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ABSTRACT

TOWARD SMART AND EFFICIENT SCIENTIFIC DATA
MANAGEMENT

by
Jinzhen Wang

Scientific research generates vast amounts of data, and the scale of data has

significantly increased with advancements in scientific applications. To manage this

data effectively, lossy data compression techniques are necessary to reduce storage and

transmission costs. Nevertheless, the use of lossy compression introduces uncertainties

related to its performance. This dissertation aims to answer key questions surrounding

lossy data compression, such as how the performance changes, how much reduction

can be achieved, and how to optimize these techniques for modern scientific data

management workflows.

One of the major challenges in adopting lossy compression techniques is the

trade-off between data accuracy and compression performance, particularly the

compression ratio. This trade-off is not well understood, leading to a trial-and-error

approach in selecting appropriate setups. To address this, the dissertation analyzes

and estimates the compression performance of two modern lossy compressors, SZ and

ZFP, on HPC datasets at various error bounds. By predicting compression ratios

based on intrinsic metrics collected under a given base error bound, the effectiveness

of the estimation scheme is confirmed through evaluations using real HPC datasets.

Furthermore, as scientific simulations scale up on HPC systems, the disparity

between computation and input/output (I/O) becomes a significant challenge. To

overcome this, error-bounded lossy compression has emerged as a solution to bridge

the gap between computation and I/O. Nonetheless, the lack of understanding of

compression performance hinders the wider adoption of lossy compression. The

dissertation aims to address this challenge by examining the complex interaction



between data, error bounds, and compression algorithms, providing insights into

compression performance and its implications for scientific production.

Lastly, the dissertation addresses the performance limitations of progressive data

retrieval frameworks for post-hoc data analytics on full-resolution scientific simulation

data. Existing frameworks suffer from over-pessimistic error control theory, leading

to fetching more data than necessary for recomposition, resulting in additional I/O

overhead. To enhance the performance of progressive retrieval, deep neural networks

are leveraged to optimize the error control mechanism, reducing unnecessary data

fetching and improving overall efficiency.

By tackling these challenges and providing insights, this dissertation contributes

to the advancement of scientific data management, lossy data compression techniques,

and HPC progressive data retrieval frameworks. The findings and methodologies

presented pave the way for more efficient and effective management of large-scale

scientific data, facilitating enhanced scientific research and discovery.

In future research, this dissertation highlights the importance of investigating

the impact of lossy data compression on downstream analysis. On the one hand, more

data reduction can be achieved under scenarios like image visualization where the

error tolerance is very high, leading to less I/O and communication overhead. On the

other hand, post-hoc calculations based on physical properties after compression may

lead to misinterpretation, as the statistical information of such properties might be

compromised during compression. Therefore, a comprehensive understanding of the

impact of lossy data compression on each specific scenario is vital to ensure accurate

analysis and interpretation of results.
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CHAPTER 1

INTRODUCTION

High-performance computing (HPC) is moving rapidly to the era of exascale, as

empowered by the recent advances in system architecture and hardware and software

ecosystems. The continuous scaling of application performance has enabled science to

be done at an unparalleled microscopic level and new scientific breakthroughs that

were not possible in the past. Nevertheless, with the increasing model resolution and

fidelity, post-hoc data analytics has become increasingly cumbersome due to the high

cost of moving data from persistent storage to memory and performing computation.

Similarly, the aggregation and transportation of large volumes of data across multiple

sites incur significant overheads for scientific applications running on grids due to the

limited bandwidth of network [53]. To address this challenge, various methods have

been developed to allow for more efficient data exploration for scientific simulations,

and they generally tackle the issue from the following three dimensions: improving

storage and I/O systems [27,31,51,64,67,68,70], in situ processing [7,11,14,33], and

data reduction [15,17,21,41,47,50]. None of these methods are deemed to be the silver

bullet to solving the long-standing problem. Rather, they are designed to function at

a single level in the system stack and complement each other to achieve the best

application outcome.

In particular, there has been a multitude of efforts re-designing storage and

I/O system for HPC, most notably the insertion of a burst buffer layer [51] into

the HPC storage stack, and the use of emerging storage devices, such as NVRAM,

die-stacked memory. Meanwhile, in-situ processing offers an alternative paradigm that

allows data analysis to be done in memory while the simulation is running without

being forced to move data to persistent storage for post-processing. In contrast, data

reduction has shown great promise to fundamentally solve the I/O challenge when

1



used in conjunction with other methods across the software/hardware stack. For

large datasets generated from high-performance computing (HPC) simulations, data

reduction techniques aim to lower data volume and velocity so that the overhead of

I/O and data analysis is more tractable. In general, data reduction takes advantage

of the inherent redundancy in data, and state-of-the-art floating-point compressors

can be either lossless [15, 26, 50, 56] or lossy [10, 18, 19, 21, 41, 47, 55], depending on

whether there is information loss during compression. On one hand, while lossless

compression incurs no information loss, the resulting reduction performance is often

mild and far from being sufficient when dealing with extreme-scale datasets, e.g.,

those of petabytes produced by simulations running at scale. On the other hand, by

trading accuracy for performance, Lossy compression offers a much higher reduction

performance, e.g., a 400X of compression ratio as reported in prior work [21], to

mitigate the bottleneck of I/O.

In reality, domain scientists commonly accept and leverage information loss

to lower the application complexity. A classic example is the particle-in-cell (PIC)

numerical solver, in which the number of macro-particles injected into the system

is orders of magnitude less than that of physical particles, thus greatly reducing

the computational complexity [60]. Therefore, due to its high reduction performance,

lossy compression is often the preferred path forward for large-scale data management.

When using lossy compressors, such as SZ [21] and ZFP [47], domain scientists are

required to specify an error bound (or precision) in order to control the loss of

accuracy of their data. Nonetheless, domain scientists often face a question: whether a

substantial compression ratio (e.g., > 10×) can be achieved for a given dataset under

a realistic error bound. If not, domain scientists may forgo compressing their data so

that at least they can fully preserve it with full precision and avoid paying precious

computing time for compression. Unfortunately, such a question is mostly answered

through trial and error, which is cumbersome and costly for large simulations.

2
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Figure 1.1 Compression ratio vs. error bound (SZ and ZFP).

Intuitively speaking, a positive correlation exists between error bound and

compression ratio. That is, the looser the error bound is, the higher the compression

ratio can be achieved. Prior work [54] has shown that a looser error bound in SZ can

result in a higher hit ratio of curve-fitting, improving the compression ratio. Yet, this

may not be true across all error bounds. Figure 1.1 shows such relationships in SZ

and ZFP on twenty scientific datasets, respectively. For ZFP, while it is clear that

the compression ratio increases monotonically as the error bound loosens, the trend

cannot be characterized by a simple linear or exponential relationship. Meanwhile,

for SZ, the monotonically increasing trend is only applicable to some datasets,

e.g., Bump, Sedov, NWChem, QMPACK, HACC, XGC and S3D. For others, the

compression ratio decreases slightly initially and then quickly ramps up. With such

counter-intuitive trends of compression ratios, it is hard for domain scientists to select

an appropriate error bound that satisfies their reduction goals while minimizing the

loss of information. They may have to exhaust many error bounds before identifying

a satisfactory one, and this process can be both time- and resource-consuming for

large datasets since compression is highly computation-intensive in nature.
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To that end, Chapter 2 aims to gain a deep understanding of the inner

mechanisms of lossy compressors and develop modeling techniques to guide the

selection of appropriate error bounds. The goal is to predict the order of magnitude

of compression ratios so that the estimation can be useful in science production in

order to satisfy the storage constraints.

Chapter 3 further extends the sampling-based compression ratio modeling into a

statistical gray-box approach for lossy compression performance modeling, named as

zPerf. In contrast to the sampling-based approach, zPerf models the compression

performance by leveraging the statistical distribution of data features and core

compression metrics. It provides superiority of less estimation overhead and the ability

to explore the large design space of compression techniques.

Despite the recent success of lossy compression in HPC applications, it suffers

from the following weaknesses: 1) Nearly all lossy compressors require data to

be compressed at a given error bound. Once the data is compressed, the error

tolerance cannot be adjusted after the fact. This causes problems for datasets that are

shared within a large community of users where the accuracy needs can be diverse.

2) Lossy compressors were mostly designed to reduce the storage footprint, and after

decompression, the same degrees of freedom of data will be fed into data analysis. As

such, most lossy compressors do not reduce the cost of computation.

Driven by the aforementioned weaknesses, an error-controlled data decompo-

sition and progressive recomposition were recently designed [8]. The key ideas are

that, during storage, data are transformed into different levels of precision coefficients

using a combination of a multi-grid-like decomposition and bit-plane encoding. Then

upon retrieval, a progressive retrieval framework fetches part of the decomposed data

and recomposes an approximation to the original data with reduced accuracy. A major

advantage is that the degrees of freedom are reduced so that the cost of both I/O and

computation can be controlled in a fine-grained manner. Nevertheless, as pointed out
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Figure 1.3 Requested vs. achieved I/O.

by another work [45], the progressive retrieval framework employs an over-pessimistic

error control, as shown in Figure 1.2, resulting in fetching more data than needed, as

shown in Figure 1.3. Therefore, additional overhead exists during the data retrieval,

hurting the I/O performance.

Intuitively speaking, the retrieved data size depends on both the user-prescribed

error bounds as well as the data characteristics. For example, more data should be

retrieved if users require a higher data accuracy. On the other hand, if the original data

demonstrate stronger smoothness, less data is needed for reconstruction. Therefore,

the amount of data that needs to be retrieved is of the complex interplay between

data characteristics and the error bounds and is hard to capture quantitatively. In

Chapter 4, a DNN-based progressive retrieval framework is proposed to leverage the

Deep Neural Network (DNN) to capture such complex interactions so that a minimum

amount of data can be retrieved to reduce the I/O overhead.
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As for future research work, Chapter 5 highlights the importance of investigating

the impact of lossy data compression on downstream analysis. Lossy compression

techniques, which aim to reduce scientific data sizes, can have significant implications

for the accuracy, reliability, and interpretability of compressed data. It is vital

for scientific users to understand how much data compression be done without

compromising the data integrity and downstream analysis. In this chapter, an

ongoing effort to investigate the impact of lossy compression techniques on scientific

visualization is discussed.

In the following table, we list all the datasets used in this dissertation.

Specifically, the name, dimension, data type, volume size, and brief descriptions of

the datasets are included.

Table 1.1 Dataset Description
Dataset Dimension Type Size Description
Dpot [1, 20694] double 166 KB Electric potential deviation in a plasma physics simulation
Astro [1, 65536] double 524 KB Velocity magnitude in a supernova simulation
Fish [1, 65536] double 524 KB Velocity magnitude in a CFD calculation
Sedov [1, 78144] double 625 KB Pressure of strong shocks in a hydrodynamical simulation
Blast2 p [1, 578880] double 5 MB Pressure of strong shocks in a gas-dynamical simulation
Eddy [1, 282616] double 2 MB Velocity in a 2D solution to Navier-Stokes equations
Yf17 p [1, 97104] double 777 KB Pressure in a computational fluid dynamics calculation
Yf17 t [1, 97104] double 777 KB Temperature in a computational fluid dynamics calculation
Bump [1, 55692] double 446 KB Flow density of an axisymmetric bump
CEMS ATM [26, 1800, 3600] single 674 MB Climate simulation
EXAALT [1, 2869440] single 12 MB Molecular dynamics simulation
Hurricane ISABEL [100, 500, 500] single 100 MB Climate simulation of hurricane
HACC [1, 280953867] single 1 GB Cosmology: particle simulation

NYX [1, 512, 512] single 537 MB
Cosmology: Adaptive mesh hydrodynamics +
N-body cosmological simulation

NWChem [1, 102953248] double 824 MB
Two-electron repulsion integrals computed
over Gaussian-type orbital basis sets

QMCPACK [115, 69, 69, 88] single 631 MB Many-body ab initio Quantum Monte Carlo
S3D [500, 500, 500] double 11 GB Combustion simulation
XGC [20694, 512] double 339 MB Fusion Simulation
Brown [1, 8388609] double 268 MB Synthetic, generated to specified regularity
SCALE LETKF [98, 1200, 1200] single 565 MB Climate simulation
NSTX GPI [369357, 64, 80] double 361 MB NSTX Gas Puff Image (GPI) data
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CHAPTER 2

COMPRESSION RATIO MODELING AND ESTIMATION FOR
LOSSY COMPRESSION ACROSS ERROR BOUNDS

2.1 Motivation

A previous work [54] first proposed a sampling-based methodology to predict SZ

and ZFP compression ratios. The key idea is to use sampled data to extrapolate the

compression ratios of the full data, leveraging the statistical similarity between the

two datasets. Despite the fact that the estimation scheme achieves high accuracy, the

outcome of the estimation is sensitive to the sampling ratio. With a higher sampling

ratio (thus smaller sampled data), more information is lost, and thus the estimation

will deviate from the true compression ratio. Conversely, the scheme can achieve

fair estimations with a lower sampling ratio, such as 1% and 0.1%. Nevertheless,

extreme-scale datasets at the level of petabytes will still be very costly to handle

after being down-sampled to terabytes. Further, to estimate the compression ratios

at multiple error bounds, one must compress the down-sampled data at each target

error bounds, which would be too expensive. At last, estimating the compression ratio

of the full dataset from the sampled dataset is not always feasible since this approach

strictly requires the bounded locality [30].

In light of the issues above, we take a new direction to achieve compression ratio

estimation across error bounds. Our approach is motivated by the correlation between

compression metrics and error bounds. We show the compression metrics of SZ and

ZFP on the Dpot dataset followed by the Pearson correlation with the logarithm of

the error bound in Tables 2.1 and 2.2, respectively. A detailed explanation of these

compression metrics can be found in Subsections 2.2.3 and 2.2.4.

For SZ, most compression metrics, HitRatio, OutlierSize, Mean of quantization

factor and Variance of quantization factor are highly correlated to the error bound.
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Table 2.1 SZ Compression Metrics Across Error Bounds
Compression Metric EB 1 EB 2 EB 3 EB 4

Correlation w. log
of error bound

Error-bound 1E-9 1E-7 1E-5 1E-3 1.00
NodeCount 20,551 40,421 13,383 1,467 -0.66
HitRatio 0.78 0.98 1.0 1.0 0.82
QuantizationFactor 20,551 40,421 13,383 1,467 -0.66
Mean of quantization factor 798,747 1,024,573 1,048,574 1,048,576 -0.87
Variance of quantization Factor 207,742,027,628 30,042,598,502 37,446,718 3,770 0.87
TreeSize 184,960 363,790 120,448 13,204 -0.66
EncodeSize 49,900 70,639 50,503 27,354 -0.64
OutlierSize 74,205 4,623 0 0 -0.80

Table 2.2 ZFP Compression Metrics Across Error Bounds
Compression Metric EB 1 EB 2 EB 3 EB 4

Correlation w. log
of error bound

Error-bound 1E-9 1E-7 1E-5 1E-3 1.00
BitsPerBitplane 3.50 3.48 3.44 3.37 -0.98
MaxPrec 33.84 26.84 19.84 13.84 -1.0
MaxExp 2.84 2.84 2.84 2.84 N/A
BlockSize 118.53 93.34 68.15 46.56 -0.99

Yet, NodeCount, TreeSize, EncodeSize, OutlierSize and QuantizationFactor are less

correlated to the error bound. This is because NodeCount is observed to increase

first and decrease later with the error bound, thus being less correlated with the

error bound, and it is a dominating factor that in turn affects TreeSize, EncodeSize,

OutlierSize, and QuantizationFactor.

Similarly, for ZFP, the compression metrics with Pearson correlation coefficients

to the logarithms of error bounds are shown in Table 2.2. It is shown that all

parameters are highly correlated to the error bound, exceptMaxExp which is constant

across the error bound. We note that the Pearson correlation coefficient is undefined

for a random variable with zero variance.

This observation motivates us to leverage the correlation and capture the trend

of compression metrics in order to estimate the compression ratio. We next discuss

the methodology of capturing the trend of compression metrics and compression ratio

estimation.

2.2 Compression Ratio Estimation Across Error Bounds

In this section, we first discuss the general methodology of estimating compression

ratios across error bounds. We then develop the prediction models for SZ and ZFP.

8



For both compressors, our approach is to first predict the internal compression metrics

across error bounds and then estimate compression ratios.

2.2.1 Basics

For the convenience of discussion, we list the notations used in the paper in Table 2.3.

The datasets used for evaluation are briefly described in Table 1.1. The approach here

is that by compressing data once at EBbase and additionally collecting a small set

of compression metrics, one can capture the characteristics of data and behavior

of a compressor, as well as the interplay between them. Based on this, we can

further assess the compression ratio at EBnew. The compression ratio, denoted as

CompressionRatio, is defined as the ratio of the original data size, InputSize, to the

compressed data size, OutputSize, as shown in Equation (2.1). Clearly, for a given

dataset, the problem of modeling CompressionRatio comes down to the modeling of

OutputSize.

CompressionRatio =
InputSize

OutputSize
(2.1)

As mentioned in Chapter 1, the error bound EBi controls the tolerance of information

loss during data compression. In general, there are two types of error bounds, absolute

and relative error bounds, that are widely used in HPC data compression. Assume a

data point has a value denoted as V , the absolute error bound is an upper bound of the

difference between the original value and the decompressed value, so the decompressed

value is in the range of [V −EBi, V +EBi]. In contrast, the relative error bound allows

for an error that is relative to V and has an error tolerance range of [V · (1− EBi),

V · (1 + EBi)]. Unless otherwise specified, we adopt the relative error bound in our

work, since it results in commensurate information loss for both high and low values.
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Table 2.3 A List of Symbols for Sampling-based Performance Modeling
Symbols Description

General
InputSize Size of uncompressed dataset
OutputSize Size of compressed dataset
CompressionRatio The ratio of InputSize to OutputSize
EBbase, EBnew The base error bound and target error bound to predict CompressionRatio

SZ compression metrics
NodeCount Number of Huffman tree nodes
HitRatio Curve-fitting hit ratio
QuantizationFactors Number of quantization factors used in Huffman encoding
TreeSize Size of Huffman tree structure (in bytes)
EncodeSize Size of Huffman encoding for all nodes (in bytes)
OutlierSize Size of the binary representation of curve-missed points (in bytes)
qf ebase min, qf ebase max The smallest and largest quantization factor at EBbase

qf enew min, qf enew max The smallest and largest quantization factor at EBnew

ZFP compression metrics
BitsPerBitplane Number of bits used in encoding each bit plane
MaxPrec Maximum number of bit planes to encode in order to meet the accuracy demand
MaxExp The common (largest) exponential of each block
BlockSize Size of each block data (in bits)

2.2.2 Methodology

To predict the compression ratio at error bound EBnew, we first perform a standard

compression at error bound EBbase. During this process, we collect a set of

compression metrics (detailed in Table 2.3) that have shown to be correlated with

error bounds (Section 2.1). For example, we experimentally observed in SZ that the

distribution of quantization factors, a key intermediate compression product that is

more compressible than the original data, are highly similar at different error bounds

and can be approximated by the Gaussian distribution. This critical observation

enables us to extrapolate the quantization factors from EBbase to EBnew (Subsection

2.2.3). Once the quantization factors are obtained at EBnew, we can further construct

the new Huffman tree and extrapolate the compression ratio. Also, for ZFP, due to its

block-wise operation (Subsection 2.2.4), characterizing the number of bits used per

each block via two parameters, the number of bit planes to encode and the average

bits used to encode each bit plane, will allow us to predict the average block size at

other error bounds.
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The general methodology is described as follows:

• Step 1: We run a standard compression at EBbase and collect a set of internal
compression metrics, which are compressor dependent.

• Step 2: We analyze the compression metrics at EBbase and build models to
predict them at EBnew. The intuition behind this is that by capturing the
compression metrics, we can indirectly understand the data characteristics as
well as how a compressor reacts to the data. These can be further exploited to
extrapolate the compression performance.

• Step 3: We use the estimated compression metrics to further predict the
compression ratio at EBnew.

Next, we discuss the estimation of SZ and ZFP, respectively.

2.2.3 Prediction of SZ compression ratio

In this chapter, we focus our discussion on SZ 2.0. Since some of the datasets have

already been linearized, we compress all datasets as one-dimensional across the board

for consistency. Therefore, the proposed regression-based prediction model is not used

in our work since it targets multi-dimensional compression. For each data point,

SZ checks whether it can be predicted by its previous points using either linear or

quadratic curve-fitting, subject to a user-specified error bound. If so, this data point

is deemed to be curve-fitted and is further discretized using a quantization factor

followed by Huffman encoding. The intuition is that if there is local smoothness in

data, the likelihood that data points are distributed closely around the predicted

value is high. Therefore, after quantization, data points could potentially be mapped

to an identical quantization factor and thus can be further compressed using Huffman

encoding. The number of quantization factors, denoted as QuantizationFactor, is the

number of discrete levels that SZ maps a curve-fitted data value into. This parameter

can be either prescribed by the user or calculated by the compressor based on the

data range and error bound. If the data point cannot be predicted by its previous
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Figure 2.1 SZ compression metrics vs. relative error bound.

points, it is deemed to be curve-missed and is encoded using binary representation

analysis. Namely, it utilizes IEEE format 754 to represent curve-missed data points

where data values are normalized and truncated based on the error bound, and then

optimized by a leading-zero-based compression method [21].

As such, the size of SZ-compressed data consists of Huffman tree size, Huffman

encoding size for curve-fitted data points, and binary representation size for curve-

missed data points, as shown in Equation (2.2). We next first analyze the impact of

each individual component on OutputSize.

OutputSize = TreeSize+ EncodeSize+OutlierSize (2.2)

SZ Compression and Its Internal Metrics We observe that most of the

compression power in SZ comes from the curve-fitting and Huffman encoding. For

example, for Astro, as shown in Figure 2.1, when the relative error bound is higher

than 10−8, HitRatio is consistently above 90%. Thus, the majority of data points are

hit by curve-fitting. Therefore, we focus on curve-hitting and Huffman encoding in

what follows.

HitRatio. A key compression metric that measures the effectiveness of curve-

fitting is HitRatio, which is the percentage of data points that can be curve-fitted

12



0 1,048,576 2,497,152

101

103

105

O
cc

u
rr

e
n

ce

EB = 10−9

0 1,048,576 2,497,152

101

103

105 EB = 10−7

800,000 1,048,576 1,297,152
Quantization factors

101

103

105 EB = 10−5

1,046,000 1,048,576 1,051,152

101

103

105 EB = 10−3

1,048,540 1,048,576 1,048,612

101

103

105 EB = 10−1

Figure 2.2 Quantization factor distribution (Astro).

and encoded using the Huffman tree under a given error bound. In Figure 2.1(a), we

observe that for Astro, HitRatio increases monotonically from 70% to approximately

100% when the error bound loosens from 10−9 to 10−1. Intuitively, the associated

Huffman tree quantities TreeSize and EncodeSize should also increase since more data

points need to be encoded as a result of increasing HitRatio. Nevertheless, the results

in Figure 2.1(c) and (d) show that TreeSize and EncodeSize increase at first and then

drop after the error bound reaches 10−7. Thus, despite being an important metric,

HitRatio may not be the sole factor in determining the outcome of compression.

NodeCount. Here NodeCount is the number of Huffman tree nodes used

to encode the quantization factors. We observe that the resulting TreeSize and

EncodeSize follow a similar trend as NodeCount across error bounds, indicating that

NodeCount is another key factor that affects compression. Namely, it increases at

first and then drops when the error bound reaches 10−7, which is also the point

where HitRatio reaches 100% (Figure 2.1(b)). Since NodeCount is equivalent to

the unique number of quantization factors used in Huffman encoding, we aim to

study the distribution of quantization factors across different error bounds and

understand the trend of NodeCount. It can be seen from Figure 2.2 that quantization

factors exhibit similar shapes across error bounds from 10−9 to 10−7, but the shape

narrows drastically thereafter. Namely, the range of quantization factors decreases

from [0, 2497152] to [1048540, 1048612], and the number of points represented by

each factor, indicated by the bar height, increases. We observe that fewer quantization

factors are used after HitRatio approximates to 100%. The reason is that no more
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data points can be curve-fitted, and further loosening the error bound will result in

more data points being covered by a single quantization factor. The decreasing of

unique quantization factors further leads to the decreasing of NodeCount.

Therefore, we believe HitRatio and NodeCount are the two main metrics

affecting the compression of SZ. To extrapolate the compression ratio, we need to

first model HitRatio and NodeCount, respectively.

SZ Modeling and Estimation We aim to predict SZ compression metrics from

the base error bound, EBbase, to another error bound, EBnew, and further predict

CompressionRationew - the compression ratio at EBnew. To this end, we first discuss

the modeling of HitRatio and NodeCount.

HitRatio. For SZ, HitRatio can be fairly well predicted since whether a data

point is a hit or a miss only involves a simple comparison between the prediction error

and the radius of hit, denoted as HitRadius, which is calculated as HitRadius =

EBnew · V , where V is the first value of each data segment. The prediction error

is the difference between the predicted value, e.g., using linear or quadratic curve

fitting, and the real value. When compressing data at EBbase, if the prediction error

at EBnew is no greater than HitRadius, the data point is considered a hit; otherwise, it

is considered a miss. Thus, scanning all data points when compressing data at EBbase,

HitRatio at EBnew can be additionally obtained with essentially no extra overhead.

The results of HitRatio estimation are shown in Figure 2.3, where the estimated

HitRatio (in red) is compared against the real values (in blue) for error bounds from

10−9 to 10−1. Overall the estimation of HitRatio is accurate, and the trend of HitRatio

against the error bound is well modeled. Nevertheless, the estimation deviates from

the real value for Dpot at error bounds of 10−7 and 10−5, and Eddy at 10−7. We

comment that the deviation is caused by the simplification in modeling HitRatio.

Namely, during compression, SZ calculates HitRadius on the basis of segments that
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Figure 2.3 HitRatio estimation on evaluation datasets.

consists of 32 data points. However, during our estimation, we use the same HitRadius

for all data points for simplification, which would otherwise require storing a vector

of HitRadius and can be expensive for large datasets. This simplification can cause

inaccuracy for HitRatio prediction. Also, the prior work on SZ [21] suggests that one

should use the preceding compressed values instead of the original values to predict

future values so that the predicted values are bounded by the error bounds. Since the

difference between compressed values and original values is limited by the error bound,

which is typically under 10−1, we use the preceding original values for prediction to

simplify the design.

NodeCount. NodeCount can be estimated utilizing the distribution of quanti-

zation factors. We further notice that, among all datasets we evaluated, the

distributions of quantization factors across different error bounds are highly similar,

and they follow the Gaussian distribution. In general, to characterize a Gaussian

distribution, one only needs to determine the mean and variance. A caveat is that,

despite the fact that the quantization factor distributions of EBbase and EBnew are

observed to have identical means, they exhibit different variances, as shown in Figure

2.2. Therefore, when extrapolating NodeCount from EBbase to EBnew, the variance
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needs to be compensated. We notice that when the error bound is enlarged from

EBbase to EBnew, assuming EBnew > EBbase, those data points missed under EBbase

but hit under EBnew essentially extend the tails of the Gaussian distribution under

EBbase, thus increasing the variance. Hence, compensating the variance at EBnew

comes down to obtaining the distribution of those newly hit points on both tails.

Since the tails of the Gaussian distribution are relatively smooth, we simplify the

problem by using a uniform distribution to model the added tails.

We illustrate the variance compensation scheme in Figure 2.4. The distribution

of quantization factors at EBnew (red curve) has a wider range than the distribution

at EBbase (blue curve). We model the added tails of newly hit data points (gray

bars) using the uniform distribution. To this end, we need to identify the range

of added tails, i.e., [qf enew min, qf ebase min] and [qf ebase max, qf enew max]. We

note that qf ebase min and qf ebase max are the minimum and maximum values

of quantization factors at EBbase. For qf enew min and qf enew max, we use the

minimum and maximum of newly hit data points as approximations. We note that

the newly hit data points at EBnew can be easily obtained by simply comparing

HitRadius with the curve-fitting prediction error.

Next, we apply the uniform distribution to randomly generate two sets of

values in the range of [qf enew min, qf ebase min] and [qf ebase max, qf enew max],
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respectively, to compensate for the difference in quantization factor distribution. The

two sets of quantization factors generated from the uniform distribution are combined

with the original distribution at EBbase to approximate the distribution at EBnew. We

show the compensation results of astro in Figure 2.5. We can see that the distributions

under EBbase (in green bars) and EBnew (in blue bars) have the same mean value of

1,048,576. The variances of distribution under EBnew and EBbase are 37,446,718, and

375,682, respectively. And the compensated variance of distribution at EBbase with

the extended tails is 35,443,720, which is very close to the true variance at EBnew.

Once the quantization factor distribution at EBnew is obtained, we can estimate

NodeCount by counting the number of unique quantization factors in the estimated

distribution.

CompressionRatio. Based upon the HitRatio and NodeCount estimations,

we next describe the complete CompressionRatio estimation. The extrapolation of

CompressionRatio from EBbase to EBnew involves the following steps:

• Step 1: Run the standard SZ compression for a given dataset at EBbase.
Calculate HitRadius at EBnew. Record the SZ compression metrics in Table
2.3. In addition, record the prediction error for each value.

• Step 2: Extrapolate HitRatio to EBnew based on estimated HitRadius and the
recorded prediction error.
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• Step 3: Calculate qf enew min and qf enew max. Construct the quantization
factor distribution and estimate the NodeCount at EBnew.

• Step 4: Estimate TreeSize, EncodeSize, and OutlierSize, based on the estimated
NodeCount and HitRatio. The estimated output size, OutputSizenew, is the sum
of the estimated TreeSizenew, EncodeSizenew and OutlierSizenew.

In particular, for Step 4, the methodology used here, similar to our previous work

[54], is based upon the following observations: 1) the Huffman tree size is proportional

to the tree node count; 2) the encoding size is related to the depth of Huffman tree; and

3) the size of outliers is proportional to the number of outliers, with the size of each

outlier being similar. The values of TreeSizenew, EncodeSizenew, and OutlierSizenew

at EBnew can be estimated as follows.

TreeSizenew = TreeSizebase ·
NodeCountnew
NodeCountbase

EncodeSizenew = EncodeSizebase ·
log2NodeCountnew
log2NodeCountbase

OutlierSizenew = OutlierSizebase ·
OutlierCountnew
OutlierCountbase

Therefore,

OutputSizenew = TreeSizenew + EncodeSizenew +OutlierSizenew

CompressionRationew =
InputSize

OutputSizenew
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Figure 2.6 SZ compression metric estimation.

We take the Astro dataset as an example to illustrate the estimation of each

component, as shown in Figure 2.6. We can see that the two key factors, HitRatio

and NodeCount, are well predicted. The non-linearity observed in NodeCount is also

captured, which leads to the modeling of TreeSize, EncodeSize, and OutlierSize. A

more comprehensive evaluation of SZ CompressionRatio is presented in Section 2.3.

2.2.4 Prediction of ZFP compression ratio

ZFP Compression and Its Internal Metrics ZFP compresses data based on

blocks. For each block, ZFP first transforms it into a set of floating-point mantissas

along with a common exponent. The common exponent is computed from the

largest absolute value in the block, resulting in mantissas in the range of [−1, 1].

Next, the floating-point mantissas are converted to fixed-point values and then

taken into a reversible orthogonal transformation. The transformation, similar to the

discrete cosine transform (DCT) used in JPEG image encoding, decorrelates spatially

correlated values, resulting in near-zero transform coefficients that are typically more
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compressible. The transform incurs equal importance for each transform coefficient,

and each bit of coefficients within the same bit plane has the same impact on

accuracy [47] [49]. Thus, transform coefficients can be compressed using embedded

encoding [61] where a bit plane of coefficients is encoded at a time. Note that the

number of bit planes to be encoded can be calculated from the user-specified precision.

ZFP can work in different modes depending on the user’s requirements. In this

work, we choose the fixed-accuracy mode, in which the absolute error bound is set

by the parameter accuracy. The data points in each block are compressed up to a

common minimum number of bit planes to meet the target error tolerance.

MaxPrec and BitsPerBitplane. Given that ZFP compresses data by blocks,

OutputSize is simply the sum of the size of all compressed blocks (see in Equation

(2.3)). We denote the compressed size of block i as BlockSizei (in bits), where 0 ≤

i < n and n is the total number of blocks.

OutputSize =
1

8

n−1∑
i=0

BlockSizei (2.3)

In the extreme case where a block has all zero values, BlockSize is one and only

a single bit of zero is written. If a block has non-zero values, BlockSize is the total

number of bits used to encode the values in the block. To control the accuracy of the

compressed dataset, ZFP operates on a bit plane of coefficients at a time using the

embedded encoding (as shown in Figure 2.7). When compressing the coefficients in

a block by bit planes, BlockSize depends on MaxPrec, the number of bit planes to

encode, and BitsPerBitplane, the number of bits consumed to encode each bit plane

(see Equation (2.4)).

BlockSizei =
MaxPrec−1∑

j=0

BitsPerBitplaneij (2.4)
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Figure 2.7 Bit planes in a ZFP block.

where BitsPerBitplaneij is the j-th bit plane to encode for block i. In order

to estimate CompressionRatio of ZFP, we must model and estimate these two

parameters.

Note that ZFP in the fixed accuracy mode only supports the absolute error

bound. In order to select a spectrum of error bounds that covers both loose and tight

bounds, we set the absolute error bound to the product of the root mean square

(RMS) and the prescribed relative error bound. The definition of root mean square

is defined as follows:

RMS =

√∑n
i=1 x

2
i

n
(2.5)

where x1, x2, ...xn is a set of values.

ZFP Modeling and Estimation In this section, we aim to model and estimate

two key compression metrics, MaxPrec and BitsPerBitplane, and further predict

CompressionRatio. The central idea is to take advantage of the correlation between

compression metrics and error bounds to make predictions.
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Figure 2.8 Histogram of bits used in each bit plane (Eddy).

As shown in Table 2.2, MaxExp, the maximum exponent value in a block,

is constant across error bounds. MaxPrec decreases as the error bound loosens. It

indicates that each block requires fewer bit planes to be encoded to satisfy the

error tolerance. For BitsPerBitplane, although it decreases monotonically as well,

we observe that the average number of bits to encode each bit plane decreases slowly

from 3.50 to 3.37 when the error bound loosens from 10−9 to 10−3. The reason is that

this quantity highly depends on the actual bits of each bit plane but is not impacted

by the error bound. Therefore, BitsPerBitplane is deemed to be less sensitive to the

error bound, thus highly predictable at EBnew.

MaxPrec. We studied the ZFP implementation∗ and notice that MaxPrec is

empirically calculated by Equation (2.6). In the equation, MaxExp is the largest

∗This is of ZFP 0.5.3
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exponent value in a block, and log2Accuracy is the smallest bit plane number that

should be encoded to [48].

MaxPrec = MaxExp− log2Accuracy + 2 · (1 + d) (2.6)

BitsPerBitplane. For a bit plane that has non-zero values, an embedded

encoding scheme is applied to encode the bits of each of 4d numbers into two parts:

the first m bits are encoded verbatim where the value of m depends on the previous

bit plane; then n bits are used to encode the remaining 4d −m bits using run-length

encoding. The total number of bits (m + n) used to encode is in general data

dependent, and it is non-trivial to calculate the exact number of bits used to encode

each bit plane. Nevertheless, we observe that the distribution of BitsPerBitplane

is highly similar for each dataset across error bounds. It is shown in Figure 2.8

that for Eddy, each bit plane uses around 3.5 bits on average, and this stands

true for all error bounds. Therefore, we use a weighted average of BitsPerBitplane

at EBbase to approximate that at EBnew. In eddy for example, the total number

of bit planes to encode at error bound 10−9 is 1715895, among which, there are

[78281, 120245, 68547, 1404963, 36905, 6882, 72] bit planes using [1, 2, 3, 4, 5, 6, 7] bits

to encode, respectively. Thus, the weighted average of BitsPerBitplane is 3.71.

The weighted averages of BitsPerBitplane for Eddy across error bounds are

shown in Figure 2.8. It is observed that BitsPerBitplane decreases slowly from 3.71

to 3.15 when the error bound loosens from 10−9 to 10−1, validating the intuition that

fewer bits are needed to encode each bit plane at a looser error bound. It also suggests

that BitsPerBitplane is insensitive to the error bound. This conclusion stands for all

twenty datasets and the complete results of BitsPerBitplane distributions are shown

in Figure 2.12 (Subsection 2.3.2).
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CompressionRatio.Now that we have modeledMaxPrec and BitsPerBitplane,

BlockSizei can be approximated by the product ofMaxPrec and the weighted average

of BitsPerBitplaneij, denoted as BitsPerBitplanei.

BlockSizei =
MaxPrec−1∑

j=0

BitsPerBitplaneij

≈ MaxPrec ·BitsPerBitplanei

(2.7)

We take the Eddy dataset as an example to show the estimation result of

BlockSize. As shown in Figure 2.9, the distributions of real (in red) and estimated (in

blue) BlockSize are highly similar across error bounds. We note that the estimation

error is a result of using the weighted average of BitsPerBitplane at EBbase for

prediction.

With BlockSize modeled, OutputSize can be estimated using Equation (2.3).

The process of compression ratio estimation can be broken down into the following

steps:

• Step 1: For a given dataset, we run the ZFP compression in the fixed-accuracy
mode at EBbase, to obtain MaxExp of each block and BitsPerBitplane of each
bit plane.

• Step 2: We calculate the weighted average of BitsPerBitplane at EBbase and
calculate the MaxPrec for error bound EBnew.

• Step 3: We estimate BlockSize at EBnew using Equation (2.7) and calculate
the compressed data size OutputSize and CompressionRatio.

The results of compression ratio prediction for all datasets can be found in

Subsection 2.3.2.
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Figure 2.9 Distribution of real and estimated BlockSize across error bounds.

2.3 Evaluation

In this section, we present evaluations of our models for SZ and ZFP, respectively,

on twenty real scientific datasets. Among them, eleven datasets are adopted from a

suite of Scientific Data Reduction Benchmarks [25] which contains data from real-

world scientific simulations, including climate simulation [2], hurricane simulation [1],

cosmological simulation [6], molecular dynamic simulation [5], N-body cosmological

simulation [9], example molecular 2-electron integral values [24], weather simulation

[46], many-body ab initio Quantum Monte Carlo [39], combustion simulation [40],

and fusion simulation [16]. We compare the estimated compression ratios with the

real ones across error bounds. Note that EBbase is set to 10−9. We also quantitatively

analyze the estimation error of compression ratios for both compressors.
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Figure 2.10 SZ compression estimation.
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2.3.1 SZ compression estimation

We apply the proposed estimation scheme to extrapolate the compression ratios of

SZ across error bounds from 10−9 to other error bounds, as shown in Figure 2.10.

We further show the prediction error for each dataset in Figure 2.14. For most

datasets, the proposed scheme can capture the trend of compression ratio well and

make reasonable estimations under most error bounds. Nevertheless, for Blast2 p, the

scheme shows a substantial departure from the real compression ratios. This is due to

the unique data distribution of Blast2 p, in which data points mostly center around

two values. As a result, the quantization factor deviates from the exact Gaussian by

a large margin (Figure 2.11), and this, in turn, affects the accuracy of NodeCount

estimation.
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For Eddy, Sedov and Yf17 p, although the relative estimation errors shown in

Figure 2.14 are high, the absolute estimation errors are not. For example, for Eddy,

the estimation errors at error bound 10−5 and 10−3 are 0.45 and 1.74, respectively.

None of the absolute estimation errors exceeds an order of magnitude difference -

the goal of compression estimation is to capture the trend of compression ratio, as

opposed to predicting the precise value.

Furthermore, it is observed that for loose error bounds, e.g., 10−2 or 10−1, the

estimation is less accurate (except for Astro). The reduced accuracy is caused by

the following: 1) our approximation of using uniform distribution to model newly

hit points, and 2) the amount of newly hit points becomes very small as the error

bound increases, thus making it hard to statistically capture their characteristics. We

comment that loose error bounds are often not preferred in scientific productions due

to the significant information loss, and they are listed here only for comparisons.
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Figure 2.12 Distribution of BitsPerBitplane over error bound.
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Figure 2.13 ZFP compression estimation.

0

20

40

60

80

100
Astro

sz

zfp

0

20

40

60

80

100
Blast2 p

0

20

40

60

80

100
Bump

0

20

40

60

80

100
Dpot

0

20

40

60

80

100
Eddy

0

20

40

60

80

100
Fish

0

20

40

60

80

100
Sedov

0

20

40

60

80

100
Yf17 p

0

20

40

60

80

100
Yf17 t

0

20

40

60

80

100
NWChem

0

20

40

60

80

100
CESM ATM

0

20

40

60

80

100
Hurrican ISABEL

0

20

40

60

80

100
QMCPACK

0

20

40

60

80

100
Brown

0

20

40

60

80

100
SCALE LETKF

10−9 10−7 10−5 10−3 10−10

20

40

60

80

100
NYX

10−9 10−7 10−5 10−3 10−10

20

40

60

80

100
EXAALT

10−9 10−7 10−5 10−3 10−10

20

40

60

80

100
HACC

10−9 10−7 10−5 10−3 10−10

20

40

60

80

100
XGC

10−9 10−7 10−5 10−3 10−10

20

40

60

80

100
S3D

Relative error bound

R
e
la

ti
v
e

e
st

im
a
ti

o
n

e
rr

o
r(

%
)

Figure 2.14 Compression estimation error (SZ and ZFP).

2.3.2 ZFP compression estimation

We first evaluate the estimation of BitsPerBitplane. In Figure 2.12, we plot the

distributions of BitsPerBitplane under error bounds from 10−9 to 10−1. It can be

seen that the distribution of BitsPerBitplane maintains a similar shape across error

bounds for all datasets.
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The results of ZFP compression estimation are shown in Figure 2.13. Overall,

we can capture the trend of compression ratio well across error bounds. For Yf17 p,

Yf17 t and Sedov, our proposed model overestimates the output size which results

in lower compression ratios. This is because BitsPerBitplane under EBbase(10
−9) is

always larger than others (see in Figure 2.12) due to tighter error tolerance. The

relative estimation error of CompressionRatio for ZFP is shown in Figure 2.14. As

compared to SZ (Figure 2.14), the estimation error of CompressionRatio for ZFP is

significantly lower than SZ. For SZ, the quantization factor approximation involves

significant simplifications of Gaussian tails, while ZFP does not have this problem.

In addition, the estimation error generally increases as the error bound deviates from

the EBbase (i.e., 10−9 in our runs). The largest relative estimation error observed is

below 35% (for Fish and Yf17 t data at error bound 10−1) while we observe that the

absolute estimation error is 4.75 and 4.23, respectively.

2.4 Conclusions

Motivated by the insufficient understanding of lossy compressors, this chapter

thoroughly studies the mechanisms of two lossy compressors, SZ and ZFP. In

particular, we examine how the error bound influences the compression ratio and

identify the key factors that affect the outcome of compression. This work develops

modeling techniques to predict compression ratios based on the estimation of key

compression metrics across a set of error bounds. For SZ, we focus on the modeling

and estimation of HitRatio and NodeCount ; whereas for ZFP we capture the trend

of MaxPrec and BitsPerBitplane. We evaluate the modeling and estimation schemes

on real HPC datasets. The results show that our estimation scheme achieves good

accuracy on the compression ratios of SZ and ZFP for all datasets across error

bounds. Our work is beneficial to domain scientists for choosing error bounds when

compressing large datasets on HPC systems.
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CHAPTER 3

ZPERF: A STATISTICAL GRAY-BOX APPROACH TO
PERFORMANCE MODELING FOR LOSSY COMPRESSION

3.1 Motivation

In the past, compression ratio modeling has been attempted mostly using a black-box

approach [54,63,65,66]. Overall, the idea was to extract the salient properties of data

and use the compression performance under an inexpensive setting to extrapolate

that under a target setting. In particular, this can be achieved by properly sampling

the dataset, measuring the compression performance of the sampled dataset, and

further estimating the performance of the original dataset. Unless the sampling ratio

is too small, it is anticipated that the original data and sampled data share similar

characteristics, and therefore the compression performance of the sampled data can

be used to approximate that of the full data. Yet, the prior approach suffers from the

following weaknesses:

Motivation 1: The sampling-based estimation does not allow us to explore the

large design space of compression easily. Scientific lossy compression techniques

undergo modifications frequently to improve the general performance or suit the

requirements of different applications. For example, SZ recently incorporated second-

order Lorenzo and regression predictors to improve the compression performance [69].

Given the large design space of compression algorithms, the compressor

developers may wish to understand whether replacing a component in a compressor,

e.g., the entropy encoder for quantized data, with a list of candidate solutions would

lead to a substantial performance improvement.

Such design space explorations are useful to identify possible research and

development opportunities for lossy compression before more labor-intensive software

development is underway. Regardless, the sampling-based approach does require all
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Figure 3.1 Estimation error of compression ratio vs. sampling ratio for SZ.

candidate solutions to be fully integrated into the compressor prior to the assessment

of performance outcomes, which is costly and error-prone.

Motivation 2: For offline compression where data needs to be first retrieved

from persistent storage, the I/O overhead of the sampling-based estimation is high for

extreme-scale datasets.

While one could choose a low sampling ratio (e.g., < 0.1%) to somewhat reduce

the I/O overhead, the resulting accuracy of estimation decreases rapidly with the

sampling ratio. Figure. 3.1 shows the estimation error of compression ratio across a

range of sample ratios for SZ. It is shown that once the sampling ratio is lower than

1E-4, the estimation error exceeds 80% and therefore, a low sampling ratio is not

desirable.

Motivated by the weaknesses of the sampling-based approach, this chapter

aims to develop a gray-box approach where key components within a compressor

are modeled to allow for performance estimation and extrapolation.

3.2 Gray-box Compression Modeling

In this section, we first discuss the general methodologies of gray-box performance

modeling for prediction-based and transform-based lossy compression techniques. We

then use SZ and ZFP as two case studies to show the detailed implementation. For

the convenience of discussion as follows, we list the notations in Table 3.1.
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Table 3.1 A List of Symbols for Gray-box Performance Modeling
Symbols Description

General
U Input dataset size (bytes).
G Compression ratio.
F Compression throughput (bytes/sec).
N Number of elements of input data.
B Number of data blocks.
R Value range of input data.
E Lossy error bound.

SZ compression metrics
ρ Number of quantization levels for encoding.
η Curve-fitting efficiency.
n Number of Huffman tree nodes.
J Huffman tree structure size (bytes).
K Huffman encoding size (bytes).
M Curve-missed data encoding size (bytes).
P Curve-fitting and quantization time (secs).
M Curve-missed data encoding time (secs).
C Huffman tree construction time (secs).
H Huffman encoding time (secs).

ZFP compression metrics
ϵ Maximum exponent value in each data block.
m Number of bit planes to encode for each data block.
b Number of encoding bits for each bit plane.
P Exponent values size (bytes).
Q Embedded encoding size (bytes).
V Exponent values calculation time (secs).
X Mantissas values conversion time (secs).
T Non-orthogonal transform time (secs).
R Transform coefficients reordering time (secs).
E Embedded encoding time (secs).

3.2.1 zPerf for prediction-based and transform-based compression

Modern error-bounded lossy compression techniques can be generally divided into

two categories: prediction-based and transform-based, depending on how they remove

redundancies within the dataset.

In general, prediction-based lossy compression tries to represent data points with

a prediction model. Then those data points that can be predicted by the model are

converted to discrete quantization codes, followed by an entropy encoding. SZ [21,

44, 62], FPZIP [50], and ISABELA [41] are three typical examples of prediction-

based lossy compression techniques. The output of prediction-based lossy compression

mainly consists of the encoded quantization codes, as well as those data points cannot

be predicted by the predictor. The size of encoded data generally depends on the
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entropy encoding efficiency (i.e., bit rate) while the unpredictable data size essentially

depends on the prediction efficiency (the percentage of predicted data points).

On the other hand, transform-based lossy compression performs orthogonal

transforms that map the original data to de-correlated coefficients. In general, more

coefficients will be close to zero if the transform is more efficient. Then the transform

coefficients are further encoded while insignificant information is discarded, either by

data values or by bit planes. Typical examples of transform-based lossy compression

techniques include ZFP [47] and MGARD [8]. The output of transform-based lossy

compression is essentially the encoded transform coefficients, whose size depends

on the encoding efficiency as well as the amount of information (e.g., number of

bit planes) to be stored according to error bounds. Take ZFP for an example, the

number of bit planes to encode depends on the user-prescribed error bounds, and the

encoding efficiency is reflected by the number of bits to encode a bit-plane, whose

distribution can be characterized by Laplacian distribution. The detailed discussion

is included in Subsection 3.2.3. On the other hand, the number of bits to encode a

bit plane in MGARD depends on the dimensionality of multi-level coefficients as well

as the performance of ZSTD that compresses the bit planes after decomposition, and

the number of bit planes to be encoded is determined (32 bits for single-precision

floating-point data) as MGARD does not truncate bit planes during compression.

Due to the limited scope, the implementation of zPerf for MGARD is not detailed in

this work.

We now introduce the general procedures of zPerf for prediction-based and

transform-based lossy compression, as shown in Figure 3.2.

Stage 1: We feed the highly condensed data features into our model to capture

the data characteristics. Generally speaking, the performance of lossy compression

is the outcome of complex interactions between a compressor, error bound, and a

dataset, and thus data features are important to the model. As a matter of fact,
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Figure 3.2 Overall gray-box methodology for lossy compression modeling.

we comment that such condensed features can be made available by modern data

management systems, such as ADIOS [52] which maintains an expandable set of data

attributes that can be specified and computed when data is generated with the goal

of simplifying the post-processing, such as query and filtering.

Stage 2: To capture the inner compression mechanism that a compressor employs, a

set of low-level compression metrics need to be identified to derive the performance

of lossy compression. Based upon our discussion above, the low-level metrics for

prediction-based compression may include prediction efficiency and entropy encoding

efficiency, while for transform-based compression, the low-level metrics may include

the encoding efficiency and the number of bit planes.

Stage 3: We then model the high-level compression metrics that are directly

associated with the compression performance, including the sizes of compression

output components and time of compression routines. Such modeling is enabled by

the low-level compression metrics obtained in stage 2. For prediction-based lossy

compression, the output components may include the output of encoded quantization

codes and the representation of unpredictable data points. The compression routines

may include the time to perform data prediction and entropy encoding. Similarly,

for transform-based lossy compression, the output is mostly the encoded transform

coefficients, while the time of compression routines mainly includes the time to

perform orthogonal transform and the time to encode transform coefficients.
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Figure 3.3 SZ compression performance breakdown.

3.2.2 SZ modeling: a case study of prediction-based compression

SZ compresses input data by first predicting with Lorenzo or regression predictor,

then encoding the quantization codes with Huffman encoding. As shown in Figure

3.3, the size of the compressed data includes the sizes of Huffman tree structure

J , Huffman encoding K, and curve-missed data points M. And the compression

time consists of those spent on data prediction (curve-fitting) and quantization for

curve-hit data points P, Huffman tree construction C, Huffman encoding H, as well

as curve-missed data processing M. These performance metrics are influenced by two

low-level compression metrics: curve-fitting efficiency η and number of Huffman tree

nodes n, which depend on data features.

Data features. To capture the impact of data characteristics on compression, we

feed the distribution and variance of the difference between adjacent values into

35



Cur ve-f i tting eff iciency

Populated quantization
levels

Node 
count nGaussian m odel i ng

Distr ibution of 
Absolute Change

Var iance of 
Absolute Change

Popoulated Huffman 
coding bi t length

Huffman 
encoding size 

Calcu lat i on

Calcu lat i on

Calcu lat i on

Calcu lat i on

Figure 3.4 Key steps in SZ modeling.

our model, as shown in Figure 3.4. Overall, these features characterize the data

smoothness and directly affect the outcome of SZ curve-fitting and Huffman encoding.

Low-level compression metrics. Curve-fitting efficiency η is the proportion of

data points that can be represented by curve-fitting. Consider a dataset D with N

elements and the 1D Lorenzo predictor for curve-fitting, the prediction for the i-

th (i ≥ 3) data point Di, is simply the quantized value of the previous data point

D̂i−1. In particular, Di is deemed to be curve-hit if the prediction error |Di − D̂i−1|

falls into a prediction range γ, which can be derived from a user-prescribed error

bound. In particular, γ is the product of the quantization interval and the number of

quantization levels ρ. For the relative error bound, the length of a quantization interval

can be calculated as ER, where E is the relative error bound and R is the data range.

As such, γ = ρER and η = 1
N
∑N

i=3 I(|Di − D̂i−1| ≤ ρER), where I is a unit vector.

The outcome of η ultimately depends on the absolute difference between adjacent

values |∆Di| = |Di − Di−1|, assuming Di−1 ≈ D̂i−1. Specifically, we bin ∆D by the

prediction range associated with each error bound. For a set of k relative error bounds

{E1, E2, ..., Ek} (assuming E1 > E2 > ... > Ek), the corresponding prediction range is

{ρE1R, ρE2R, ..., ρEkR}. If |∆Di| falls into the range of [ρEj+1R, ρEjR), thenDi will be

curve-hit at error bounds no greater than Ej. We use h−
m ∈ {h1, h2, ..., hk} to denote

the number of data points where ∆Di falls into the range of (−ρEmR,−ρEm+1R].

Correspondingly, we define h+
m ∈ {hk+1, hk+2, ..., h2k} to denote the number of data

points where ∆Di falls into the range of [ρEm+1R, ρEmR). Therefore, η at Ej can be

calculated as ηj = (
∑k

m=j h
−
m +

∑2k+1−j
m=k+1 h

+
m)/N .
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For the 2D Lorenzo predictor, the prediction for i-th data point is expanded

to use its three immediate neighbors that have been predicted, where the curve-

fitting prediction error is |Dij − D̂i−1,j − D̂i,j−1 + D̂i−1,j−1|. Therefore, the curve-

fitting efficiency can also be characterized by the distribution of the difference between

adjacent values.

The number of Huffman tree nodes n is another metric that impacts the

performance of SZ. For those data points that can be curve-fitted, the prediction

error is quantized into at most ρ quantization levels, which is then encoded by a

Huffman tree. Herein, n can be obtained during the estimation of Huffman encoding

size K (detailed next).

High-level compression metrics. The Huffman encoding size K is the sum of

Huffman code length for each quantized data point, which can be calculated as K =⌈
1
8

∑N
i=1 xi

⌉
where xi is the code length (in bits) for the quantization level associated

with Di. The code length xi for each quantization level is determined by its frequency

of occurrence – the more frequently a quantization level occurs, the shorter its code

length is. As far as we know, there has been little theoretical work in the literature

to model xi. However, it was shown that the quantization level follows the Gaussian

distribution [54]. Through studying the implementation of SZ, it is found that the

mean of the Gaussian model is located at ρ
2
and the variance is Var(∆D)/(ER)2 where

Var(∆D) denotes the variance of ∆D, given that a quantization level is calculated

as ∆D/(ER). Hence, we can obtain n and a set of xi, and in turn K by performing

Huffman encoding on a small set of populated quantization levels.

The Huffman tree size J is the number of bytes for storing the Huffman tree.

Through studying the source code of SZ, we find that four attributes are stored for

each tree node: the offsets of the left and right sub-trees, the value of the node, and

a flag indicating whether the current node is a leaf node. Therefore, the size of the

Huffman tree can be easily calculated once n is determined.
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Curve-missed size M is the size of the curve-missed data points. These data

points are first subtracted by the median of the data values and then truncated to

discard the insignificant mantissa bits subject to the error bound. Based upon SZ’s

implementation, the number of remaining significant mantissa bits qj at relative error

bound Ej can be calculated as qj = Exp(R/2) − Exp(EjR), where Exp(·) denotes

the exponent part of a floating-point value. In particular, Exp(R/2) is the exponent

value of the data radius and Exp(EjR) is the exponent value of a quantization level

under Ej. The rationale behind this formula is that the minimal qj bits are required

to reconstruct the normalized values of curve-missed data. Therefore, for each curve-

missed data point, we need
⌊ qj

8

⌋
bytes to store the significant mantissa value, and

additional (qj mod 8) bits if qj is not multiple of 8. Given a dataset with N elements

and curve-fitting efficiency ηj under relative error bound Ej, we have the size of

byte array M1 =
⌈
N (1− ηj)

⌊ qj
8

⌋⌉
and the size of the bit array M2 = ⌈1

8
N (1 −

ηj)(qj mod 8)⌉. SZ further reduces the storage cost of M1 by performing a byte-level

XOR operation between consecutive mantissa values. The number of leading zeros in

the result of XOR indicates the number of leading bytes between consecutive values

that have the same value. As an empirical design, SZ designates 2 bits for each

mantissa value to store the number of leading zero bytes. Therefore, maximally three

leading zero bytes can be captured, and we have the size of the leading-zero byte

array M3 =
⌈
1
8
2N (1− ηj)

⌉
=

⌈
1
4
N (1− ηj)

⌉
. We approximate that each mantissa

value has an average of 1.5 leading zero bytes for any scientific dataset. Therefore,

M1 =
⌈
N (1− ηj)(

⌊ qj
8

⌋
− 1.5)

⌉
and M = M1 +M2 +M3.

Meanwhile, the compression time is system-dependent. The idea of modeling

the compression time is to focus on analyzing the complexity of compression routines

and use the measurement of low-level routines to extrapolate the compression time on

a particular system. The curve-fitting and quantization time P is the time to perform

curve-fitting and quantization on curve-hit points. In particular, SZ maps them into ρ
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quantization levels and then adjusts the data prediction due to the quantization. Since

SZ performs the same operation for each curve-hit data point, the time complexity

of P is O(N η). The Huffman tree construction time C is the time to construct the

Huffman tree from quantization levels. It involves calculating the frequency of each

quantization level C1, node insertion C2, and Huffman code building C3. The time

for frequency calculation is essentially linear to the number of data points. Therefore

the time complexity of C1 is O(N ). The node insertion involves the following two

steps. First, each quantization level is formed as a tree node and inserted into a tree,

with each tree having one node. Then two trees with the lowest frequencies will be

merged, which will be repeated until all trees are merged into one tree. Thus, the

complexity of node insertion is O(n). Huffman code building involves traversing the

tree and assigning 0s or 1s to the tree leaves. It requires a tree traversal, and the time

complexity is clearly O(n). The Huffman encoding time H is the time to encode the

quantized data. Essentially SZ goes over the entire dataset, looks up the Huffman

coding of the quantization data, and writes the code to a buffer. The time complexity

is O(N η). Meanwhile, the curve-missed processing time M is the time to perform

operations for curve-missed data points. The time complexity of M is O(N (1 − η))

as each curve-missed data point is processed with the same operations.

To fully model the compression time for a given system, we obtain the timings

of the hardware-dependent low-level compression routines. They include the timings

of the processing of a single curve-hit point r1, the processing of a single curve-missed

point r2, the calculation of quantization level for a data point r3, the node insertion

to Huffman tree r4, the traversal of a tree r5, and the retrieval and storage of Huffman

coding for a data point r6.

SZ compression performance. Given the performance metrics we discussed above

and the measurements of low-level routines, we have Gsz = U
J+K+M and Fsz =

U
Nηr1+N (1−η)r2+N r3+n(r4+r5)+N r6

for compression ratio and compression throughput,
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Figure 3.5 ZFP compression performance breakdown.

respectively. We note that for the convenience of implementation, curve-missed data

points are marked as a special quantization level 0 in SZ, and therefore r3 and r6 are

scaled by a factor of N , instead of N (1− η).

3.2.3 ZFP modeling: a case study of transform-based compression

ZFP compresses input data by first performing a block-based orthogonal transform

to remove redundancies, then encoding the transform coefficients a bit plane at a

time to control the output bit rate. As shown in Figure 3.5a, the output size of

ZFP includes the sizes of exponents values P and embedded encoding Q. Meanwhile,

the compression time consists of exponent extraction time V, mantissa conversion

time X, non-orthogonal transform time T, transform coefficients reordering time R,

and embedded encoding time E, as demonstrated in Figure 3.5b. Fundamentally, two
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Figure 3.6 Key steps in ZFP modeling.

low-level compression metrics affect the high-level metrics: the number of bit planes

m to encode for each block and the number of encoding bits b for each bit plane.

Figure 3.6 shows the key steps in ZFP modeling, which are detailed next.

Data features. The compression performance of ZFP is highly affected by the

properties of input data. In particular, m is impacted by the exponents of input

data for each block, while b depends on the non-orthogonal transform coefficients.

Therefore, to capture the interaction between data and the compressor, we feed the

distribution of block-wise mean into zPerf, based upon which the distributions of

exponent and mantissa mean can be derived.

Low-level compression metrics. Let mi denote the number of bit planes to encode

for the i-th block under a user-prescribed error bound E , which can be calculated as

mi = ϵi − log2 E + 2(dim + 1) [48], where ϵi is the maximum base-2 exponent of the

block and dim is the number of dimensions. We note that the additional 2(dim+ 1)

bit planes are needed due to the range expansion incurred by the inverse transform

during decompression. Given the distribution of the block-wise mean of input data,

we can populate a small set of mean values, and ϵi can be estimated by taking the

logarithm over the populated data, based upon the fact that data values within a

block are often smooth, and therefore, ϵi is close to the exponent of the mean. As

such, mi can be obtained.

The value of b is another vital metric to the ZFP compression. Let bij denote

the number of bits required to encode the j-th bit plane for the i-th block. The
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embedded encoding of each bit plane in a block includes the following two steps:

First, Sij significant bits are encoded verbatim, where Sij is the smallest number that

allows 4dim−Sij highest bits in all previous j−1 bit planes to be all zeros. Second, the

remaining 4dim − Sij bits are encoded using a variable-length representation. Due to

the reordering of transform coefficients, we find that the remaining 4dim − Sij bits of

each bit plane are largely zero, as shown in Figure 3.7. Note that since an extra zero

bit is saved for a bit plane whose remaining bits are all zeros, bij can be estimated as

Sij +1, as demonstrated in Figure 3.8. Hence in this work, we use Sij to estimate bij.

Further, it is clear that Sij depends heavily on the transform coefficients, which are

the product of the non-orthogonal transform in ZFP. To capture the bit plane values

and further Sij, we next discuss the distribution of transform coefficients.

It was shown in previous work [42] that the non-orthogonal transform coeffi-

cients can be modeled by Laplacian distribution with the mean of zero and the scaling

factor of λ, where λ can be estimated as the block-wise mean of coefficients via the
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maximum likelihood estimation [23]. Consider a 1D block of input data [x, y, z, w]

with the corresponding mantissa [ẋ, ẏ, ż, ẇ] and transform coefficients [x′, y′, z′, w′].

For a block of data that is typically smooth (due to the continuity in the physical

quantities captured from a scientific simulation), the high-frequency components of

the transform coefficients, namely y′, z′ and w′, will be close to zero [22]. Therefore,

the mean of transform coefficients can be approximated as x′

4
, where x′, known as

the DC (zero-frequency) component, can be further calculated as the mean of input

mantissa values x′ = 1
4
(ẋ + ẏ + ż + ẇ). It is clear that the estimation of transform

coefficients distribution ultimately comes down to the mean of the mantissa of input

data, which can be obtained from the populated values during the estimation of mi.

As such, the modeling of ZFP transform coefficients is complete.

Next, based upon the estimated Laplacian distribution of transform coefficients,

we populate a set of coefficients and then compute the Sij values. In Figure 3.9, we

provide an example of encoding a 1D floating-point block of transform coefficients.

In this example, given the populated transform coefficients [x′, y′, z′, w′], the indices

of significant bits, marked by red boxes, can be calculated as [d, e, f, g] = [32 −

⌊log2x′⌋, 32 − ⌊log2y′⌋, 32 − ⌊log2z′⌋, 32 − ⌊log2w′⌋]. Then Sij for each bit plane can

be easily calculated. As such, bij can be estimated.

High-level compression metrics. Encoding sizeQ is the total size of the embedded

encoding, which is the sum of b across all bit planes and all data blocks, i.e., Q =
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⌈
1
8

∑B
i=1

∑mi

j=1 bij

⌉
where B is the number of data blocks. Exponent size P is the byte

size to store ϵ for all data blocks. According to the IEEE-754 format, ϵ takes 11 bits for

double precision floating point data, and therefore P can be calculated as P =
⌈
11
8
B
⌉
.

Similarly, ϵ takes 8 bits for single precision floating point data and P = ⌈B⌉.

On the other hand, V, X, T, and R are the total time to extract ϵ, convert

input floating-point values into mantissa values, perform non-orthogonal transform,

and reorder the transform coefficients, respectively for all data blocks. Clearly the

complexity of V, X, T, and R is O(B). E is the total time to perform embedded

encoding on all transform coefficients. It is affected by the number of bit planes

across all data blocks and the number of encoding bits for each bit plane, given that

the more bits a bit plane has, the longer the encoding time is. Therefore, we need

to measure the encoding time for bit planes with different numbers of encoding bits.

To determine each of these metrics, we directly measure the timing of the following

low-level compression routines: the calculation of the common exponent on a single

block r1, the calculation of mantissa values on a single block r2, the non-orthogonal

transform on a single block of mantissa values r3, the reordering of a single block of

transform coefficients r4, and the embedded encoding of a bit plane r5. For r5, we

calculate the average time to store a bit plane with encoding bits of 1, 2, 3 and 4,

respectively.

ZFP performance. Given the compression metrics and the measurements of the

low-level compression routines, we have Gzfp = U
P+Q for the compression ratio, and

Fzfp =
U

B(r1+r2+r3+r4)+E for the compression throughput.

3.3 Evaluation

In this section, we evaluate zPerf across eight scientific datasets (described in

TABLE 1.1) from the Scientific Dataset Reduction Benchmark [25]. Specifically,

we show the results of four datasets with 1D compression experiments and four
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Figure 3.10 SZ low-level metrics estimation.

with 2D compression experiments. We conduct the compression experiments using

SZ (Version 2.1.7) and ZFP (Version 0.5.5) on two leading HPC systems, Cori [3]

at National Energy Research Scientific Computing Center, and Summit [4] at Oak

Ridge National Laboratory, to test the compression throughput estimation accuracy

of our model. We test the modeling performance of zPerf under the relative error

bounds [1E-6, 1E-5, 1E-4, 1E-3] as moderate error bounds generally play a more

important role in the production as compared to extreme ones. Specifically, since the

ZFP APIs do not support the relative error bound, we set the absolute error bound

of ZFP to the product of the data range and relative error bound, so that different

error magnitudes can be covered in our experiments. For the rest of the section,

we show the modeling results of the low-level and high-level compression metrics in

Subsections 3.3.1 and 3.3.2, respectively. We then compare zPerf against the sampling

approach in terms of estimation accuracy in Subsection 3.3.3.

3.3.1 Low-level compression metrics

For SZ, the estimated curve-fitting efficiency η and the average Huffman coding bit

length are shown in Figure 3.10. For η, it can be estimated accurately mainly because

adjacent data points are observed to be smooth, i.e., D̂i−1 ≈ Di−1. Thus, the histogram

of ∆D versus error tolerance can well capture the number of curve-fit points. On

the other hand, the average Huffman coding bit length, which directly impacts the

outcome of K, is obtained through performing Huffman encoding on the quantization
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Figure 3.11 ZFP low-level metrics estimation.

levels, which are populated based on the Gaussian distribution. It is noted that the

average Huffman coding bit length is accurate for most cases, due to the similarity

between the distributions of original and populated quantization levels. In particular,

we observe that datasets like NYX and SCALE demonstrate lower data smoothness,

such that the number of quantization levels needed for Huffman encoding is hard

to capture. Consequently, the estimated Huffman coding bit lengths based on the

populated quantization levels deviate from the original values.

For ZFP, we demonstrate the modeling results of the number of bit planes

m to encode for each data block and the number of encoding bits b for each bit

plane in Figure 3.11. The value of m can be well captured for most datasets due

to the fact that ϵ is observed to be close to the exponent of the input data mean.

For b, the estimation error is caused by the inadequacy of our model to capture the

difference between the DC component (x′) and high-frequency components (y′, z′,

and w′) of transform coefficients. Therefore, when we populate transform coefficients

based on the estimated Laplacian distribution, the difference between x′ and y′ is

underestimated (assuming x′ ≫ y′ > z′ > w′), causing the number of bit planes

between the d-th and e-th bit plane to be underestimated, as shown in Figure 3.9. On

the other hand, our model does not handle the cases of b > 4. Such cases are counted

towards b = 4 automatically, which leads to the overestimation of the number of bit

planes with b = 4. However, the bit planes with b > 4 make up a small portion of the

total number of bit planes. Hence, the error is observed to be insignificant.
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Figure 3.12 SZ compression size estimation.

3.3.2 High-level compression metrics

We further evaluate the estimation of high-level metrics for SZ and ZFP. Specifically,

for SZ, we show the estimated results of J , K and M under in Figure 3.12. Note

that the overall height of each bar indicates the final compressed size. The deviation

of n as a result of the discrepancy between the original and the quantization levels

produced by the Gaussian distribution is further propagated to J due to the linear

relationship between n and J . Overall, the accuracy of J can be well maintained for

the compressed size, while the average estimation error of K is less than 45%, except

for NYX and SCALE. We note that the estimation error of K mainly comes from the

estimation error of Huffman coding bit length, which is discussed in Subsection 3.3.1.
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(a) Compression time components on Cori (1D Compression).
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(b) Compression time components on Cori (2D Compression).

Figure 3.13 SZ compression time estimation on Cori.

As mentioned in Section 3.2, to estimate the system-dependent compression

time, we need to measure the timings of the low-level compression routines ri.

Table 3.2 shows the execution time of low-level routines of SZ on Cori and Summit,

respectively, which were measured using the SCALE dataset under the relative

error bound of 1E-6. Each measured execution time is averaged across ten runs.

In particular, r1 is measured by the total curve-fitting and quantization time divided

by the number of curve-hit data points, r2 is measured by the curve-missed data

processing time divided by the number of curve-missed data points, and r3 is measured

by the time to retrieve quantization levels divided by the total number of data points.
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Table 3.2 Execution Time of Low-level Routines

(a) SZ on Cori

Routine Exec. Time
r1 32.63
r2 384.91
r3 4.46
r4 4.91
r5 5.76
r6 4.58

(b) SZ on Summit

Routine Exec. Time
r1 62.63
r2 452.91
r3 7.46
r4 5.71
r5 7.36
r6 5.32

(c) ZFP on Cori

Routine Exec. Time
r1 11.8
r2 8.19
r3 2.39
r4 17.19
r5 2.72

(d) ZFP on Summit

Routine Exec. Time
r1 20.8
r2 16.19
r3 4.39
r4 26.19
r5 3.72
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(a) Compression time components on Summit (1D Compression).
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(b) Compression time components on Summit (2D Compression).

Figure 3.14 SZ compression time estimation on Summit.

The estimation for compression time components for SZ is shown in Figures 3.13 and

3.14, where the compression time for Cori is shown in Figure 3.13, and the compression

time for Summit is shown in Figure 3.14. Since P is linear to η, its estimation is fairly

accurate. The Huffman tree construction time C can be calculated as N r3+n(r4+r5).
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(b) Compression output components (2D compression).

Figure 3.15 ZFP compression size estimation.

Overall, since C is dominated by N r3 (N ≫ n) and r3 is deterministic, its accuracy

is good, and the estimation error mostly comes from n. The Huffman encoding time

H can be accurately estimated since the amount of time to encode one quantization

level is fairly constant for a particular system.

For ZFP, we demonstrate the estimation results of P and Q in Figure 3.15 for

1D and 2D compression. In particular, P can be well estimated since it is linearly

related to the number of blocks B. Q is the sum of b of all bit planes across all data

blocks. The estimation error of Q essentially comes from b, which has been discussed

in Subsection 3.3.1. Table 3.2 lists the measured execution time of low-level routines

in ZFP on Cori and Summit, respectively. Specifically for r5, we manually set the bit

plane values so that the corresponding encoding bits for each bit plane are 1, 2, 3 and

50



1E
-6

1E
-5

1E
-4

1E
-30

1

2 BROWN

1E
-6

1E
-5

1E
-4

1E
-30

3

6 CESM_ATM

1E
-6

1E
-5

1E
-4

1E
-30

25

50
HACC

Real exponent extraction time 
Estimated exponent extraction time 
Real mantissa conversion time 
Estimated mantissa conversion time 
Real non-orthogonal transform time 

Estimated non-orthogonal transform time 
Real coefficients reordering time 
Estimated coefficients reordering time 
Real embedded encoding time 
Estimated embedded encoding time 

1E
-6

1E
-5

1E
-4

1E
-30

1

2

3 SCALE

Error bound (relative error)

Ti
m

e 
(s

ec
s)

(a) Compression time components on Cori (1D Compression).
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(b) Compression time components on Cori (2D Compression).

Figure 3.16 ZFP compression time estimation on Cori.

4. For bit planes with different numbers of encoding bits, we calculate the average

encoding time over 1,000,000 blocks with 64 bit planes, and the average time to store

a bit plane is 2.72 ns on Cori and 3.72 ns on Summit. We show the estimation results

for V, X, T, R, and E in Figures 3.16 and 3.17. As we mentioned in Subsection 3.2.3,

V, X, T and R are linear to B. The estimation error for these timings mainly comes

from the approximation of using low-level routines time measured on SCALE, while

51



1E
-6

1E
-5

1E
-4

1E
-30

1

2 BROWN

1E
-6

1E
-5

1E
-4

1E
-30

3

6 CESM_ATM

1E
-6

1E
-5

1E
-4

1E
-30

25

50

75 HACC

Real exponent extraction time 
Estimated exponent extraction time 
Real mantissa conversion time 
Estimated mantissa conversion time 
Real non-orthogonal transform time 

Estimated non-orthogonal transform time 
Real coefficients reordering time 
Estimated coefficients reordering time 
Real embedded encoding time 
Estimated embedded encoding time 

1E
-6

1E
-5

1E
-4

1E
-30

1

2

3 SCALE

Error bound (relative error)

Ti
m

e 
(s

ec
s)

(a) Compression time components on Summit (1D Compression).
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(b) Compression time components on Summit (2D Compression).

Figure 3.17 ZFP compression time estimation on Summit.

the estimation error of E mainly comes from the estimation of encoding bits for each

bit plane.

Overall, zPerf effectively captures the trend of compression performance, despite

the statistical approximation (e.g., the Gaussian modeling for SZ and Laplace

modeling for ZFP) in estimating the compression metrics. Generally, zPerf achieves

better estimation results for ZFP than for SZ. The reason is that the low-level

compression metrics of ZFP, m and b, can be well modeled. On the one hand, m
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is directly calculable based on E and ϵ. On the other hand, b does not demonstrate

drastic changes across all datasets used in our work. Based on our observation, the

values of b typically range from 1 to 6.

3.3.3 zPerf vs. sampling-based approach

We next compare zPerf with the sampling approach [54] regarding the estimation

accuracy. We assess the estimation accuracy using the mean relative error (MRE),

which is defined as the average ratio between the absolute estimation error and the

original compression performance. Overall, the estimation accuracy of the sampling

approach is impacted by the sampling ratio, while the size of populated metrics affects

the performance of zPerf as well. As a result, the sampling ratio and the population

ratio (defined as the ratio between the size of the populated values and the size of

the original data) are key parameters in our evaluation. On the other hand, as the

prior work [54] pointed out that for the estimation of compression ratios, the sampling

approach offers a biased estimation for compressors without bounded localities, such

as SZ, and an unbiased estimation for compressors with bounded localities, such as

ZFP. Therefore, we anticipate that the sampling approach works well for ZFP, but

not SZ.

In this section, we vary the population and sampling ratios from 1E-1 to

1E-7 and compare the MRE of zPerf and the sampling approach. In Figures 3.18

and 3.19, we measure the MRE of compression ratio and compression throughput

estimation for SZ, respectively. In Figures 3.20 and 3.21, we show the MRE of

compression ratio and compression throughput estimation for ZFP. In each figure,

we display the MRE for estimating compression ratio (1D and 2D scenarios) as well

as compression throughput (on Cori and Summit). Due to the limited space, we only

display compression throughput estimation for the 1D scenario. It is observed that

the accuracy of the sampling approach generally degrades (MRE increasing) when
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(a) Compression ratio estimation (1D Compression).
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(b) Compression ratio estimation (2D Compression).

Figure 3.18 zPerf estimation error compared to the sampling approach for SZ
compression ratio under sampling ratios from 1E-1 to 1E-7.

the sampling ratio decreases. Note that due to the bounded locality of ZFP, the

sampling approach yields a low error for compression ratio (Figure 3.20). For SZ,

zPerf generally outperforms the sampling approach in estimating compression ratio.

It is because the estimation of Huffman tree structure deteriorates rapidly when the

sampling ratio decreases, while it can be better maintained by zPerf through the

Laplacian modeling. On the other hand, the MRE of the compression throughput

using zPerf is observed to be insensitive to the population ratio. This suggests that

if the compression throughput is a metric of interest (e.g., for online compression),

zPerf provides a good estimation even with a small set of populated values. We find

that this is because the two largest components of compression time, P and H, have

the complexity of O(N ), which are not directly affected by the population ratio.
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(a) Compression throughput estimation on Cori (1D compression).
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(b) Compression throughput estimation on Summit (1D compression).

Figure 3.19 zPerf estimation error compared to the sampling approach for SZ
compression throughput under sampling ratios from 1E-1 to 1E-7.

For ZFP, the MRE of the compression throughput using the sampling approach

increases with decreasing the sampling ratio. While the MRE of the sampling

approach is generally lower than the MRE of zPerf, we find that they achieve similar

performance at low sampling ratios. Nonetheless, the MRE of the sampling approach

deteriorates rapidly as the sampling ratio becomes small–a key disadvantage when

estimating the performance of extreme-scale datasets that require a small sampling

ratio.

We further compare the running time overhead of both zPerf and the sampling

approach, as shown in Figure 3.22. It can be shown that for SZ (Figure 3.22a), zPerf

yields a lower overhead than the sampling approach after the sampling ratio drops

below 1E-4, which further demonstrates the advantage of zPerf when estimating

compression performance at low sampling ratios. For ZFP, zPerf requires a longer
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(a) Compression ratio estimation (1D Compression).
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(b) Compression ratio estimation (2D Compression).

Figure 3.20 zPerf estimation error compared to the sampling approach for ZFP
compression ratio under sampling ratios from 1E-1 to 1E-7.

running time as compared to the sampling approach. Nevertheless, it is still beneficial

given that zPerf can provide better estimation at low population ratios.

3.3.4 zPerf vs. state-of-the-art

Tao et al. [63] employ a rate-distortion estimation method for bit-rate estimation.

Compared to zPerf, this work neither explored the design space of lossy compression

nor attempted to model the compression throughput. Rather, it uses a sampling-based

approach for performance estimation by compressing the sampled data directly. As

such, it is anticipated that it can outperform zPerf, albeit unable to predict the

performance of a potentially new design for a compressor. For the compression ratio

modeling, it measured the performance under high sampling ratios (no lower than

1%) and did not attempt lower sampling ratios (e.g., 0.1% and 0.01%) that are
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(a) Compression throughput estimation on Cori (1D compression).
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(b) Compression throughput estimation on Summit (1D compression).

Figure 3.21 zPerf estimation error compared to the sampling approach for ZFP
compression throughput under sampling ratios from 1E-1 to 1E-7.

important for the modeling of compression for large data cost-effectively. By allowing

for low sampling ratios, zPerf incurs substantially less memory footprint, e.g., 100X

less memory at a sampling ratio of 0.01% as compared to that of 1%, with an

insignificant degradation of modeling accuracy (e.g., by 10% to 15%). For CESM ATM

at a sampling ratio of 1%, this previous work achieves an average estimation error

of 7.5% for SZ and 5.7% for ZFP, while zPerf achieves 19.1% for SZ and 20.68% for

ZFP (with the added capability of exploring new algorithms in a compressor).

Zhao et al. [69] achieved an average estimation error of 5% in most cases when

the sampling ratio is 8%. In contrast, zPerf achieves an average error of 10.54% under

a sampling ratio of 10% for SZ. Yet, they did not present quantitative results across

datasets and the work focused only on SZ. Jin et al. [35] adopted a modularized

approach for the compression ratio and quality estimation for prediction-based lossy
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(a) SZ compression performance estimation overhead.
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(b) ZFP compression performance estimation overhead.

Figure 3.22 Running time overhead of zPerf compared to the sampling approach
under sampling ratios from 1E-1 to 1E-6.

compression. While the modular estimation is similar to zPerf, it only focuses on

prediction-based lossy compression and does not study other types of techniques. As

reported in the paper, their approach achieves an average estimation error of 9.66%,

8.08%, 3.83%, and 6.46% for CESM ATM, Nyx, HACC, and Brown, respectively,

under a sampling ratio of 1%. However, the error configuration was not disclosed and

we could not further compare it to zPerf. Meanwhile, the average estimation error of

zPerf under a sampling ratio of 1% for corresponding datasets is 19.1%, 18.2%, 18.8%,

and 9.8%, respectively. Jin et al. [37] also achieved the modeling of compression ratio

for Nyx. Their approach is based on the empirical analysis that the bit-rate to error

bound ratio for a compression method on a dataset is similar across error bounds. The

model only targets the case where the compression ratio is larger than 16, given the
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goal is to improve visualization quality after compression. There is no quantitative

evaluation presented for the modeling accuracy.

3.4 Performance Extrapolation

Identifying new opportunities for lossy compression has become increasingly difficult,

given the large algorithmic and software-hardware co-design space to explore. For

developers of lossy compression, a question often arises: would a new component in

the compressor improve the overall performance for some application scenarios? To

answer this question, developers must implement a new version of the compressor first,

followed by labor-intensive testing and maintenance. In this section, we demonstrate

the application of using zPerf to explore the design space of lossy compression.

We discuss three case studies where we estimate the impact of alternative entropy

encoding schemes on SZ and ZFP, as well as alternative transform schemes on ZFP.

Specifically, for the entropy encoding study, we replace the Huffman encoding in SZ

with the ZFP lossless compression and the embedded encoding in ZFP with Huffman

encoding. For the transform scheme study, we replace the customized non-orthogonal

transform in ZFP with a discrete cosine transform (DCT).

Case study 1: exploring ZFP lossless encoding for SZ. SZ currently employs

Huffman encoding to compress the quantization levels based upon the observation

that the distribution of quantization levels is Gaussian [54]. As such, they can be

efficiently compressed with Huffman encoding. In this case study, we consider the

possibility of encoding the SZ quantization levels with the ZFP lossless mode, which

adopts a modified decorrelating transform to map the input floating point data

to transformation coefficients. Then during the variable-length encoding, bit-planes

are no longer truncated to achieve lossless encoding. The intuition of adopting the

ZFP lossless encoding for compressing quantization levels is that the variable-length

encoding scheme by ZFP leverages the similarity among the transformation coeffi-
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Figure 3.23 Distribution of SZ quantization levels.
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Figure 3.24 Compression ratio of SZ Huffman, SZ ZFPL.

cients. That is, the smoother the input data is, the more efficient the decorrelating

transform will be; thus, a lower bit rate can be achieved in encoding. Given that

the SZ quantization levels are generally highly similar, as shown in Figure 3.23, it is

reasonable to use ZFP lossless mode as the backend for compression.

As discussed in Subsection 3.2.3, the output of ZFP compression consists the

exponent value size P and encoding size Q. While P mainly depends on the number

of data blocks, Q can be calculated by the number of data blocks B, as well as

the bits to encode each bit-plane bij: Q =
⌈
1
8

∑B
i=1

∑mi

j=1 bij

⌉
. Specifically, in the

lossless compression mode, all the bit planes are encoded. Thus, the output of ZFP

lossless compression depends solely on the number of bits to encode a bit-plane. As

previously discussed, the modeling of bij comes down to capturing the significant bits

in transform coefficients, which depends on the input data. Accordingly, following the

approach we developed in Subsection 3.2.3, we model the transform coefficients with

Laplacian distribution and calculate the number of significant bits for each block. In

Figure 3.24, we show the measured and estimated compression ratio of SZ using the
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Figure 3.25 Distribution of ZFP transform coefficient bit plane.

ZFP lossless encoding, denoted as SZ ZFPL, versus SZ Huffman. It is worth noting

that SZ ZFPL achieves much lower compression ratios than SZ Huffman on Brown.

The reason is that while the ZFP lossless mode can encode the transform coefficients

of quantization levels efficiently, the Brown dataset is of double-precision, thus ZFP

lossless mode needs to store many additional bit-planes. For other datasets, it is

shown that SZ ZFPL typically outperforms SZ Huffman when the error bound is

tight. The reason is that, when the error bound is tight, more quantization levels are

used to encode the curve-fitting error, resulting in a Huffman tree with more branches

and longer codes. When the error bound is loose, fewer quantization levels are used

and thus shorter codes. However, SZ ZFPL still needs to encode all bit-planes of the

transformation coefficients, resulting in lower compression ratios.

Case study 2: exploring Huffman encoding for ZFP. ZFP currently employs a

customized embedded encoding to compress the transform coefficient bit planes within

each block. The design of block-wise compression is primarily to support random

access to the compressed data. Yet, block-wise encoding does not exploit the potential

similarity between bit planes across blocks. In this work, we consider exploring such

similarity using Huffman encoding. The rationale behind using Huffman encoding is

that bit plane values usually consist of a small set of distinct values, as shown in

Figure 3.25, which is due to the fact that each bit plane consists of a limited number

of bits. For example, the value of a 1D bit plane with 4 bits can only range from 0 to
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Figure 3.26 Compression ratio of ZFP Embedded, ZFP Huffman.

31, while the value of a 2D bit plane with 16 bits can range from 0 to 65,535. Hence,

the bit plane can be suitable for Huffman encoding.

As discussed in Subsection 3.2.2, the estimation of Huffman encoding output,

i.e., J and K, essentially comes down to the distribution of Huffman coding

bit length. As such, we can acquire such a distribution by performing Huffman

encoding on a small set of transform coefficients populated based on the Laplacian

model. Consequently, the compression ratio of Huffman encoding-based ZFP, denoted

as ZFP Huffman, can be calculated as GZFP Huffman = U
P+K+J . In Figure 3.26,

we demonstrate the measured and estimated compression ratios of ZFP Huffman,

compared with the compression ratio of the original embedded encoding-based ZFP,

denoted as ZFP Embedded. Our model can accurately capture the compression ratio

of ZFP Huffman to reflect the performance difference between two encoding schemes.

Generally, ZFP Huffman achieves higher compression ratios than ZFP Embedded.

Such a performance outcome demonstrates the efficiency of compressing non-

orthogonal transform coefficients bit-plane values using Huffman encoding. Figure

3.27 demonstrates the average bit rate achieved by ZFP Embedded and estimated

ZFP Huffman. It is shown that both ZFP Embedded and ZFP Huffman demonstrate

relatively steady bit rates that change linearly over relative error bounds.

Case study 3: exploring discrete cosine transform for ZFP. ZFP originally

adopts a customized non-orthogonal transform to decorrelate the values of each block.
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Figure 3.27 Bit-rate achieved by ZFP Embedded and ZFP Huffman.
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Figure 3.28 Compression ratio of ZFP Custom and ZFP DCT.

The advantage of the customized approach is the computational efficiency achieved

by lift implementation and bit operations. Nevertheless, the decorrelation efficiency

might not be optimal as it also depends on the input data. In this work, we consider

using DCT to replace the customized non-orthogonal transform scheme. In Figure

3.28, we demonstrate the measured and estimated compression ratio of DCT-based

ZFP, denoted as ZFP DCT, compared with the compression ratio of original ZFP,

denoted as ZFP Custom. We also show the average bit rate achieved by DCT-based

ZFP and original ZFP in Figure 3.29. It is shown that DCT-based ZFP outperforms

the original ZFP on Brown, SCALE, and NYX. Such performance demonstrates both

the efficiency of correlating scientific data using DCT and the motivation of exploring

transform schemes in ZFP compression.

Observation: Overall, the results illustrate the effectiveness and potential benefit of

zPerf in exploring the design space. In particular, the alternative SZ RLE achieves

higher compression ratios at loose error bounds, while ZFP Huffman consistently
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Figure 3.29 Bit-rate achieved by ZFP Custom and ZFP DCT.

outperforms the original encoding in ZFP. As such, the compressor developers can

understand the performance benefits before labor-intensive development are underway

and make more informed decisions for future opportunities.

3.5 Conclusions

In this chapter, we present zPerf, a gray-box approach for lossy compression

performance modeling and estimation. Based on the understanding of the inner

compression mechanism, we discuss the modeling and estimation of compression

ratio and throughput for two state-of-the-art lossy compressors, SZ and ZFP. We

thoroughly evaluate the accuracy of zPerf on eight scientific datasets and compare

the performance of zPerf against the sampling-based approach. The evaluation results

demonstrate the effectiveness of zPerf. We also illustrate the benefit of zPerf for design

space exploration of lossy compression.
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CHAPTER 4

IMPROVING PROGRESSIVE RETRIEVAL FOR HPC SCIENTIFIC
DATA USING DEEP NEURAL NETWORK

4.1 Background and Motivation

4.1.1 Progressive data retrieval

Progressive data retrieval aims to address the problem of high computation cost at full

data resolution, as well as data transmission when I/O bandwidth is constrained. The

idea is to transmit a small part of the data each time, based on the user-prescribed

accuracy requirements, so that the transmission can be finished efficiently. The

general approach is first to decompose data into a multi-resolution hierarchy level of

coefficients, such that, the highest coefficient level with the lowest resolution contains

the most information. The design of such a hierarchy (e.g., the number of levels

and the resolution of each level) follows the storage hierarchy of HPC systems. For

example, the highest level data, which is supposed to be frequently accessed, can be

placed on the fastest storage tier (e.g., NVMe); while the lowest level data should be

placed on the slowest storage tier (HDD or tapes), given it will be least likely to be

accessed.

During data transmission, one or more coefficient levels are transmitted based

on the system I/O bandwidth and user requirement for data accuracy. Then the

transmitted data levels can be recomposed to generate an approximation to the

original data with reduced accuracy. Due to the complex I/O bandwidth status and

various user requirements, it is vital for the retrieval framework to support fine-grained

progressiveness. As such, bit-plane-based encoding schemes are commonly used in

representing the coefficient level data, in order to support truncation on the bit

stream. For example, Hoang et al. proposed to use binary encoding to represent

the tree-based hierarchical data structure [32]. Another example is MGARD [8, 45],
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a recently developed transform-based lossy compressor that adopts nega-binary

encoding for representation, which will be detailed as follows.

4.1.2 MultiGrid Adaptive Reduction of Data (MGARD)

MGARD combines the features of lossy data compression with multi-level decom-

position and progressive retrieval. During compression, a data decomposer first

transforms original multi-dimensional data to multi-level coefficients using orthogonal

L2 projection and interpolation. Then an interleaver linearizes the coefficient levels to

1D for precision encoding. The linearized coefficients are then encoded in the bit-plane

fashion and compressed losslessly with ZSTD. In order to support error-bounded

progressive retrieval, an error matrix is further collected to represent the error incurred

on coefficient levels by partially quantizing bit-planes. The encoded coefficient levels,

error matrix as well as other metadata are written to files and placed across the

storage hierarchy.

During decompression, MGARD first estimates the number of bit-planes to be

retrieved from each coefficient level with a maximum error estimator. Such an error

estimator is able to predict the maximum data reconstruction error based on the

number of bit-planes as well as the error matrix collected during compression. Thus

MGARD recursively finds the minimum number of bit-planes to retrieve that satisfies

the user-requested error control. Then a size interpreter calculates the retrieval size as

well as the precision segments to fetch from the storage hierarchy. Then the bit-planes

retrieved from various precision segments are recomposed to form the decompressed

data.

4.1.3 Over-aggressive error control

The key capability of a progressive data retrieval framework is to identify the amount

of data needed given users’ prescribed error bounds. For example, MGARD [45] adopts
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a theory-based error control scheme, that first computes the significance of each bit-

plane that contributes towards the reconstructed data accuracy. Then the number

of bit-planes that should be retrieved under a user-prescribed error bound can be

deduced by progressively comparing the achieved accuracy and requested error bound

for each bit-plane.

Nevertheless, the error control theory developed by the early works [8] estimates

the maximum absolute error bound using absolute row sum which neglects the

cancellation between positive and negative errors. Therefore, there is a significant

gap between the user-requested error tolerance and the actual error achieved, which

results in the number of bit-planes retrieved larger than what is required and a higher

I/O performance overhead. As shown in Figure 1.2, the achieved error tolerance

is constantly lower than requested by orders of magnitude. Correspondingly, the

achieved I/O cost is significantly higher than requested, as shown in Figure 1.3.

Motivation 1: The theory-based error control is overly pessimistic and incurs high

overheads for data retrieval. As such, a more precise error control method is needed

to improve the I/O performance of data retrieval.

4.1.4 High dimensionality of bit-plane retrieval

Given the various scenarios, the number of bit-planes to be retrieved is a multi-variant

function that depends on simulation timesteps, error tolerances, as well as data

characteristics, which are directly affected by simulation input parameters. In Figure

4.1, we demonstrate MGARD’s number of bit-planes versus such variables. As

demonstrated in Figure 4.1a, the number of bit-planes across timesteps demonstrates

non-linear behaviors. In Figure 4.1b, we show that the number of bit-planes reduces

while the tolerance loosens. In Figure 4.1c and Figure 4.1d, we show the number

of bit-planes also manifests complicated behaviors with the change of electron

density and laser peak amplitude, which are two initial conditions to the WarpX
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Figure 4.1 MGARD number of bit-planes versus timesteps, relative error bounds,
and simulation-dependent parameters.

simulation experiment. Therefore, estimating MGARD’s number of bit-planes is

a non-linear high-dimensional problem that is difficult to solve with traditional

modeling techniques, and we seek to tackle it with Deep Neural Network (DNN)

as a data-driven approach.

Motivation 2: The number of bit-planes to be retrieved to satisfy a given error bound

is highly sophisticated and can be affected by many factors. Therefore it is beneficial

to capture using the DNN-based approaches.

4.2 DNN-based Progressive Retrieval

In this section, we first formulate the research problem of improving progressive

retrieval for HPC scientific data towards minimum I/O overhead and then discuss

the details of design and implementation. For the convenience of discussion, we adopt

MGARD as an example of a bit-plane-based progressive data retrieval framework
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Table 4.1 A List of Symbols for DNN-based Progressive Retrieval
Symbols Description

D The retrieved data size (bytes).
L The number of coefficient levels.
e User-requested maximum absolute error.
err Maximum absolute error of reconstructed data.
Err Maximum absolute error of coefficient levels.
B The total number of bit-planes on each coefficient level.
bl The number of bit-planes to retrieve on coefficient level l.

L(x, y) The loss function used to control the prediction error.
S The sizes of bit-planes across coefficient levels (bytes).
F The mapping function from input error bound to b.
F A set of data features used in DNN training.

to discuss the details of our design. We first list the commonly used notations in

Table 4.1.

4.2.1 Problem formulation

The HPC progressive I/O overhead, which is also the data retrieval size, depends on

both the number of coefficient levels as well as the number of bit-planes of retrieval

on each level. Denote l(0 ≤ l < L) as the current coefficient level where L is the total

number of coefficient levels, bl(0 ≤ bl ≤ B) as the number of bit-planes to retrieve

for level l where B is the total number of bit-planes on each coefficient level (32 for

single-precision floating-point data), k(0 ≤ k ≤ b) as the current bit-plane index, and

S as the sizes of bit-planes on each level. We have the data retrieval size D as the

accumulation of bit-plane sizes across coefficient levels, as shown in Equation (4.1).

D =
L−1∑
l=0

bl∑
k=0

Slk (4.1)

In particular, the total number of coefficient levels L is jointly determined by

both data resolution and user input during data decomposition. On the other hand,

the sizes of bit-planes across coefficient levels S also depend on the resolutions of

coefficient levels, which are also determined during data decomposition. Therefore,

both L and S can be considered as constant during data retrieval, and the overall size
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of progressive retrieval D can be directly calculated by the number of bit-planes of

retrieval bl. Ideally, the purpose of the progressive retrieval framework is to compute

the number of bit-planes of retrieval bl based on the user-requested maximum absolute

error e, as shown in Equation (4.2), to the extent that the achieved maximum error err

after recomposition is less than but very closed to e, so that users can understand the

information loss incurred by progressive retrieval. Yet, as we mentioned in Section 4.1,

the current framework achieves a significantly lower maximum absolute error than the

one user requested (err ≪ e), such that the err became almost agnostic to users while

resulting in higher bl and larger D.

bl = argmin
e

F(e), bl ∈ [b0, b1, ...bL−1] (4.2)

In this work, our objective is to improve the performance of the progressive

retrieval framework by optimizing the error control mechanism of the original

MGARD. In particular, we aim to find a better mapping function that users can

utilize to guide the choice of error bounds and data retrieval. While the relation

between e and bl is unclear, err and bl are corresponding to each other by nature.

Therefore, we aim to directly learn the mapping between the achieved maximum error

and the number of bit-planes, leading to our first approach.

Approach A: For each field of data from scientific applications, we first perform

compression experiments using the original MGARD under an extensive set of input

error bounds e, record the number of bit-planes of retrieval bl as well as the achieved

error err. Then, we can train a DNN model to predict bl with err, which can be used

to take the place of the error interpreter in the original MGARD. This predictive

model, named D-MGARD, takes the achieved maximum error err, along with a set

of data features, as input and directly predicts the number of bit-planes of retrieval bl
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for each coefficient level. It bypasses the original error control mechanism in MGARD

completely and predicts the number of bit-planes based on the inherent correlation

from the data retriever.

The reasons why we choose DNN over traditional ML methods for D-MGARD

are mainly two-fold: 1) Given the large problem space and complexity of our

work (large numbers of simulation configurations, timesteps, and compression error

bounds), the number of bit-planes exhibits extremely complicated and non-linear

behaviors where DNN is naturally anticipated to perform well; 2) With the possible

extension of problem space, where we seek to predict more data attributes with

the model, the feature selection and engineering is challenging for ML methods

whereas DNN can benefit from more advanced model architecture to extract features

automatically.

As D-GMARD achieves the prediction of the number of bit-planes in a purely

data-driven way, such a model provides limited interpretability as it treats the

mapping as a black box. In the following, we propose another approach that is more

closely coupled with the philosophy of MGARD.

Approach B : Upon recomposition, MGARD estimates the reconstruction error

based on the partially retrieved coefficient levels. Given the resolution and mesh

structure of the original dataset, the coefficient level error Err is converted to data

reconstruction error err. As we discussed previously, the pessimistic error estimation

from Err to err is the key reason for the aggressive error control, which leads to

the extra I/O overhead. Therefore we propose to improve the error estimation with

DNN. We propose to design a DNN model, named E-MGARD to predict the data

reconstruction error err given the coefficient level error Err. Such a model replaces

the original MGARD to achieve more precise error control.
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Figure 4.2 Overview of DNN-based progressive data retrieval framework.

4.2.2 Design overview

We present the overall design of the framework in Figure 4.2. We showed D-MGARD

and E-MGARD in the framework we previously introduced. In the following, we

discuss the design details of D-MGARD and E-MGARD toward the numbers of bit

plane prediction, as well as the selection between the two approaches.

D-MGARD: number of bit-planes estimation The idea is to learn a prediction

model that directly maps between the number of bit-planes and the achieved

maximum error of reconstructed data. Such that when users require the reconstructed

data to a specific maximum error, our model can predict the number of bit-planes

that need to be fetched. This approach does not take into consideration how MGARD

handles the input data but rather treats all processing and transformation operations

of MGARD as a black box. The D-MGARD contains the following steps: 1) run

the compression experiments under a set of absolute errors; 2) collect the achieved

maximum errors as well as the numbers of bit-planes fetched from coefficient levels

under achieved absolute errors; 3) train a multi-target prediction model with the

achieved maximum error as input and numbers of bit-planes as the target. In order

to account for the impact of data characteristics on the performance of MGARD, the

prediction model also takes a set of statistical data features as input.
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Figure 4.3 MGARD retrieval performance across relative error bounds.

Compared to the traditional theory-based predictor, the proposed D-MGARD

directly learns the mapping between the number of bit-planes to the achieved

maximum absolute error. In order to achieve this, the error bounds that we feed

into the model as input are achieved error (red curves in Figure 1.2) we collected

before training rather than the one users requested.

D-MGARD essentially performs regression tasks by taking data features and

user-requested error bounds as input and producing the number of bit-planes for

each coefficient level as output. Generally speaking, we consider the scenarios where

the data is decomposed to more than one level. Therefore, such a regression task is

also called multi-output regression.

The first and most intuitive approach is to train a multi-level perceptron (MLP)

model with input and output layer dimensions matching the dimension of training

variables and targets, respectively. However, as pointed out by literature [20], such

an MLP model usually suffers from low training accuracy, as the correlation among

target variables is not accounted for.

In Figure 4.3a, we demonstrate the correlation matrix of the numbers of bit-

planes across five levels. As shown in the figure, the numbers of bit-planes are strongly

correlated with each other. Such correlation is caused by: 1) the values of bit-plane

numbers, which all are integers in the range of [0, 32]; 2) the greedy-based bit-plane

retriever fetches bit-planes by accuracy efficiency ranking. Therefore, the number of
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bit-planes to be retrieved from a certain level depends not only on the user-requested

error bound but also on the number of bit-planes of all other levels.

The accuracy efficiency for a bit-plane used by MGARD’s greedy-based retriever

is the ratio between the error reduction by retrieving the bit-plane and its resolution.

Based on our investigation, we observe that for bit-planes with the same bit location,

those on a higher level generally demonstrate higher accuracy efficiency than those

on a lower level, as the difference in the resolution across coefficient levels. Therefore,

bit-planes on higher levels are usually retrieved first. We show such behavior in

Figure 4.3b, where we display the number of bit-planes retrieved from each of the five

coefficient levels across relative error bounds during data retrieval. As shown in the

figure, level 0 always contributes the most bit-planes while level 4 always contributes

the least.

We further demonstrate the breakdown of bit-plane sizes across five coefficient

levels in Figure 4.3c. It is interesting to show that, despite the lowest number of

bit-planes level 4 contributing to the retrieved data, it holds the most significant

proportion of the retrieved data size under most error bounds. The only exception is

the relative error bound of 1E-1 where the data accuracy requirement is very low so

there is almost no need to read from level 3 and level 4.

Such breakdown suggests that the numbers of bit-planes across the coefficient

levels are not of the same importance, rather those on a lower level play more

important roles in determining the retrieved data size. Therefore, in order to minimize

the I/O overhead, it is more important to capture the numbers of bit-planes for lower

levels than for higher levels.

In order to leverage the correlation among the numbers of bit-planes and

consider the weighted importance of the numbers of bit-planes across coefficient

levels, we design D-MGARD as a chained multi-output regression model (CMOR)

as shown in Figure 4.4. Let L = 5 in this case as an example. Essentially, the idea
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(a) Offline training stage. (b) Online prediction stage.
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Figure 4.4 Chained multi-output regression (CMOR) model for a five-level
hierarchy.

is to train a separate MLP for each level, denoted as Ml(0 ≤ l < 5), to capture

the number of bit-planes. In order to leverage the correlation among the numbers of

bit-planes, the training variables for each level include not only the general variables

like data features F and achieved maximum absolute error err, but also the numbers

of bit-planes from previous levels [b0, ...bl−1]. For example, as shown in Figure 4.4a,

M1 is trained with b0 as an additional feature, M2 with b0 and b1, ... and so on.

During the online prediction, as shown in Figure 4.4b, the number of bit-planes for

each level is predicted with each pre-trained model following a sequential order, from

level 0 to level 4.

Such model design is closely coupled with the greedy-based bit-plane retriever as

well as the characteristics of the number of bit-planes we discussed above. Specifically,

the most important number of bit-planes (on level 4) is trained with the most features.

On the other hand, all MLP models can be trained in parallel, without causing

additional training overhead.

The network architecture of the MLP model on each level is shown in Figure

4.4c. We configure the network with six fully-connected hidden layers and the

activation function of leaky ReLu in between. We note that the dimension of the

input layer is different across levels, accounting for the additional training features

on each level, while the dimension of the output layer is always one.
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During the model training, we seek to minimize the loss function, which is the

average prediction error of bit-plane numbers for each level, as shown in Equation

(4.3).

L(bi, b̂i) =
1

L

L−1∑
i=0

ℓ(bi, b̂i) (4.3)

Common choices of loss function ℓ(x, y) generally include the mean squared error

(MSE) and the mean absolute error (MAE). Yet, based on our investigation, neither

is a good choice in our case. On the one hand, controlling prediction error with MAE

often leads to long tails in the distribution of prediction error, indicating the existence

of large outliers. The reason is that MAE does not penalize the large prediction

errors enough. On the other hand, controlling with MSE can capture those outliers

fine but often leads to large average prediction errors. The reason is that MSE, by

taking square on prediction errors, is not sensitive to small prediction errors. Based on

empirical experiments on various loss functions, we observe superior training accuracy

can be obtained in our case by controlling the prediction error with the Huber loss

function [34], which is defined in Equation (4.4).

ℓ(x, y) =


1
2
(x− y)2, if|x− y| < δ

δ(|x− y| − 1
2
δ), otherwise

(4.4)

The Huber loss is a combination of MSE and MAE that is less sensitive to

outliers than the MSE. It is quadratic for small prediction errors less than a certain

threshold δ and linear for large prediction errors beyond δ. In this work, we observe

that setting δ = 1 achieves the best training accuracy. Such that the loss function

used in our work can be written as follows.
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ℓ(bi, b̂i) =


1
2
(bi − b̂i)

2, if|bi − b̂i| < 1

(|bi − b̂i| − 1
2
), otherwise

(4.5)

E-MGARD: error control optimization According to the error control of

MGARD recomposition, the maximum error between original data and recomposed

data is bounded by the following Equation (4.6), where Err[l][bl] denotes the absolute

error of l-th (0 ≤ l < L) coefficient level when retrieving the first bl(0 ≤ bl ≤ B)

bit planes and C is a constant that maps the absolute error of coefficient levels to

the absolute error of the reconstructed data. It has been noted [8] that C depends

on the data characteristics, specifically the mesh structure of the input dataset.

Therefore, it has to be manually derived based on the mesh structure of each scientific

application. Nevertheless, the derived mapping constant still suffers from sub-optimal

performance. As shown in Figure 1.2, the mapping constant yields over-pessimistic

error control and thus results in extra I/O overhead.

err ≤ C
L−1∑
l=0

Err[l][bl] (4.6)

One issue with the current error control approach is that the same mapping

constant is applied to all coefficient levels, implying that the absolute error incurred

from progressive retrieval on each coefficient level has the same impact on the absolute

error of the reconstructed dataset. We demonstrate that this is not the case in

Figure 4.5.

In Figure 4.5, we demonstrate the absolute error of each coefficient level incurred

by progressively retrieving an increasing number of bit-planes. It can be shown in the

figure that the magnitude of absolute error across coefficient levels shows significant
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Figure 4.5 Absolute error of progressive retrieval from coefficient levels.
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Figure 4.6 Design of E-MGARD error prediction model.

differences. Therefore, when the same mapping constant C is applied to different

coefficient levels, the absolute error of the reconstructed dataset is biased towards the

absolute error of lower coefficient levels, reducing the granularity of error control and

over-pessimistic error estimation.

In order to tackle this issue, we propose to learn a mapping constant for

each coefficient level. We present the design of our approach, named E-MGARD,

in Figure 4.6. Specifically, the Enc block in the figure is an encoder network with

hidden layer dimensions of 2048, 512, 128 and 8. The activation function is ReLu. As

shown in the figure, for each coefficient level from a decomposed dataset, an encoder

network transforms it into a set of latent features which is further used to predict

the mapping constant for the current level. Then the achieved maximum error of

reconstructed data can be calculated by Equation (4.7), where Cl ∈ {C0, C1, ...CL−1}

denotes the learned mapping constant for each coefficient level.

err ≤
L−1∑
l=0

ClErr[l][bl] (4.7)
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4.2.3 Selection between D-MGARD and E-MGARD

Between the two approaches we proposed in this section, the advantage of D-MGARD

is the easiness of learning the prediction model, namely users do not need to have a

deep understanding of MGARD, or other progressive retrieval methods. Nevertheless,

D-MGARD suffers from mainly two disadvantages: 1) the difficulty to summarize a

set of data features to account for the impact of data characteristics on the MGARD

performance, which will limit the modeling capability and result in estimation error;

2) the lack of understanding how MGARD processes and transforms the input data.

Especially, the lack of understanding of MGARD prevents a more precise prediction

model from being developed.

On the other hand, E-MGARD focuses more on improving the error control

of the original MGARD. It is more precise in the modeling scope compared to D-

MGARD. Especially for the bit-plane estimation using coefficient level error (as shown

in Figure 4.2), where D-MGARD takes it as a part of the black box and estimates

with a chained multi-output regression model, E-MGARD leverages the greedy-based

estimation method from original MGARD for calculation, which is more accurate by

nature. However, the design of E-MGARD is tightly coupled with the recomposition

scheme of MGARD, making it hard for E-MGARD to extend to other progressive

retrieval methods.

4.3 Performance Evaluation

In this section, we present the evaluation results for our DNN-based progressive

retrieval framework. We first discuss the experiment setup as follows.

4.3.1 Experimental setup

1) Hardware platform: We perform the progressive decomposition and recomposition

experiments on the Summit supercomputer at Oak Ridge National Laboratory [4].
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All experiments are performed on a single CPU node with two 16-core 3.0 GHz AMD

EPYC processors and 256GB of main memory. We train and evaluate the DNN-based

progressive retrieval framework on the Google Colab environment with a single GPU.

The Colab environment is driven by three Intel Xeon processors with 26GB memory,

as well as an NVIDIA Tesla P100 GPU with 16GB HBM.

2) Scientific datasets: We use Gray-Scott application [58] and WarpX appli-

cation [57] as evaluation datasets in this work. The datasets are obtained by running

simulations on Summit. The detailed information of the datasets is shown in Table 4.2.

All datasets are double-precision floating-point values.

Table 4.2 Scientific Applications
Application Fields of use Dimensions Timesteps
Gray-Scott D u, D v 5123 512
WarpX B x, E x, Jx 5123 512

3) MGARD compression experiment: In order to cover various application

scenarios where users can have arbitrary error-bound requirements, we compress

the simulation datasets using MGARD under a large range of relative error bounds,

including 81 error-bound values. Specifically, the relative error bounds used in this

work are [1E-9, 2E-9, ... 8E-1, 9E-1]. We then collect the number of bit-planes on

each coefficient level as well as the achieved maximum error associated with each

input error bound to assemble the training records for D-MGARD. We also store

the decomposed coefficient level data as the training set for E-MGARD. In order to

compress the multiple timesteps of application data, we assume the data range of

each field at each timestep is calculated during the simulation and available during

compression.

4) Training configurations: For each field of Gray-Scott and WarpX application,

we train our models on the first 256 timesteps of the dataset and test on the remaining

ones. The D-MGARD is trained with a learning rate of 0.00005, batch size of 256, and

E-MGARD is trained with a learning rate of 0.00001, batch size of 64. Both models
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Figure 4.7 Prediction error distribution of D-MGARD on WarpX application.

have been trained for 300 epochs, and the cost of training for each model is 0.7 hours

and 1.2 hours, respectively. We would like to point out that, in our work, our split

of training data via timesteps is to mimic the way scientific applications dump data

during simulation. Throughout the simulation process, applications will periodically

dump variable data which are evolving with time. The purpose of training on the

first half of timesteps and testing on the later half is to evaluate whether the trained

model can be reused when the data show changes over time. Under the scenario of

“train once, infer many times”, we expect our model can be reused on new datasets

generated from the same applications and the training time can be amortized.

For the rest of this section, we evaluate the performance of our proposed

framework. Specifically, we first evaluate the prediction accuracy of D-MGARD across

simulation timesteps as well as across data resolutions. Then for E-MGARD, we

evaluate the achieved maximum error of reconstructed data against input error and

achieved a maximum error of original MGARD. We then evaluate both approaches

on the total retrieval size against the original MGARD.

4.3.2 Prediction accuracy across simulation timesteps

Considering the nature of scientific applications that evolves with the simulation

timesteps, the most important question we need to address in order for our model to

be adopted for production is whether our model can be trained on early timesteps and

applied to future ones. Therefore, for a certain application dataset, we train on the
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Figure 4.8 Prediction error distribution of D-MGARD on Gray-Scott application.

first half of timesteps and test the model performance on the second half. In Figure 4.7,

we present the distribution of D-MGARD prediction error on the WarpX laser-driven

electron acceleration application. We trained the model on the first 256 timesteps of

J x field and evaluated the prediction accuracy on J x, B x as well as E x. As shown

in Figure 4.7a, the absolute prediction error generally ranges between -5 and 5, where

positive error indicates over-estimation and negative error indicates under-estimation.

For J x, more than 60% predictions are made without error for levels 1 - 4, with an

additional 20% prediction resulting in prediction error by one bit-plane at most.

Similar performance holds for B x and E x as well, as shown in Figures 4.7b and 4.7c

that the majority of predictions are made correctly. Furthermore, the prediction error

decreases from level 0 to level 4 (more predictions are without error), indicating that

the numbers of bit-planes of retrieval on lower coefficient levels are better captured.

In Figure 4.8, we show the prediction error distribution of D-MGARD on the

Gray-Scott application. Similarly, D-MGARD performs well on lower coefficient levels

to capture the number of bit-planes of retrieval that more than 60% of predictions

are made without error.

4.3.3 Prediction accuracy across simulation resolutions

In this section, we aim to answer the following question: can the D-MGARD model

be applied across simulation resolutions? As running compression experiments and

collecting training data on full-resolution data can be resource-demanding, it can
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Figure 4.9 Prediction error distribution of D-MGARD across data resolutions.

be beneficial if users can train D-MGARD on low-resolution data and apply it to

high-resolution data of the same application. Hereby, we train the model on the J x

field of the WarpX application with the resolution of 643 and test on the resolutions of

1283 and 2563. We demonstrate the distribution of prediction error in Figure. 4.9. As

shown in the figure, the D-MGARD model performs well when being trained on the

resolution of 643 and tested on the resolutions of 643 and 1283. When being tested on

the resolution of 2563, the prediction accuracy drops significantly. The main reason for

such behavior is that more local features manifest in the higher-resolution data, which

causes the change of data characteristics and the deviation of MGARD performance,

which is hard for D-MGARD to capture.

Despite that the D-MGARD model does not work well when the resolution of

testing data deviates too much from the resolution of training data, we note that the

80% of predictions on level 4 still achieve error by at most one bit-plane.

4.3.4 Achieved maximum error against original MGARD

In this section, we demonstrate the achieved maximum error by E-MGARD.

As we discussed previously, E-MGARD improves the error control by predicting

the maximum absolute error of reconstruction data with improved mapping from

coefficient level error to reconstruction data error. In Figure 4.10, we show the

achieved maximum error by E-MGARD across PSNR, compared to the maximum

error achieved by original MGARD as well as the user-requested absolute error bound.
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Figure 4.10 E-MGARD achieved maximum absolute error as compared with
original MGARD as well as input error bound.

It can be shown that the maximum absolute error values achieved by E-MGARD lie

closer to the user-requested error, thus providing better error control.

4.3.5 Retrieval size against original MGARD
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Figure 4.11 Total retrieval size of D-MGARD and E-MGARD compared with
original MGARD across 512 timesteps.

In Figure 4.11, we demonstrate the total retrieval size incurred by D-MGARD

and E-MGARD as compared to the original MGARD. The retrieval sizes are

accumulated across a total of 512 timesteps. It is clear that E-MGARD achieves

the least retrieval size and thus the lowest I/O overhead.

We define the percentage of saved retrieval size in the following equation:

Sav = |Dmgard −Dnew|/Dmgard (4.8)
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where Dnew represents the retrieval size incurred by either D-MGARD or E-MGARD.

As shown in the figure (red and orange curves), D-MGARD reduces the retrieval size

between 5% and 40%, whereas E-MGARD achieves the saving between 20% and 80%.

It can be observed that E-MGARD typically achieves the highest saving percentage at

small PSNR values, indicating that it holds stronger advantages over D-MGARD and

original MGARD when I/O is very limited and users are asking for a low resolution

of data being transmitted.

We would also like to point out that, for most evaluation cases, E-MGARD

would achieve a decompression error lower than the input error, although there

is no theoretical bound. The reasons are mainly two-fold: 1) The coefficient level

reconstruction error is incurred by quantifying the coefficient on each level. This

error is further used to estimate the compression error, which guides the selection of

bit planes. In reality, the coefficient level reconstruction error with different signs can

be canceled with each other. Yet, there is a lack of theoretical analysis of the signs,

and MGARD treats it as there is no error cancellation. Thus, the coefficient level

reconstruction error is over-estimated. 2) The predicted compression error will be

lower than the input error bound, which is the outcome of MGARD’s greedy search.

As E-MGARD only tunes the values of mapping constant C, the second

issue can be improved with more granularity. Therefore, the difference between

the predicted compression error and coefficient level reconstruction error will be

minimized. Nevertheless, the first issue is beyond the scope of our work as our model

depends on the collected quantization error to predict compression error as well.

Therefore, even with the optimized mapping constants, the numbers of bit-planes

to be fetched are still generally more than required, and the compression error of

E-MGARD would still be lower than the input.

It is still possible that the E-MGARD achieves a larger compression error than

the input, meaning that the error bound is not respected. Cases like these will happen
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under three conditions: 1) The error bound is extremely small (1E-9, 2E-9), so the

mapping constants are highly impactful. 2) The mapping constant is significantly

underestimated, leading to the underestimation of predicted compression error and

the number of bit-plane. 3) The coefficient level reconstruction error is not over-

estimated, meaning that there is no error cancellation across the coefficient levels,

which is extremely unlikely for a real dataset.

In this section, we have demonstrated the prediction accuracy of D-MGARD on

the number of bit-planes of retrieval across simulation timesteps, data resolution as

well as data fields. The prediction error is very low for most cases as the majority of

prediction error is by one bit-plane. Nevertheless, we still notice large prediction errors

occurring despite low probability. We think the prediction error is caused by feature

selection and engineering. Given the lack of understanding between the number of

bit-planes and the achieved maximum error, it remains a challenge to choose a set

of intuitive features for prediction. Such a challenge motivates us further to explore

more advanced DNN models in the future. On the other hand, we have demonstrated

the effectiveness of E-MGARD in optimizing the error control, which results in a

more precise maximum error of reconstructed data. While E-MGARD is proven to be

beneficial, Figure 4.11 shows that the most percentage of saving occurs at low PSNR

scenarios, indicating imbalanced performance across input error bounds.

Furthermore, Our proposed work is designed and implemented in conjunction

with MGARD by replacing some of the error control functionality within the original

MGARD. For example, D-MGARD replaces the error estimator as well as the

bit-plane retriever by directly predicting the number of bit-planes of retrieval for each

coefficient level based on the user-requested maximum error. Then, the size interpreter

in MGARD can calculate the retrieval size as well as the precise segment to fetch

the data. E-MGARD only bypasses the error estimator by producing a more precise

estimation of the achieved maximum data reconstruction error. Accordingly, MGARD
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can calculate the number of bit-planes of retrieval using the original greedy-based

iterative method. Both models will be deployed to work inside the progressive retrieval

framework, provided they are previously trained on each application dataset. At

this point, both models should be trained offline beforehand. The trained model

can be used for inference with the specification of the model parameters through

the high-level MGARD decompress API. Currently, the design and deployment of

D-MGARD and E-MGARD are separated, and it depends on users to choose between

two approaches as we discussed in Subsection 4.2.3. We would also like further to

investigate the combination of two models in the future.

4.4 Conclusion

This chapter proposes a DNN-based progressive retrieval framework to reduce the

I/O by minimizing the data fetched. To this end, we design two prediction models

to estimate the number of bit-planes of retrieval (D-MGARD) and improve the error

control (E-MGARD) under user-requested error bounds. We evaluate our proposed

DNN-based progressive retrieval framework on two scientific application datasets.

We demonstrate that our framework holds significant advantages over the traditional

approach. By evaluating against the original theory-based progressive data retrieval

framework, our solution can access significantly fewer data (between 5% and 40%

with D-MGARD, between 20% and 80% with E-MGARD). Our approach brings

opportunities for improving scientific applications running on computing clusters,

including HPC systems and grid computing environments.
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CHAPTER 5

FUTURE WORK

As we previously introduced, with the increase in computing power of supercomputers,

scientists can now run more accurate simulations that generate more data than ever

before. However, that increase in computing power has not been matched by an

increase in storage, meaning that more data is now generated than can be stored.

One of the fields generating the greatest amount of simulation data is cosmology.

Cosmology simulations, such as Nyx [9] and HACC [29], which study the origin and

evolution of the universe, can generate several terabytes to petabytes of data per

run. Therefore, scientists are trying to incorporate lossy data reduction techniques

into the data management workflow to reduce the storage needed. In this chapter, we

take the Nyx cosmological simulation as an example and introduce the necessity of

investigating the impact of lossy data compression on downstream scientific analytic

tasks.

One of the most common ways to examine data in cosmology is visual-

ization [38], and the most commonly used algorithm for visualizing 3D cosmology

data is volume rendering [43]. As shown in Figure 5.1, volume rendering allows us to

investigate the structure of cosmology datasets by examining the cosmic web’s halos

(dense regions) and filaments.

While the quality of data required for analysis, for example, to ensure that

the power spectrum only deviates by at most 1%, is quite high, the quality needed

for visualization is usually lower, hence allowing for higher compression ratios [36].

Error-bound lossy compression algorithms preserve all the values in a dataset but will

add/subtract a bounded error for each of the dataset’s values to enable data reduction.

While the volume rendering algorithm performs a number of additive operations over

samples in the dataset, which can increase the errors, the human visual system is
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(a) Original (b) Compressed

Figure 5.1 Volume rendering of dark matter density field of a Nyx dataset.

quite efficient at filtering out noise [59], meaning that the images generated are still

usable at error levels that would be too high for data analysis. The key question is how

much we can reduce the data before noticeable artifacts are introduced. The image

in Figure 5.1b has been generated from a dataset compressed using MGARD [8],

an error-bound lossy compressor, using an absolute error of 2 (dark matter density

range is [0, 5452]). While the structures are still visible, blue-gray background noise

has been added to the data.

In this chapter, we introduce an ongoing effort to investigate how applying

different kinds and amounts of data reduction affects images created using the

volume rendering algorithm on the Nyx dataset. We first visually inspect the image

visualization results and assess the impact of lossy data compression on decompressed

data. Then, to quantify the perceivable difference in the visualization, we compute

several Image Quality Assessment (IQA) metrics and attempt to determine which are

more accurate at flagging errors in the visualization.

5.1 Visual inspection of visualization quality

Due to the difference in design philosophy, each error-bound lossy compressor uses a

different method to achieve data reduction. Consequently, each one produces different

kinds of errors and amounts of compression. By varying the error-bound inputs, we

89



obtain a set of decompressed data of Baryon density field from the Nyx dataset, with

fixed compression ratios. We then demonstrate the volume rendering visualization

results in Figure 5.2.

(a) SZ config-1. (b) SZ config-2. (c) SZ config-3.

(d) ZFP config-1. (e) ZFP config-2. (f) ZFP config-3.

(g) MGARD config-1. (h) MGARD config-2. (i) MGARD config-3.

Figure 5.2 Volume rendering for Baryon density.

Figure 5.2 shows a visualization of Baryon density compressed with SZ, ZFP,

and MGARD, with three error-bound configurations. An inset image located in the

upper right corner of each visualization shows the rendered image difference, which

retains the pixel value when identical to the reference image value but toggles to green

otherwise.
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Figure 5.3 Data-based versus image-based quality metrics of Baryon density.

As shown in Figure 5.2, the image difference becomes more and more significant

as the error bound increases, and more importantly is different depending on the

compressor that was used. For example, SZ adopts linear prediction for each data

point using eight surrounding neighbors, while ZFP performs a non-orthogonal

transform on each data block before encoding. Such smoothing operations can change

the values of background noise, which are usually very close to zero, to positive values,

which then emerge in the visualization. Given the different image difference patterns

from different compressors, the choosing of compression techniques for the image

quality remains an unsolved problem, which requires more in-detailed investigation,

including quantitative evaluation of more scientific application data, which we discuss

as follows.

5.2 Quantitative evaluation of visualization quality

In Figure 5.3, we show the data-based error metrics (data MSE and data PSNR)

and image metrics (image MSE, image PSNR, and image SSIM) for SZ, ZFP, and

MGARD for Baryon density. The data-based error metrics change monotonically

across absolute errors due to the error control mechanism employed by each

compressor. However, the image-based quality metrics demonstrate rather drastic

and complex behaviors, as they react to the artifacts in the images differently. As

shown in the figure, the image qualities drop around the absolute error of 10−1 and

bounce back around 100, then drop again markedly.
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SSIM has been previously shown to be a reliable estimator of how errors in

images will be perceived by humans [12, 13, 28]. When comparing data-based MSE

and PSNR to image-based MSE, PSNR as well as SSIM, we can see that the

patterns in the Data MSE and Data PSNR have a very poor (if any) correlation

with SSIM and thus cannot be used to determine if reconstructed data would be

suitable for image analysis. On the other hand, the Image MSE and Image PSNR

do a better job of capturing the fluctuations detected by SSIM. Nevertheless, Image

MSE and Image PSNR, and SSIM are still not considered ideal quality metrics as

they do not react differently to the compression artifacts introduced by different

compression techniques. To date, there are no ideal image quality metrics that

are well suited to assess the visualization quality after scientific data compression.

More evaluation on domain-specific image quality assessment metrics is necessary for

effective quantitative evaluation of scientific visualization.
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regressor chains: A case on quality prediction. In DATA, pages 267–274, 2019.

[21] Sheng Di and Franck Cappello. Fast error-bounded lossy HPC data compression with
SZ. In IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 730–739, 2016.

94



[22] James Diffenderfer, Alyson L. Fox, Jeffrey A. Hittinger, Geoffrey Sanders, and
Peter G. Lindstrom. Error analysis of ZFP compression for floating-point
data. SIAM Journal on Scientific Computing, 41:A1867–A1898, 2019.

[23] Torbjørn Eltoft, Taesu Kim, and Te-Won Lee. On the multivariate laplace
distribution. IEEE Signal Processing Letters, 13(5):300–303, 2006.

[24] JT Fermann and EF Valeev. Libint: Machine-generated library for efficient evaluation
of molecular integrals over gaussians, 2003. Freely available at http://libint.
valeyev. net/or one of the authors, 2013.

[25] Cappello Franck, Ainsworth Mark, Bessac Julie, Burtscher Martin, Choi Jong Youl,
Constantinescu Emil Mihai, Di Sheng, Guo Hanqi, Lindstrom Peter, and
Tugluk Ozan. Scientific data reduction benchmarks. https://sdrbench.

github.io/. Assessed: 2023-05-23.

[26] Jean-loup Gailly. Gzip: The data compression program. https://www.gnu.org/

software/gzip/manual/gzip.pdf, 2016. Accessed: 2016-10-27.

[27] Ana Gainaru, Guillaume Aupy, Anne Benoit, Franck Cappello, Yves Robert, and
Marc Snir. Scheduling the I/O of HPC applications under congestion. In 2015
IEEE International Parallel and Distributed Processing Symposium (IPDPS
15), pages 1013–1022. IEEE, 2015.

[28] Verislav T. Georgiev, Anna Karahaliou, Spyros Skiadopoulos, Nikolaos Arikidis,
Alexandra Kazantzi, George Panayiotakis, and Lena Costaridou. Quantitative
visually lossless compression ratio determination of jpeg2000 in digitized
mammograms. Journal of Digital Imaging, 26(3):427–439, 2013.

[29] Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel, Adrian Pope, and
Katrin Heitmann. Hacc: Extreme scaling and performance across diverse
architectures. In SC ’13: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, pages 1–10, 2013.

[30] Danny Harnik, Ronen Kat, Dmitry Sotnikov, Avishay Traeger, and Oded Margalit.
To zip or not to zip: Effective resource usage for real-time compression. In
11th USENIX Conference on File and Storage Technologies (FAST 13), pages
229–241, San Jose, CA, February 2013. USENIX Association.

[31] Stephen Herbein, Dong H Ahn, Don Lipari, Thomas RW Scogland, Marc Stearman,
Mark Grondona, Jim Garlick, Becky Springmeyer, and Michela Taufer.
Scalable I/O-aware job scheduling for burst buffer enabled HPC clusters. In
Proceedings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing, pages 69–80. ACM, 2016.

[32] Duong Hoang, Harsh Bhatia, Peter Lindstrom, and Valerio Pascucci. High-quality and
low-memory-footprint progressive decoding of large-scale particle data. In 2021
IEEE 11th Symposium on Large Data Analysis and Visualization (LDAV),
pages 32–42, New Orleans, LA, USA, October 2021. IEEE.

95



[33] Dan Huang, Qing Liu, Scott Klasky, Jun Wang, Jong Youl Choi, Jeremy Logan,
and Norbert Podhorszki. Harnessing data movement in virtual clusters for
in-situ execution. IEEE Transactions on Parallel and Distributed Systems,
30(3):615–629, 2018.

[34] Peter J. Huber. Robust Estimation of a Location Parameter, pages 492–518. Springer
New York, New York, NY, 1992.

[35] Sian Jin, Sheng Di, Jiannan Tian, Suren Byna, Dingwen Tao, and Franck Cappello.
Improving prediction-based lossy compression dramatically via ratio-quality
modeling. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE), pages 2494–2507, 2022.

[36] Sian Jin, Pascal Grosset, Christopher Biwer, Jesus Pulido, Jiannan Tian, Dingwen
Tao, and James Ahrens. Understanding gpu-based lossy compression for
extreme-scale cosmological simulations. IEEE International Parallel and
Distributed Processing Systems, 05 2020.

[37] Sian Jin, Jesus Pulido, Pascal Grosset, Jiannan Tian, Dingwen Tao, and James
Ahrens. Adaptive configuration of in situ lossy compression for cosmology
simulations via fine-grained rate-quality modeling. In Proceedings of the
30th International Symposium on High-Performance Parallel and Distributed
Computing, pages 45–56, 2021.

[38] Brian R. Kent. Editorial: Techniques and methods for astrophysical data
visualization. Publications of the Astronomical Society of the Pacific,
129(975):058001, apr 2017.

[39] Jeongnim Kim, Andrew D Baczewski, Todd D Beaudet, Anouar Benali, M Chandler
Bennett, Mark A Berrill, Nick S Blunt, Edgar Josué Landinez Borda, Michele
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