of charge carriers than
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Ni3(HITP)2 and consequently higher charge mobility in the c direction induced solely

by through-space ⇡�⇡ interactions between organic linkers. This, again, emphasizes

on the important role of ⇡ � ⇡ interactions on the bulk electrical conductivity of 2D

MOFs.

2.3.2 Localized charge states and isotropic behaviour analysis at finite
temperature

As we have shown recently [133, 104], ⇡�stacked layered 2D MOFs are flexible

materials with a wide range of dynamical motions especially in the presence of an

external stimuli such as temperature, pressure, electric and/or magnetic field. Even

the optimized Ni3(HITP)2 at 0 K shows layers that are slipped in the ab plane

(⇠1.44 Å) and a small twist of ligands around the central Ni site (⇠177 Here,

AIMD simulations were carried out at 293 K temperature and 1 atm pressure on

Ni3(HITP)2 in the NPT ensemble (constant pressure/constant temperature), allowing

the simulation box to vary, for a total production time of 8 ps. The layers in the

equilibrated system show a stepped geometry unlike the planar geometry of the 0 K

optimized structure, see Figure 2.5(c), with a more vivid range of dynamical motions.

Figure 2.7 demonstrates schematic representation of these motions as well as their

statistical analysis in Cartesian coordinates during the entire 8 ps AIMD simulations.

As evident in Figure 2.7a the in-plane slipping motion of the layers, represented

by the position of the Ni atoms in each layer, is a continuous movement and can

occur up to an extra 1 Å displacement in the x direction and up to 1.5 Å along

the y direction. Another motion revealed in the equilibrated system is the breathing

of the layers in the stacking direction as depicted in Figure 2.7b. As pointed out

before, changes in the inter-layer distance has a great impact on both the in-plane

and out-of-plane electrical conductivity and hence one can envision the importance

of including temperature and pressure in the simulations in order to paint a more

realistic picture of CT pathways and mechanisms in these highly flexible materials.
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Figure 2.7 In-plane vs. out-of-plane motions of the secondary building units (SBUs)
in Ni3(HITP)2 during an entire 8 ps AIMD simulation. (a) Motion along the x and
y axes for two Ni atoms belonging to the first (red) and second (brown) layer. Initial
positions are shown as green points. (b) Out-of-plane motion of the Ni atoms in the
first (bottom) and second layer (top). (c) Out-of-plane motion of N atoms around
the central Ni metal sites.

Figure 2.7c depicts the out-of-plane motions of the N atoms around the central

Ni centers, indicative of a stepped geometry for the layers as four amino groups

are divided to two groups of two in the z direction. Moreover, the never-ending

motion of the N atoms during the AIMD simulation as shown in Figure 2.7c reflects a

continuous SBU deformation at 293 K, resulting in a constant change of coordination

environment from square planer to nearly tetrahedral. The deformations along each

Ni3(HITP)2 layer was also confirmed by taking the average over the collective atomic

motions during the duration of the performed dynamics. Figure 2.8a shows the

profiles obtained from taking the average over the out-of-plane displacements. We

can see how the di↵erence between the average over one organic linker unit (i.e.,

18 C atoms) and one layer (i.e., 36 C atoms) increases during the simulation. This

di↵erence by contrast is quite small if we compare one SBU to four SBUs (i.e., the

total number of SBUs in one layer). In Figure 2.8b we project these averages on

the molecular plane in xy direction. Again, one can see larger deformations for
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Figure 2.8 Inorganic (SBU) vs. organic (L) collective (a) out-of-plane and (b)
in-plane motion in Ni3(HITP)2 during an entire 8 ps AIMD simulation. Subscript
T and l stand for average over one layer and one unit, respectively. Profiles of the
maximum and minimum values are also shown for the out-of-plane displacements.

the organic units compared to SBUs. Figure 2.9(a) illustrates the band structure

and pDOS diagrams of the AIMD equilibrated Ni3(HITP)2 at 293 K. There are

striking di↵erences between these diagrams and those of the optimized structure at

0 K. We see intra-layer band openings in the range of 50 to 200 meV, which are

close to the range of 20-120 meV previously reported [37] for Ni3(HITP)2 through

introducing various forms of defects into the structure. Similar to intrinsic (undoped)

semiconductors, the Fermi level lies at the center of the band gap and a narrow band

gap is observed due to redox matching between the SBU and the organic linkers.

Interestingly, the out-of-plane band structure along the ��A region also shows the

signature of semiconducting behaviour in the ⇡ � ⇡ stacking direction compared to

the metallic behaviour in the 0 K structure. We emphasize that this semiconducting

nature is the result of di↵erent classes of thermally-induced interconnected dynamical

motions which change the nature of frontier orbitals. Comparison between pDOSs

with z component between 293 K and 0 K, i.e., far right panels of Figures 2.9 and

2.6, respectively, shows that the metal dxz and dyz orbitals are pushed toward lower

energies. On the other hand, the stepped geometry in the 293 K structure allows for
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Figure 2.9 Band structure diagrams and pDOS profiles of the Ni3(HITP)2 2D MOF
at 293 K and 1 atm. Top: at the 8ps during equilibrium; middle: at the 1ps during
equilibrium; bottom: at the 3ps during equilibrium.
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contribution of the metal dxy and dx2�y2 orbitals to the Fermi level albeit to a smaller

degree, compare far left panels of Figures 2.9 and 2.6. Clearly smaller contribution of

the Ni d orbitals to the Fermi level disrupts the ⇡� d extended-conjugation pathway

in the stepped geometry compared to the close to perfect square planar geometry in

the 0 K system. This leads to intra-layer band-gap openings and flat bands with high

e↵ective band masses. The same e↵ect can be seen in the LHA region with a relatively

smaller band gap opening and a competition between direct and indirect band gaps.

The flat bands could potentially result in low charge mobility (µ) as µ is inversely

proportional to the e↵ective mass (m⇤) which in turn is related to the curvature

of the electronic band structure in the reciprocal space, (µ = ⌧e/m⇤) with e and ⌧

being the elementary charge and the scattering time, respectively. However, as in

the case of any other intrinsic semiconductor, thermally or optically excited electrons

can contribute to the electrical conductivity. In the absence of a photonic excitation,

intrinsic semiconduction takes place at temperatures above 0 K as su�cient thermal

energy is required to transfer electrons from the valence band to the conduction band.

With small band gaps, such as in the case of the Ni3(HITP)2 2D MOF, thermal energy

is su�cient to create significant concentrations of electron and hole carriers. In case of

a large band-gap though, defect and/or doping strategies will be required in order to

increase the carrier concentrations and hence increase the conductance. It is worthy

of mentioning that although flat bands of equilibrated Ni3(HITP)2 2D MOF signals

high e↵ective mass and lower delocalization, one may argue that it can decrease

the recombination rate of electrons and holes and lead to an unexpected enhanced

charge mobility. We note that the out-of-plane bands are still relatively dispersed

through Fermi level which again demonstrate the importance of the through-space

CT pathway in 2D MOFs.

Finally, we draw attention to the fact that the flexible nature of 2D MOFs

is a dynamic feature. All three groups of dynamical motions characterized in this
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section are constantly changing the structural features and electronic structure of

the material. Any di↵erent combination of these motions can lead to a varied band

structure diagram. To demonstrate this, we extracted snapshots of the Ni3(HITP)2

from the AIMD trajectory at 1 ps and 3 ps and calculated their electronic band

structures, see Figure 2.9(b) and (c). Although both of these snapshots show an

intrinsic semiconductor but the intra-layer band gaps can decrease lower than 10 meV

or increase by more than 700 meV. In the case of the 3 ps snapshot, even the inter-layer

band structure shows signs of a very narrow band-gap opening. Therefore, due to

the interconnection of several structural motions in inducing band-gap openings we

find it more instructive to provide a qualitative description of the correlation between

flexibility and conductivity instead of a quantitative one. Interested reader can apply

the the results of the previous section to decipher the band diagram features, for

example band-gap openings along the out-of-plane direction can be a combination of

increasing inter-layer distance and slipping of layers at the same time which reduces

the perfect through-space ⇡�⇡ interaction between layers. One should also remember

that the relevance of computed band structures here, or based on any other similar

dynamics simulations in future, to the real transport properties of a 2D MOF should

be considered in the light of the presence of a high density of charge-scattering sites,

specifically grain boundaries, in the synthesized polycrystalline pellets.

2.4 Outlook

It is well-known that electrical conductivity of 2D MOFs is dictated by the density and

mobility of charge carriers, i.e., electrons and holes. Here, we established that intrinsic

flexibility of the ⇡�stacked layered frameworks should be considered as another

important factor dictating the electrical conductivity. Our analysis clearly shows

that transition from metallic to semiconducting occurs in the case of Ni3(HITP)2,

as an archetypal 2D layered MOF, should the thermally-induced deformations are
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allowed to happen. Furthermore, the e↵ect of flexibility on the electrical conductivity

is an unceasing phenomenon. Overall, our analysis reveals that the structural

deformations and flexibility of the framework dictate the in-plane vs. out-of-plane

orbital contributions at the Fermi level. The extent of these structural deformations in

turn is sensitive to the nature of the building units (i.e., linker and SBU). For example,

we have shown elsewhere that the high a�nity of Co2+ centers to oxo-substituted

triphenylene linkers create inter-layer connections to the neighboring layers within the

2D framework [133]. As long as one considers the matching between the SBUs and

linkers (tessellation), the nature of orbital contributions at the Fermi level, and the

structural deformations or flexibility of the framework, they can qualitatively predict

the intraband mobility in a specific region of the band spectrum. Eventually, the

conductive properties of the material can be tuned by balancing the intra-/inter-layer

carrier transport anisotropy at a given temperature and/or pressure. However, a

more accurate fine tuning of electrical properties requires a quantitative analysis of

the intraband transfer integrals vs. the reorganization energy involved in the charge

transport. Carriers move either through delocalized bands (through band mechanism)

or through trapped polaronic states (hopping mechanism), depending on the strength

of the electron-phonon coupling. Let us assume for instance that we wish to design a

2D MOF with semiconductive absorption properties. Figure 2.10 shows a schematic

representation of the E � k diagram of indirect and direct band gaps. Provided

a specific tessellation of the 2D MOF topology according to the node and linker

design principle [60] and based on the expression (SBU)m (L)n [19] we can localize

charge states on the lattice through modifying intra-/inter-layer CT pathways via

slight framework deformations. One can realize this objective by varying external

temperature, pressure and electric/magnetic fields. The induced polaronic states

would flatten the curvature of the electronic band structure, allowing the emergence

of a narrow band gap. In the resulting indirect band-gap, electron-hole recombinations
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based on the radiative event is unlikely as it requires the photon to obey total

momentum conservation according to In order to supply a set of design principles, our
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thermalization
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Figure 2.10 E � k diagram representations to display the structure-properties
relationship in 2D MOFs. Given a (SBU)m (L)n composition to construct the MOF
tessellation [19], the semiconductive properties of the material can be fine-tuned by
adjusting the in-plane vs. out-of-plane orbital contributions.

current research is focusing on quantitative control over the reorganization energy,

which might represent the ultimate road map to predict semiconductive MOFs with

tailored structures and transport properties.

2.5 Concluding Remarks

2D layered MOFs, comprised of paired transition metals with hexa-substituted

triphenylene or benzene linkers, are a new class of materials that o↵er breakthrough

applications due to electrical conductivity in addition to exceptional high surface area

and permanent porosity of conventional MOFs. The progress in their implementation

in devices is hampered by the lack of understanding of the intrinsic structure and
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dynamics of the layered architecture. Here, we show for the fist time that static

electronic structure calculations result in a close to a perfect crystal structure and

square planar coordination environments fail to reflect the realistic experimental

conditions. Through comparing electronic band structures calculated at 0 K

vs. the MD equilibrated systems at 293 K we show for the first time that

incorporation of intrinsic thermally-induced structural deformations in 2D MOFs is

crucial in realization of a qualitatively correct picture of their electrical conductivity.

Particularly, a semiconducting nature was found for Ni3HITP2 as a result of the

incorporation of di↵erent dynamical motions such as deformation of SBUs from

square planar geometry, change of inter-layer distances and slipping of the layers

compared to each other. We provided insights into the electrical conductivity via

disentangling extended ⇡ � d conjugation from ⇡ � ⇡ through-space CT pathways

where it was shown for the first time the ⇡�⇡ interactions between layers to be if not

more crucial but more important as extended-conjugation in dictating the electrical

conductivity of the bulk material. Overall, our work highlights the importance of

including temperature-induced lattice vibrations in simulation of flexible 2D MOFs

in order to obtain a more realistic picture of their electrical properties.
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CHAPTER 3

IN-SILICO HIGH-THROUGHPUT DESIGN AND PREDICTION OF
STRUCT-URAL AND ELECTRONIC PROPERTIES OF

LOW-DIMENSIONAL METAL-ORGANIC FRAMEWORKS

3.1 Background and Motivations

Various building blocks for EC-MOFs are reported in the literature and, as mentioned

in the previous chapters, MOFs in general can be rationally designed by choosing

di↵erent combinations of organic linkers and metal node building blocks. However,

considering the vast and virtually infinite chemical space of MOFs, it is extremely

labor intensive and time consuming to synthesize all di↵erent combinations of building

blocks to find the best materials for any desired application. A more e�cient and

systematic way is to create a comprehensive database of di↵erent classes of MOFs

and then screen them for desired applications using accelerated high-throughput

screening (HTS) techniques [123]. Chung et al. [25] created a computation-ready,

experimental (CoRE) MOF database with over 5,000 MOFs based on CSD in 2014.

Various other datasets have evolved from the CoRE MOF database, such as CoRE

MOF 2014+DDEC [108] where partial atomic charges were determined for 50% of the

reported MOFs using density functional theory (DFT) calculations as well as CoRE

MOF 2014-DFT-optimized [107] where DFT geometric relaxation was performed for

879 structures. CoRE MOF database itself was updated in 2019 with the total

number of MOFs being increased to 14,000 [26]. On the other hand, the Cambridge

Crystallographic Data Centre (CCDC) created a MOF subset based on existing CSD

which contains the largest number of experimentally synthesized MOFs to date [101].

A total number of 69,666 MOFs were gathered in this subset after screening the

original CSD based on seven di↵erent criteria and removing solvent molecules from

the MOF pores. A more recent work by Rosen et al. [122] in 2021 introduced

a new database called Quantum MOF (QMOF) database containing 15,713 MOFs
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that were successfully optimized and analyzed by HTS periodic DFT workflows. Not

only experimental MOFs are collected in di↵erent databases, a hypothetical MOF

database is also recently built by Wilmer et al. [153] where 137,953 new MOFs were

created from a combination of 102 di↵erent building blocks. More than 300 candidates

were selected with excellent methane storage capacity. More recently, Gharagheizi et

al. [40] created a collection of ⇠20000 1D MOFs curated from CSD nondisordered

MOF subset which include ⇠2000 electrically conductive structures. All these

carefully curated databases allow selection of materials with desired properties and

performance for specific applications by fast screening of hundreds and/or thousands

of structures. However, they all exclude or at best partially include ⇡-stacked

layered EC-MOFs since they are a very new class of materials. Considering the

wide potentials of EC-MOFs, it is crucial to first build a comprehensive database for

them which will then allow various HTS techniques to be routinely applied in order

to accelerate materials design and discovery. Here, we report the first installation

of our experimentally-guided, computationally-ready database of EC-MOFs, coined

EC-MOF/Phase-I, containing 1,057 bulk and mono-layer structures. This database

is available to the community use via the developed online platform during the

course of this study at https://ec-mof.njit.edu. All the structures in this database

follow a comprehensive naming rule as shown generally and with an example in

Figure 3.1. This naming rule, which will be explained in the next section, gives

enough information to the user about the nature of metal nodes, functional groups,

organic linkers, connectivity between building blocks and type of unit cells. In this

way, the users can easily have access to the desired structure in the database through

the choice of each of these components where they can build and download their

structure. Furthermore, the users not only have access to the crystal structures

but also geometric data and electronic properties obtained using our in-house HTS

workflow. We will provide the details of the applied procedures and developed
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Figure 3.1 Naming rules used for the structures included in EC-MOF/Phase-I
database (left) and an example of a built NiHITP crystal structure (right).

software for building the database in the next section. In section 3.3, we will present

the results of our HTS investigation of the carefully curated 1,057 bulk and mono-layer

systems. Section 3.4 outlines future directions with concluding remarks given in

section 3.5.

3.2 Computational Developments

3.2.1 EC-MOFs from literature

In this work, we first performed a thorough literature survey and summarized

all reports on EC-MOFs that have been either synthesized and/or theoretically

investigated. With the intention of developing a structure creation tool for

automatic generation of initial crystal structures of EC-MOFs for our database, we

initially focused on identifying structural features that induce the highest electrical

conductivity. Accordingly, we restricted the first version of our database to ⇡-stacked

EC-MOFs with planar layers and extended ⇡-conjugation through organic linkers and

metal nodes with 2+ oxidation state allowing for e↵ective d�⇡ conjugation. Notably,

Hofmann-type MOFs are excluded from the first version of our database because

depending on the nature of the coordinative bonds they can form 3D structures

where ⇡-stacking can occur along the in-plane rather than out-of-plane direction.
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Moreover, presence of Pt2+ nodes can disturb in-plane electrical conductivity in

some of these MOFs [128, 127]. Other classes of MOFs were excluded on the basis

of the presence of twists in the layers [93] which can disrupt extended in-plane

conjugation, presence of bi- and tri-nuclear metal nodes [91] which can disrupt

e↵ective in-plane d� ⇡ conjugation, and more than 4 Å interlayer distances [38] that

reduce out-of-plane ⇡�⇡ interactions drastically. The subset of EC-MOFs gathered in

our database follow the color-coded naming rule depicted in Figure 3.1 based on three

structural building components including organic linkers, metal nodes, and functional

groups. Figure 3.2 demonstrates all the structural components used in building

EC-MOF/Phase-I database. The eight metal nodes including Mn, Fe, Co, Ni, Cu, Zn,

Figure 3.2 Three subsets of structural building components including organic
linkers (classes 1-4), metal nodes, and functional groups (green, blue and pink boxes,
respectively). Connecting sites of organic linkers to the metal and functional groups
are highlighted by blue and pink dots, respectively.

Pd and Pt, are identified by M1 in our naming rule while X denotes three functional
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groups as H for hydroxyl, I for imino, and T for thiol that connect to the metal nodes.

The linker subset of structural building components, denoted as L in our naming rule,

consists of 11 organic linkers including benzene (B), triphenylene (TP), trinaphthylene

(TN), truxene (TX), coronene (C), tribenzocyclyne (TC), tetraazanaphthotetraphene

(TT), hexaazatriphenylene (HAT), hexaazatrinaphthalene (HATN), phthalocyanine

(Pc) and naphthalocyanine (NPc). Pc and NPc linkers can accommodate one more

transition metal atom inside. Transition metals including Fe, Co, Ni, Cu, Zn and Pd

are observed in the synthesized Pc and NPc-based MOFs [165, 109, 100, 145, 53, 84],

therefore, PcM and NPcM with 6 di↵erent interior metal centers are considered.

The connections between metal nodes and organic linkers happen through 3, 4 or

6 bidentate sites. Accordingly, 6, 8 or 12 functional groups are placed around one

linker. This is identified with C (as in Connectivity) in our naming rule which can

be replaced with H for hexa, O for octa and P for per. Furthermore, M2 is the metal

atom inside the organic linkers, if existed. At last, T indicates the type of unit cell

which has two options, bulk or mono-layer. Naturally, some of the resulted structures

are originated from reported works but most are hypothetical. Hence, our building

strategy screens all combinations of the building blocks but keeps a tight connection

between experimental and hypothetical structures.

3.2.2 Crystal structure producer

Based on the criteria established in the previous section, we identified four di↵erent

classes of EC-MOFs according to the shape and connectivity of the organic linkers

as demonstrated in Figure 3.3. An in-house structure building tool, coined Crystal

Structure Producer (CrySP), is developed to create periodic structures of EC-MOFs

that fit into these four geometric classes without any minimization using generic

force fields. The optimization of all structures was carried out at the DFT level

which will be explained in the next section. The CrySP algorithm starts by rotating
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the organic linker to the desired position, then functional groups are placed around

the organic linker according to the connectivity of the linker. Next, metal nodes are

added according to the bond length between metals and functional groups which is

specified in advance. After necessary transformations, the structure is rotated to fit

into the specified unit cell. Structures in our Database, coined EC-MOF/Phase-I,

can be classified into 3 di↵erent lattices, including honeycomb (hcb), hexagonal (hxl)

and square (sql) lattices.[92] We further divide hxl structures into 2 classes due to the

Figure 3.3 Building logic of CrySP for four di↵erent classes of MOFs created in
this work. Classification of organic linkers is given in Figure 3.2. In this figure blue
represents metal nodes, red organic linkers and green metal atoms located inside the
linkers.

unique building procedure needed for TX-based MOFs. The details of the building

procedures of the four classes may vary as schematically shown in Figure 3.3. In Class
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1, CrySP calls up the XYZ coordinates of the desired organic linker and places metal

nodes around it in appropriate positions and distances. Then, the entire structure is

reflected along the y axis. The last steps are moving and rotating the structure to fit

into the specified unit cell. In Class 2, the reflection step is replaced by moving and

rotating operations due to the special symmetry of the linker. In Class 3 and 4, once

the organic linker is placed at the center of the unit cell, functional groups and metals

are added around the organic linker without any transformational operations. At the

same time, CrySP calculates cell parameters for each class of materials by taking the

positions of metal nodes as reference points. Finally, CrySP creates the structures

in the desired formats including XYZ, Crystallographic Information file (CIF) or

POSCAR. The resulted structures at this stage are all mono-layers. To optimize the

mono-layer structures, a vacuum space of 20 Å is added to the c direction of the

unit cells. Bulk structures, containing two layers in the unit cell, are created with a

fixed inter-layer distance of 3.25 Å along the out-of-plane direction while considering

di↵erent crystal packings known as AA or AB stackings [75]. Accordingly, a total

of 1,072 structures are created by CrySP and gathered in the first version of our

EC-MOF Phase-I database.

3.2.3 Details of high-throughput screening workflows and periodic electronic
structure calculations

To maximize the advantages of EC-MOF/Phase-I, we apply high-throughput screening

(HTS) techniques to explore di↵erent properties of these materials (see Figure 3.4).

Multiple steps of periodic density functional theory (DFT) calculations are performed

in our HTS workflows, which are all carried out using the Vienna ab initio simulation

package (VASP) version 5.4.4 [80, 81, 79, 78]. Interactions between electrons and ions

are described by projector-augmented wave (PAW) potentials [13, 83] with a cut-o↵

energy of 500 eV. Spin-polarized calculations are performed for all systems resulting in

high-spin states being the most common for all structures rather than low-spin states.
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Perdew-Burke-Ernzenhof (PBE) functional with Grimme’s damped D3 dispersion

correction within the generalized gradient approximation (GGA) formalism [115, 45]

was employed in this work which provides accurate results for our EC-MOF systems,

as discussed in greater details in our recent work [169]. First stage of our HTS

workflow is to geometrically relax all structures obtained from CrySP to find the

ground state energy configurations for both the ions and electrons. The criteria for

optimization convergence is set to less than 10�4 eV for electronic energy and the

magnitude of the largest force acting on the atoms is set to less than 0.02 eV/Å.

Three degrees of freedom are allowed to change, atomic positions, cell volume and

cell shape for all bulk systems. Cell volume is fixed during optimization of the

Figure 3.4 High-throughput screening workflow employed in this work including
di↵erent steps of geometric relaxations and single-point energy calculations for all
structures included in the EC-MOF Phase-I database.

mono-layers because we use a slab model with c = 20 Å to prevent interaction
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between layers from di↵erent periodic cells. If the optimization encounters structure

and setting-related issues or has any di�culty to reach convergence, an automatic

debugging process is executed to collect error messages which automatically updates

the input files for re-optimizations. Once the optimization is completed, the 1st round

of single-point (SP) calculations is carried out to check if there is any structural or

setting-related issues and to provide a good initial electron density for the following

calculations. The convergence criteria for electronic energy is set to 1 ⇥ 10�5 eV.

The Brillouin zones are sampled using 2 ⇥ 2 ⇥ 6 or 2 ⇥ 2 ⇥ 4 k-point mesh for bulk

systems depending on di↵erent ratios of cell parameters and 3⇥ 3⇥ 1 k-point mesh

for all mono-layer systems. Gaussian smearing method, with a smearing width of

0.05 eV is adopted in this step to provide accurate electronic energy and density

information. The 2nd round of SP calculations reads the electron density calculated

in the 1st round, which increases e�ciency. The smearing method is changed to the

tetrahedron method with Blöchl corrections which provides more accurate results

for the calculated band gaps and density of states (DOS) [134]. DFT in its GGA

formalism is known for underestimating band gaps. Hence, Hubbard U approach

(DFT+U), which semi-empirically optimizes the Coulomb interaction potential (U),

is adopted in this step to give a better description of electronic structures. Only d

and f electrons were treated by this approach with the employed semi-empirical U

parameters for each metal reported in the Table 3.1.

Table 3.1 Hubbard U Parameters Adopted in This Work

Element Mn Fe Co Ni Cu Zn Pd Pt

U (eV) 5.5 6.5 5.3 6.7 10.4 10 4 2.9

To validate the accuracy of our calculated band gaps, the computed values

obtained at the PBE-D3 level with the U correction were benchmarked against the

HLE17 meta-GGA functional as implemented in the Minnesota VASP Functional
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Module codes and is already shown to provide band gap values for di↵erent materials

which are in good agreement with experimental results [142, 23]. For this benchmark,

we have chosen semiconductors with the highest band gap values among both bulk

and mono-layer systems. The results in Figure 3.5 show that DFT+U qualitatively

reproduces the same trend as HLE17 data. Accordingly, successful completion of

both SP steps provided necessary information for us to extract the final property

data from our EC-MOF/Phase-I database.

Figure 3.5 Calculated band gap values for selected semiconductors from EC-
MOF/Phase-I database. The results from DFT+U and HLE17 functionals are shown
in blue and orange, respectively.

3.2.4 Post-calculation analysis

Our HTS calculations provide us with di↵erent properties including geometric,

energetic and electronic data for all structures generated and contained in our

EC-MOF/Phase-I database. Periodic crystal structures are extracted as CIF

files after the geometry optimization stage. Analysis of the Voronoi network, as

implemented in Zeo++, [140] is used to determine di↵erent geometric data including

largest cavity diameter (LCD), accessible void-volume fraction and accessible surface

area, using a Helium probe with the radius of 1.4 Å, for all bulk EC-MOFs. From SP

calculations, the total energy and electronic structures of the systems are obtained.
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Absolute formation energy which is an important indicator of the stability of di↵erent

structures, is calculated as [71]:

Ef = Etot �
1

N

NX

i=1

xiµi (3.1)

where Etot is the calculated energy for the entire bulk material, N is the total number

of atoms with xi and µi being the number and chemical potential of element i in

the structure. Calculations of each element in their most stable configuration are

implemented to find the energy values per atom which is needed in the equation

above. Inter-layer binding energies were calculated as following [61]:

Eb = (EM � 1

n
EB)/A (3.2)

where EM is the calculated energy of the mono-layer, n is the number of layers in the

bulk structure, EB is the calculated energy of the bulk structure and A is the surface

area of the mono-layer. All the needed energetic data are extracted and calculated

by our in-house codes. Electronic band gaps are obtained from VASP using Python

Materials Genomics (Pymatgen).[66] Band center of the d orbitals are extracted using

Pymatgen and the following equation [50]:

Cd =

R +1
�1 ⇢EdE
R +1
�1 ⇢dE

(3.3)

where Cd is the position of the d-band center, ⇢ is the density of the d orbitals, E

is the energy of the d orbitals relative to the Fermi level and ⇢dE is the number of

states contributed by d orbitals.

3.3 Results and Discussion

Our database contains 1,063 EC-MOF crystal structures which are fully relaxed using

the periodic boundary conditions at the DFT level. A wide range of data including
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structural information, formation energies and electronic properties are extracted

and included in our EC-MOF/Phase-I database that can be accessed via https://ec-

mof.njit.edu. Such data are useful for other researchers who need to screen and target

attractive properties without additional e↵orts. Here, we discuss these calculated

properties in more details.

3.3.1 Structural data analysis

After full geometric relaxation, a total number of 535 bulk EC-MOFs are successfully

converged to the force criteria outlined above except the ZnHTTX Bulk system. In

the case of the mono-layer structures, eight MPIC systems failed to maintain their

connectivity and topology due to strong steric hindrances. Hence, they were not

included neither in the online EC-MOF/Phase-I database nor here. This results

in 1,063 structures in EC-MOF/Phase-I database. Another notable point about

mono-layer systems is that the optimized structures of HAT-based MOFs are slightly

distorted due to the steric hindrance between two neighboring organic linkers. Similar

phenomena were observed by Lyu et al. [96] where mono-layer HAT-based MOFs

could only be synthesized by an on-surface reaction approach. Here, we first present

structural data extracted from 535 optimized bulk systems. Figure 3.6a shows

frequency of structures as a function of largest cavity diameter (LCD) which is defined

as the diameter of a sphere that can fit into the largest pore of the materials [140].

LCD of 2D MOFs in our EC-MOF database ranges from 0 to 25.2 Å depending on

the size of the organic linkers. Structures with the highest LCD values consist of

TC, HATN and TN-based MOFs with the largest linker sizes of all. Structures with

small LCD values are mostly C-based MOFs. The high number of connectivities of

one C linker to the metal nodes limits the spatial space leading to an LCD value of

0 Å. It should be noted that the computed 0 value for LCD does not mean that the

system is not porous but the diameter of the Helium probe is larger than the diameter
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Figure 3.6 Number of structures from our EC-MOF database as a function of
the calculated (a) largest cavity diameters (LCD) and (b) gravimetric surface areas
(GSA).

of the pore in these structures. The calculated LCD of the rest of the structures is

qualitatively ranked according to the size of their organic linkers. Pc and PcM-based

MOFs, where linkers have similar sizes, constitute a large body of MOFs with LCD

of ⇠13 Å, Figure 3.6a. Similarly, NPc and NPcM-based MOFs constitute the peak

at ⇠17 Å in Figure 3.6a. Figure 3.6b shows frequency of structures as a function of

gravimetric surface area (GSA). In the range above 1700 m2/g, TC, HATN, TN and

TX linkers along with several tetragonal linkers take the lead as the MOFs with the

largest GSA. Due to the unique structures of the TC linkers, TC-based MOFs not only

have the conventional 1D channels but also another 1D channel with a smaller radius

inside the linkers themselves. Therefore, TC-based MOFs possess the highest GSA

with an average value of 1711 m2/g over all combinations of metals and functional

groups, as reported in Table 3.2.

Similar results were reported in the work by Park et al. [117], where CuHHTC

was synthesized and featured as a special 2D MOF with an enhanced surface area.

In their experimental work, an unprecedentedly high GSA of up to 1196 m2/g was

measured that can be compared to CuHHTC in our EC-MOF database with a GSA

of 1737 m2/g. GSA of TT-based 2D MOFs is also reported by Dincă et al. [34]

where the GSA of the synthesized CuHHTT is around 1360±20 m2/g compared to a
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Table 3.2 Average Largest Cavity Diameter and Gravimetric Surface Area Values
with Respect to Each Organic Linker

Linker LCD(Å) GSA(m2/g)

TC 21.359 1711

HATN 23.800 1639

TN 23.908 1589

TX 20.444 1547

TT 19.737 1502

NPc 17.637 1438

NPcM 17.659 1434

TP 15.381 1201

Pc 12.962 1120

PcM 12.990 1105

B 7.866 663

HAT 5.911 313

C 0 0

value of 1549 m2/g calculated in this work. According to our average calculated GSA

data, TT-based 2D MOFs rank in the 5th place as shown in Table 3.2. Structures

found in the lowest range of GSA, i.e., below 500 m2/g, are mainly C and HAT-based

MOFs due to the specific connection of the organic linkers and metal nodes in these

MOFs and the size of probe used in Zeo++. The practical implication of these small

cavities will be adsorptive separation of smaller sized guest molecules for applications

as molecular sieves. When comparing the GSA data in our EC-MOF database with

those from experimentally measured surface areas, our calculated GSA values are

always higher than what is measured experimentally by Brunauer–Emmett–Teller

(BET) equations. The discrepancy can be mainly related to (1) the size of crystal

particles compared to prefect bulk crystals in our EC-MOF database, (2) presence

of defects in synthesized materials, and (3) pores that are not completely evacuated
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from solvent molecules. Our calculated GSA data therefore provide the maximum

surface area that each EC-MOF can possibly reach regardless of the synthesis and

activation procedure. Notably, the GSA data in our EC-MOF database qualitatively

show similar trends with available experimental results. To reveal the relation between

spatial space and accessible surface area, we converted GSA to volumetric surface area

(VSA) and plotted them against the void fraction of 13 di↵erent organic linkers as

shown in Figure 3.7. Data points for each linker are highlighted by distinct colors and

Figure 3.7 Calculated volumetric surface areas (VSA) as a function of void fraction
according to di↵erent organic linkers.

shapes. In agreement with our GSA data, MOFs containing TN, HATN, TC, TX and

TT linkers possess high void fractions ranging from 0.43 to 0.51 due to the size of the

linkers. The data points located between 0.1 and 0.4 void fraction also have high VSA

values. However, the di↵erence between VSA values of MOFs with di↵erent linkers in

this region is less noticeable compared to the di↵erence in their GSA values, as shown

in Table 3.2, due to the inclusion of the density of MOFs in converting GSA to VSA.

The void fraction of MOFs with C and HAT linkers are as low as 0.07. Except these

two classes, the VSA of the rest of structures are all higher than 1000 m2/cm3 while

their void fraction ranges all the way from 0.1 to 0.5. Hence, regardless of accessible
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surface areas, the appropriate MOFs for adsorption/separation applications should

be chosen based on the void fraction as well. For energy/gas storage purposes, on

the other hand, gravimetric/volumetric capacities of the active compounds are more

relevant [42, 3]. However, applications of these MOFs in adsorption should be further

investigated by analyzing the host–guest interactions. For instance, maximizing the

performance of MOFs in hydrogen storage requires maximizing VSA while preserving

a large void fraction [42]. On the other hand, number of adsorption sites should be

the primary concern in the case of chemical adsorptions [87]. Here, as an e↵ective

descriptor for the host–guest interactions, the d-band center model is integrated into

our EC-MOF database which is further discussed in the following section.

3.3.2 Thermodynamic data analysis

Formation energy (Ef ) is one of the most principal parameters to consider when

determining whether a hypothetical material will be synthesizable.[119, 99] Following

our high-throughput workflow, calculation of Ef for 1,063 structures were imple-

mented using Equation 3.1 with the results presented in Figure 3.8. Two bulk and

four mono-layer structures failed to reach the energy convergence during this stage,

which decreased the total number of structures in our EC-MOF/Phase-I database

to 1,057. Both PcM and NPcM-based MOFs which share the same structural

building blocks but with di↵erent metal centers inside the organic linkers are combined

into one data point. This is because the di↵erent choices of metal centers were

found to have a minor e↵ect on the calculated Efs, i.e., less than 0.09 eV/atom.

Data points with a blue color in Figure 3.8 mean negative Efs and show that the

corresponding structures are more likely to be synthesizable. The red colored data

points on the contrary correspond to positive Efs and hence structures that are

thermodynamically unstable. Accordingly, 96.06% of the bulk and 92.75% of the

mono-layer structures have negative Efs (see Figure 3.8). To find a trend in the

61



Figure 3.8 Calculated formation energies (Ef ) of bulk (up) and mono-layer (down)
structures contained in our EC-MOF/Phase-I database.

computed Efs one should pay attention to the di↵erent bonding/interaction motifs

that exist in the built MOFs. Overall, in all EC-MOFs there are three main types of

bonds/interactions including covalent bonding within the organic motif, coordinative

bonding between metals and functional groups of the linkers and comparatively

weaker van der Waals interactions between layers. As an example, B, TP and TN

linkers could be placed in an incremental sequence considering that each linker is

comprised of the previous one plus three more benzene rings. Having more benzene

rings in the structure increases the number of covalent bonds which is stronger than

the other two interactions/bond types. Hence, the calculated Efs of TN-based MOFs

are more negative than their TP-based counterparts which in turn are more stable

than the B-based MOFs, all due to the higher number of covalent bonds. A similar

trend can also be observed in the cases of Pc vs. NPc or PcM vs. NPcM where

the latter ones have four more benzene rings than the former ones. Figure 3.8

also illustrates the Efs with respect to three functional groups within each linker
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family. Its very clear that in each linker family, EC-MOFs with -NH functional

groups always possess the most negative formation energies whereas the ones with -S

groups possess the least negative or in some cases even positive values. The stability

of the coordinative bonds between transition metals and di↵erent functional groups is

determined by the compatibility between the two interacting units. Nitrogen atoms

have lower electronegativity than oxygen leading to a stronger bonding to metals.

Compared to sulfur atoms, sizes of nitrogen and oxygen atoms are more similar

to carbon atoms, which induces a better overlap between atomic orbitals in the

extended ⇡-conjugated layers. Considering di↵erent transition metals, among eight

employed metal nodes, Mn2+, Zn2+ and Pt2+-containing MOFs tend to have more

negative Efs regardless of organic linker and/or functional group types. Half-filled

and fully-filled electronic configurations of Mn2+ and Zn2+, respectively, are more

stable in the same row of the periodic table when forming 2+ ions. Other than

the standard way of creation of MOFs from di↵erent building blocks, physical and

chemical properties of the EC-MOF based layered materials can be further modulated

by tuning their inter-layer interactions by reducing the number of stacked layers all

the way down to a mono-layer. Consequently, mono-layer materials exfoliated from

their corresponding bulk systems may possess unconventional properties in the fields

of gas adsorption [94], optics [174] and electrocatalysis [69]. EC-MOF mono-layers can

be synthesized through the top-down or bottom-up approaches. Chemical exfoliation

methods such as intercalation and electrochemical exfoliation are among the most

common techniques in the top-down strategy [174]. On the contrary, the bottom-up

approach is a more e�cient and convenient approach to build mono-layer materials

by choosing ideal precursors, modulators and surfactants [69]. To shed light on the

possibility of reaching at a mono-layer EC-MOF, we have calculated the inter-layer

binding energies (Eb) according to Equation 3.2 for all structures gathered in our

EC-MOF/Phase-I database.
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Figure 3.9 Distribution of structures according to their calculated inter-layer
binding energies.

Figure 3.9 shows the histogram for the distribution of all calculated Eb values

with a prominent range of 0 to 20 meV/Å2 and a bin width of 1 meV/Å2. The

Eb of the majority of our EC-MOFs lie in the range of 2-9 meV/Å2. This can be

compared to the interlayer binding and exfoliation energies for a large number of

layered compounds, including graphite and MoS2, which are around 20 meV/Å2 and

are considered before for successful exfoliations [11]. It should be mentioned that the

low Eb values of the EC-MOFs in comparison to other layered materials relates to

the high porosity of our structures. This indicates the promising potential of most of

these EC-MOFs for thin-film fabrication which is of utmost importance in compact

device implementations. It is also worthwhile noting that, according to Equation (2),

calculated Eb values are inversely proportional to the surface area of the mono-layer.

Hence, within the same family of porous materials one will naturally obtain smaller

Eb values for the systems with larger pore sizes, given similar inter-layer van der

Waals interactions. For example, EC-MOFs with calculated Eb values larger than 13

meV/Å2 are mainly HAT and C-based MOFs with possibly strong ⇡�⇡ interactions
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per unit area. To be noted, two structures, MnHAT and PtHHTP show Eb values

higher than 20 meV/Å2, 23.17 and 21.57 meV/Å2, respectively.

3.3.3 Electronic property data analysis

Figure 3.10 Distribution of the metallic and semiconductor systems in bulk (left)
and mono-layer (right) materials. Mono-layer semiconductors are further divided into
two regions according to their band gap values.

The electrically conductive behavior of ⇡-stacked layered MOFs is in contrast to

other conventional MOFs that are mostly classified as insulators with highly localized

electrons [85]. To provide more insights on the electrically conductive behavior of the

structures gathered in our EC-MOF database, we have calculated their fundamental

band gaps as explained in section 3.2. As a result, 48.59% of the bulk EC-MOFs

are calculated to be metallic compared to 31.49% for mono-layers, Figure 3.10. This

can be explained by the absence of the inter-layer charge transport pathway along

the stacking direction for the mono-layer structures. We also calculated the ratio

of semiconductors within each class of EC-MOFs with di↵erent organic linkers and

found that for most structures, the ratio of semiconductors in mono-layers are indeed

higher than the ratios in the corresponding bulk systems. Figure 3.11 shows the

nature of conductive behaviors, and band gap values if any, of all structures in the

EC-MOF/Phase-I database. 424 structures are found to be metallic with 259 of them

being bulk and the rest of 165 being mono-layer systems. For the semiconductors, the

maximum band gap value of 0.95 eV is reached by PtHITX Mono. In Figure 3.11(a),

we can find that most bulk materials are metallic or narrow gap semiconductors where
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Figure 3.11 Calculated band gaps of (a) bulk and (b) mono-layer systems.
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the band gap can be less than 0.15 eV. A maximum band gap of 0.53 eV is recorded

for PtHITX Bulk. In comparison, only one tenth (⇠2000) of structures in curated

1D MOFs collection reported by Gharagheizi et al. [40] are metallic while another

one tenth show a band gap below 1 eV. Furthermore, 546 1D MOFs are insulators

(band gap > 4 eV) while the band gap of most structures are in the range of 1-4 eV.

It should be again emphasized that, apart from dimensionality that overall a↵ects

the properties of MOFs, this di↵erence is related to the fact that we intentionally

built our EC-MOF/Phase I database with structural features that induce a high

degree of electrical conductivity in the resulted MOFs. According to our previous

work [169], a transition of conductive behavior between metallic and semiconductor

can be easily induced by temperature, pressure or solvent because of the intrinsic

flexibility of these materials. Therefore, such conductive behaviors indicate the great

advantage of EC-MOFs compared to conventional MOFs. Indeed, some of them

have already been proven to be promising candidates for applications in batteries

[17], photodetectors [7] and voltammetric detection[74]. In Figure 3.11(b), not only

the number of semiconductors increases in mono-layers but the band gap values also

increase with the highest band gaps being observed for TX linkers. According to Zhao

et al. [172] who reported the successful synthesis of the CuHHTX MOF in 2020, the

conductivity of CuHHTX shows an Arrhenius-type dependence on the temperature.

The dependence is a typical sign of a semiconductor material which is in agreement

with our calculated data. The large band gaps computed for the TX-based MOFs can

be explained by the disconnection of the ⇡-conjugation in the benzene rings of the TX

linker. Therefore, one can hypothesize that the inter-layer conduction should play a

more prominent role in these systems. PHC-based MOFs are another class that show

wide band gaps. They have the highest number of connectivity, 12 hydroxyl groups

per linker. As a result, the very electronegative oxygen atoms tend to localize the

charge in the C linker leading to a wider band gap in these systems compared to other
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systems. Another interesting trend is found in the PcM and NPcM-based mono-layers

with an inside Ni, Cu, Zn and Pd metals. These mono-layers with imino functional

groups always possess high band gap values because of the presence of the inside

metals compared to the corresponding Pc and NPc-based mono-layers. However, no

trend was found for the Fe and Co as inside metals. Therefore there could be some

long range interactions at play between di↵erent metals and functional groups that

needs to be further investigated.

3.3.4 Adsorption performance analysis

As stated above, the large surface areas and excellent conductivity of EC-MOFs makes

them outstanding candidate materials for electronics and energy storage materials.

They have been experimentally synthesized for electrode materials in sodium-ion

[112], lithium-sulfur [17] and zinc [106] batteries. Therefore, it is of high interest to

provide insights not only on the conductivity of EC-MOFs but also their capability

of adsorbing di↵erent guest molecules relevant to these applications. Such capability

is normally specified in terms of adsorption energy (Eads) which is calculated as:

Eads = EGuest�Host � EGuest � EHost. (3.4)

Here, EGuest�Host is the total energy of the guest adsorbed systems, EGuest is the

energy of the isolated guest molecules in their stable phases and EHost is the energy

of the host adsorbent materials. To obtain Eads values, accurate DFT relaxations

of the guest-host systems are required which are rather expensive considering the

number of the studied materials. Also, for each di↵erent guest molecule, a separate

relaxation of the entire guest-host system is required because there is no universal

model for such interactions. Creation of EC-MOF database provides the foundation

for screening hundreds of low-dimensional materials, utilizing appropriate descriptors,

for adsorption purposes without expensive DFT relaxations of the guest-host systems.
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For example, in the case of transition metals as adsorption sites, d-band center of

metals can provide some preliminary insights into guest-host interactions without

carrying out expensive calculations [50]. The position of d-band center is shown to

be inversely related to the computed Eads in many studies on metal alloys and also

2D MOFs [168, 89]. More specifically, as the energy of the d-band center increases

with respect to the Fermi level, the stronger the interactions will become between the

guests and the host materials [110]. The distribution of the d-band centers of bulk and

mono-layer structures in EC-MOF Database, except PcM and NPcM linkers-based

MOFs, is demonstrated in Figure 3.12.

Figure 3.12 Distribution of the d-band center in Bulks and Mono-layers

Here, we present an exemplary case of using d-band center model to estimate

the applicability of selected structures from EC-MOF database as cathode materials

in Lithium-sulfur batteries (LSBs). The Li2S molecule as the final product of the

discharge process in LSBs is adapted here as the guest molecule. Two classes of well-

studied B and TP-based MOFs, with imine functional groups, are chosen from our

EC-MOF database to serve as the host materials. Comparing to the sp3 hybridization

of the hydroxyl and the thiol groups, the imine groups with the sp2 hybridization have

less e↵ect on adsorption process because all three p orbitals are forming � bonds or
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conjugating with ⇡ framework of the MOF structures. The fully relaxed structures

of the MHIB-Li2S and MHITP-Li2S systems (M = Mn, Fe, Co, and Ni) are shown in

Figure 3.13.

Figure 3.13 Fully relaxed MHIB(a–d) and MHITP(e–h) MOFs (M = Mn, Fe,
Co, and Ni) with Li2S as the guest molecule. Representative models in di↵erent
adsorbing behaviors (i and j). In this figure the colors yellow, light blue, red, brown,
green and cream represent sulfur, nitrogen, oxygen, carbon, lithium and hydrogen
atoms, respectively, while metal atoms are distinguishable between di↵erent panels.

All systems containing Mn+2, Fe+2, Co+2 and Ni+2 metal centers show a similar

adsorbing behavior where the Li2S molecule is adsorbed on the top of the metal nodes.

Therefore their adsorption energies should in principle follow the trend for the d-band

center model. The calculated adsorption energies as obtained from Equation 3.4 are

plotted vs the corresponding d-band center data in Figure 3.14, where we can see a

clear inverse correlation as expected. The calculated length of the Metal-S bonds also

indicates the same correlation to the adsorption energies. While we use this example

as a proof of concept, care should be taken in choosing a proper descriptor for any

specific screening purpose. For example, in the case of the other 4 metal nodes (i.e.,

M = Cu, Zn, Pd, and Pt), interaction between functional groups of the MOF and Li

atoms of the Li2S was found to be the dominant adsorption interaction, Figure 3.14
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Figure 3.14 Computed adsorption energies of Li2S molecules with selected 2D
MOF mono-layers show an inverse relation with the corresponding calculated d-band
centers.

(i). Thus, the calculated Eadss were found to not correlate with the computed trend for

the d-band center model. Similarly, NiHHB shows strong contribution of hydroxyl

groups for Li2S. On the other hand, d-band center has been shown to be a very

appropriate descriptor to study adsorption of adsorbates like OH*, O* and OOH*

species in oxygen reduction reaction [39, 175] where Eadss are well correlated with the

d-band center as long as the metal centers act as the primary adsorption sites.

3.4 Future Work

Our EC-MOF/Phase-I database provides an easily accessible computationally ready

database for ⇡-stacked layered electrically conductive MOFs with diverse information

on their structural, electronic and adsorption properties. We plan to update this

database as research in this field grows and expands. It is necessary to update this

database in two directions, diversity of the MOFs included and types of properties

calculated for them. As stated previously, we have elected to restrict the first

version of the database according to the structural features that induce the highest

electrical conductivity. However, as mentioned before, this is an active area of
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research and new organic linkers are introduced almost everyday [48]. Also, MOFs

with various topologies will be included in the future versions of the database, e.g.,

three-dimensional MOFs [138, 29]. Based on our building strategy, permutations of

the building blocks will give a comprehensive understanding of these classes of MOFs

as well. On the other hand, other relevant properties need to be calculated, such

as performance on adsorption/storage of common gas molecules [27], partial atomic

charges normally used to interpret trends while modeling chemical reactions [121] and

density of states/band structures which reveal detailed charge transport pathways.

Machine learning techniques have also shown great promise in materials science

research for prediction of formation energies [43], adsorption energies [111, 148], band

gap values [122] and designing new materials [97]. The created crystal structures and

their calculated property data gathered in our EC-MOF/Phase-I database provide

an ideal data set for applying various machine learning techniques in order to explore

their potentials for di↵erent applications.

3.5 Concluding Remarks

In this work, we introduced for the first time an exclusive database for electrically

conductive MOFs containing computationally-ready structures and their property

data. A total number of 1,072 structures are created by taking permutations

among the subsets of di↵erent structural building blocks using our in-house package,

Crystal Structure Producer (CrySP). Multiple stages of calculations are applied

to the database by applying a high-throughput screening workflow to optimize

the structures and calculate their di↵erent property data. 1,063 out of 1,072

structures were successfully optimized at the DFT level and 1,061 of them successfully

completed all stages of calculations whose properties including largest cavity diameter,

gravimetric/volumetric surface area, void fraction, formation energy, inter-layer

binding energy, electronic band gap and d-band center added into the database.
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Obtained trends for di↵erent classes of MOFs were discussed in great details and

di↵erent materials were classified and analyzed according to their structural or

electronic properties providing comprehensive and important information on di↵erent

families of EC-MOFs. Also, a limited scale screening of adsorption performance of

Li2S molecule is implemented to indicate the possibility of using the d-band center

model as an e�cient energy descriptor for adsorption energies. Finally, an exclusive

graphical user interface is developed and released for this database where all curated

structures at the DFT level can be visualized and downloaded with their relevant

calculated properties tabulated.

Figure 3.15 Screenshot of the web-based graphical user interface developed for the
EC-MOF/Phase-I database.
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CHAPTER 4

PREDICTING PROPERTY DATA IN EC-MOF/PHASE-I DATABASE
USING MACHINE LEARNING

4.1 Motivation of the Database for Electrically Conductive MOFs

High-throughput (HT) screening is a useful tool to manage a big pool of data by

implementing computational calculations at di↵erent stages and setting a series

of thresholds for each stage until a certain number of candidates satisfy all the

thresholds. As the quantity of data and the size of structures increases, such

computational e↵orts could be inevitably expensive, especially if accurate ab initio

calculations are desired. HT screening of EC-MOFs based on quantum-mechanical

calculations, even if only at the highest stages, becomes daunting due to their

chemical diversity and large size of unit cells [22]. On the other hand, while

Density Functional Theory (DFT) calculations are widely used in HT screening,

common functionals always underestimate the band gaps of semiconductors. As a

result, hybrid functionals like HSE[56]or HLE[23] are required for accurate electronic

structure calculations which need even more computational resources. Recently,

machine learning (ML) techniques have become increasingly popular in scientific

research and industrial production [36, 132]. In the field of computational chemistry,

ML is mostly used to produce as close results as possible to ab initio calculations

with much fewer computational costs [146]. It is very e�cient in cases where the

number of structures in a database is too high to implement HT computing or the

computational cost of specific calculations is astronomical like evaluating electrical

conductivity with a dense k point. To train a ML model for specific purpose, it is

critical to find the appropriate features which su�ciently and properly describe the

studied systems so that the target property can be reasonably deduced [22]. ML

techniques have already been used to predict the gas storage and separation abilities

of MOFs [147, 4, 156]; however, there are limited reports on its usage to predict the
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electrical conductive behavior of EC-MOFs. This is mainly due to the extended size

of their unit cells which causes di�culty in finding highly representative features.

Therefore, to establish the foundation of applying ML techniques on EC-MOFs, the

first step is a proper feature creation and engineering.

In this section, we create features and representations to predict the intrinsic

properties of the structures in EC-MOF Database including metallicity, band gap

values (Eg) and formation energy(Ef ) using ML models. When building the database,

calculating of such properties require expensive single-point (SP) calculations at DFT

level. However, considering the increasing number and size of MOF structures, the

HT computing calculations become computational demanding. The properties of bulk

structures are highly e↵ected by the interaction between layers like slipping behaviors

which induces unnecessary variation. Hence, we only use mono-layers of EC MOFs in

this study to focus on relating the intrinsic properties to the chemical compositions

and geometry of mono-layers. Firstly, we apply generic statistical reduction methods

(GSRM) to create representations of the unit cells based on elemental properties

as shown in Table 4.1 [150]. GSRM can generate representations regardless of

Table 4.1 Elemental Information Used in Generic Statistical Reduction Methods
to Create GSRM Features

Atomic number Electronegativity

1st ionization energy (kj/mol) Covalent radius (pm)

Van der waals radius (pm) Melting point (K)

Row in periodic table Column in periodic table

Number of unpaired electrons Number of valence electrons

s orbital valence electrons p orbital valence electrons

d orbital valence electrons Number of unfilled states

Unfilled s states Unfilled p states

Unfilled d states

the size or the elemental diversity of unit cells. A total number of 17 elemental
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properties is selected and 5 statistic quantities (standard mean, geometric mean,

standard deviation, maximum value and minimum value) are calculated for each of

the properties [54], as following:

µ =
nX

i=1

xifi (4.1)

a = (
nY

i=1

xifi)
1
n (4.2)

� =

rP
n

i=1(xifi � µ)2

n
(4.3)

Max = max{x1, x2, · · · , xn} (4.4)

Min = min{x1, x2, · · · , xn} (4.5)

fi =
NiP
n

i=1 Ni

(4.6)

where xi is the elemental information of i�th element in the MOF composition,

fi is the atomic fraction of i� th elements. Although it is shown that GSRM features

perform well in predicting metallicity for inorganic compounds with small unit cells

[54], they are not su�cient for EC MOFs which contain more than 100 atoms per

unit cell. Secondly, we complement it by extracting the geometric data which already

exists in our EC-MOF Database. Additionally we create new geometric and chemical

features related to the electrical conductive properties which are not a part of the

published database. A full list of 17 database features can be found in the Table 4.2.
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As a result, the training set employed here consists of 102 columns of features. These

Table 4.2 Features from EC-MOF Database

Lattice constant a (Å) Lattice constant b (Å)

Lattice constant c (Å) Lattice angle ↵ (degree)

Lattice angle � (degree) Lattice angle � (degree)

Volumn (cm3) Total number of atoms

MF bond ratio CN bond ratio

CO bond ratio CS bond ratio

CC bond ratio PP bond ratio

Total number of bonds MM distance (Å)

Total number of d electrons

features are used to train various ML models for predicting target properties including

metallicity, class 0 for metal and class 1 for semiconductor, band gap values (Eg)

and formation energy (Ef ). Finally, we further validate our ML models by creating

a hypothetical structure that is similar but does not exist in our database. The

organic linker of hypothetical MOFs is a derivative of 1,4,5,8,9,12-hexaazatriphenylene

(HAT). We will compare the predicted values from the trained ML models to the

quantum mechanical results calculated at DFT level.

4.2 Implementations of ML and Discussion

An overall workflow is illustrated in Figure 4.1. The data set is a matrix of 524

mono-layer structures times 102 features for each. Notably, 102 columns of features

are not in the same order of magnitude, e.g. a feature like the row in the periodic

table is single digit but another feature like the melting point could be up to three

digits. Thus, features should be properly scaled into a reasonable range to eliminate

any bias induced by di↵erent units or magnitudes. A data set of the target properties

also consists of 524 rows according to the number of mono-layer structures and three
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Figure 4.1 A complete workflow of ML implementation in our study. Data source
is labeled by purple solid rectangles, data flows are labeled by red solid rectangles,
ML functions are labeled by green hollow rectangles, ML models tested are labeled
by green solid parallelograms and types of ML tasks are in green hollow diamonds.

target properties, metallicity (0 or 1), Eg and Ef . Figure 4.1 demonstrates two

types of predictions, i.e., classification for metallicity and regression for band gap and

formation energy values. Due to the limited number of data, the ratio of training/test

set is set to 90%/10% to get a better training performance. In each case of training,

various ML models are tested in order to select the best model for the specific task.

A 10-fold cross-validation (CV) test is adopted in all models for the training set. The

model with best performance is re-trained using the whole data set and will be used

for making predictions related to hypothetical structures. Implementation of ML is

carried out using scikit-learn package (version 1.2.2)[113]. The random state in all

cases is set to 1 for reproducible results.

4.2.1 Classification of metallicity

Supervised classification are employed to predict the metallicity of the mono-layer

EC MOFs. To avoid the unbalanced weight of di↵erent features, a pre-process of

78



Table 4.3 Optimal Settings for Tested Classifiers in Scikit-learn Package

Classifiers Settings

RC alpha = 0.00001

LR solver =0 liblinear0, C = 2

SGD loss =0 squared hinge0, alpha = 0.001

SVC nu = 0.3

KNC Defaults

GPC Defaults

NN activation =0 identity0, solver =0 lbfgs0, alpha = 1

DTC min samples leaf = 2

ETC n estimators = 110, criterion =0 log loss0, min samples split = 10

GBC n estimators = 120, learning rate = 1.0, max depth = 5

BC n estimators = 25

RFC n estimators = 110, criterion =0 log loss0

SC C = 2

scaling the data is implemented as dividing the data by the maximum value of the

column (x/|Max|) so that all data drops into a reasonable range, [�1, 1] without

changing the sparsity. By observing the distribution of the whole data set, there

are 165 metallic MOFs and 359 seimconductors, indicating a slightly imbalanced

distribution. An over-sampling strategy, adaptive synthetic sampling, is adopted to

balance the training set and avoid any bias from the imbalanced distribution [52].

This is done using the imbalanced-learn package [47]. The over-sampling strategy

results in a near-even ratio of 337 metallic and 319 semiconductive structures.

Twelve classification models are tested including Ridge Classification (RC),

Logistic Regression (LR), Stochastic Gradient Descent classifier (SGD), Support

Vector Machine classifier (SVC), k-Nearest Neighbors classifier (KNC), Gaussian

Process Classification (GPC), Neural Network classifier (NNC), Decision Trees

classifier (DTC), Extra Tree classifier (ETC), Gradient Boosted Decision Trees
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classifier (GBC), Bagging classifier(BC) and Random Forest classifier (RFC). A

stacking classifier (SC) that combines the results from multiple classifiers to reduce

their biases, based on stacking generalization method[154], is also adopted and a LR

classifier is used as the final classifier. For every model, optimal setting, listed in the

Table 4.3, is chosen based on the mean training accuracy of the 10-fold CV. To test

Figure 4.2 Accuracy (a) and standard deviation (b) of tested ML Classification
models using GSRM+Database features (dark) and GSRM features only (light).
Performance of SC on test set is attached on the right.

our assumption about the insu�ciency of GSRM features in this study, all models

are trained by (1) the whole 102 columns of features (GSRM+Database features) and

(2) the GSRM features only. Figure 4.2 exhibits the accuracy of all chosen models

which is higher or close to 50%. The error bars on the top of each accuracy bar are

computed according to the standard deviation (SD) among 10 folds of CV process.

The accuracy of SC in training (SC) and testing (SC Test) is also shown on the right.

Overall, the training accuracy using GSRM+database features is always higher than

the one using GSRM features, which shows the additional features from EC-MOF

Database are necessary in our ML process. Also, the error bars of SD based on

GSRM+Database features are generally lower than the GSRM features. Accordingly,

including database features imparts a more stable performance to the CV process.

Such stability is highly preferable in small data sets because the performance is less

likely to be a↵ected by the random split of training and test sets. Seven out of 12

classifiers reach an accuracy higher than 70%. The highest accuracy of single classifier
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is reached by SVC and ETC, around 79%. Detailed evaluations of the classifications

are shown in the Figure 4.3, where the low recall of class 1 indicates that the classifiers

Figure 4.3 Evaluation metrics of the classifiers in metallicity classification.

have some di�culty in finding the semiconductors. Hence, such accuracy can be barely

used in practice. On the other hand, the SC classifier that combines multiple classifiers

is an ideal solution as shown in Figure 4.2. Di↵erent combinations are tested and the

combination that gives best performance is the three highest accuracy in training,

i.e., SVC, ETC and RFC plus DTC. With this combination, the training accuracy

reaches 100% regardless of the choice of input features. However, the performance on

the test set di↵ers in that the SC trained by GSRM+Databse features results in 91%

accuracy compared to the 83% of the SC trained by GSRM features. This observation

further emphasizes that the addition of features from EC-MOF Database improves

the stability and transferability of classification models. The final message in this

section is that a combination of GSRM and EC-MOF Database features together

with stacking of appropriate ML models creates a predictive tool for classification

of EC MOFs to metal or semiconductor without resorting to expensive ab initio

calculations.

4.2.2 Regression of band gaps

After classification of EC MOFs based on their metallicity, we use ML technique

to predict the band gap values (Eg) of the semiconductive ones. Eg values are
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significantly important for semiconductors by a↵ecting the electrical conductivity

of the materials. Therefore, the 359 semiconductors form another 359 ⇥ 102

training matrix for regression models. Same scaling process as classification task is

implemented to avoid bias. Linear regression models including, Ridge regressor (RR),

Linear Regression (LIR), Stochastic Gradient Descent regressor (SGD) and Passive

Aggressive regressor (PAR), Support Vector Machine regressor (SVR), k-Nearest

Neighbors regressor (KNR), Neural Network regressor (NNR) and ensemble methods

including Extra Tree regressor (ETR), Gradient Boosted Decision Trees regressor

(GBR), Bagging regressor (BR), AdaBoost regressor (ABR) and Random Forest

regressor (RFR) are tested in regression of Eg values. We enforce positive Eg values by

assigning ”Positive” keyword as ”True”, if applicable. The optimal setting, listed in

the Table 4.4, is chosen according to the mean absolute error (MAE) in eV for training

and test sets. The range of band gap distribution among mono-layer structures

Table 4.4 Optimal Settings for Tested Regressors of Eg in Scikit-learn Package

Regressors Settings

RR Defaults

LIR Defaults

SGD Defaults

PAR Defaults

SVR Defaults

KNR Defaults

NNR activation =0 tanh0, alpha = 1.0

ETR n estimators = 110, criterion =0 friedman mse0

GBR n estimators = 120

BR Defaults

ABR n estimators = 60, learning rate = 2.0

RFR n estimators = 110, criterion =0 poisson0, min samples split = 4

from the EC-MOF Database is pretty narrow (less than 1 eV). Considering chemical
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accuracy, the regression should not be expected to be perfectly linear between these

DFT calculated values and the ML predicted values. Instead, the MAE is a more

appropriate evaluator of this regression task. Table 4.5 demonstrates the MAE of

training and test sets among all tested regressors.

Table 4.5 Mean Absolute Errors (MAE) of Band Gap Values among Tested
Regressors for Training Set and Test Set

Regressor Trainig set (eV) Test set (eV)

RR 0.100 0.101

LIR 0.100 0.099

SGD 0.098 0.086

PAR 0.103 0.092

SVR 0.052 0.075

KNR 0.066 0.088

NNR 0.064 0.078

ETR 0.000 0.064

GBR 0.030 0.078

BR 0.029 0.075

ABR 0.075 0.083

RFR 0.029 0.068

The highest MAE is found from the linear regression models, RR, LIR, SGD and

PAR, indicating a slightly worse performance than other types of models. However,

the accuracy of DFT calculations with common functionals is 2 ⇠ 3 kcal/mol (0.087 ⇠

0.130 eV/particle) [14]. As a result, all the tested regression models predict the Eg

within the accuracy of DFT calculations in both training and test sets. The lowest

MAE is reached by ETR where the regressor is perfectly fitted to the training data

even with 10-fold CV. The MAE of ETR for test set is also the lowest, i.e., 0.06

eV, which refers to an accurate predictions in band gap values compared to previous

reports [160, 122, 152, 2].

83



4.2.3 Regression of formation energies

Absolute formation energy, Ef (eV/atom), is an important factor of the thermo-

dynamic stability of the materials, which can be computed by the following equation:

Ef = Etot �
1

N

NX

i=1

xiµi· (4.7)

Here Etot is the calculated energy for the whole system, N is the total number of

atoms with xi and µi being the number and chemical potential of element i in the

structure.Using the DFT calculated Ef of stable mono-layers (Ef < 0) in EC-MOF

Database as target properties, we train the same regressors as used in Eg predictions.

Scaling process is also implemented as usual. The optimal settings are listed in the

Table 4.6

Table 4.6 Optimal Settings for Tested Regressors of Ef in Scikit-learn package

Regressors Settings

RR Defaults

LIR Defaults

SGD penalty =0 elasticnet0

PAR Defaults

SVR kernel =0 rbf 0, C = 0.5, nu = 0.5

KNR leaf size = 20

NNR activation =0 logistic0, solver =0 lbfgs0

ETR criterion =0 friedman mse0, n estimators = 120, min samples split = 3

GBR n estimators = 120

BR n estimators = 20

ABR loss =0 square0, n estimators = 70

RFR criterion =0 absolute error0, n estimators = 80

Notably, a “dimensional reduction” process is carried out to reduce the feature

dimensions and improve the performance. In such a process, factor analysis method,
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which is a simple linear generative model with Gaussian latent variables [8], is

adopted. A series of tests between number of components and the coe�cient of

determination (R2) during training is implemented. As a result, 102 features columns

are reduced to 40 components to maximize the training score, R2. Then, the 40

components are kept consistent in all regressors for Ef . The plots of calculated Ef

values (DFT) vs. ML predicted values of all regressors are depicted in Figure 4.4.

Predicted points during training are represented by a cumulative hexa bins. The

Figure 4.4 Coe�cient of determination (R2) of ML models in training (blue
hexagonal bins) and test sets (red circles). The models tested are (a) RR, (b) LIR,
(c) SGD, (d) PAR, (e) SVR, (f) KNR, (g) NNR, (h) ETR, (i) GBR, (j) BR, (k) ABR
and (l) RFR. The unit for Ef is eV/atom.

number of points located in one bin is indicated by the blue color bar on the left.

The predicted points in test set is shown as red circles. All plots show a nearly linear

tendency between DFT calculated values and predicted Efs. Three linear regression

models, RR, LIR and SGD, perform the best in this task. The R2 values are highest

and above 0.95 for both training and test sets. Due to the random distribution of
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instances in the test set, the R2s are even 0.01 higher than training set, which is a

negligible di↵erence. The rest of regressors show average 0.90 and 0.84 R2 values

for the training and test sets, respectively, which should be credited to the created

features that properly describe the systems and distinguish the di↵erence among

them. The lowest MAE of Ef predictions is given by LIR, 0.021 eV/atom, which

indicates that LIR makes accurate predictions comparing to the DFT values. In line

with other reports[160, 2, 6], we believe such MAE values indicate LIR is a good

model for this task.

4.2.4 Validation by the hypothetical MOF

Implementing ML within the database is the first step in validating the e↵ectiveness

of created features and ML models for future investigations on EC MOFs. The final

purpose is to get the important target properties for the future systems without

running DFT calculations. For such a purpose, we have to make sure that the

ML models used here are transferable to the MOFs not included in the EC-MOFs

Database neither in the training process. To test this idea, we create a class of

hypothetical MOFs based on the organic linker depicted in Figure 4.5. This organic

Figure 4.5 The structures of the hypothetical organic linker (a) and the
hypothetical MOFs (b).

linker is a modified form of 1,4,5,8,9,12-hexaazatriphenylene (HAT) linker that has

been already used to synthesize EC MOFs in 2022 [96]. The pink circles are the
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replaceable points for functional groups, hydroxyl, imino, and thiol, and the blue

circles are metal nodes which can be replaced with Mn2+, Fe2+, Co2+, Ni2+, Cu2+,

Zn2+, Pd2+ and Pt2+ cations. We utilize Crystal Structure Producer (CrySP)

developed in our previous study[170] to survey all possible combination among the

building blocks. As a result, a total number of 24 hypothetical EC MOFs are built.

A High-throughput (HT) computing process that comprises of two steps of DFT

calculations is employed on the built structures. DFT calculations are implemented

in the Vienna ab initio simulation package (VASP) version 5.4.4 [80, 81, 79, 78].

Projector-augmented wave (PAW) potentials [13, 83] with a cut-o↵ energy of 500

eV are used to describe the ion-electron interactions in the VASP calculations.

Perdew-Burke-Ernzenhof (PBE) functional with Grimme’s damped D3 dispersion

correction within the generalized gradient approximation (GGA) formalism [115, 45]

is chosen because it has been proved to be a ideal exchange-correlation functional for

such MOF systems [169]. Spin-polarized e↵ect is considered in all DFT calculations.

The first step is geometric optimization of the build structures where the convergence

thresholds of optimization is 0.02 eV/Åand electronic configuration minimization is

10�4eV in each ionic step. During optimization, only lattice parameter c is set to

20 Åto avoid interaction between neighbor cells. The second step is single-point

(SP) energy calculations that generate the target properties we need to validate the

ML models. The k-points in the Brillouin zones is set to 3 ⇥ 1 and convergence

criteria is increased to 10�4eV . To get an accurate Eg values, Hubbard U approach,

a semi-empirically Coulomb interaction potential (U), is adopted in the SP energy

calculations and U parameters are listed in Table 3.1 from our previous study [170].

For the input features of the hypothetical MOFs, 102 columns of features

are generated in the same manner as mentioned above based on the optimized

structures. Metallicity, Eg and Ef are again target properties. The best trained

models, Stacking Classifier (SC), Extra Tree regressor (ETR) and Linear regressor
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(LIR), are chosen to make predictions on metallicity, Eg and Ef , respectively. The SC

classifier predicts that among the 24 hypothetical MOFs, six are metallic and 18 are

semiconductive systems. To have a reference, we also carry out DFT calculations via

a high-throughput (HT) approach where there is one metallic and 23 semiconductive

MOFs. As a result, the accuracy of metallicity classification is 79%. Figure 4.6

shows the Eg values of the hypothetical MOFs obtained from the ETR model as

well as Ef values predicted by LIR models, both trained using the GSRM+Database

features. As can be seen from the color bar, the Eg values range from 0 to 0.230 eV.

For comparison, the DFT calculated results are also shown alongside the predicted

results by the ML models. The MAE of these predictions is 0.102 eV that is still

within the accurcay of DFT calculations indicating acceptable transferability of our

ML models. Regarding the formation energies, Ef values of all hypothetical structures

are predicted by LIR models using the same dimensional reduction procedure as

explained before. The MAE of Ef prediction is 0.141 eV/atom. The pattern of

formation energies among di↵erent functional groups deduced from the ML predicted

Ef values is that imino group creates the most stable MOFs while thiol group creates

the least stable ones. Such pattern is also confirmed by the DFT calculations here.

It is worth mentioning that this is the same pattern we have already reported for the

EC-MOF Database. According to the comparison in Figure 4.6, the distribution of

predicted values shows agreement with DFT results, which provide a decent possibilty

that we can predict the properties using our created features and ML models to the

future structures without extra DFT calculations.

4.3 Concluding Remarks

In this section, we explore feature creation for ⇡-stacked layered electrically conductive

MOFs. Using the created features, three machine learning (ML) tasks, i.e.,

classification of metallicity as well as prediction of Eg and Ef , are carried out
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Figure 4.6 Comparison of band gap values (a) and formation energies (b) of
hypothetical MOFs calculated by DFT and ML models.

with multiple ML models. The features computed by GSRM do not su�ciently

describe the systems. Here, we show that we can remedy this shortcoming by

complimenting the features with columns of data from our recently developed

EC-MOF/Phase-I Database. Overall, the GSRM+Database features e↵ectively

improved the performance of all tested ML models. The final results show high

accuracy for metallicity classification with the stacking classifier producing an

accuracy of 100% for the training set and 91% for the test set. The mean absolute

errors (MAE) of ML predicted Eg values (0.06 eV) are even smaller than the accuracy

limit of DFT calculations. The R2 values of Ef predicting are higher than 0.95 in

the both training and test sets. Additionally, 24 hypothetical MOFs are built and

are subjected to the best ML models to oredict target properties. The trained ML

models show promising transferability to the MOFs that are not introduced in training

process at all. We can reasonably deduct that if DFT results of a few other classes of

MOFs are added into the training process, the accuracy of ML models will be greatly

improved. In conclusion, the performance of ML models shows great potentials in

using created features to correctly describe the EC MOF structures and also indicates

that ML can be a useful tool to skip expensive DFT calculations.
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CHAPTER 5

CONCLUSIONS

5.1 Concluding Remarks

In this dissertation, I develop a data-driven material discovery strategy with a

special focus on two-dimensional (2D) or electrically-conductive (EC) metal organic

frameworks (MOFs). Chapter 2 provides some insights into the flexible and

dynamical structure of 2D MOFs, Ni3(HITP)2 specifically, and its e↵ect on their

intrinsic electrical conductive behavior. Due to contradictory reports from di↵erent

research groups, it is not easy to determine the nature of conductive behavior of

Ni3(HITP)2. To create reliable structures of Ni3(HITP)2, I take experimentally

reported structure of another similar MOF, Co3(HHTP)2, as prototype. By removing

unnecessary solvent molecules and replacing the metal nodes and functional groups,

Ni3(HITP)2 is assembled. For the structural optimization, I implement a benchmark

of di↵erent exchange-correlation (XC) functionals used in density functional theory

(DFT). Comparing our optimized structure to the structural data from powder X-ray

di↵raction (PXRD) and crystal images from electron microscopy, the XC functional

PBE-D3 is the method of choice. To determine charge transport pathways in 2D

MOFs, the optimized structure is further modified by changing its inter-layer distance

from 3.3 Å to 5 Å and replacing Ni2+ metal node with Zn2+. Then, high accuracy

electronic structure calculations at DFT level are implemented to get the density

of states (DOS) and band structures (BS). Results indicated that the increase of

inter-layer distance suppress the dispersion of bands in vertical direction of the cell,

which confirms the through-bond in-plane charge transfer. The presence of Zn2+

suppresses the in-plane d � ⇡ conjugation and shows the strong interaction between

layers. Therefore, through-space charge transfer pathway is also proved to be a

great contribution in such materials. Overall, these two exemplary cases confirm
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the existence of a strong interconnection/competition between the two CT pathways

where weakening of one may result in strengthening of the other. To mimic the

dynamic motions of flexible Ni3(HITP)2, ab initio molecular dynamics (AIMD) is

implemented at 1 atm pressure and 293 K temperature based on the optimized

structures. The simulation lasts 8 ps and reaches equilibrium after 1 ps. The DOS

and BS of all equilibrated structures indicate a band gap opening compared to the

metallic Ni3(HITP)2 optimized at 0K. Therefore, I concluded that the discrepancy

about the conductive behavior of 2D MOFs should be addressed with regard to the

flexible nature of the material as well as di↵erent settings/conditions of the reported

experimental studies. The intrinsic electrical conductive behavior of 2D MOFs is

proved to be highly determined by its flexible nature and dynamic motions. Such

highly sensitive structures need to be carefully prepared and measured in the future

applications.

Modern material design procedure requires a more precise, comprehensive and

e�cient strategy than traditional trial-and-error mode. In Chapter 3, I introduce

a strategy that utilizes the power of data and computer science to accelerate and

assist material discovery process. First and foremost, this line of research needs a

data pool that contains all possible information about one class of material, i.e., a

material database. After browsing currently available databases, it was apparent

that there is none that fully includes 2D EC MOFs. Based on my understanding

of these materials, I carried out a thorough literature survey and collected a list

of experimentally synthesized EC MOFs. By recognizing the building blocks of

EC MOFs, my self-developed software, Crystal Structure Producer (CrySP), takes

all possible permutations among the subsets of building blocks to create structures

that fit periodic boundary conditions. Then, the high-throughput (HT) workflow,

using my self-developed central control software, carries out multiple stages of DFT

calculations on all the produced structures. Optimized cell structures, geometric
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data and property data are collected from geometry optimization and single-point

(SP) energy calculations to form the EC-MOF/Phase-I Database which is an online

database and available to the public. From the optimized structures, geometric

data such as surface area, pore diameters and void fraction are computed and show

good agreement with the experimentally measured data. From SP calculations, the

formation energy Ef as one important factor for the thermal stability of materials is

computed. Most structures in the EC-MOF Database have negative Ef values, which

means they should be possibly synthesized. The most crucial advantage, electrical

conductive behavior, is shown in the form of metallicity. All created structures

are conductive as metals or semiconductors with low band gaps (Eg < 1 eV). As

an instance of material discovery for one specific purpose, i.e., electrode material

in lithium sulfide batteries, the adsorption ability for Li2S is tested using some

representative EC MOFs. The correlation between calculated adsorption energies

and the d-band center data indicates great potentials that we can filter materials

using columns of data to select the best candidates for our interested application. In

conclusion, I created a novel material design strategy that takes a few experimentally

synthesized material as the starting point and reasonably expands upon them by

creating hypothetical structures. This will end in building a comprehensive material

database. Then, implementation of HT workflow will generate geometric and property

data that can be used to filter structures for specific purpose. Such strategy can

be further applied not only in MOF materials but all crystalline inorganic and

organometallic compounds, or even organic compounds.

In Chapter 4, I argued that considering the expense of DFT or similar

calculations at quantum mechanic level, HT computing becomes una↵ordable for large

numbers of structures. Machine learning technique seems a promising tool to learn the

pattern of existing data and make predictions for the unknown. I created features for

the EC MOFs using existing data, optimized structures from the EC-MOF Database
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and generic statistical reduction methods (GSRM). The properties such as metallicity,

Eg and Ef that require DFT calculations are recognized as target property. Three

tasks of ML are initiated as (1) classification of metallicity, (2) prediction of Eg and

(3) prediction of Ef using the created features. The ML models in classification task

show great performance where accuracy reach 100% in training set and 91% in test set.

For the prediction of Eg, the mean absolute errors (MAEs) of predictions compared to

DFT results are as low as 0.06 eV which is lower than the common accuracy of DFT

calculations, indicating an accurate predicting ability of our ML models based on the

given features. Predictions of Ef have a coe�cient of determination (R2) above 0.95

for training and test sets. The MAE of predicted Ef is 0.021 eV/atom with the best

ML model. In addition, a hypothetical MOF is created to validate the transferability

of my features and ML models. The results are promising that the models are able

to make close predictions even for the structures that are never introduced. As a

result, ML will have a great potential to skip quantum-mechanical level calculations

by making accurate predictions about our target properties, if su�cient training data

is generated.

5.2 Future Work

The dissertation covers a complete workflow starting from the study of individual

materials, to creating design strategy and applying ML technique to accelerate the

discovery process. Nevertheless, there are still more interesting directions that can

be further investigated. The first focus of research should be expanding the EC-

MOF Database by introducing more building blocks on the one hand and creating

more types of data on the other hand. As I mentioned, there are databases that

possess near millions of structures. Therefore, to get a more comprehensive picture

of EC MOF materials, more structures are needed. At the same time, the CrySP

software should be improved by including more building logic circuits or finding a
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more automatic logical process that can deal with di↵erent types of crystal lattices.

The User Interface of our database should be modified so that users can download

multiple structures and data at one time. Second research focus is related to the

implementation of ML technique. The features I created till now show e↵ectiveness

for current target properties, but with the increase of structures and more columns of

data, more features must be created to describe a diverse range of systems and their

properties. A general feature engineering process should be established that is able

to create and modify features regularly based on the newly added structures.
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Miller, and M. Dincǎ. Continuous electrical conductivity variation in
m3(hexaiminotriphenylene)2 (m = co, ni, cu) mof alloys. Journal of the

American Chemical Society, 142:12367–12373, 2020.

[22] S. Chong, S. Lee, B. Kim, and J. Kim. Applications of machine learning in metal-
organic frameworks. Coordination Chemistry Reviews, 423:213487, 2020.

96



[23] I. Choudhuri and D. G. Truhlar. Hle17: An e�cient way to predict band gaps
of complex materials. The Journal of Physical Chemistry C, 123(28):17416–
17424, 2019.

[24] S. S. Y Chui, S. M. F Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams.
A chemically functionalizable nanoporous material [cu3 (tma) 2 (h2o) 3] n.
Science, 283(5405):1148–1150, 1999.

[25] Y. G. Chung, J. Camp, M. Haranczyk, B. J. Sikora, W. Bury, V. Krungleviciute,
T. Yildirim, O. K Farha, D. S Sholl, and R. Q. Snurr. Computation-ready,
experimental metal–organic frameworks: A tool to enable high-throughput
screening of nanoporous crystals. Chemistry of Materials, 26(21):6185–6192,
2014.

[26] Y. G. Chung, E. Haldoupis, B. J. Bucior, M. Haranczyk, S. Lee, H. Zhang, K. D.
Vogiatzis, M. Milisavljevic, S. Ling, J. S. Camp, B. Slater, J. I. Siepmann,
D. S. Sholl, and R. Q. Snurr. Advances, updates, and analytics for the
computation-ready, experimental metal–organic framework database: Core
mof 2019. Journal of Chemical & Engineering Data, 64(12):5985–5998, 2019.

[27] Y. J. Colón, D. A. Gomez-Gualdron, and R. Q. Snurr. Topologically guided,
automated construction of metal–organic frameworks and their evaluation
for energy-related applications. Crystal Growth & Design, 17(11):5801–5810,
2017.
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R. Q. Snurr, J. T. Hupp, T. Yildirim, and O. K. Farha. Understanding
volumetric and gravimetric hydrogen adsorption trade-o↵ in metal–organic
frameworks. ACS Applied Materials & Interfaces, 9(39):33419–33428, 2017.

[43] S. Gong, S. Wang, T. Xie, W. H. Chae, R. Liu, and J. C. Grossman. Calibrating dft
formation enthalpy calculations by multifidelity machine learning. JACS Au,
2(9):1964–1977, 2022.

98



[44] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. A consistent and accurate ab initio
parametrization of density functional dispersion correction (dft-d) for the 94
elements h-pu. The Journal of Chemical Physics, 132:154104, 2010.

[45] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg. A consistent and accurate ab initio
parametrization of density functional dispersion correction (dft-d) for the 94
elements h-pu. Chemical Physics, 132(15):154104, 2010.

[46] C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward. The cambridge
structural database. Acta Crystallographica Section B: Structural Science,

Crystal Engineering and Materials, 72(2):171–179, 2016.

[47] L. Guillaume, N. Fernando, and K. A. Christos. Imbalanced-learn: A python toolbox
to tackle the curse of imbalanced datasets in machine learning. Journal of

Machine Learning Research, 18(17):1–5, 2017.

[48] B. Guo, R. Xu, J. Liang, L. Zou, A. Terfort, Z. Tian, P. Liu, T. Wang, and J. Liu.
Dialytic synthesis of two-dimensional cu-based metal–organic frameworks for
gas separation: Designable mof–polymer interface. Inorganic Chemistry,
61(40):16197–16202, 2022.

[49] B. Hammer, L. B. Hansen, and J. K. Nørskov. Improved adsorption energetics within
density-functional theory using revised perdew-burke-ernzerhof functionals.
Physical Review B, 59:7413–7421, Mar 1999.

[50] B. Hammer and J. K. Norskov. Why gold is the noblest of all the metals. Nature,
376(6537):238–240, 1995.

[51] C. Hartwigsen, S. Goedecker, and J. Hutter. Relativistic separable dual-space
gaussian pseudopotentials from h to rn. Physical Review B, 58:3641–3662,
Aug 1998.

[52] H. He, Y. Bai, E. A. Garcia, and S. Li. Adasyn: Adaptive synthetic sampling approach
for imbalanced learning. In 2008 IEEE International Joint Conference on

Neural Networks (IEEE World Congress on Computational Intelligence),
pages 1322–1328. IEEE, 2008.

[53] X. He, M. Zhao, X. Tian, Y. Lu, S. Yang, Q. Peng, M. Yang, and W. Jiang. Redox-
responsive nano-micelles containing trisulfide bonds to enhance photodynamic
e�cacy of zinc naphthalocyanine. Chemical Physics Letters, 803:139785, 2022.

[54] Y. He, E. D. Cubuk, M. D. Allendorf, and E. J. Reed. Metallic metal–organic
frameworks predicted by the combination of machine learning methods and
ab initio calculations. The Journal of Physical Chemistry Letters, 9(16):4562–
4569, 2018.
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