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ABSTRACT

BOUNDARY INTEGRAL EQUATION METHODS
FOR SUPERHYDROPHOBIC FLOW AND INTEGRATED

PHOTONICS

by
Kosuke Sugita

This dissertation presents fast integral equation methods (FIEMs) for solving two

important problems encountered in practical engineering applications.

The first problem involves the mixed boundary value problem in two-dimensional

Stokes flow, which appears commonly in computational fluid mechanics. This problem

is particularly relevant to the design of microfluidic devices, especially those involving

superhydrophobic (SH) flows over surfaces made of composite solid materials with

alternating solid portions, grooves, or air pockets, leading to enhanced slip.

The second problem addresses waveguide devices in two dimensions, governed

by the Helmholtz equation with Dirichlet conditions imposed on the boundary. This

problem serves as a model for photonic devices, and the systematic investigation

focuses on the scattering matrix formulation, in both analysis and numerical

algorithms. This research represents an important step towards achieving efficient

and accurate simulations of more complex photonic devices with straight waveguides

as input and output channels, and Maxwell’s equations in three dimensions as the

governing equations.

Numerically, both problems pose significant challenges due to the following

reasons. First, the problems are typically defined in infinite domains, necessitating

the use of artificial boundary conditions when employing volumetric methods such as

finite difference or finite element methods. Second, the solutions often exhibit singular

behavior, characterized by corner singularities in the geometry or abrupt changes in

boundary conditions, even when the underlying geometry is smooth. Analyzing the

exact nature of these singularities at corners or transition points is extremely difficult.



Existing methods often resort to adaptive refinement, resulting in large linear systems,

numerical instability, low accuracy, and extensive computational costs.

Under the hood, fast integral equation methods serve as the common engine

for solving both problems. First, by utilizing the constant-coefficient nature of the

governing partial differential equations (PDEs) in both problems and the availability

of free-space Green’s functions, the solutions are represented via proper combination

of layer potentials. By construction, the representation satisfies the governing

PDEs within the volumetric domain and appropriate conditions at infinity. The

combination of boundary conditions and jump relations of the layer potentials then

leads to boundary integral equations (BIEs) with unknowns defined only on the

boundary. This reduces dimensionality of the problem by one in the solve phase.

Second, the kernels of the layer potentials often contain logarithmic, singular, and

hypersingular terms. High-order kernel-split quadratures are employed to handle

these weakly singular, singular, and hypersingular integrals for self-interactions, as

well as nearly weakly singular, nearly singular, and nearly hypersingular integrals

for near-interactions and close evaluations. Third, the recursively compressed inverse

preconditioning (RCIP) method is applied to treat the unknown singularity in the

density around corners and transition points. Finally, the celebrated fast multipole

method (FMM) is applied to accelerate the scheme in both the solve and evaluation

phases. In summary, high-order numerical schemes of linear complexity have been

developed to solve both problems often with ten digits of accuracy, as illustrated by

extensive numerical examples.
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CHAPTER 1

INTRODUCTION

The first part of this dissertation is concerned with the accurate and efficient

computation of velocities, pressure, and tractions (surface forces) in flows over

superhydrophobic surfaces, sometimes referred to as superhydrophobic (SH) flow.

When a rough hydrophobic solid is submerged in a fluid, gas bubbles can

become trapped within the grooves in the solid surface, resulting in a stable mixed

state known as Cassie state. This leads to the formation of a superhydrophobic

surface, which is of great interest within the fluid mechanics community due to its

tendency to exhibit reduced resistance to liquid motion (Quéré [70]). The study of

flows over SH surfaces typically focuses on two types of canonical problems. The first

problem involves an idealized scenario of externally imposed shear flow over a single

SH surface (Philip [68]). The second problem, which is more representative of realistic

configurations, involves pressure-driven flow within SH channels (Rothstein[74]). In

both cases, the focus is not on the intricate details of the flow, but rather on a

suitable aggregated or coarse-grained quantity that represents the decreased friction

resulting from superhydrophobicity. In the first case, this quantity is represented by

the intrinsic slip length (Davis and Lauga [22]), which is solely determined by the

geometric characteristics of the surface. In the second case, it is represented by the

effective slip length (Lauga and Stone [59]), which accounts for the excess volumetric

flow in the channel. As part of this work, we develop an efficient method for computing

these coarse-grained quantities over complex and highly irregular surfaces.

SH surfaces appear not only in the engineering development of nano-fluidic

devices, but also in nature. Some examples of naturally occurring SH surfaces are

shown in Figure 1.1. This figure also shows SH surfaces that have been manufactured
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for nano-fluidic applications. An idealized model of flow in a channel with one or

more SH surfaces is shown in Figures 2.12 and 2.13 in Chapter 2.

Figure 1.1 Examples of superhydrophobic surfaces. Top left: a surface of a lotus
leaf [78]. Top right: manufactured hollow hybrid superhydrophobic surfaces (from
Dash et al. [21]). Bottom left: a magnified mosquito eye [1]. Bottom right: a
magnified surface of a butterfly wing [29].

There is a vast literature on SH flow problems. We review some of the prior work

that is relevant to the current study. An important early theoretical investigation is

the seminal work of Philip [68], who mathematically derived exact solutions to various

SH flow problems subject to mixed boundary conditions for a flat or undeformed

interface. Since then, there have been many theoretical and numerical investigations

of flow over SH surfaces in different geometries. For example, Teo and Khoo [77]

numerically investigated the effects of interface curvature on the transverse SH flow

through micro-scale channels and tubes. Yariv and Siegel [83] analyzed the rotation of

an infinite cylinder with air-bubbles or grooves as a model of the rigid-body motion of

an SH particle in a viscous liquid. Crowdy [20] mathematically analyzed longitudinal
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shear flow over a no-slip surface with partial slip circular bubbles. Yariv and Schnitzer

[82] studied a similar longitudinal flow with closely spaced circular bubbles using

asymptotic analysis. Nearly all of the numerical studies involve a regular periodic

geometry, where the solution needs only to be computed over a single solid-groove cell.

In contrast, the method developed here will be capable of computing over irregular

geometries with many cells.

In the above studies, two types of flow alignment are typically considered:

longitudinal flow or transverse flow. Longitudinal flow refers to the case where

the fluid motion is parallel to the gas-filled grooves, while transverse flow involves

fluid motion which is perpendicular to the grooves. A relatively small number of

mathematical and numerical studies have focused on the transverse flow compared

with the longitudinal flow. Hence, we concentrate in this work on the development

of a numerical method for transverse flow. However, the algorithm developed here,

with modifications, also applies to the case of longitudinal flow.

The presence of mixed boundary conditions and corners on the boundary of

a given domain introduces significant difficulties for numerical computations. The

existence of corners and boundary transition points, where boundary conditions

change type, leads to flow singularities, i.e., singularities in the velocity and stress

fields. A standard approach to dealing with the singularities, adaptive mesh

refinement, leads to numerous unknowns, ill-conditioned linear systems, and a loss

of accuracy. Previous approaches based on the finite element method (FEM) have

been implemented and studied (e.g., Teo and Khoo [77], Lam et al. [58], and Kirk

et al. [50]) and some software packages are available. The reported numerical results

show a few digits of accuracy. A drawback of these methods is the need to discretize

the whole computational domain with a large number of elements (105-106 elements

per a single solid-groove cell). Another approach that applies to Stokes flow over SH

surfaces is the Boundary Integral Equation (BIE) method, which has the potential
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to achieve high accuracy. However, there has been much less work applying BIE

methods to SH flow, with Kelmanson [49], Yariv and Schnitzer [82] among the few

studies. In the BIE method, one only needs to discretize the boundary of the domain,

so that the dimension of the problem is reduced by one in the solve phase. When

applied to mixed boundary value problems, however, the BIE methods require either

adaptive refinement or special techniques to achieve high accuracy due to the presence

of corners and boundary transition points. Whereas research efforts to develop the

BIE methods on Stokes equations on complex geometries are ongoing, with recent

work including Askham and Rachh [4], Rachh and Askham [71], Helsing and Jiang

[39], Rachh and Serkh [72], and Wu et al. [80], the boundary conditions discussed in

their work do not include mixed boundary conditions.

Related work on adaptive mesh refinement for mixed boundary value problems

in the context of Laplace’s equation is given by Helsing [37] who develops the

Recursively Compressed Inverse Preconditioning (RCIP) method (Helsing and Ojala

[42]) for that application. A significant part of the current dissertation is to extend

for the first time the RCIP method to mixed boundary value problems of the Stokes

flow. We also adapt the RCIP method to SH flow problems. An additional challenge

in the latter case arises due to the nonstandard ‘hybrid’ form of boundary conditions

for SH flow, which is described in section 2.2.6. We will reformulate the discrete

problem for the SH flow so that it is compatible with the RCIP method.

In the first part of this dissertation, we develop an accurate and fast numerical

method based on the BIE method for interior mixed boundary value problems for

Stokes equations, and apply it to the SH flow. Our method allows the boundary

of a given computational domain to have corners and mixed boundary conditions

that occur at the juncture between solid surfaces and bubble menisci in SH flow.

The proposed numerical method in this work is summarized as follows. First, we

choose a layer potential representation for the solution and derive the associated
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boundary integral equations. Then, we design a numerical method that makes

use of or adapts the following numerical techniques: the RCIP method, a matrix

scaling technique, kernel-split quadratures, and the Stokes FMM. The combination

of these methods has several advantages. The RCIP method, introduced in Helsing

and Ojala [42] and further described in Helsing [37], Helsing and Holst [38], Helsing

and Jiang [39], and Helsing [36], can accurately handle flow singularities at corners

and boundary transition points and leads to an optimal number of unknowns in the

discretization. Singular and nearly singular integrals are calculated via high-order

kernel-split quadratures in [37] which gives high accuracy, even for the evaluation

of nearly singular layer potentials at target points close to the boundary. A matrix

scaling technique is adapted from Helsing and Jiang [39] to stabilize the linear system

obtained by discretizing the BIEs. The fast multipole method (FMM) by Greengard

and Rokhlin [34] is incorporated to accelerate the computations of matrix-vector

products for evaluating layer potentials and reduces the space complexity and CPU

time of the numerical simulations. We illustrate the combined method by computing

challenging examples of SH flow in geometries with corners and boundary transition

points. The examples show that the method is able to achieve high accuracy and

linear scaling complexity, and can handle geometries with hundreds of cells.

The second half of this dissertation is focused on computational electromagnetics

and its applications to integrated photonics, discussed in Chapter 3. Our objective

is to devise an efficient and accurate numerical method that is capable of handling

large-scale simulations for the development of integrated photonics.

In the photonics industry, there is high demand on efficient and accurate

simulations on the propagation of electromagnetic waves for designing integrated

photonic devices. In integrated photonics, the optical circuits consists of basic

components such as star couplers, arrayed-waveguide gratings, reconfigurable optical

add/drop multiplexers (ROADM), matrix switches, lattice-form programmable dispersion
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equalizers, etc. Figure 1.2 shows one typical device and its schematic interior

design, and Figure 1.3 shows the images of computational domains for two kinds

of waveguides. While the integrated photonics industry has been growing rapidly, the

lack of efficient and reliable design software has become one of the bottlenecks for its

development. This is an extremely difficult problem in computational mathematics.

Unlike integrated eletronic circuits that admit a simplified model, one has to solve

three-dimensional Maxwell’s equations for photonic devices. The wavelength of the

incident wave in integrated photonic devices is about 1.55 micrometers, while the

devices are usually on the scale of centimeters in two-dimensional plane and at least

tens of micrometers in thickness. Thus, when measured in terms of wavelength, the

size of the device is about 10 × 1000 × 1000. By the Nyquist–Shannon sampling

theorem that states at least two points per wavelength are required to resolve an

oscillatory signal, it is easy to see that one needs hundreds of millions of discretization

points for a very low-accuracy calculation. All existing software packages for

integrated photonics rely on either the finite difference time domain (FDTD) method

or the finite element method (FEM), both of which require the discretization for the

whole volume. And accurate numerical simulations become impractical even if the

design engineers have some of the most powerful computers at their hands.
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Figure 1.2 Left: a packaged arrayed waveguide grating (AWG) module [24]. Right:
a plane geometry of an AWG [66].
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Figure 1.3 Modeled images of waveguides from [88]. Left: a planar optical
waveguide. Right: an optical fiber.

Here we propose a scattering matrix formulation for the simulation of photonic

devices. By design, the input and output channels of photonic components consists of

straight waveguides that admit a finite number of so-called propagating modes. The

scattering matrix is a matrix of finite dimension converting the incoming propagating

waves to reflected and transmitted outgoing propagating waves. It is clear that

the scattering matrix provides all information of a photonic device. In practice,

various functional components inside a photonic device are well separated from

each other so that the interference between any two components can be neglected.

Thus, the scattering matrix for each component offers a black-box characterization

of its functions, and the scattering matrix for the whole device can be constructed

to satisfactory accuracy by assembling the scattering matrices of each component

together. To the best of our knowledge, a systematic study of the scattering matrix

formulation has not been carried out for photonic devices. In this dissertation, we

study the scattering matrix formulation for the simplified model problem - waveguide

structures in two dimensions with the Helmholtz equation as the governing equation

and the boundary condition being the zero Dirichlet condition. We analyse the

mathematical properties of the scattering matrix and present detailed numerical

investigation of the scattering matrix formulation for the model problem. Once

again, we apply fast integral equation methods to solve this problem, and state-of-art
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numerical tools such as the kernel-split quadrature for close evaluation, generalized

Gaussian quadrature for self and near interactions when building the system matrix,

the RCIP method for point singularities, and the fast algorithms such as the fast

multipole methods and its descendants, are used to achieve 10+ digits of accuracy

within minutes for large-scale simulations.

The rest of this dissertation is organized as follows. Chapter 2 is focused on SH

flow, and Chapter 3 on integrated photonics. In both Chapters 2 and 3, we present

the mathematical formulations to be used, our numerical methods, and numerical

examples as sections in this order, respectively. Finally, we conclude this dissertation

in Chapter 4.
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CHAPTER 2

FLUID DYNAMICS AND SUPERHYDROPHOBIC FLOW

2.1 Mathematical Formulation

2.1.1 Governing equations and boundary conditions

We first present the primitive or PDE formulation for multiply-connected interior

Stokes flow in 2D bounded geometries. The mathematical formulation and numerical

method can be easily generalized to exterior flow in unbounded geometries. The

domain is allowed to have nonsmooth boundaries and mixed boundary conditions,

and the numerical method is specially tailored to accurately handle such conditions.

The fluid domain Ω (an illustration is given in Figure 2.1) is taken to be a

multiply-connected region bounded by M closed curves, Γi, for i = 1, . . . ,M . We

denote the outermost or enclosing boundary by Γ1, and let Γ = ∪M
i=1Γi be the entire

boundary. Each closed curve Γi is composed of Ni piecewise smooth curves Γ
(j)
i for

j = 1, . . . , Ni, so that Γi = ∪Ni
j=1Γ

(j)
i . Different boundary conditions (e.g., Dirichlet or

Neumann) will be allowed on the different boundary components Γ
(j)
i .

The boundary value problem for incompressible 2D Stokes flow in the domain

Ω with boundary Γ is written

−µ∆u+∇p = 0 and ∇ · u = 0 for x ∈ Ω, (2.1)

B(j)
i (u, p) = 0 for x ∈ Γ

(j)
i , i = 1, . . . ,M and j = 1, . . . , Ni. (2.2)

Here u is the fluid velocity, p is the pressure, and µ is the viscosity which is taken

to be constant in Ω. The functional B(j)
i (u, p) (which can also depend on derivatives

of velocity and pressure) prescribes the boundary condition on boundary component

Γ
(j)
i . This will typically be either a Dirichlet condition on the velocity u = g

(j)
i (x)

or a Neumann condition on the surface force f = h
(j)
i (x), where x ∈ Γ

(j)
i and f
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is the surface force or traction f = σn. Here σ is the stress tensor defined as

σ = σij := −δijp+ µ
(

∂ui

∂xj
+

∂uj

∂xi

)
and n is the unit normal vector pointing outwards

on the boundary, i.e., into the fluid domain Ω on the embedded objects, and away

from the fluid on the external boundary. Example geometries with mixed boundary

conditions are shown in Figure 2.2.

Ω

Figure 2.1 A schematic computational domain where objects with piecewise
smooth boundary curves are non-uniformly placed inside the bounding box. The
fluid region Ω is the interior of the bounding box, exterior to the objects.

Γ1

Γ2

Γ1

Γ3

Γ2Γ4

Γ1

Γ2

Figure 2.2 Extracted samples of boundary pieces in Figure 2.1. The black lines
correspond to Dirichlet boundary condition, and blue dotted lines Neumann
condition respectively.
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The mixed boundary value problem corresponding to superhydrophobic flow is

discussed in Subsection 2.2.6.

2.1.2 Notation and nomenclature

The notation used throughout this chapter is similar to Helsing and Jiang [39], Wu et

al. [80], and Klinteberg et al. [51]. In two-dimensional space R2, we write boundary

integral kernels in the form K(x,y), and refer to x = (x1, x2) as the target point and

y = (y1, y2) as the source point, respectively. We define r := x− y and r := |r|, and

denote by nx and ny the unit normal vectors on the boundary Γ pointing outward at

x and y, respectively. The outward normal sometimes is denoted by n if the context

is clear. In a slight abuse of notation, we use the same boldface letter to denote an

integral operator, its kernel, and the associated matrix after discretization, with the

meaning clear from context.

In some parts of the presentation (e.g., Section 2.2.3) it will be convenient to

use complex numbers to represent points and vectors in R2. This employs the natural

representation a1 + ia2 for the vector a = (a1, a2) and we use the complex number

ν = n1 + in2 to represent the normal vector n. Note that in complex notation the

dot product of two vectors is represented by a · b = Re(ab̄).

We shall refer to a point s ∈ Γ for which the boundary conditions change type

of s as a boundary transition point. The surface Γ can be either smooth or have a

corner at a boundary transition point. We also use s to denote a corner point where

the boundary conditions do not change type.

2.1.3 Integral equation formulation

Stokes layer potentials We now reformulate the problem (Equations (2.2)) in

terms of boundary integral equations (BIEs). Different approaches are available to

write this problem in terms of BIEs, see e.g. Pozrikidis [69]. We will make use of a
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combined-field BIE representation Wu et al. [80] that leads to a non-rank deficient

linear system.

For simplicity, we first consider mixed boundary conditions in which the

boundary Γ is composed of a set of curves ΓD = {Γ(j)
i : (i, j) ∈ I} on which Dirichlet

conditions are imposed, and a set of curves ΓN = Γ−ΓD on which Neumann conditions

are applied. Here I denotes the set of indices (i, j) for which a Dirichlet condition is

applied on boundary component Γ
(j)
i . Later, the more complex boundary conditions

for superhydrophobic flow will be considered.

In a standard way, we write the velocity u and stress f at x ∈ Ω as a sum of

Stokes single and double layer potentials acting on an unknown density vector ρ:

u(x) = SΓN
[ρ](x) +DΓD

[ρ](x), (2.3)

f(x) = S′
ΓN

[ρ](x) +D′
ΓD

[ρ](x). (2.4)

Here SΓ and DΓ are, respectively, the velocity single and double layer potentials

over a boundary component Γ, and S′
Γ and D′

Γ are the traction single and double

layer potentials (cf. Equations (2.6)-(2.9) below). The subscripts ΓN and ΓD are

used to indicate that we use the single layer representation (i.e., Equations (2.6) and

(2.8) below) on parts of the boundary where a Neumann condition is enforced, and

the double layer representations (2.7) and (2.9) on boundary components where the

Dirichlet condition is imposed. Later, we consider examples involving pressure-driven

flow in a channel for which pressure boundary conditions are imposed on part of the

boundary, denoted by ΓP . A layer potential representation of the pressure is given

by

p(x) = Sp
ΓN

[ρ](x) +Dp
ΓD

[ρ](x) + Sp
ΓP
[ρ](x) +Dp

ΓP
[ρ](x), (2.5)

where Sp
Γ and Dp

Γ are the pressure single and double layer potentials over Γ. Note

that we use the single layer representation of the pressure over ΓN , the double layer
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representation over ΓD, and the total combined field representation over ΓP . The

density ρ is determined by the boundary conditions, as detailed below.

The layer potentials in Equations (2.3)-(2.4) are given by

SΓ[ρ]i(x) :=
1

4πµ

∫
Γ

Gij(x,y)ρj(y)dSy, (2.6)

DΓ[ρ]i(x) :=
1

4π

∫
Γ

Tijk(x,y)ρj(y)ny,kdSy, (2.7)

S ′
Γ[ρ]i(x) := − 1

4π

∫
Γ

Tijk(x,y)ρj(y)nx,kdSy, (2.8)

D′
Γ[ρ]i(x) :=

µ

4π

∫
Γ

[
∂

∂xl
Tijk +

∂

∂xi
Tljk − δilΠkj

]
ρj(y)ny,knx,ldSy, (2.9)

Sp
Γ[ρ](x) :=

1

4πµ

∫
Γ

Gp
j(x,y)ρj(y)dSy, (2.10)

Dp
Γ[ρ](x) :=

µ

4π

∫
Γ

Πp
kj(x,y)ρj(y)ny,kdSy (2.11)

where dSy is an arclength element on boundary component Γ. In the above

expressions, Gij(x,y) is the velocity fundamental solution or Stokeslet, Tijk(x,y)

is the associated stress tensor, and Πik(x,y) is the pressure kernel. These are given

by

Gij (x,y) := δij ln
1

r
+

1

r2
x̂ix̂j, (2.12)

Tijk(x,y) :=
4

r4
x̂ix̂jx̂k, (2.13)

Πik := 4

(
− 1

r2
δik +

2

r4
x̂ix̂k

)
, (2.14)

Gp
j(x,y) :=

1

2π

x̂j
r2
, (2.15)

where x̂i := (x− y)i, and nx,k is used denote the kth component of the vector nx,

etc. Einstein summation notation is used above and throughout, with indices i, j, k, l

taking values in the set {1, 2} for 2D flow.

For smooth ρ and Γ, the integral in Equation (2.7) is regular (i.e., with a

smooth integrand) while Equations (2.6), (2.8) and (2.10) are weakly singular. The
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integrals in Equations (2.9) and (2.11) are hypersingular when the target point is on

the boundary Γ.

2.1.4 Boundary integral equations

Standard jump relations are used to derive the boundary integral equations from the

layer potential representation (2.4). In the simplified situation in which the boundary

Γ is decomposed into a region ΓD on which a Dirichlet boundary condition is applied

and a region ΓN on which a Neumann or surface traction boundary condition is

imposed, we apply u|ΓD
= g(x) on ΓD and f |ΓN

= σn|ΓN
, for a given surface stress

f , on ΓN . Then, the following boundary integral equations can be derived from

well-known jump relations for the layer potentials as can be seen in Pozrikidis [69]

−1

2
ρ(x) +DΓD

[ρ](x) + SΓN
[ρ](x) = lim

h→0+
D[ρ](x− hnx) = u|ΓD

x ∈ ΓD, (2.16)

1

2
ρ(x) +D′

ΓD
[ρ](x) + S′

ΓN
[ρ](x) = lim

h→0+
S′[ρ](x− hnx) = f |ΓN

x ∈ ΓN. (2.17)

(Note that the signs in Equations (2.16 and (2.17) are for interior problem, for exterior

problem signs on identity terms change.) This system of equations determines the

vector density ρ. Once ρ is known, velocities and tractions throughout the domain

Ω and on the boundary are determined from the layer potential representations (2.3)

and (2.4).

We first use the layer potential representations above to formulate an RCIP

method for problems with mixed boundary conditions in simple geometries (e.g.,

those in Figure 2.2), so as to validate the numerical algorithm. Later, in Section

2.2.6, we will adapt the formulation and numerical method to deal with the more

complicated boundary conditions exhibited by models of superhydrophobic flow.
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2.2 Numerical Methods

We first describe a standard BIE method employing a panel-based Nystroöm

discretization scheme, and discuss some difficulties that occur when applying such

a standard method to geometries like those shown in Figures 2.1 and 2.2. Then,

we describe our numerical scheme into which we incorporate the RCIP method,

kernel-split quadratures, a scaling method, and the Stokes FMM to handle the

difficulties.

2.2.1 Standard procedure of BIE methods

A standard BIE method based on Nyström discretization typically involves the

following set of steps:

1. Formulate the boundary integral equation (BIE) representation of the problem.
In our example of the mixed Dirichlet-Neumann boundary value problem for
Stokes equations, the BIE representations are (2.16) and (2.17). We assume
that the BIE system of neq integral equations can be written in the standard
form

(Ic +Kc)ρc(x) = bc(x), (2.18)

where Ic is the identity operator, Kc represents the integral operators, ρc is the
unknown layer density, and bc(x) denotes the boundary data. The subscript c
is used to represent continuous (as opposed to discrete) functions and operators.

2. Apply a quadrature method to discretize the BIEs (e.g., Equations (2.16) and
(2.17)) to obtain a linear system of the form

(I +K)ρ = b, (2.19)

where I is the identity matrix, K is a matrix of discretized layer potentials with
quadrature weights, ρ is the unknown density to be solved, and b is the data
given by the boundary conditions.

3. Determine the unknown density values ρ by numerically solving the linear
system (2.19), typically using an iterative method such as GMRES [76].

4. Evaluate the desired quantities such as the velocities in Ω and surface forces
using the layer potential representations, e.g., Equations (2.3) and (2.4).
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We use ngl point Gauss-Legendre quadrature nodes and weights for the

discretization in the second step, where ngl = 16 throughout this paper.

If the boundary Γ is sufficiently smooth and the boundary condition is entirely

Dirichlet or Neumann, then BIEs (2.16) and (2.17) involve integral operators that

are compact and the associated discrete system (2.19) is well-conditioned. Then, the

kernels of the layer potentials contain terms like

r · ny

r2
, (2.20)

but when Γ is smooth r · ny is of order r2 which makes the integrand of Equation

(2.20) bounded, and hence the associated integral operator is compact. If Γ contains a

corner vertex p, then (2.20) is O(r−1) as x and y approach p from different sides. This

is similar to the double layer potential operator for Laplace’s equation. However, it is

shown in Verchota [79] that the Laplace double layer potential is a bounded singular

operator on Lipschitz domains. In this case, the associated discrete system (2.19) is

also well-conditioned. Wu et al. [80] exploit this fact to obtain accurate solutions to

the Dirichlet problem for Stokes equations on domains with corners.

In the current paper, we impose mixed boundary conditions on Γ and in addition

the boundary may be nonsmooth. Standard quadrature rules for smooth integrals

then results in a loss of accuracy. There are hypersingular integral operators inKc and

the associated discrete system (2.19) is ill-conditioned. Even if Γ is entirely smooth,

the presence of boundary transition points where the boundary condition changes

type leads to hypersingular and nearly hypersingular integrals in Kc for target points

on the interface. Without special treatment, this leads to a loss of accuracy.

Adaptive or graded mesh refinement in the neighborhood of a corner or

boundary transition point mitigates the issue. Nevertheless, the size of the discrete

problem grows significantly with refinement level, and it can still be difficult to

obtain satisfactory accuracy due to the ill-conditioning of the linear system when
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standard quadratures are used. Determining an optimal level of refinement to obtain

satisfactory accuracy is also problematic. The density ρ will be insufficiently resolved

with underrefinement, while overrefinement often leads to numerical instability and

loss of accuracy due to the non-uniform spacing of a graded mesh. A numerical

example that illustrates the poor performance of standard quadrature and adaptive

refinement schemes (compared to the method developed in this paper) is shown in

Figure 2.7 below. To resolve these issues, we adapt the recently the developed RCIP

method and combine it with kernel-split quadratures, a scaling technique, and the

Fast Multipole Method to obtain a fast and accurate numerical scheme. We describe

these pieces in order.

Γ∗

Figure 2.3 Left: rectangular boundary without refinements. Middle: rectangular
boundary with dyadic refinements towards corners. Right: zoomed-in top-right
refined corner. The four coarse panels in the neighborhood of a corner point are
denoted by Γ∗.

2.2.2 The RCIP method

Overview of the method We provide a brief overview of the RCIP (Recursively

Compressed Inverse Preconditioning) method, which was originally proposed in

Helsing and Ojala [42]. Here, the method is applied at geometric corners and

boundary transition points, i.e., where the boundary condition changes type. Such

points are referred to as singular points. We first describe the application of RCIP in

the neighborhood of a single corner point s ∈ Γ and later modify it for the treatment of

a boundary transition point. A detailed exposition of the method applied to Laplace’s

equation and to integral equations of scattering theory is given in Helsing [36]. We
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provide an overview similar to Helsing and Jiang [39] and Helsing and Jiang [40].

One technical difference between the application of the RCIP method to Laplace

and Helmholtz equations and the current work is that, in the former, the BIEs are

scalar equations, while the corresponding relations for Stokes flow are two-dimensional

vector equations.

We assume a discrete system of neq integral equations of the form of Equation

(2.19). The RCIP method employs dyadic mesh refinement toward the singular point,

as illustrated in Figure 2.3. The linear system to be solved after refinement is written

as

(Ifin +Kfin)ρfin = bfin. (2.21)

Define the number of panels on the coarse mesh before refinement as np. We denote

the number of subdivisions in the neighborhood of a singular point by nsub

The RCIP method employs dyadic mesh refinement toward the singular point,

as illustrated in Figure 2.3. The method begins with the decomposition or splitting

of the interaction matrix

K = K◦ +K∗ (2.22)

where K∗ is nonzero only when the target and source points are both on the subset

Γ∗ containing the four coarse panels closest to the singular point (cf. Figure 2.3),

and K◦ is nonzero when the target and source points are not both on Γ∗. Informally,

K◦ represents the smooth part of interaction matrix, and K∗ holds the singular and

near singular part due to the presence of the corner. The ∗ and ◦ notation is used on

other matrices to denote the same splitting.

The compressed linear system which results from the RCIP method is

(Icoa +K◦
coaR) ρ̃coa = bcoa, (2.23)
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where Icoa is the identity matrix on the coarse mesh, K◦
coa is K◦ discretized on the

coarse mesh, R is a recursively compressed inverse preconditioner (described below),

and ρ̃coa is a transformed density discretized on the coarse mesh. The transformed

density is defined by

(Ifin +Kfin)ρfin = P ρ̃coa. (2.24)

where P is a prolongation matrix which interpolates from points on the coarse grid

to points on the fine grid. The fine grid density ρfin and other quantities of interest

can be recovered from ρ̃coa in a postprocessing step, as described in Helsing [36].

The matrix R is a lossless compression of K∗. We summarize its computation,

starting with definitions of ‘b-type’ and ‘c-type’ meshes. Define a nested sequence of

graded meshes Γc
i , i = 1, . . . , nsub with Γc

i−1 ⊂ Γc
i and Γc

nsub coinciding with Γ∗, the

four panels of the coarse or unrefined mesh that are closest to the singular point s.

The meshes Γc
i for i = 1, . . . , nsub−1 are recursively obtained from Γc

i+1 by subdividing

the two panels closest to the singular point and removing the two panels farthest from

s. Note that Γc
i always consists of two panels on either side of the singular point.

We define Γb
i for i = 1, . . . , nsub to be the six panels obtained by subdividing the two

panels closest to s in Γc
i . An illustration of the different mesh types is given in Figure

2.5. We let nb = 6∗ngl and nc = 4∗ngl denote the number of grid points on type b and

c meshes, respectively, per singular point. The operator R is an Ncoa ×Ncoa matrix,

where Ncoa = neqnpngl, and is constructed sequentially from the deepest refinement

level l = 1 to l = nsub via the recursion relation

Rl = P T
Wbc

(
F[R−1

l−1] +B◦
l

)−1
Pbc (1 ≤ l ≤ nsub) (2.25)

with

Bl = Il,b +Kl,b. (2.26)
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Matrices and operators in the above equation are defined as follows. Pbc is an Nb ×

Nc prolongation matrix, where Nb = neqnb and Nc = neqnc, which interpolates neq

discrete functions (the components of ρ) from points on Γc
l to the refined mesh Γb

l .

PWbc := WbPbcW
−1
c is a Nb ×Nc weighted interpolation matrix, where Wb and Wc

are diagonal matrices composed of Gauss-Legendre quadrature weights on type-b and

type-c meshes, respectively. The target and source points of Kl,b are on Γb
l , and K◦

l,b

is an Nb × Nb matrix obtained from the splitting (2.22) applied to Kl,b. I◦
l,b is an

Nb×Nb matrix on Γb
l obtained from the splitting of the identity Ib. F[ · ] is an operator

padding R−1
l−1 with zeros to expand the matrix size from Nc×Nc to Nb×Nb for l > 1.

The recursion is initialized by setting F[R−1
l−1] = I∗

1,b +K∗
1,b, so that in the first step

we invert the operator I1,b +K1,b on the finest type-b mesh Γb
1. Figures 2.5 and 2.6

illustrate the recursive computations of Rl.

refinement nsub times

coarse mesh refined mesh

refinement level 1

Figure 2.4 Illustration of recursive relation of the RCIP method from refinement
level 1 to nsub.
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Rl−1

Type-c on Γl−1

R−1
l−1

I◦
l,b +K◦

l,b

Type-b on Γl

F[R−1
l−1] + I◦

l,b +K◦
l,b

Type-b on Γl

Rl = P T
Wbc

(
F[R−1

l−1] + I◦
b +K◦

l,b

)−1
Pbc

Type-c on Γl

Figure 2.5 Illustration of recursive relation (2.25) of the RCIP method from
refinement level l − 1 to l. Rl on a type-c mesh at level l (top right) is constructed
starting with Rl−1 on type-c mesh (top left) through the intermediate steps on the
type-b mesh at level l (bottom).
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Rl−1

I◦
l,b +K◦

l,b (shaded blue) sorrounding R−1
l−1 R−1

l−1 + I◦
l,b +K◦

l,b

Rl

Figure 2.6 Matrix representations corresponding to Figure-2.5 for recursive
relation (2.25).

If the boundary Γ contains one singular point, the matrix R coincides with the

identity except for an Nc × Nc block of entries where K∗
coa is nonzero. We denote

that block by R∗. Said another way, K◦
coa has a zero block of size Nc ×Nc, which is

precisely where R∗ is located. Furthermore, R∗ is determined by the above iteration

as R∗ = Rnsub. R therefore has the following structure:

R =



I

R∗

I



. (2.27)

When there is more than one singular point R has a similar structure, but there are

multiple blocks R∗.

After computation of the matrix R, the linear system (2.23) is solved for ρ̃

using an iterative method such as GMRES.
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Remark 2.2.1. The matrix B◦
l in the Equation (2.25) becomes increasingly ill-

conditioned as nsub increases. This is related to the presence of hypersingular kernels

at a corner or boundary transition point. We stabilize the inversion
(
F[R−1

l−1] +B◦
l

)−1

using the Schur-Banachiewicz block inversion formula in Henderson and Searle [44]

as suggested in Helsing [43] (see also Helsing [36]).

Remark 2.2.2. Each step of the recursion involves inversion of a Nb × Nb matrix.

Using the Schur-Banachiewicz block inversion formula this is reduced to inverting a

2neqngl × 2neqngl matrix at each step, which for our values of neq and ngl amounts to

a 64 × 64 system. This enables extremely efficient calculation of the preconditioner

R. In our numerical examples, R is computed on the fly in less than 0.01 seconds

per singular point even with a level of adaptive refinement up to 100. Additionally,

R can be reused for certain geometries, e.g., corners with the same opening angles,

assuming the same boundary conditions at each corner. For fixed Ncoa, the time and

space complexities of the RCIP method are proportional to the number of singular

points and the deepest level of refinement nsub.

A numerical example illustrating advantages of the RCIP method in a mixed

boundary value problem, compared to standard dyadic mesh refinement, is shown in

Figure 2.7. In the numerical experiment, we choose a rectangular domain and set the

boundary conditions to Dirichlet on the top and bottom, and Neumann on the left

and right sides. The figure plots the condition number of the matrix (I +K) in the

linear system (2.19), the number of the GMRES iterations to solve for the density,

and the relative error in the velocity at a target point (x, y) = (0.5, 0.1) inside of the

domain (away from the boundary).
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Figure 2.7 Comparisons between the standard refinement method and the RCIP
method on relative errors in velocity values on the left, number of GMRES
iterations in the middle, and condition numbers on the right. The red circle plots
correspond to a standard refinement, and the blue filled plots the RCIP method.
The horizontal axis indicates the number of refinements in both methods. The
rectangular domain has its height 1, width 2, and the center at the origin. For all
evaluations, the target point is set to (x, y) = (0.5, 0.1).

Matrix scaling for the RCIP method. The matrix Bl, in addition to being

ill-conditioned, is poorly balanced. This leads to a severe loss of accuracy when

computing the recursion relation (2.25). Following Helsing and Jiang [39], we employ

a scaling technique to improve the stability of the construction of R.

The reason Bl becomes more unbalanced as the grid refinement increases (i.e., l

decreases) is due to the hypersingular kernel singularities when the target and source

point are on different sides of a corner or boundary transition point. We explain the

detailed mechanism of the instability. Consider a case in which two sections Γ1 and

Γ2 of a b-type mesh with nb total gridpoints meet at a corner. Suppose a Dirichlet

condition is imposed on Γ1 and Neumann condition on Γ2 as shown in Figure 2.8.
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Γ1 (Dirichlet)

Γ2 (Neumann)

Figure 2.8 A schematic image of boundary transition around a corner at which the
boundary condition switches from Dirichlet to Neumann. The first equation of the
BIEs in (2.28) corresponds to Γ1 and the second to Γ2. The arrows show the
direction of xi for increasing index i.

The boundary conditions are described by the following two BIEs, which are

solved on Γ1 and Γ2 respectively:

−1

2
ρ(x) +DΓ1 [ρ](x) + SΓ2 [ρ](x) = u(x) x ∈ Γ1,

1

2
ρ(x) +D′

Γ1
[ρ](x) + S′

Γ2
[ρ](x) = f(x) x ∈ Γ2

(2.28)

The matrix-vector product (Bl)ijρj := (Ib,l + Kb,l)ijρj is a discrete represen-

tation of the left hand sides of BIEs (2.28) on a b-type grid, where ρj refers to an

array of density values. We assume the first nb elements of ρj correspond to the first

component of ρ or ρ1j, and the second nb elements to ρ2j. It follows that Bl is a

2nb × 2nb matrix which can be written as

Bl = I +



−2D
(1)
11 −2S

(1)
12 −2D

(2)
11 −2S

(2)
12

2D
′(1)
11 2S

′(1)
12 2D

′(2)
11 2S

′(2)
12

−2D
(1)
21 −2S

(1)
22 −2D

(2)
21 −2S

(2)
22

2D
′(1)
21 2S

′(1)
22 2D

′(2)
21 2S

′(2)
22


=



Bl,11 Bl,12 Bl,13 Bl,14

Bl,21 Bl,22 Bl,23 Bl,24

Bl,31 Bl,32 Bl,33 Bl,34

Bl,41 Bl,42 Bl,43 Bl,44


.

(2.29)

where we have used S
(n)
km, D

(n)
km, etc. to denote nb/2 × nb/2 block matrices from the

discretization of the single and double layer potentials in (2.28) when the target is

on Γk, the source is on Γm, and the integrand involves the nth component of ρ, for

k,m, n ∈ {1, 2}. The partitioning ofBl into a 4×4 block matrix thus follows naturally
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from (1) our representation using single and double layer potentials, (2) the vector

nature of ρ, and (3) the two BIEs (2.28) describing mixed boundary conditions.

Figure 2.9 shows representative behavior of 2-norms of these blocks. We

concentrate on Bl,ij for i = 1, 2 and j = 1, 2, since the other blocks behave similarly.

We observe

• Diagonal blocks ∥Bl,11∥ and ∥Bl,22∥ are roughly independent of the refinement

level,

• ∥Bl,12∥ roughly halves as the grid is refined by one level (i.e., l decreases by

one),

• ∥Bl,21∥ roughly doubles as the grid is refined by one level.

The reason for this behavior is as follows. The kernel of the off-diagonal block Bl,21

in (2.29) scales like O(1/r2) around the corner and thus increases by a factor of 4

with grid refinement from level l + 1 to level l, while the element of arclength dSy is

simultaneously reduced by a factor of 2. Hence the magnitude of this block doubles

at each grid refinement. The kernels of the diagonal blocks scale like O(1/r), and

when combined with the scaling of dSy the magnitude of these blocks are roughly

unchanged at each grid refinement. The kernel of Bl,12 scales like ln r and thus the

magnitude of this block scales like (1/2) ln 2 at each grid refinement.

On the other hand, if the boundary condition transitions from a Neumann

condition on Γ1 to a Dirichlet condition on Γ2 the off-diagonal blocks behave

oppositely, i.e., ∥Bl,21∥ roughly halves and ∥Bl,12∥ roughly doubles as the grid is

refined. Figure 2.9 shows the norm ratios of block matrices ∥Bl,ij∥/∥Bl+1,ij∥(i, j ∈

{1, 2}).
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Figure 2.9 Plots of norm ratios ∥Bl,ij∥/∥Bl+1,ij∥. The figures show cases of
boundary transitions from Dirichlet to Neumann conditions on the left, and from
Neumann to Dirichlet on the right.

We apply a scaling technique to remove the instability. The essential idea of the

technique is described in Golub and Loan [30] and is similar to that used in Helsing

and Jiang [39]. It uses a row-column equilibration to reduce the instability. For each

refinement level l, we define the 2nb × 2nb scaling matrix

Sl :=

Dl O

O Dl

 (2.30)

where

Dl :=

I O

O slI

 (2.31)

is an nb × nb diagonal block matrix with I an nb/2 × nb/2 identity matrix. Here,

sl = 2nsub−l if the first two row blocks correspond to a Dirichlet condition on Γ1

and the second two row blocks to a Neumann condition on Γ2. Alternatively, if

the first two row blocks correspond to a Neumann condition on Γ1 and the second

two row blocks to a Dirichlet condition on Γ2, sl is set to 2−(nsub−l). Suppose now

that we wish to solve the linear system Blx = b. Then to implement row-column

equilibration, we instead solve
(
D−1

l BlDl

)
y = D−1

l b, and set x = Dly. It is easily

verified that
(
D−1

l BlDl

)
has no effect on the diagonal blocks of Bl but rescales the
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off diagonal blocks so that their matrix norms are roughly independent of refinement

level. Similarly, the inverse of Bl is computed as as

B−1
l = Sl

(
S−1

l BlSl

)−1
S−1

l . (2.32)

Figure 2.10 gives examples in which the RCIP method is applied with and

without scaling in three representative geometries with mixed Dirichlet-Neumann

boundary conditions. The figure shows that the condition number of R increases

rapidly without scaling, but remains roughly constant when the above technique is

applied.

Construction of ρfin from ρ̃coa. Physical quantities in the interior of the domain

Ω, such as the velocity u or stress f , are computed in a post-processing step using the

layer potential representations (2.3) and (2.4). Although we are able to carry out the

evaluations to high accuracy in most of Ω using the coarse grid density ρ̃coa, loss of

accuracy is observed at target points that are close to a corner or boundary transition

point s. This due to the evaluation of nearly singular kernels. The loss of accuracy

is prevented by using the refined density ρfin to compute physical quantities in the

bulk when the target point is near s. An efficient method to reconstruct ρfin from

ρ̃coa, which essentially involves running the recursion relation (2.25) backwards, is

given in Helsing [37] (see also Helsing [36]). The computational cost of this technique

is proportional to nsub and the number of singular points ns. The refined density

ρfin is used only for a small fraction of the full function evaluations. Hence, the

density reconstruction does not measurably affect the overall computational cost of

the post-processing step.
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Figure 2.10 Effects of the scaling technique. The horizontal axis corresponds to
the number of subdivision nsub of the RCIP method, and the vertical axis
corresponds to the condition number of R1. Three geometries are used: smooth
star, rectangle, and arch shown in Figure 2.2. With each geometry, two results are
plotted. One is the case of the scaling applied, and the other is without scaling.

2.2.3 Kernel-split quadratures

Overview of the method Kernel-split quadrature is applied to accurately evaluate

layer potentials when the target point is close to or on the boundary Γ. If the

entire boundary is smooth and the layer potentials are compact operators, then the

standard quadrature works well and can achieve high accuracy. In this work, however,

the Stokes layer potentials have high-order kernel singularities which imply a loss of

compactness. As a result, it is difficult to obtain high accuracy for close and on

surface evaluations using the RCIP method alone. We address this difficulty by

incorporating kernel-splitting into the RCIP method. Representative references on

kernel-split quadrature are Helsing [37], Helsing and Jiang [39], Wu et al. [80], and

Klinteberg et al. [51]. These provide details on the derivation and implementation

of the method in various settings. We only summarize the main ideas, in particular

relying on explicit formulae provided by We et al. [80], who describe the application

of kernel splitting to the Stokes layer potentials. We refer the reader to [80] for more

details.
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The main task in the derivation of kernel-split quadrature is to rewrite the

Stokes layer potentials S,D,S′, and D′ as well as the pressure layer potentials in

terms of four canonical complex contour integrals. We first express the kernels of the

integral operators in complex notation as

K(zx, zy) = ϕ0(zy) + ϕL(zy) log |zy − zx|+
ϕ1(zy)

zy − zx
+

ϕ2(zy)

(zy − zx)2
+

ϕ3(zy)

(zy − zx)3
, (2.33)

where zx = x1+ix2 and zy = y1+iy2 are complex variable representations of the target

point x = (x1, x2) and the source point y = (y1, y2), and ϕL and ϕi (i = 0, · · · , 3) are

smooth functions determined by the kernels in Equations (2.6)-(2.11). Then the layer

potentials can be written in terms of the four fundamental complex contour integrals:

IL[τ ](zx) :=

∫
Γ

τ(zy) log |zy − zx||dzy|, (real logarithmic) (2.34)

IC [τ ](zx) :=

∫
Γ

τ(zy)

zy − zx
dzy, (Cauchy) (2.35)

IH [τ ](zx) :=

∫
Γ

τ(zy)

(zy − zx)2
dzy, (hypersingular) (2.36)

IS[τ ](zx) :=

∫
Γ

τ(zy)

(zy − zx)3
dzy. (supersingular) (2.37)

Here τ(zy) is a complex density function on Γ that involves products of the

components of ρ, ϕL, ϕi (i=1,. . . ,3), and the outward pointing normal vector νy

at y ∈ Γ expressed as a complex number. The integrals in Equations (2.35) - (2.37)

are interpreted in their principal value or Hadamard finite part sense.

The high accuracy of the method relies on panelwise polynomial approximation

of τ(zy) and analytical evaluation of the resulting weakly singular and singular

integrals. Let ΓGL be a Gauss-Legendre panel on Γ consisting of open arc in the

complex plane with starting point on −1 and endpoint 1. A general arc can always

be made to have this property by translation, rotation, and scaling. Assuming the

(complex) density of the Stokes layer potentials is piecewise smooth on the boundary,
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the discretized density is well approximated by panelwise polynomial approximation

at Legendre nodes. In particular, we use (ngl − 1)th order polynomial interpolation.

The coefficients of the polynomial approximation are determined by the solution

of a Vandermonde system. Substitution of the polynomial approximation for τ(zy)

into the complex integrals (2.34)-(2.37) (taking the integration over ΓGL) followed by

contour deformation of ΓGL to [−1, 1] then leads to integrals of the form

pk =

∫ 1

−1

tk−1 ln |t− zx| dt,

q
(m)
k =

∫ 1

−1

tk−1

(t− zx)m
dt, m = 1, 2, 3,

(2.38)

where k = 1, . . . , ngl. There can also be a residue contribution in the case of Cauchy

integrals if zx lies between the arc ΓGL and the real line between [−1, 1]. The integrals

in Equations (2.38) are analytically evaluated using a recursion. The method gives

accurate results when zx is either on the boundary or close to it. More details are

provided in Helsing [37], Wu et al. [80].

Expressions giving the Stokes layer potentials in terms of the complex contour

integrals (2.34)-(2.37) are derived in Wu et al. [80]. Here we present the expressions

without derivation, and refer the reader to [80] for details. We introduce the complex

notation z = (y1 − x1) + (y2 − x2)i, ν = n1 + in2 where n = (n1, n2) is the outward

unit normal to Γ, νx and νy are the outward normals evaluated at zx and zy, and

τ = ρ1 + iρ2 with ρ = (ρ1, ρ2). The single layer potential S can be written as

S[τ ](zx) = − 1

4πµ

IL[Re {τ}]
IL[Im {τ}]

+
1

4πµ


Im {IC [νy · ]}

Re {IC [νy · ]}

⊗

Re {z}
Im {z}



Re {τ}
Im {τ}

 .
(2.39)

where we use the tensor product notation a ⊗ b = aibj. In this representation,

the Stokes single-layer potential involves both weakly singular and singular contour
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integrals. Similarly, the Stokes double layer potential D can be written as

D[τ ](zx) = − 1

2π
Im

IC
[
Re{νy}

νy
τ
]

IC

[
Im{νy}

νy
τ
]
+

1

2π

Re {IH [·]}
Im {IH [·]}

⊗

Re {z}
Im {z}


Re {τ}
Im {τ}

 .
(2.40)

This representation involves singular and hypersingular contour integrals. Other

Stokes layer potentials S′, D′, Sp, and Dp are written as follows:

S′[τ ](zx) =
1

2π
Im {IC [νxνy · ]}

Re {τ}
Im {τ}


+

1

2π

Im {IH [Re {zνx} νy · ]} Re {IH [Re {zνx} νy · ]}

Re {IH [Re {zνx} νy · ]} −Im {IH [Re {zνx} νy · ]}


Re {τ}
Im {τ}

 ,
(2.41)

π

µ
D′[τ ](zx) = −1

2
Re {νxνy} νy

Im {IH [ · ]} Re {IH [ · ]}

Re {IH [ · ]} −Im {IH [ · ]}


Re {τ}
Im {τ}


+

1

2
νxνy

ny ⊗

Im {IH [ · ]}

Re {IH [ · ]}



Re {τ}
Im {τ}


+

1

2

0 1

1 0


nx ⊗

Re {IH [ · ]}

Im {IH [ · ]}



Re {τ}
Im {τ}

−

nx ⊗

Im {IH [ · ]}

Re {IH [ · ]}



Re {τ}
Im {τ}


+

nx ·

Im {IH [ · ]}

Re {IH [ · ]}




Re {τ}
Im {τ}

+ 2


nx2 nx1

nx1 nx2


Re {IS [ · ]}
Im {IS [ · ]}

⊗ r


Re {τ}
Im {τ}

 ,
(2.42)

Sp[τ ](zx) = − 1

2π

Im
{
IC

[
·
νy

]}
Re

{
IC

[
·
νy

]}
 ·

Re {τ}
Im {τ}

 , (2.43)

Dp[τ ](zx) =
µ

π

Im {IH [ · ]}

Re {IH [ · ]}

 ·

Re {τ}
Im {τ}

 . (2.44)
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Note that the representation in Equation (2.42) involves a supersingular contour

integral.

2.2.4 Categorization of quadrature evaluations

The three options available for layer potential evaluation are (1) kernel-split

quadrature on fine grid panels Γfin, (2) kernel-split quadrature on coarse grid panels

Γcoa, and (3) standard composite Gauss-Legendre quadrature on the coarse grid

Γcoa. We maximize efficiency while maintaining accuracy by choosing the quadrature

type based on both the distance of the target point zt from the interface Γ as

well as its separation from a boundary transition point s. When the target point

is close to s, the largest contribution to the layer potentials comes from source

points near s where the Green’s function has a maximum. Since layer densities

have complicated (nonpolynomial-like) asymptotics near boundary transition points

which require refined meshes to resolve, we use quadrature option (1) for this case.

More precisely, if d(zt,Γ)/Lfin < 3.0 where Lfin is the length of the panel on Γfin

closest to zt and d(·, ·) is the minimum distance function, then zt is grouped in the

first category. If the above condition is false but d(zt,Γ)/Lcoa < 0.6 where Lcoa is the

length of the coarse panel on Γcoa that is closest to zt, then zt is placed in the second

category. The remaining points are put into the third category for evaluation with

standard composite Gauss-Legendre quadrature on the coarse grid. We determine

the thresholds of 0.6 and 3.0 that are used in the above conditions via numerical

experiments in representative geometries.

2.2.5 The Stokes Fast Multipole Method (FMM)

The solution of the linear system (2.23) using GMRES as well as evaluation of

velocities, pressure, and traction forces in Ω involve matrix-vector products in which

the matrices are composed of the discretized kernels of the Stokes layer potentials
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and associated quadrature weights. A naive implementation of these matrix-vector

products would give a complexity of O(N2
coa) for layer potential evaluations on Γ

and O(nitN
2
coa) to solve the linear system (2.23), where nit is the number of GMRES

iterations and we recall that Ncoa is the number of gridpoints in the discretization

of Γ in the coarsest grid level. We note that the use of refined grids in the RCIP

computation at target points that are close to a corner or boundary transition point

involve an inappreciable operation count and does not affect the overall complexity of

the algorithm. Similarly, the complexity of the area evaluation of velocities, pressure,

and traction forces in Ω at Mt target points scales quadratically as O(MtNcoa). One

additional difficulty is that the size of the matrix in the linear system for solving

(2.23) increases as the number of discretized Gauss-Legendre nodes on the boundary

grows. Indeed, the memory allocation for constructing the matrix could exceed a

typical laptop computer’s capacity in some large-scale problems.

We significantly reduce the complexity of layer potential evaluations on Γ to

linear scaling O(Ncoa) (so that the GMRES solve takes O(nitNcoa) operations) and

evaluations of velocities, etc. in Ω to O(Mt +Ncoa) by incorporating a Stokes FMM.

The use of the Stokes FMM combined with GMRES also helps reduce memory

requirements and avoids out-of-memory issues. We use the Fortran library FMM2D

written by Leslie Greengard and Manas Rachh, which is specifically tailored to 2D

geometries.

2.2.6 Superhydrophobic flow

The discussion up to now has concentrated on the boundary value problem for mixed

Dirichlet-Neumann data. We now consider the more complicated boundary conditions

for SH flow.

Theoretical and numerical studies of liquid flow about superhydrophobic

surfaces tend to concentrate on two geometries. These are (1) externally imposed
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shear flow over a single SH surface, as depicted in Figure 2.11, and (2) pressure

driven flow within a superhydrophobic channel, illustrated in Figures 2.12 and 2.13.

The SH boundary is modeled as a microstructured surface that is patterned with a

collection of grooves or air pockets, such that when a fluid of viscosity µ flows over

it, a stable Cassie state is attained in which a gas bubble is trapped in each groove.

The SH boundary therefore consists of an alternating array of liquid-gas interfaces

(bubbles) and liquid-solid interfaces (solid ridges which separate the bubbles). The

gas bubble is taken to be a passive fluid with a spatially constant pressure, and hence

in the absence of surface contaminants the gas-liquid meniscus is shear-stress free.

A common assumption in studies of SH flow is that the capillary number is

small, Ca = µU/σ ≪ 1. Here U is a characteristic flow velocity and σ is the surface

tension coefficient. The smallness of the capillary number implies that the bubble

or groove meniscus is essentially a static circular cap with constant curvature κ. We

shall employ this constant curvature assumption in our model, which replaces the

usual normal stress boiudnary condition at the bubble interface.

Denote the collection of liquid-gas interfaces by ΓC , no-slip solid and other

boundaries in which a velocity Dirichlet condition is imposed by ΓD, and surfaces in

which a pressure boundary condition is given by ΓP . The governing equations for our

model consist of the incompressible Stokes equations (2.1) in Ω, along with boundary

conditions

u · n = 0, t · σn = 0 on ΓC , (2.45)

u = g(x) on ΓD, (2.46)

p = h(x) on ΓP , (2.47)

where t and n are the surface tangent and normal (directed outward from the fluid

domain), respectively. The first equation is a composite or hybrid Dirichlet-Neumann

condition that enforces zero normal velocity and shear stress at the meniscus. The
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second equation is a Dirichlet condition which represents the no-slip condition u = 0

on solid interfaces and prescribed velocity on some surfaces of the outer (enclosing)

boundary. The third equation represents a pressure condition which is prescribed

on inlets/outlets in pressure driven flow within a superhydrophobic channel. The

discussion below concentrates on the case in which there are liquid-gas interfaces Γc

and boundaries ΓD with a prescribed velocity. Modifications for pressure pressure

driven flow are straight forward.

We employ a linear combination of the single- and double-layer potentials

SΓC
and DΓC

to represent the fluid velocity perturbations in Ω that are induced

by the presence of the boundary ΓC , where the composite boundary condition is

enforced. We use the traction single- and double-layer potential D′
ΓC

and S′
ΓC

to

represent the force pertubations induced by ΓC . The layer potential representations

associated with the Dirichlet boundary condition on ΓD are given by Equations

(2.3) and (2.4). Combining these representations, we obtain the following layer

potential characterization of the velocity and traction generated by the presence of

the boundaries in our superhydrophobic flow problem:

u(x) = DΓD
[ρ](x) + SΓC

[ρ](x) +DΓC
[ρ](x), (2.48)

f(x) = D′
ΓD

[ρ](x) + S′
ΓC

[ρ](x) +D′
ΓC

[ρ](x), (2.49)

for x ∈ Ω. Compared with the previous formulation (Equations (2.3) and (2.4))

for the mixed Dirichlet-Neumann boundary value problem, there is an additional

DΓC
[ρ](x) and D′

ΓC
[ρ](x) to account for the composite boundary condition on ΓC .

Jump conditions for the Dirichlet boundary condition on ΓD induce the standard

vector BIEs

−1

2
ρ(x) +DΓD

[ρ](x) + SΓC
[ρ](x) +DΓC

[ρ](x) = u x ∈ ΓD. (2.50)
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On the other hand, we obtain two modified scalar BIEs for the jump conditions on

ΓC

nx ·
(
−1

2
ρ(x) +DΓD

[ρ](x) + SΓC
[ρ](x) +DΓC

[ρ](x)

)
= 0 x ∈ ΓC, (2.51)

tx ·
(
1

2
ρ(x) +D′

ΓD
[ρ](x) + S′

ΓC
[ρ](x) +D′

ΓC
[ρ](x)

)
= 0 x ∈ ΓC, (2.52)

where nx and tx are the outward normal and tangential unit vectors at x, respectively.

As it stands, the two scalar BIEs (2.51) and (2.52) are not in a form that

is consistent with the RCIP method, which requires discretization of the Equation

(2.19), that is, consisting of the sum of an identity operator and a discrete integral

operator. Thus, we must convert our boundary value problem into one of the proper

form. This is done by multiplying the scalar equations (2.51) and (2.52) by the

vectors −2nx and 2tx, respectively, then adding. It is easily verified that this gives

an equation of the required type. Next, letM = (Mi,j)i,j∈{1,2} andM ′ = (M ′
i,j)i,j∈{1,2}

be block matrices obtained by discretizing two integral operators

−2 (DΓD
+DΓC

+ SΓC
) (2.53)

and

2
(
D′

ΓD
+D′

ΓC
+ S′

ΓC

)
, (2.54)

respectively. Also, let Λn1 = diag(nx1) and Λn2 = diag(nx2) be diagonal matrices

where nx1 and nx2 are the first and second components of nx, respectively; and let

Λt1 = diag(tx1) and Λt2 = diag(tx2) be another set of diagonal matrices defined using

the unit tangent vector. Then, construct the discrete matrix operators K1 and K ′
1
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as

K1 =

 Λ2
n1M11 Λ2

n1M12

Λn1Λ
n2M11 Λn1Λn2M12

+

Λn1Λn2M21 Λn1Λn2M22

Λ2
n2M21 Λn1Λn2M12

 , (2.55)

K ′
1 =

 Λ2
t1M

′
11 Λ2

t1M
′
12

Λt1Λt2M
′
11 Λt1Λt2M

′
12

+

Λt1Λt2M
′
21 Λt1Λt2M

′
22

Λ2
t2M

′
21 Λt1Λt2M

′
12

 . (2.56)

It is shown in appendix A.3 that the linear system corresponding to Equations (2.51)

and (2.52) can be discretized as

(I +K1 +K ′
1)ρ1 = 0 (2.57)

which is the desired form that is compatible with the RCIP method.

2.2.7 Computation of effective and intrinsic slip length

Computing the effective slip length is an important subject as a practical application

to fluid dynamics simulations. The effective slip length denoted by λ hereafter is

defined as the distance underneath the bottom where the extrapolated horizontal

velocity becomes zero. Some SH flow problems with mixed boundary conditions are

discussed and the exact solutions are given as the stream function in Philip [68].

Recent studies of analytical and numerical methods to compute λ can be seen in

some literature such as Davis and Lauga [22] and Teo and Khoo [77]. The mixed

boundary conditions imposed on meniscus interfaces can be interpreted as composite

boundary conditions described in the previous section. We present some methods to

numerically compute λ for problems that have been discussed in preexisting literature

and one with a slightly different setting.

Shear flow over a plate with meniscus interfaces Here, we focus on the

problem in section 11 of Philip [68]. In the original problem, shear flow passes through

in the horizontal direction over entirely flat and periodic compositions of solid plates
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and meniscus interfaces at the bottom. Rigorously, the domain of the original problem

is semi-infinite because the upper side is open. We close the open upper side of the

domain at a finite positive height H with the horizontal line segment far enough from

the bottom to obtain the finite computational domain. Since the problem is periodic

we also restrict the computational domain to one period or a finite number of periods

in the horizontal direction shown as Figure 2.11.

λ

liquid

no-slipno-shear

Figure 2.11 Superhydrophobic flow over periodic plates and menisci in the same
situation as section 11 in Philip [68] except for the artificial ceiling.

Assuming H is large enough, λ in the domain satisfies the equation of the

velocity u = (u1, u2)

u = (u1, u2) ≃ (γ̇(x2 + λ), 0) (2.58)

which implies that γ̇ ≃ ∂u1

∂x2
, ∂u1

∂x1
≃ 0, and u2 ≃ 0. Then we apply the above

approximation (2.58) to the stress tensor σ = (σij)1≤i,j≤2 = −Pδij + µ
(

∂ui

∂xj
+

∂uj

∂xi

)
on the ceiling.

σ ≃

−P ∂u1

∂x2

µ∂u1

∂x2
−P

 . (2.59)
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Thus, noting the unit normal vector on the ceiling is n = (0, 1), the surface force is

f =

f1
f2

 = σn ≃

µ∂u1

∂x2

−P

 . (2.60)

∴
∂u1
∂x2

≃ 1

µ
f1. (2.61)

Since γ̇ is not necessarily constant in the restricted finite domain in general, we

compute an approximated γ̇ as the averaged value over one horizontal period L

γ̇ ≃ 1

L

[∫ L

x=0

∂u1
∂x2

(x,H)dx

]
=

1

µL

∫ L

x=0

f1(x,H)dx. (2.62)

f1 can be numerically computed with the BIE method and the above approximation

leads to

λ ≃ µLu1∫ L

x=0
f1(x,H)dx

−H (2.63)

The imposed boundary conditions on the ceiling and the vertical sides can be Dirichlet

condition since the exact solution is available as derived in Philip [68]. As for the

boundary conditions at the bottom, Dirichlet condition on the flat plates and the

composite conditions on meniscus interfaces are imposed. The method with the

approximation above to compute λ is validated in the numerical example in the later

section.

Poiseuile channel flow Here we introduce another approach to compute λ for

problems with genuinely bounded domains in the vertical direction. The problems

discussed here can be regarded as flow through some channel structure. The structure

of periodic plates and meniscus interfaces can be placed not only at the bottom but

also on the top boundary here. In the case of the flat structure on the ceiling,

the boundary condition is Dirichlet with zero velocity (Figure 2.12). If we set

the symmetric structure on the ceiling and the bottom, the composite boundary
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conditions are imposed on both parts (Figure 2.13). Also, we impose another

combination of composite boundary conditions on both vertical sides: zero velocity

in the vertical direction and pressure.

λ

liquid

gas no-slip

no-shear

Figure 2.12 Superhydrophobic flow over periodic plates and menisci with 90
degrees of protrusion angles. The protrusion angle is defined as the angle between
the meniscus tangent and horizontal line.

Since the computational domain is bounded, we use another formulation on λ

defined at the bottom

u1 = γ̇λ =
∂u1
∂x2

λ (2.64)

whereas the previous approximation (2.58) is valid at large enough height x2 for the

semi-infinite domain.

Here we take another approach compared with the previous problem. We

determine λ of Poiseuile channel flow with the numerical results of the boundary value

problems discussed above. In the case of a flat ceiling, u1(H) = 0, and assuming the

velocity can be written in the following form

u1(x2) =
1

2
Ax22 +Bx2 + C (2.65)
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where A, B, and C are some constants eliminated or determined below. The boundary

conditions are

u(H) =
1

2
AH2 +BH + C = 0, (2.66)

u(0) = C = λ
∂u1
∂x2

. (2.67)

Noting ∂u1

∂x2
(x2) = Ax2 + B, we eliminate B = − AH2

2(λ+H)
and C = λB and u1(x2) and

rewrite u1(x2) only with A, H, and λ as follows:

A

2

(
x22 −H2x2 + λ

H + λ

)
. (2.68)

A direct calculation of the flux F :=
∫ H

0
u1(x2)dx2 leads to

F = −AH
3(H + 4λ)

12(H + λ)
⇔ λ = −H(AH3 − 12F )

4(AH3 + 3F )
. (2.69)

λ can be numerically determined by computing F with the BIE method and composite

boundary conditions imposed.

In case we set the plates and meniscus boundary on the ceiling the same way as

the bottom, we can derive a similar formula for λ taking the symmetry in the vertical

direction into account.

λ

liquid

gas no-slip

no-shear

Figure 2.13 Superhydrophobic flow through a symmetric channel composed of
periodic plates and menisci with 90 degrees of protrusion angles.
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2.3 Numerical Examples

In this section, we demonstrate the performance of the numerical method with some

numerical experiments. The code implementation is in MATLAB release 2020a, and

the Stokes FMM library developed in Fortran by Leslie Greengard and Manas Rachh

is also used via MEX API. We carried out the numerical experiments on a 64-bit

laptop with 3 GHz dual-core Intel Core i7 and the memory size is 16 GB. The OS of

the laptop is MacOS Catalina (Version 10.15.7).

The following parameters are commonly used in the numerical experiments

unless mentioned otherwise. The viscosity is taken as µ = 1, the deepest level of

refinement for the RCIP method is nsub = 40, and the residual threshold to stop

GMRES iterations eps = 2.2204e-16 set by MATLAB.

2.3.1 Validation

We first illustrate the accuracy of our numerical method in evaluating the velocities,

forces (cf. Equation (2.4)), and pressure for interior flow with mixed boundary

conditions in three types of domains: a smooth star-shaped domain, a rectangular

domain, and an arch-shaped domain.

The boundary of the star-shaped domain contains two boundary transition

points, at locations shown in Figure 2.2. Dirichlet boundary condition on the dashed

line on the lower left part and Neumann condition on the remaining part. The

rectangular domain contains four corners and alternating boundary conditions, i.e.,

Dirichlet condition on the top and bottom, and Neumann condition on the left and

right sides. The arch-shaped domain contains two boundary transition points at two

bottom corners, and we impose a Dirichlet boundary condition on the bottom and

Neumann condition on the remaining arch-shaped curve. The computational domains

of these examples are shown in Figure 2.2.
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Quantities (e.g., velocity) are evaluated at interior target points on a lattice of

300×300 equispaced points. To generate flow, we put 20, 000 point forces outside the

boundary to generate artificial (i.e., synthetic) boundary data. The exact solution

inside a given domain and the boundary data are available via exact formulas for

the velocity, pressure, and stress induced by stokeslet or stresslet point forces. We

apply our numerical method to compute the desired quantities inside the domain

from the boundary data, and compare the results with the exact solutions. The force

f = σn is evaluated using Equation (2.4) with the direction of the normal vector n

at the target chosen randomly. The pointwise absolute errors of velocities, forces, and

pressure are plotted in Figures 2.14, 2.15, and 2.16. Evaluations at 23, 814 interior

target points for the star-shape case are categorized as follows: close-evaluations

with the refined density ρfin are activated at 115 points, close-evaluations without

the refined density at 1, 360 points, and normal evaluations at the rest of 22, 339

points. The boundary is discretized Ncoa = 3, 840 points, and is surrounded by a

square lattice with its both height and width equal to 3.5. The minimum distance

between the evaluation points inside and the boundary is 5.208e-04. In the case of

the rectangular boundary, evaluations at 29, 651 interior target points in total are

categorized as follows: close-evaluations with the refined density are activated at

267 points, close-evaluations without the refined density at 1, 600 points, and normal

evaluations at the rest of 27, 794 points. The boundary is discretized Ncoa = 2, 880

points, and is surrounded by a square lattice with its height 2 and width 3. The

minimum distance between the evaluation points inside and the boundary is 3.67e-03.

In the case of the arch boundary, evaluations at 14, 164 interior target points in total

are categorized as follows: close-evaluations with the refined density are activated at

69 points, close-evaluations without the refined density at 624 points, and normal

evaluations at the rest of 13, 471 points. The method in this work achieves at least

9-10 digits of accuracy for all evaluations of velocities, surface forces, and pressure.
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The boundary is discretized Ncoa = 3, 168 points, and is surrounded by a square

lattice with its both height and width equal to 2. The minimum distance between

the evaluation points inside and the boundary is 3.465e-04.
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Figure 2.14 Pointwise error of computed velocity field inside of a smooth
star-shape, a rectangular domain, and an arch-shaped domain.
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Figure 2.15 Pointwise error of computed force field inside of a smooth star-shape,
a rectangular domain, and an arch-shaped domain.
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Figure 2.16 Pointwise error of computed pressure field inside of a smooth
star-shape, a rectangular domain, and an arch-shaped domain.
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2.3.2 Computational cost

Here we focus on CPU-time cost because the memory limit is not a dominant issue. In

particular, we discuss the space complexity of our method. Incorporating the Stokes

FMM, the dominant computational cost includes

1. O(nitNcoa) for GMRES iterations,

2. O(Ncoa +Mt) for evaluations over Ω,

where Ncoa is the number of discretized points on the boundary, nit is the number

of GMRES iterations, and Mt is the number of target points in the interior. The

cost of the RCIP method is negligible as discussed in Remark (2.2.2). The cost of

applying kernel-split quadrature and the interpolation method is also negligible since

the number of evaluations to which these methods are applied is a small part of

the total evaluations. The elapsed wall-clock time is measured using ‘tic’ and ‘toc’

built-in MATLAB functions. In the first example of the star-shaped boundary with

Ncoa = 3, 840, the GMRES converged with 45 iterations and took 4.12 seconds, and

the Mt = 23, 814 evaluations of velocity, forces, and pressure took 10.7 seconds. In

the second example of the rectangular boundary with Ncoa = 2, 880, the GMRES

converged with 32 iterations and took 2.89 seconds, and the Mt = 29, 651 evaluations

of velocity, forces, and pressure took 20.13 seconds. In the third example of the

arch-shaped boundary with Ncoa = 3, 168, the GMRES converged with 30 iterations

and took 2.78 seconds, and the Mt = 29, 651 evaluations of velocity, forces, and

pressure took 6.43 seconds.

2.3.3 Applications to SH flow

The numerical examples in this section are associated with Section 2.2.6; the boundary

conditions include the composite conditions due to the boundary being made up

of solid surfaces alternating with bubble or groove menisci. First, we validate by

comparing with the exact solutions of Philip [68].
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We consider transverse shear flow over a plate containing a no-shear slot with

width 2a, for which an exact analytical solution is derived in section 10 of [68]. The

mixed conditions on the plate x2 = 0 are ∂u1

∂x2
= u2 = 0 for |x1| < a (zero shear stress),

and u1 = u2 = 0 for |x1| > a (no-slip). We use a complex variable z = 1
a
(x1 + ix2)

to describe the solution where (x1, x2) is the position in the original two-dimensional

space. The exact solution for the stream function is given in [68]:

ψ = ϕ1 + a2τ∞Φ2/µ (2.70)

where ϕ1 =
1
2
τ∞x

2
2/µ and Φ2 =

1
4
Re

{
(z − z)

(
(z2 − 1)1/2 − z

)}
with given parameters

τ∞ (the constant shear stress as x2 → ∞) and µ. Physical quantities such as velocities

are derived from the stream function taking partial derivatives with respect to real

variables, following the method of Klinteberg et al. [51]. The computed and analytical

solutions are shown in Figures 2.17 and 2.18. Comparison of these two solutions show

that we obtain 11-digit accuracy of the velocity evaluations.

Figure 2.17 Velocities u = (u1, u2). (a): exact solution of u1 from [68],
(b): exact solution of u2, (c): numerical solution of u1, (d): numerical solution of u2.
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Figure 2.18 Pointwise absolute error in velocity for a = 1 in Figure 2.17.

Next, we consider transverse shear flow over a plate with a regular periodic

arrangement of no-shear slots, as discussed in section 11 of Philip [68]. All the slots

have the same width 2a centered at multiples of 2b (a < b). The exact solution of the

stream function is given as [68]:

ψ = ϕ1 + a2τ∞Φ3/µ (2.71)

where ϕ1 = 1
2
τ∞x

2
2/µ and Φ3 = 1

4
Re

{
(z − z)

(
1
α
arccos cos(αz)

cosα
− z

)}
with given

parameters τ∞ and µ. The parameter α is defined by α = π
2
a
b
.

We show three numerical examples related to this problem. First, we compute

the velocity field in the case of b/a = 4. Second, we change the parameters a and b to

make each solid plate narrower (equivalently each slot wider) to a : b = 99 : 100. This

corresponds to small solid fraction. Finally, we increase the number of slots to 101

with the same parameters b/a = 4. Figure 2.19 shows the x1 and x2 component of the

exact solution (top) and the computational results from our BIE method (bottom).

We find 11-digit accuracy is achieved for the velocity evaluations in Figure 2.20.
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Figure 2.19 Velocities u = (u1, u2) with three slots. (a): exact solution of u1,
(b): exact solution of u2, (c): numerical solution of u1, (d): numerical solution of u2.
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Figure 2.20 Pointwise absolute error with three slots in Figure 2.19.

The following two figures show the results with a : b = 99 : 100 so that the solid

plates become wider and the slots narrower. This corresponds to small solid fraction,

which is a particularly challenging case for numerical simulation, since the distance

between each pair of adjacent singular points is small. The numerical results, however,

show our method achieves 13-digit accuracy in the velocity as shown in Figure 2.22.
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Figure 2.21 Velocities u = (u1, u2) for small solid fraction a : b = 99 : 100.
(a): exact solution of u1, (b): exact solution of u2, (c): numerical solution of u1,
(d): numerical solution of u2.
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Figure 2.22 Pointwise absolute error for the parameter values in Figure 2.21.

In the third example, the number of slots is increased to 101 with the other

parameters the same as in Figure 2.19. Since we consider a regular array of slots with

periodic boundary conditions, the solution is the same as Figure 2.19. However, we

now place 101 slots in our one root periodic box, to show that the method is capable

of computing the solution to high accuracy over a very large number of solid-groove
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cells. We have chosen 10−11 for the GMRES tolerance to speed up the computation.

The result in Figure 2.27 shows 10-digit accuracy.
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Figure 2.23 u1 of exact velocities with 101 slots.
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Figure 2.24 u1 of simulated velocities with 101 slots.

-400 -300 -200 -100 0 100 200 300 400

0

1

2

3

4

5

6

-0.1

-0.05

0

0.05

0.1

Figure 2.25 u2 of exact velocities with 101 slots.
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Figure 2.26 u2 of simulated velocities with 101 slots.
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Figure 2.27 Pointwise numerical error in velocities with 101 slots.

2.3.4 Effective slip length computations

So far, we have shown the numerical results from computing velocity fields, forces,

and pressure for problems with various boundary conditions and geometries. We now

show our numerical results for the intrinsic and effective slip length λ (cf. Section

2.2.7).

First, we compare the numerically computed λ with the exact value derived in

[68]. This example involves a periodic geometry with a flat interface, i.e., the bubble

menisci are undeformed. The coarse-grained quantity λ is the intrinsic slip length,

defined in Equation (2.58) and computed as described in Section 2.2.7. The result of

our method agrees with the exact solution as shown in Figure 2.28.
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Figure 2.28 Numerical results of normalized effective slip length λ/(δe) compared
with the exact value from Philip [68]. Here δ := e/E where e is the slot width and
E is the length of one period. The slip length is made dimensionless by e and scaled
by the slot fraction δ. The height of the computational domain is set to 8E.

Next, we show the behavior of λ in the case of deformed menisci with nonzero

protrusion angles. For this test we consider pressure driven flow in a channel, for

which λ is the effective slip length. This is defined as the value of λ at which a

comparison channel with uniform slip u1 = λ∂u1

∂x2
on the SH wall has equivalent flux

F :=
∫ H

0
u1(x2)dx2, for the same pressure forcing. This quantity is computed in two

different geometries. One is for pressure driven flow with one SH bottom wall and one

entirely solid (top) wall. We refer to this as ‘one-sided’ SH channel flow. The second

geometry involves a channel with two SH walls. This is called ‘symmetric’ SH channel

flow. The computation of λ in both cases in discussed in Section 2.2.7. Schematics

of the flow geometries are shown in Figures 2.12 and 2.13. The pressure boundary

conditions are an imposed unit pressure pressure jump between the left inlet and

right outlet, and no vertical velocity (u2 = 0) on the inlet/outlet boundaries. Exact

solutions to the problems are unavailable because the protrusion angles are nonzero.
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Thus, we can only give a qualitative comparison with preexisting computations of λ

in periodic geometries. The numerical results for λ with our method are shown in

Figure 2.29 for one period and Figure 2.30 for 21 periods. Both results show the same

qualitative behavior to the ones shown in preexisting literature. Note the two results

in Figures 2.29 and 2.30 look similar (they differ by less than 10−3 relatively). This is

to be expected, since in Figure 2.30 we take a uniform array of slot menisci, for which

the average slip per cell is similar to the one cell slip in Figure 2.29. Our method

is able to compute for a large number of cells with irregular spacing and protrusion

angles. In future work, we can explore the effect of cell geometry on λ. Figures 2.31

and 2.32 show the computed velocity field in the interior domain for the two different

geometries, incorporating 21 solid-groove cells and meniscus angle of 15 degrees.
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Figure 2.29 Numerical results of non-dimensionalized λ/(δe) in the case of one
meniscus with protrusion angles between −90 and 90 degrees. In a similar manner
to Figure 2.28, we use the same notation as Figure 3 in Teo and Khoo [77]; e and E
are defined as the length of one meniscus and the length of one period, and
δ := e/E is the slot fraction. In the numerical results, we set e to 2 and E to 4. The
hight of the computational domain is set to 8E = 64.
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Figure 2.30 Numerical results of effective slip length in the case of np := 21
menisci with protrusion angles between −90 and 90 degrees. e and E are defined as
the length of one meniscus and the length of one period, Etot is the total length of
np periods, and δ := (npe)/(Etot) is the slot fraction. In the numerical results, we set
e to 2, E to 4, and Etot to npE = 84. The hight of the computational domain is set
to 8E = 64.

Figure 2.31 Plots of the velocity field in the case of 21 menisci in a one-sided SH
channel and protrusion angles of 15 degrees.
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Figure 2.32 Plots of the velocity field in the case of 21 menisci in a symmetric SH
channel and protrusion angles of 15 degrees.
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CHAPTER 3

SCATTERING MATRIX FORMULATION FOR INTEGRATED

PHOTONICS

3.1 Background

We now turn our attention to computational electromagnetics and its applications

to integrated photonics. As is well known, transmission of information by electric

interconnects is limited in latency by power concerns and in bandwidth by the

amount of resources (e.g. parallel wires) devoted to port. In addition, long-range

electric interconnects are subject to substantial losses. On the other hand, electric

interconnects are easy to design, and substantial automation for the design of such

circuits is available. Photonic interconnects, by contrast, are virtually unconstrained

in bandwidth and offer minimal latency, but they pose far greater design challenges,

for which to date little design automation is available. As the miniaturization of

electronic devices progresses, the disadvantages of electric interconnects are being

felt acutely, and photonic circuits are becoming economically viable in many everyday

applications.

As a result, the photonic industry is growing rapidly. Compared with the

integrated electronic circuits industry, the integrated optical circuits industry is still

in its infancy. Indeed, for the electronic circuits industry, Moore’s law has mostly

reached the limit of its validity, and a single integrated electronic circuit (IC) chip

may contain billions of transistors and other electronic components, while the current

state-of-art integrated optical circuits chip contains photonic components such as

various waveguides, couplers and arrayed waveguide gratings only on the order of

one hundred. One major cause of this substantial difference is the lack of reliable

tools for the design of integrated optical circuits. Existing numerical methods face
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difficulties in obtaining satisfactory resolutions solving boundary value problems of

three-dimensional Maxwell’s equations as the fundamentally governing equations for

photonics. Thus, an efficient and accurate simulation tool for photonics is in urgent

need.

In this chapter, we study in detail the scattering matrix formulation for

waveguide structures whose mathematical model is the interior Dirichlet Helmholtz

problem in two dimensions. Admittedly, this is a much simplified model than

Maxwell’s equations in dielectric layered media in three dimensions. However,

the model problem retains all critical building blocks: the mode calculation, the

calculation of the scattering matrix of a single component, and the merging of

the modularized scattering matrices. Therefore, our study provides useful insights

towards our target application. Computationally, we rely again on the boundary

integral equation formulation for dimension reduction, fast multipole methods for

linear complexity, the RCIP method for point singularities, and the high-order

kernel-split quadrature for accurate evaluation of singular and nearly singular layer

potentials.

3.1.1 Existing numerical methods

We provide a brief review of widely used existing numerical methods for photonics

simulation, concentrating on the difficulties those methods encounter. Okamoto [66]

is an overview reference. One common issue among the existing methods is that those

methods need unrealistically large-scale discretizations due to the following reason.

The wavelength of the incident optical wave in typical devices is usually on the order

of micrometers, while the sizes of devices themselves are of millimeters in at least two

dimensions. Hence, the size of the entire simulation domain for a single device can

be approximately 1, 000× 1, 000× 10 in terms of incident wavelength.
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Finite element method. The finite element method (FEM) is one of the standard

methods for mainly mode calculation of waveguides (Brenner and Scott [14], Itoh

et al. [47], Koshiba [53], Yamashita [81], Yeh et al. [85], Young [89], Zienkiewicz

[91]). The FEM has the following disadvantages to integrated photonics simulations.

Initially, discretization of the entire computational volume domain becomes extremely

large scale, resulting in significant space complexity. Also, applying the FEM to

large-scale problems tends to suffer from poor conditioning, which requires extra

effort of preconditioning or using a direct solver method. Practically, the FEM is

mostly applied to mode calculations of waveguides with small uniform cross-sections

due to the limitation above.

Beam propagation method. Another widely-used type of method is the beam

propagation method (Antoine et al. [2], Antoine et al. [3], Bamberger et al. [5],

Fan et al. [27], Kragl [54], Kumbhakar [56], Jinbiao et al. [87]). Beam propagation

method uses a simplified model for solving the Helmholtz equations by simplifications

of Maxwell’s equations. The propagating waves are assumed to be highly oscillating

plane waves. Also, the refraction index contrast between the cladding and the core

in the waveguide is assumed to be small, which can be a limitation of this type of

method. The computational domain has to be large rectangular so that the waves

fade away at infinity, which leads to the extreme large volume discretization.

Finite difference time domain method. The finite difference time domain

(FDTD) method belongs to finite difference based methods (Yee [84], Mur [64],

Higdon [45], Berenger [8]). The FDTD directly solves Maxwell’s equations with

respect to both space and time variables. This type of method also requires

significantly large-scale discretization for the whole computational domain. In

addition, some artificial boundary conditions called absorbing boundary conditions

are imposed at the edge of the computational domain to avoid undesirable reflections.
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Overall, the existing methods mentioned above encounter difficulties in discretizing

the entire computational domain and often need to add some artificial assumptions

to carry out numerical simulations even for obtaining minimum resolution of the

simulation.

3.1.2 BIE methods and fast algorithms

The proposed method in this dissertation is based on the boundary integral equation

(BIE) methods to resolve the most serious common issue of large-scale volume

discretization with the existing methods collected above. In short, the BIE methods

are a type of methods that utilizes layer potential representations for the associated

partial differential equations (PDEs). Layer potentials are integral operators acting

on some unknown density which needs to be determined with by solving the linear

system derived from the discretized BIE. Since the density is defined on the boundary,

we only need to discretize the boundary, via the surface integral in R3 or the line

integral in R2. Once we determine the unknown density values, we again apply the

discretized layer potentials acting on the density to evaluate the solution, its gradient,

or Hessian, etc. Being able to focusing only on the boundary helps us avoid the entire

volume discretization of the computational domain, reducing the dimension of the

discretization by one.

The BIE methods have been extensively applied to numerical solvers for elliptic

partial differential equations because of the ability to deal with complex geometry

(Banerjee [6], Boriskina et al. [12], Biros et al. [9]), and owing to the compatibility

with fast algorithms such as the fast multipole method (FMM) (Greengard and

Rokhlin [35], Ying et al. [86], Greengard et al. [33], Rachh et al. [26], Ruqi et

al. [67]), uniform/non-uniform Fast Fourier Transform (FFT) (Cooley and Tukey

[19], Dutt and Rokhlin [23], Barnett et al. [7], Greengard and Lee [32], Ruiz-Antolin

and Townsend [75]), and modern linear system solvers such as GMRES (Saad and
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Schultz [76]) and fast direct solvers (Bremer [13], Ho and Greengard [46], Gillman et

al. [28], Greengard et al. [31], Kong et al. [52], Martinsson and Rokhlin [62, 63],

Martinsson [61]). We also would like to mention that the recent study to obtain

high resolutions dealing with the singularities due to the intrinsic property of layer

potentials in both R2 and R3. Selective work includes the RCIP method (Helsing and

Ojala [42], Helsing [36]), kernel-split quadratures (Helsing [37], Helsing and Holst [38],

Helsing and Jiang [39]), and other approaches (Wu et al. [80], Zhu and Veerapaneni

[90] and Greengard et al. [33]). The above citations are a handful of representative

or closely related existing work among a vast literature on BIE methods coupled with

fast algorithms. In this dissertation, we incorporate some of the methods to be able

to modularize the entire large-scale computations efficiently.

3.2 Mathematical Formulations

3.2.1 Notation and nomenclature

In a similar manner to the previous chapter, the common notation used in this chapter

is as follows. We denote the computational domain of interest by Ω in R2, and the

boundary by Γ := ∂Ω. In the subsequent sections, we will define the two-dimensional

Helmholtz Green’s function denoted by G(x,y) and associated boundary integral

kernels in the form K(x,y), where x = (x1, x2) and y = (y1, y2) are referred to as the

target point and source point, respectively. We also use r := x− y and r := |r|. If a

target and source point are on Γ, nx and ny are defined as the unit normal vectors

pointing outward at x and y, respectively. Again in a slight abuse of notation, we use

the same boldface letter to denote an integral operator, its kernel, and the associated

matrix after discretization, as long as the meaning is clear from context.

We also use complex variables as equivalent notation, especially for kernel-split

quadratures, as the target point zx := x1 + ix2, source point zy := y1 + iy2, z :=

(y1−x1)+i(y2−x2) (equivalent to−r = −(x−y)), unit normal vector νx := nx,1+inx,2
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at zx, unit normal vector νy := ny,1+ iny,2 at zy, The conjugation of z ∈ C is denoted

by z.

3.2.2 A model problem

An open waveguide component is often considered as a natural model problem for the

research investigation into integrated photonics (Epstein [25], Bonnet-Bendhia et al.

[11, 10], and Chandler-wilde et al. [15]). The domain of such an open waveguide is

semi-infinite, i.e., the waveguide path of the propagation modes is stretched infinitely

in x1 direction, and the bounded in x2 direction in x = (x1, x2) ∈ R2. This means

that the input/output channels extend all the way to infinity. The waveguide is

assumed to be dielectric in the existing work mentioned above. An image example

we frequently use in the following discussion is shown in Figure 3.1.

uincl

uscl

uscr

uincrO
x1

x2

Figure 3.1 A two-dimensional semi-infinite waveguide with propagation modes
along x1 direction. The waveguide has two channels (interfaces) with different
thicknesses. uincl and uincr indicate the incident waves, and uscl and uscr indicate the
scattered waves on two sides, respectively.

Here, we study a somewhat simpler model. That is, the waves satisfy

the Helmholtz equation inside the waveguide and zero Dirichlet condition on the

waveguide boundary:

∆u(x) + k2u(x) = 0, x ∈ Ω

u(x) = 0, x ∈ ∂Ω.

(3.1)

3.2.3 General numerical procedure

We outline the numerical procedure of constructing scattering matrices for a large

waveguide structure. First, we study the decomposition of the waves inside the
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waveguide structure. We have shown that the waves can be decomposed into two

parts: a set of propagating modes and evanescent waves that decay exponentially

fast along the propagating directions. This enables us to modify the original problem

as follows. Instead of trying to solve the original problem on an infinite domain,

we solve the Helmholtz Dirichlet problem in a closed bounded domain by placing,

say, vertical line segments at both ends as shown Figure 3.2. The field satisfies zero

Dirichlet condition on the original boundary of the waveguide and some artificial

nonzero data on those artificially introduced vertical line segments. By a clever set of

linear algebraic operations, we show that one can compute the scattering matrix of

the original infinite waveguide structure to high accuracy. The critical fact that we

rely on is, of course, the exponential decay of the evanescent waves. We will quantify

this in section 3.2.4.
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L Rl r

Figure 3.2 A simplified waveguide model of perfect conductor with bounded closed
boundary.

3.2.4 Propagating modes

Before we introduce our definition and application of the scattering matrix to our

problem, we would like to discuss the propagation modes denoted by (βm)
M
m=1 whose

existence depends on the structure of a given waveguide. Given the information of a

waveguide such as the geometric structure and composed materials, to determine how

many propagation modes are allowed and what are the exact values of such modes are

not only intrinsically important but also non-trivial, while such mode calculation step

is necessary procedure to develop a numerical method for integrated photonics. For
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example, Lai and Jiang [57] Jiang and Lai [48] propose numerical methods for the

mode calculations of photonic crystal fibers and rectangular waveguides in layered

medium, both of which are tailored to obtain the second-kind boundary integral

equations. In our case, however, not numerically but explicitly, we are able to compute

the propagation modes that are admitted in the locally straight structure because

of the simple assumptions we make. In this section, we show some mathematical

conditions under which how many propagation modes can exist and explicit formulas

for the modes with detailed derivations in appendix B.4.

In the local subdomain far away with respect to x1 of the open waveguide 3.1

where the top and bottom boundary curves become completely parallel straight lines,

the solution to the Helmholtz equation (3.12) in the subdomain can be written as

u(x1, x2) =
∞∑

m=1

(
c+me

iβmx1 + c−me
−iβmx1

)
gm(x2), (3.2)

where (c±m)
∞
m=1 are constant coefficients, (gm(x2))

∞
m=1 are normalized eigenfunctions

gm(x2) =

√
2

h
sin

(
m
π

h
(x2 +

h

2
)

)
, (3.3)

and (βm)
∞
m=1 are generally complex numbers satisfying

β2 = k2 −
(
m
π

h

)2

. (3.4)

The derivation of Equation (3.4) is given in appendix B.4. In Equation (3.4), k >

0 is the given wavenumber inside the domain, and h > 0 is the thickness of the

waveguide in the local subdomain. The solution can be understood as the linear

combination of waves coming from ‘left’ (in the direction of increasing x1), and from

‘right’ (decreasing x1). If the incident wave uinc comes only from the left, uinc =∑∞
m=1 c

−
me

−iβmx1gm(x2) and usc =
∑∞

m=1 c
+
me

iβmx1gm(x2) hold as the scattered wave

usc propagates in the opposite direction.
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Depending on k and h, there exists a non-negative integer M such that βm for

any m ≤ M is a non-negative number (Equation (3.4) is non-negative) and that βm

for any m > M is i (the imaginary unit) times a positive number ((3.4) is negative).

The finite positive numbers (βm)
M
m=1 are called propagating modes admitted for the

given waveguide.

In the subdomain with an exactly straight structure allowing only M modes

(βm)
M
m=1, the solution (3.2) can be split into terms: ones with the propagating

modes e±iβmx1 where βm is non-negative, and the other evanescent ones exponentially

decaying e−|βmx1|. We will discuss a quantitative estimation of the evanescent terms

in the next section.

Also, we are able to derive the condition for the thickness h to allow exactly M

modes as

M
π

k
< h < (M + 1)

π

k
. (3.5)

The derivations of inequalities (3.5) are given in appendix B.4.

Properties of the evanescent waves Here, we show an estimation of the

convergence of propagation modes taking the evanescent terms with (βm)
∞
m=M+1 into

account.

As we have briefly explained above, in the subdomain with a locally straight

structure, if the incident wave comes from left, then the solution (3.2) at x = (x1, x2)

is the superposition of

uinc(x1, x2) =
∞∑

m=1

c+me
iβmx1gm(x2) (3.6)

and

usc(x1, x2) =
∞∑

m=1

c−me
−iβmx1gm(x2). (3.7)
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Suppose uinc(x1 − δ, x2) and u
sc(x1 + δ, x2) are given for some positive number

δ where [x1 − δ, x1 + δ] is in the local subdomain. We also assume the subdomain

admits M modes for a given wavenumber k > 0 and the thickness of the waveguide

h > 0.

Initially, we focus on the evanescence of Equation (3.6). Noting eiβmδ =

exp
[
−
(
mπ

h
− k

)
δ
]
> 0 for m > M , the higher order terms for m > M can be

bounded as∣∣∣∣∣
∞∑

m=M+1

c+me
iβm(x1)gm(x2)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
m=M+1

c+me
iβm(x1−δ+δ)gm(x2)

∣∣∣∣∣
≤ eiβM+1δ

∣∣∣∣∣
∞∑

m=M+1

c+me
iβm(x1−δ)gm(x2)

∣∣∣∣∣
= exp

[
−
(
(M + 1)

π

h
− k

)
δ
] ∣∣∣∣∣

∞∑
m=M+1

c+me
iβm(x1−δ)gm(x2)

∣∣∣∣∣
= exp

[
−
(
(M + 1)

π

h
− k

)
δ
] ∣∣∣∣∣(

∞∑
m=1

−
M∑

m=1

)c+me
iβm(x1−δ)gm(x2)

∣∣∣∣∣
(3.8)

The last term
∣∣∣(∑∞

m=1 −
∑M

m=1)c
+
me

iβm(x1−δ)gm(x2)
∣∣∣ is finite since uinc(x1 − δ, x2) is

given as a finite number. Hence, the series of evanescent terms is bounded from

above by some positive constant times exp
[
−
(
(M + 1)π

h
− k

)
δ
]
. The logarithm of

the upper bound is proportional to

−
[π
h
(M + 1)− k

]
δ. (3.9)

Thus, the truncation of the solution uinc(x1, x2) ≃
∑M

m=1 c
+
me

iβmx1gm(x2) with M

terms is convergent exponentially to the original series as the modes propagate in the

direction of increasing x1.

The same argument still applies to the evanescence of usc coming from x1 + δ

because of the exponential decay of e−iβm(−δ) = eiβmδ.
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Therefore, u(x1, x2) = uinc + usc can be well approximated as the superposition

of finite terms up to orderM in the local subdomain with the upper bound estimation

(3.9).

3.2.5 Scattering matrices

The scattering matrix is an extremely useful mathematical tool and concept for

studying any system that exhibits the linear relationship between its input and output

data. There is a long history of research on the scattering theory in mathematical

physics, including the classic book ”Scattering Theory” by Lax and Phillips [60],

Colton and Kress [17, 18], Bonnet-Bendhia and Tillequin [11], Bonnet-Bendhia et al.

[10], Chandler-wilde et al. [15], and Chandler-Wilde and Zhang [16]. The scattering

matrix has been used by researchers and engineers in electronic engineering to design

and develop communication devices. See, for example, Rao [73] on the application

of the scattering matrix to the study of microwave network systems. One example is

the four-channel network shown in Figure 3.3. In the system, the scattering matrix

S = (Si,j)1≤i,j≤4 is a four times four matrix satisfying

Suinc = usc (3.10)

where uinc = (uinc1 , uinc2 , uinc3 , uinc4 )T and usc = (usc1 , u
sc
2 , u

sc
3 , u

sc
4 )

T represent the

incident and scattered wave vectors at all channels, respectively. The diagonal terms

of S correspond to the reflection effects that quantify the amount of the incident wave

reflected back into the originating channel, and the off-diagonal terms exhibit the

transmission coefficients where each element determines the amount of the incident

wave transmitted from one channel into the other channel. The scattering matrix

S describes a microwave network system and provides a complete description of the

network at its channels. The determination of the scattering matrix eliminates the

need to know the network’s internal components, providing the required information
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to determine the output usc at all channels for any input uinc, making it convenient

for complex systems.

channel 1
uin1

usc1

uinc2

usc2

channel 2

uinc3

usc3

channel 3

uinc4

usc4

channel 4

Figure 3.3 A microwave network system with 4 channels from Rao [73].

For integrated photonics in this dissertation, we define the scattering matrix as

follows.

Definition 3.2.1 (Scattering matrix). Suppose a waveguide with P input/output

channels is modeled as the semi-infinite open Dirichlet boundary value problem of

the Helmholtz equation (3.1). Also suppose pth channel admits Mp modes (βp,m)
Mp

m=1

(1 ≤ p ≤ P ) as

u(x1, x2) = uinc(x1, x2) + usc(x1, x2)

≃
Mp∑
m=1

(
c+p,me

iβp,mx1 + c−p,me
−iβp,mx1

)
gp,m(x2),

68



or

u(x1, x2) = uinc(x1, x2) + usc(x1, x2)

≃
Mp∑
m=1

(
c−p,me

−iβp,mx1 + c+p,me
iβp,mx1

)
gp,m(x2)

depending on the direction of the propagating modes associated with pth channel.

The scattering matrix of the waveguide is defined as the following matrix S

Scinc = csc (3.11)

where cinc is the vector comprising coefficients for all channels and modes (c+p,m

or c−p,m) of propagating modes of the incident wave uinc, and csc is the vector of

coefficients of scattered wave usc, respectively.

Example 3.2.1. If the number of channels P is two such as the case of Figure

3.1, and Mp = 1 for both p = 1 and p = 2 admitting only one single mode, then

the scattering matrix is a two by two matrix mapping from cinc = (c+1,1, c
−
2,1)

T to

csc = (c−1,1, c
+
2,1)

T . If the number of modes at each channel Mp = 2 for both p = 1

and p = 2, then the scattering matrix is a four by four matrix mapping from cinc =

(c+1,1, c
+
1,2, c

−
2,1, c

−
2,2)

T to csc = (c−1,1, c
−
1,2, c

+
2,1, c

+
2,2)

T .

3.2.6 The interior Dirichlet Helmholtz problem

Assuming that a waveguide is composed of perfect conductor and that the domain

Ω is closed, piecewise smooth enough, and more or less straight in the direction

of the propagation modes shown in Figure 3.2, the behavior of the electromagnetic

waves inside can be modeled as an interior Dirichlet boundary value problem of the

Helmholtz equation in the two-dimensional space. The solution u at x inside the

domain satisfies

∆u(x) + k2u(x) = 0 x = (x1, x2) ∈ Ω, (3.12)
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where k is assumed to be a positive wavenumber. We denote the wavenumber in

a vacuum by kv and the refractive index along a vertical cross-section by n so that

k = nkv. Also, let ne be the effective index of propagation mode β along the same

cross-section satisfying β = nekv. We denote the top and bottom part of the boundary

by ΓT and ΓB, and the left and right sides by ΓL and ΓR, respectively satisfying

∂Ω = ΓT ∪ ΓB ∪ ΓL ∪ ΓR. Homogeneous Dirichlet condition are imposed on the top

and bottom ΓT ∪ ΓB, and we assume some smooth functions f(L, x2) and f(R, x2)

on left and right ΓL ∪ ΓR;

u(x) =


0 x ∈ ΓT ∪ ΓB,

f(x2) x ∈ ΓL ∪ ΓR.

(3.13)

3.2.7 The Helmholtz potential theory

To apply the BIE method to our problem in the following discussions, we need to

choose an appropriate layer potential representation as the solution u to the Helmholtz

boundary value problem satisfying (3.12) and (3.13). Here, we collect the definitions of

Green’s function, layer potentials, integral equations, and some identities associated

with the two-dimensional Helmholtz equation. We follow conventional definitions

often used in the preexisting work such as Colton and Kress [17, 18] and Neédélec

[65].

3.2.8 The Helmholtz Green’s function

Let x and y be arbitrary distinct points in R2. The fundamental solution to the

Helmholtz equation ∆u(x) + k2u(x) = δ(y) where δ is the delta distribution, is

Gk(x,y) =
i

4
H

(1)
0 (kr) (3.14)

where H
(1)
0 is the zeroth order of Hankel function of the first kind, k is the

wavenumber, and r := |x− y|.
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3.2.9 The Helmholtz layer potentials

The BIE methods involves various layer potentials associated with the underlying

partial differential equations. In our problem, the Helmholtz single and double layer

potentials and their normal derivatives are defined as follows.

Sk[ρ](x) :=

∫
Γ

Gk(x,y)ρ(y)dSy, (single-layer potential) (3.15)

Dk[ρ](x) :=

∫
Γ

∂G

∂ny

(x,y)ρ(y)dSy, (double-layer potential) (3.16)

S ′
k[ρ](x) :=

∫
Γ

∂G

∂nx

(x,y)ρ(y)dSy, (3.17)

D′
k[ρ](x) :=

∫
Γ

∂2G

∂nx∂ny

(x,y)ρ(y)dSy, (3.18)

where dSy is the arclength differential on Γ. It is well known that the layer potentials

can be log-singular, singular, hyper-singular and near singularities of these, which

may lead to loss of accuracy for numerical simulations. The single layer potential S

has log-singularity on and off boundary Γ. The double layer potential D and S ′ have

log-singularity on and off Γ and near singularity off Γ. D′ has log-singularity and

hyper-singularity off Γ while near log-singularity, near singularity, and near hyper-

singularity off Γ. Summarized explanations about which layer potentials of the two-

dimensional Helmholtz equation have which singularities are given in Helsing and

Karlsson [41].

3.2.10 Jump relations of the Helmholtz layer potentials

Layer potentials S ′ and D satisfy the following jump relations at x ∈ Γ depending

whether the domain of interest is interior or exterior:

±1

2
ρ(x) + S ′

k[ρ](x) = lim
h→ 0+

S ′
k[ρ](x∓ hnx), (3.19)

∓1

2
ρ(x) +Dk[ρ](x) = lim

h→ 0+
Dk[ρ](x∓ hnx). (3.20)

71



Note that Sk and D′
k are known to be continuous across the boundary.

3.2.11 Calderon identities

The following four equations in the sense of integral operators involving the Helmholtz

layer potentials are called Calderon identities.

S ′
kSk − SkD

′
k = 0, (3.21)

D′
kS

′
k −DkD

′
k = 0, (3.22)

(S ′
k)

2 − SkD
′
k =

1

4
I, (3.23)

D2
k −D′

kSk =
1

4
I. (3.24)

Although we do not explicitly use the above identities in our discussions, these

Calderon identities are known to be useful equations in a case that we are able to apply

the identities to pre-conditioning of the linear system obtained by the discretization

of the BIE to be solved for the unknown density. For example, Greengard et al. [33]

rewrite an integral equation for a three-dimensional sound-hard scattering problem

using the last identity to remove the hyper-singularity.

3.2.12 Integral representation and boundary integral equation

We choose the following combined layer potential representation from Colton and

Kress [17] for the solution to our problem:

u(x) = Dk[ρ](x) +
i

2
kSk[ρ](x), x ∈ Ω. (3.25)

Then the normal derivative of the solution ∂u
∂n

can be written as

∂u

∂nx

(x) = D′
k[ρ](x) +

i

2
kS ′

k[ρ](x), x ∈ Ω, (3.26)

assuming nx is given. For the Dirichlet boundary value problem, by the interior

jump relation of the double-layer potential (3.20), the unknown density ρ satisfies the

72



following second-kind boundary integral equation

−1

2
ρ(x) +Dk[ρ](x) +

i

2
kSk[ρ](x) = f(x), x ∈ Γ. (3.27)

3.3 Numerical Method

3.3.1 The BIE method for the Dirichlet Helmholtz BVP

Here we describe how we discretize and evaluate the layer potentials (3.15)-(3.18),

the solution u (3.25) and the normal derivative (3.25) (or gradient) as necessary.

Since this section somewhat overlaps with previous sections, we repeat important

ingredients of the standard procedure of the BIE methods, the RCIP method, and

kernel-split quadratures, skipping some redundant parts that have already explained.

3.3.2 Discretization of the BIE

To evaluate the solution u and its partial derivatives, we need to discretize the BIE

(3.27) on the boundary Γ to construct a linear system to solve for the unknown density.

We apply a standard panel-based Nyström discretization scheme via composite Gauss-

Legendre quadrature with np panels. See Kress [55] for an introductory explanations.

The total number of the discretization points is N := nglnp. We set ngl to 16 for

double-precision floating point arithmetic. As a result, the linear system obtained by

the discretization of BIEs (3.27) on Γ can be written as

(I +K)ρ = b, (3.28)

where I is theN timesN identity matrix, K is theN timesN square matrix involving

the discretized combined layer potential representation −2(D+ 1
2
ikS), ρ is the vector

of the unknown density values at the discretized points, and b = −2f is a given

Dirichlet boundary data vector with N entries.

In our problem formulation, the boundary Γ contains corners involving singu-

larities and near-singularities which cause loss of accuracy and instability of the linear
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system. Instead of a standard refinement around the corner, which often ends up with

growing size and ill-conditioning of the linear system and failing to obtain satisfactory

accuracy, we apply the RCIP method ([42, 36, 39, 40], also described in section 2.2.2)

to avoid such loss of accuracy handling the linear system with the same size as the

original one. The essential differences between applying the RCIP method in this

chapter and Chapter 2 for the SH flow problem is that neq = 1 for the discretization

of BIE (3.27) whereas neq = 2 in Chapter 2 because the solution of the Helmholtz

equation and unknown density have scalar values, and that BIE (3.27) causes near

log-singularity and singularity off the boundary Γ and log-singularity on Γ without

hyper singularity since the BIE does not involve D′. Applying the RCIP method to

(3.28) with the decomposition of K = K◦ + K∗ as described in section 2.2.2, we

obtain the same form of linear system as (2.23)

(I +K◦R) ρ̃ = b, (3.29)

with a different block size (This linear system is merely a single block as a whole since

neq = 1 while the corresponding block size in Chapter 2 is two by two as neq = 2.)

We also incorporate kernel-split quadratures referred in section 2.2.3 into the

process of constructing the linear system via the RCIP method to deal with such

singularities. The representative references are [37, 39, 80, 51]. When the discretized

Gauss-Legendre panel of the target point x coincides with (or resides adjacent to) the

panel of the source point y, we substitute an appropriate kernel-split quadrature for

the standard Gauss-Legendre quadrature over the panel of y affected by the (near)

singularity. Helsing and Karlsson [41] also gives us the explicit formulas for splitting

the Helmholtz kernels in the form of equation (2.33).

Once we construct the linear system to be solved for the unknown density with

the combination of above techniques, we use GMRES [76] to determine the density

values each target points (xi)
N
i=1 on Γ.
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3.3.3 Layer potential evaluations along cross-sections

The construction of the scattering matrix requires evaluations of the solution u and

partial derivative ∂u
∂x1

along some chosen cross-sections in the x2 direction, orthogonal

to the wave propagation. For the simple model problem in Figure (3.2), for example,

we choose two cross-sections indicated as dotted lines at x1 = l and x1 = r on the

left and right. As to the target points away from the boundary, we simply apply a

standard composite Gauss-Legendre quadrature to evaluate the layer potentials as

desired quantities for satisfactory enough resolutions. In the case of the target points

close to the boundary, we again apply the kernel-split quadratures to avoid the loss

of accuracy caused by near singularities.

3.3.4 Construction of the scattering matrix for a single waveguide

component

We describe our method to construct scattering matrix and derive some mathematical

identities that relate scattering matrices and propagation modes in this section.

Consider a rectangular neighborhood of a cross-section x1 = l:

{x = (x1, x2) ∈ Ω |x1 ∈ [l − δ, l + δ]} (3.30)

with some small enough δ > 0 in Figure 3.2 and assume L ≪ l ≪ O. We also

assume the waveguide admits a single propagation mode βl along the cross-section

x = l for now (M = 1). Then, recalling the exponential decay of higher order modes

than M described in section 3.2.4, the solution u(l, x2) to equation (3.12) along the

cross-section can be well approximated as

u(l, x2) = uinc(l, x2) + usc(l, x2) ≃ (c+l e
iβll + c−l e

−iβll)gl(x2) (3.31)

where

gl(x2) =

√
2

dl
sin

(
π

dl
(x2 + dl/2)

)
(3.32)
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and dl is the thickness of the cross-section. The coefficient
√

2
dl

is set to have

gl normalized with respect to the standard L2 norm over [−dl/2, dl/2]. The

approximation is valid if the device components consist of function modules with

straight waveguide structures and support a single mode along each cross-section.

In cases of multiple modes, the approximation can be generalized to the summation

with respect to the distinct modes, while we focus on the case of a single mode for

simplicity here.

Along the right cross-section x1 = r with O ≪ r ≪ R, similarly assuming

another mode βr,

u(r, x2) = usc(r, x2) + uinc(r, x2) ≃ (c+r e
iβrr + c−r e

−iβrr)gr(x2) (3.33)

where

gr(x2) =

√
2

dr
sin

(
π

dr
(x2 + dr/2)

)
(3.34)

where dr is the thickness of the right cross-section.

Remark 3.3.1. In the case of a completely straight waveguide, we can use the same

coordinates as x = (x1, x2) with the initially fixed origin for the neighborhood of the

cross-section (3.30). However, the structure of the waveguide can be more complicated

even if we decompose the waveguide into simpler components. Components can have

multiple paths for the wave propagations or can be bent. In such cases, we abuse

the notation (x1, x2) to construct scattering matrices along cross-sections as follows.

Initially, we fix the origin inside the waveguide component on the propagation path(s).

The x1 coordinate for a cross-section is defined as the relative displacement along the

propagation path from the origin. Then, the x2 coordinate along the cross-section is

locally defined as the displacement perpendicular to the path at x1.

We define such local coordinates (x1, x2) for each cross-section. For example, in
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Figure 3.4 for the case of Y-coupler shaped component, we can define the coordinates

of the cross-sections as

• {x = (x1, x2) ∈ Ω |x1 = −l, x2 ∈ [−dl/2, dl/2]},

• {x = (x1, x2) ∈ Ω |x1 = r1, x2 ∈ [−dr1/2, dr1/2]},

• {x = (x1, x2) ∈ Ω |x1 = r2, x2 ∈ [−dr2/2, dr2/2]}

for the left, top-right, and bottom-right cross-sections respectively with some positive

numbers l, r1, r2, dl, dr1, and dr2.

-8 -6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 3.4 A computational domain modeled for a Y-coupler-shaped components.

In the currently discussed simple case, the scattering matrix S is 2×2 since the

total number of admitted modes for all cross-sections are two, distinguishing βl and

βr even if their values are the same. By definition, S satisfies 1

S

c+l
c−r

 =

c−l
c+r

 . (3.35)

1We can change the alignment of the right-hand side as

[
c+r
c−l

]
that makes S the identity

matrix in the case of a completely rectangular waveguide (hl = hr).
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The construction of the scattering matrix S is the following. Assuming that we

have two solutions of u1 and u2 with some linearly independent boundary data, let

uj(1 ≤ j ≤ 2) be

uj(l, x2) ≃
(
c+l,je

iβll + c−l,je
−iβll

)
gl,j(x2), (3.36)

uj(r, x2) ≃
(
c+r,je

iβrr + c−r,je
−iβrr

)
gr,j(x2). (3.37)

Then we construct the linear system

S

c+l,1 c+l,2

c−r,1 c−r,2

 =

c−l,1 c−l,2

c+r,1 c+r,2

 (3.38)

We denote the matrices of coefficients on the left-hand and right-hand sides by

Cinc :=

c+l,1 c+l,2

c−r,1 c−r,2

 , (3.39)

Csc :=

c−l,1 c−l,2

c+r,1 c+r,2

 . (3.40)

and if Cinc is invertible, then we obtain the scattering matrix as

S = CscC
−1
inc. (3.41)

We determine the unknown coefficients

(c+l,1, c
−
l,1, c

+
r,1, c

−
r,1) (3.42)

and

(c+l,2, c
−
l,2, c

+
r,2, c

−
r,2) (3.43)

separately for each j = {1, 2} to obtain Minc and Msc.
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We omit j in the following discussion since we only need to repeat the same

algorithm with distinct boundary data with for j = 1 and j = 2. We use the following

two equations to determine c+l c−l :

u(l, x2) ≃
(
c+l e

iβll + c−l e
−iβll

)
gl(x2), (3.44)

ux(l, x2) :=
∂u

∂x
(l, x2) ≃ iβl

(
c+l e

iβll − c−l e
−iβll

)
gl(x2), (3.45)

Taking the inner products ⟨u, gl⟩ and ⟨∂u
∂x
, gl⟩ with respect to x2 over [−dl/2, dl/2]

using a normalized eigenfunction gl(x2), we have

c+l e
iβll + c−l e

−iβll = ⟨u, gl⟩ =
∫ dl/2

−dl/2

u(l, x′2)g(x
′
2)dx

′
2, (3.46)

iβl
(
c+l e

iβll − c−l e
−iβll

)
=

〈
∂u

∂x
gl

〉
=

∫ dl/2

−dl/2

∂u

∂x
(l, x′2)g(x

′
2)dx

′
2. (3.47)

Then, we obtain

c+l =
1

2
e−iβll

(
I1 +

1

iβl
I2

)
, (3.48)

c−l =
1

2
eiβll

(
I1 −

1

iβl
I2

)
. (3.49)

where I1 :=
∫ dl/2

−dl/2
u(l, x′2)g(x

′
2)dx

′
2 and I2 :=

∫ dl/2

−dl/2
ux(l, x

′
2)g(x

′
2)dx

′
2.

We apply a BIE method with the mathematical formulations described in

Subsection 3.3.3 for the evaluations I1 and I2.

Once we obtain the coefficients (c+l,1, c
−
l,1, c

+
r,1, c

−
r,1), for the first set of data, we

repeat the same procedure for the second data (j = 2) with distinct boundary data.

ThenCinc andCsc are constructed having the entries of these vectors for S = CscC
−1
inc.

So far, we discussed the construction of the scattering matrix with only two ports

and a single propagation mode on each channel. This method can be generalized for

cases of more ports and more modes allowed in a straightforward manner, because

the unknown coefficients C+ and C− can be separately computed for each channel,

as long as that enough distinct boundary data are provided. In the cases of multiple
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modes allowed for one channel, we note that the corresponding equations such as

(3.31) and (3.32) have to be replaced with an appropriate linear combination

u(xp, x2) ≃
M∑

m=1

(c+xp,me
iβxp,mxp + c−xp

e−iβxp,mxp)gxp,m(x2), (3.50)

and

gxp,m(x2) =

√
2

dxp

sin

(
m

π

dxp

(x2 + dxp/2)

)
(3.51)

where xp is the x coordinate of the cross-section assigned to the channel with M

modes. The most dominant part of the method is to compute the unknown density

ρ where we use an iterative method such as GMRES to solve the linear system. This

part can be accelerated by incorporating the two dimensional Fast Multipole Method

(Rachh et al. [26]).

3.3.5 Merging two scattering matrices

In the previous section, we discussed how to compute the single scattering matrix

which corresponds to an individual component of the waveguide. Our goal is the

modularization of photonic device simulation in such a way that the whole device

can be divided into multiple scattering matrices representing separated structures,

and that the information of the whole device can be reconstructed from those

scattering matrices already available. Once we managed to construct a modular

scattering matrix, we do not have to repeat computing the scattering matrix of the

same component or other components with the same structures. Merging multiple

scattering matrices into one is done via divide-and-conquer; starting with the two

smallest adjacent components, we repeat constructions of larger matrices recursively

until the single matrix for the whole structure is obtained. In the following section,

we describe how to merge a scattering matrix from two components in the next
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section. Although some technical adjustment needs to be taken care of when multiple

scattering matrices are merged, we provide the details in appendix B.3.

Merge of two scattering matrices. We discuss how to obtain the scattering

matrix of the merged component in this section. Merging two scattering matrices

into one matrix illustrates the essential idea and we can merge multiple matrices

recursively. Hence, we focus the discussion on the merge of two components. Suppose

we have two waveguide components and the associated scattering matrices Sl for the

‘left’ component and Sr for the ‘right’ one, respectively. As an example, consider

connecting two components shown in Figure 3.5. Figure 3.6 shows the schematic

image of the merged component.

uincl

uscl
uscc uincc

uincc uscc

usctr

uinctr

usctr

uincbr

Figure 3.5 Two components of a waveguide before merging. Two scattering
matrices Sl and Sr represent corresponding components.
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uincl

uscl

usctr

uinctr

uscbr

uincbr

Figure 3.6 The merged component of two parts of Figure 3.5. The scattering
matrix St representing the whole structure can be constructed from Sl and Sr.

Let (x1,l, x2) and (x1,c, x2) be cross-sections of the left component, and (x1,c, x2)

and (x1,r, x2) be cross-sections of the right one, where we intend to merge components

along two cross-sections commonly denoted by (x1,c, x2). Assuming cross-sections

allow Ml, Mc, and Mr propagation modes respectively, we approximate the solution

u(x, x2) along the cross-sections as follows.

u(x1,l, x2) ≃
Ml∑
m=1

ul,m(x1,l, x2), (3.52)

u(x1,c, x2) ≃
Mc∑
m=1

uc,m(x1,c, x2), (3.53)

u(x1,r, x2) ≃
Mr∑
m=1

ur,m(x1,r, x2), (3.54)

where

ul,m(x1,l, x2) =
[
c+l,me

iβl,mx1,l + c−l,me
−iβl,mx1,l

]
gl,m(x2) m ∈ {1, 2, . . . ,Ml}, (3.55)

uc,m(x1,c, x2) =
[
c+c,me

iβc,mx1,c + c−c,me
−iβc,mx1,c

]
gc,m(x2) m ∈ {1, 2, . . . ,Mc}, (3.56)

ur,m(x1,r, x2) =
[
c+r,me

iβr,mx1,r + c−r,me
−iβr,mx1,r

]
gr,m(x2) m ∈ {1, 2, . . . ,Mr}. (3.57)
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then, the scattering matrices Sl and Sr for two waveguide components satisfy the

following linear systems.

Sl

c+l
c−c

 =

Sl,11 Sl,12

Sl,21 Sl,22


c+l
c−c

 =

c−l
c+c

 , (3.58)

Sr

c+c
c−r

 =

Sr,11 Sr,12

Sr,21 Sr,22


c+c
c−r

 =

c−c
c+r

 . (3.59)

since the two components are connected with some ports where the same propagation

modes are admitted, the two linear systems share the same propagation coefficients

c±c . c
±
l and c±r correspond to the other coefficient vectors of the left component and

the right one, respectively. For example, if we have two components shown in Figure

3.5 and if both components allow only one mode respectively, then c±l , c
±
c , and c±r

have 1, 1, and 2 entries respectively. If the two waveguide components allow two

modes respectively, then c±l , c
±
c , and c±r have 2, 2, and 4 entries respectively. We

also assume the phase adjustment described in the previous section has been already

applied to Sr to share the same origin as Sl. The two linear systems of separated

components give us four vector equations.

Sl,11c
+
l + Sl,12c

−
c = c−l ,

Sl,21c
+
l + Sl,22c

−
c = c+c ,

Sr,11c
+
c + Sr,12c

−
r = c−c ,

Sr,21c
+
c + Sr,22c

−
r = c+r

(3.60)

Substituting c+c of the second equation into the third one,

Sr,11

(
Sl,21c

+
l + Sl

22c
−
c

)
+ Sr,12c

−
r = c−c . (3.61)
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Let T := I −Sr,11Sl,22 and assume it is invertible. Then the above equation leads to

Sr,11Sl,21c
+
l + Sr

12c
−
r = T−1c−c (3.62)

⇔ c−c = T−1
(
Sr,11Sl,21c

+
l + Sr,12c

−
r

)
. (3.63)

Eliminating c−c in the first equation using the equation above,

Sl,11c
+
l + Sl,12T

−1Sr,11Sl,21c
+
l + Sl,12T

−1Sr,12c
−
r = c−l . (3.64)

Substituting c+c in the second equation into the fourth one,

c+r = Sr,21

(
Sl,21c

+
l + Sl,22c

−
c

)
+ Sr,22c

−
r . (3.65)

Eliminating c−l in the above equation,

Sr,21Sl,21c
+
l +Sr,21Sl,22T

−1Sr,11Sl,21c
+
l +Sr,21Sl,22T

−1Sr,12c
−
r +Sr,22c

−
r = c+r . (3.66)

Since we obtained the equations (3.64) and (3.66) involving only c±l and c±r , we can

construct the ‘total’ scattering matrix St such thatSt,11 St,12

St,21 St,22


c+l
c−r

 =

c−l
c+r

 , (3.67)

where 

St,11 = Sl,11 + Sl,12T
−1Sr,11Sl,21,

St,12 = Sl,12T
−1Sr,12,

St,21 = Sr,21 (Sl,21 + Sl,22T
−1Sr,11Sl,21) ,

St,22 = Sr,21Sl,22T
−1Sr,12 + Sr,22.

(3.68)

Merging two or more scattering matrices into one can be done by applying the

same step as above recursively.
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3.3.6 Some useful identities on scattering matrices

In this section, we show some identities that relate scattering matrices to the

propagation modes. These identities can be used to verify numerical experiments

presented in the later section.

Lemma 3.3.1. Suppose u(x, x2) satisfies ∆u+k
2u = 0 in a simply connected domain

Ω with piecewise smooth boundary ∂Ω, where k is a real number. Then the following

equation holds.

Im

∫
∂Ω

u
∂u

∂n
dS = 0. (3.69)

(Proof.) Recalling Green’s first identity∫
Ω

(∆uv +∇u · ∇v) dV =

∫
∂Ω

∂u

∂n
udS, (3.70)

with v := u, we have∫
Ω

(
−k2|u|2 + |∇u|2

)
dV =

∫
∂Ω

∂u

∂n
udS =

∫
∂Ω

u
∂u

∂n
dS. (3.71)

Since the left-hand side is a real number, taking the imaginary part of the equation

leads to

Im

∫
∂Ω

u
∂u

∂n
dS = 0, (3.72)

which is the desired identity. □

This identity and similar inequalities appear in the existing literature. For

example, see the proof of lemma 3.11 in Kress and Colton [18] (the proof is given by

Rellich), and the proof of lemma 3.2.1 in Nédélec [65].

Theorem 3.3.1. Let β be the column vector with length M of the propagation modes

of a waveguide component, and S be the corresponding M times M scattering matrix.

Then, the following identity holds.

Dβ = S∗DβS (3.73)
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where Dβ := diag(β).

More specifically, βj =
∑M

k=1 |Sk,j|2βk for all j ∈ {1, 2, . . . ,M}.

The proof is in appendix B.1.

Corollary 3.3.1. In addition to the assumptions of the theorem above, if each channel

admits the same single mode, then the scattering matrix is unitary.

(Proof) Let the single mode be β > 0. Since Dβ = βI,

S∗Dβ = S∗(βI) = (βI)S∗. (3.74)

Therefore, the equation is equivalent to

βI = βS∗S ⇔ I = S∗S. (3.75)

□

On the other hand, it turns out that even if a scattering matrix is unitary,

it does not necessarily implies that the set of allowed propagation modes for each

channel are identical. An example can be seen in appendix B.2.

3.4 Numerical Examples

We confirm the mathematical results discussed so far with numerical examples in this

section. The codes are implemented in MATLAB release 2020b. We carried out the

numerical experiments on a standard 64-bit laptop with 11th Gen Intel(R) Core(TM)

i7-1185G7 CPU, with 32 GB RAM. The OS on the laptop is Ubuntu 20.04.5 LTS.

3.4.1 Calculation of a single scattering matrix

Initially, we show numerical examples in three cases of computational domains shown

in Figure 3.7. The boundary of the top left figure has the same boundary as Figure

3.2; the structure is piecewise smooth and more or less straight in the direction of
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the propagation modes. The top right one has a uniform thickness but is bent in the

middle by 1
4
π radian. The bottom one has a symmetric structure of a Y-coupler.

-6 -4 -2 0 2 4 6

-1

-0.5

0

0.5

1

-5 0 5

-1

0

1

2

3

-8 -6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 3.7 Three computational domains for numerical examples of single
scattering matrix validations.

The parameters commonly set for the examples are as follows. The wavelength

λ is 1.5 with the wavenumber in vacuum kv = 2π/λ ≃ 4.18879. The refractive index

in the domains n is 1.2 with the wavenumber k = kvn ≃ 5.02655. For the top

left waveguide, the thicknesses (dl, dr) of cross-sections on the left and right sides

are (1.8π/k, 1.3π/k) = (1.125, 0.8125) for a single mode, and (2.8π/k, 2.3π/k) =

(1.75, 1.4375) for two modes on each side, respectively. For the other two domains,

the thicknesses of all cross-sections denoted by h are set to 1.8π/k = 1.125 for a single

mode, and 2.8π/k = 1.4375 for two modes on each side, respectively.

Concerning the numerical method we apply to the computations of scattering

matrices, We discretize the boundary curves with standard panel-based Gauss-

Legendre nodes. Each panel has 16 nodes and we place two panels per wavelength on

the boundary curves. Then, imposing distinct smooth boundary data on the channels

of the waveguides, we compute the propagation coefficients applying the BIE method
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based on the formulations described in section 3.2.7 coupled with the RCIP method

and kernel-split quadratures on the discretized boundary. We repeatedly compute

the propagation coefficients an adequate number of times to construct the scattering

matrices with distinct smooth boundary data.

The convergence of the scattering matrices and identity (3.73) is measured in

terms of the relative error norms. The plots are shown in Figure 3.8. We observe

that the relative errors are convergent as the paths of propagation become longer in

each case. The length of path for each case seems to be long enough between 20 and

40 times wavelength from the results.
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Figure 3.8 Numerical results of single components using three computational
domains in Figure 3.7. r for the horizontal axes in these figures indicates the
maximum distance between the channels and the center of the domain divided by
the wavelength λ. e.g., if r equals 10, the distance between the center and the
outermost channel along the propagation is 10λ.
Left: self-convergence tests. The vertical axis corresponds to the relative error
norms ∥S(r)− S(r/2)∥2/∥S(r/2)∥2 for r ∈ {10, 20, 40, 80}.
Right: validations of identity (3.73). The horizontal axis corresponds to the same
definition of r of the left figure. The vertical axis corresponds to the relative error
norms ∥S∗(r)D[β]S(r)−D[β]∥2/∥D[β]∥2 for r ∈ {5, 10, 20, 40, 80}.

3.4.2 Accuracy of the merging formula

As the next set of numerical examples, we confirm equation (3.68) and identity (3.73)

for merging two scattering matrices. Here, we choose two computational domains

shown in Figure 3.9. The domain on the left is constructed by connecting the erf-pipe

and the Y-coupler in Figure 3.7, and the right one is obtained by connecting two bent

pipes.
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Figure 3.9 Two computational domains by merging individual components.

The results are shown in Figure 3.10. We also see the convergent relative errors

as increasing the distance between two centers of components before they are merged.
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Figure 3.10 Numerical results of merged components using two computational
domains in Figure 3.7. d for the horizontal axis in these figures indicates the
distance divided by the wavelength λ between two centers of components along the
path of the propagation before they are merged. Left: self-convergence tests. The
vertical axis corresponds to relative error norms of two scattering matrices for each
d. One is computed with the merged computational domain in Figure 3.9, and the
other is the scattering matrix constructed via equation (3.68) and the scattering
matrices computed individually before they merged.
Right: validations of identity (3.73) the same way as Figure 3.8, with merged
computational domain in Figure 3.9.

Finally, we examine our method for modularization merging more components.

We show an example with merging four components: two bent-pipes and two Y-

couplers, as shown in the Figure 3.11. We use parameter d defined as the length

of the propagation path between the left and right junctions. The cross-sections on

the left and right sides are places at fixed x1 = 14λ where λ = 1.25 is the given

wavelength. The relative error norms ∥S(d) − S(d − 2)∥/∥S(d − 2)∥ are measured

and summarized on the Table 3.1. We observe that the relative errors attain some
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lower bound around 10−12 once d is greater than equal to 20 in our experiments. The

relative error norms compared with upper bound estimation (3.9) are shown in Figure

3.12. The convergence rate agrees with the upper bound estimation until it attain

some lower bound around 10−12.

-25 -20 -15 -10 -5 0 5 10 15 20 25

-10

-5

0

5

10

Figure 3.11 Merged computational domain obtained from four objects (two
Y-couplers and two bent-pipes). Two bent-pipes are placed in the middle and
connected between two Y-couplers on the left and right. Black dots indicate the
corners of the merged objects, and blue line segments are the cross-sections where
the evaluations are carried out to compute the merged scattering matrix.
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Table 3.1 Relative Error Norms ∥S(d)− S(d− 2)∥/∥S(d− 2)∥

d/λ ∥S(d)− S(d− 2)∥/∥S(d− 2)∥

4 2.54925e-02

6 1.90989e-03

8 4.55863e-05

10 2.63197e-06

12 2.11041e-07

14 5.04391e-09

16 2.86362e-10

18 2.23167e-11

20 3.75420e-12

22 1.64128e-12

24 3.40560e-12

26 3.05768e-12

28 1.62932e-12

Parameter d (the leftmost number in each row) is the distance of the propagation path
between junction from the left to right. The distance between each cross-section and its
closest junction is set to 14 times wavelength λ = 1.25.
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Figure 3.12 Plots of log10 [∥S(d)− S(d− 2)∥/∥S(d− 2)∥] compared with upper
bound estimation (3.9)
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CHAPTER 4

CONCLUSIONS

In this dissertation, we have presented the development of numerical methods based

on BIE methods for two types of boundary value problems of partial differential

equations that arise from mathematical physics. In the first half of this dissertation,

we have developed an accurate and fast numerical method based on the BIE

methods for the interior mixed boundary value problems for Stokes equations and

for applications to SH flow. We have chosen a layer potential representation for

the solution to a given problem in terms of boundary integral equations. Then, we

have incorporated a set of state-of-the-art numerical methods into our method: the

RCIP method, the scaling technique, the kernel-split quadratures, and the Stokes

FMM. Our method can achieve high accuracy since it can handle singular behavior

in the neighborhood of corners and boundary transition points, and the algorithm is

efficient in terms of both time and space complexities. As the future work, solving

the linear system can be accelerated with preconditioning the BIEs utilizing the

Calderon identities, as we observe that the convergence of GMRES iterations become

slower when we impose the composite boundary conditions for the SH flow. Also,

the extensions of our method to problems with surfactant and the three-dimensional

problems can be desired.

In the second half of this dissertation, we have proposed a numerical method to

construct scattering matrices for the large-scale simulation for integrated photonics

development. We have chosen a divide-and-conquer approach taking advantage of two

key facts. One is that integrated photonic devices locally consist of function modules

with straight waveguides as input/output channels. The other is that each straight

waveguide supports only a small number of propagating modes. Utilizing these key
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facts, we have developed a numerical method to construct scattering matrices for pre-

computable and reusable modularizations, instead of computing in the whole domain

every time. We also have incorporated a state-of-art boundary integral equation

(BIE) method, the RCIP method [36], and the high-order kernel-split quadratures

[37, 38, 41] together to obtain high resolutions. We have observed our method works

well for the two-dimensional cases with Dirichlet boundary conditions. The future

work includes the extension of our method to the dielectric cases, i.e., more difficult

cases with transmission boundary conditions in the two-dimensional space, and then

to the three-dimensional cases ultimately.
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APPENDIX A

SUPPLEMENTS TO SUPERHYDROPHOBIC FLOW

A.1 Derivations of Stokes Layer Potentials in R2

Following equation (2.1.8) in Pozrikidis [69], the Green’s function associated with

Stokes equations is given by

Gij(x,y) := −δij ln(r) +
1

r2
rirj, (A.1)

where r := x − y, r := |r|, and ri := (x− y)i (i, j ∈ {1, 2}). (We use ri = x − y

instead of x̂ = y − x to obtain the same layer-potential representations as Wu et

al. [80] so that the coefficients of the identity operators of the boundary integral

equations are commonly 1/2.)

The pressure vector p is given as

p = pi :=
2

r2
ri. (A.2)

Let

σ[G]ijk(x,y) := −δikpj(x,y) + µ

(
∂Gij

∂xk
(x,y) +

∂Gkj

∂xi
(x,y)

)
, (A.3)

σ[G]ijk(y,x) := −δikpj(y,x) + µ

(
∂Gij

∂yk
(y,x) +

∂Gkj

∂yi
(y,x)

)
(A.4)

= δikpj(x,y) + µ

(
∂Gij

∂yk
(x,y) +

∂Gkj

∂yi
(x,y)

)
(A.5)

Then the stress tensor σ = T = Tijk(x,y) is defined as

Tijk(x,y) := −σ[ 1
µ
Gij(x,y)] = δikpj(x,y)−

∂Gij

∂xk
(x,y)− ∂Gkj

∂xi
(x,y) (A.6)

(i, j, k ∈ {1, 2}). It turns out that

Tijk(x,y) =
1

r4
rirjrk, (A.7)
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which can be proven as follows. Noting the equations below,

∂

∂xi
ln r =

1

r

∂r

∂xi
=

1

r2
ri, (A.8)

∂

∂yi
ln r =

1

r

∂r

∂yi
= − 1

r2
ri, (A.9)

∂

∂xi
[r−n] = −nr−n−2ri, (A.10)

∂

∂yi
[r−n] = nr−n−2ri, (A.11)

∂Gij

∂xk
= δijr

−2rk − 2r−4rkrirj + r−2δikrj + r−2riδjk, (A.12)

∂Gkj

∂xi
= δkjr

−2ri − 2r−4rirjrk + r−2δkirj + r−2rkδji. (A.13)

∴ Tijk(x,y) = δikpj −
∂Gij

∂xk
− ∂Gkj

∂xi
(A.14)

= 2δikr
−2rj + 4r−4rirjrk − 2δikr

−2rj (A.15)

= 4r−4rirjrk. □ (A.16)

The surface force (traction) f at y ∈ Γ is defined as

f := σ(x,y)n(y) = Tijk(x,y)ny,k. (A.17)

where ny,k := n(y) is a unit normal vector at y pointing outwards.

The single-layer potential is defined as

S[ρ](x) :=
1

4πµ

∫
Γ

Gij(x,y)ρj(y)nk(y)dSy. (A.18)
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S′ which appears for Neumann boundary condition is defined as

S′
i :=

1

4πµ

∫
Γ

σ[G]ijk(x,y)nx,kρjdSy (A.19)

=
1

4π

∫
Γ

σ[
1

µ
Gij]k(x,y)nx,kρjdSy (A.20)

= − 1

4π

∫
Γ

−σ[ 1
µ
Gij]k(x,y)ρjnx,kdSy (A.21)

= − 1

4π

∫
Γ

Tijk(x,y)ρjnx,kdSy. (A.22)

As for the double-layer potential D[ρ](x), noting

σ[
1

µ
G]jik(y,x) = −δjkpi(y,x) + µ

(
1

µ

∂Gji

∂yk
(y,x) +

1

µ

∂Gki

∂yj
(y,x)

)
(A.23)

= −δjk(−pi(x,y)) +
(
∂Gji

∂yk
(x,y) +

∂Gki

∂yj
(x,y)

)
(A.24)

= 2r−2δjkri (A.25)

− δji(−r−2rk) + 2r−4rkrjri − r−2δjkri − r−2rjδik (A.26)

− δki(−r−2rj) + 2r−4rjrkri − r−2δkjri − r−2rkδij (A.27)

= 4r−4rirjrk (A.28)

= Tijk(x,y), (A.29)

D[ρ](x) is defined as

D[ρ](x) :=
1

4πµ

∫
Γ

σ[G]jik(y,x)ρjny,kdSy (A.30)

=
1

4π

∫
Γ

σ[
1

µ
G]jik(y,x)ρjny,kdSy (A.31)

=
1

4π

∫
Γ

Tijk(x,y)ρjny,kdSy. (A.32)

This matches equation (4) in Wu et al. [80]. Also, by definition, σ[ 1
µ
G]jik(y,x) =

Tjik(y,x) = Tijk(x,y) holds and the above definition of D matches equation (4.3.1)

in Pozrikidis [69].
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The single-layer potential of pressure P S is defined as

P S[ρ](x) :=
1

4π

∫
Γ

pj(x,y)ρjdSy =
1

4π

∫
Γ

2

r2
rj(x,y)ρjdSy =

1

2π

∫
Γ

1

r2
(r · ρ) dSy,

(A.33)

and the double-layer potential of pressure PD is defined as

PD[ρ](x) :=
µ

4π

∫
Γ

Πjk(x,y)ρjny,kdSy (A.34)

where

Πjk(x,y) := −
(
∂pj
∂xk

+
∂pk
∂xj

)
(A.35)

= − ∂

∂xk
[2r−2]rj −

∂

∂xj
[2r−2]rk (A.36)

= −2(−2r−4rkrj + r−2δjk) +−2(−2r−4rjrk + r−2δkj) (A.37)

= 4(−r−2δjk + 2r−4rjrk). (A.38)

∴ P S[ρ](x) =
µ

4π

∫
Γ

4(r−2δjk − 2r−4rjrk)ρjny,kdSy (A.39)

=
µ

4π

∫
Γ

(r−2δjk − 2r−4rjrk)ρjny,kdSy. (A.40)

Here we derive D′. The kernel of D′ is defined as

KD′
:=

(
∂Tijk
∂xl

(x,y) +
∂Tljk
∂xi

(x,y)

)
ny,knx,l − Πjkny,knx,i(x,y) (A.41)

with four indices i, j, k, and l (i, j, k, l ∈ {1, 2}).

∂Tijk
∂xl

(x,y) =
∂

∂xl
[4r−4rirjrk] (A.42)

= 4[−4r−6rlrirjrk + r−4δilrjrk + r−4riδjlrk + r−4rirjδkl], (A.43)

∂Tljk
∂xi

(x,y) =
∂

∂xi
[4r−4rlrjrk] (A.44)

= 4[−4r−6rirlrjrk + r−4δlirjrk + r−4rlδjirk + r−4rlrjδki]. (A.45)
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∴
1

4

[
∂Tijk
∂xl

(x,y) +
∂Tljk
∂xi

(x,y)

]
ny,knx,l (A.46)

= −8r−6rirj(rkny,k)(rlnx,l) + 2r−4(δilnx,l)rj(rkny,k) (A.47)

+ r−4ri(δjlnx,l)(rkny,k) + r−4rirjδklnx,lny,k (A.48)

+ r−4δij(rkny,k)(rlnx,l) + r−4rj(δkiny,k)(rlnx,l) (A.49)

= −8r−6 (r · ny) (r · nx) [r ⊗ r] + 2r−4 (r · ny) [nx ⊗ r] (A.50)

+ r−4 (r · ny) [r ⊗ nx] + r−4 (nx · ny) [r ⊗ r] (A.51)

+ r−4 (r · nx) (r · ny) I + r−4 (r · nx) [ny ⊗ r] . (A.52)

As for the pressure term Πjkny,knx,i,

1

4
Πjkny,knx,i = −(r−2δjk − 2r−4rjrk)ny,knx,i (A.53)

= −r−2(nx,iny,j) + 2r−4(rkny,k)(nx,irj) (A.54)

= −r−2 [nx ⊗ ny] + 2r−4 (r · ny) [nx ⊗ r] . (A.55)

∴
1

4
KD′

=
1

4

(
∂Tijk
∂xl

(x,y) +
∂Tljk
∂xi

(x,y)

)
ny,knx,l − Πjkny,knx,i(x,y) (A.56)

= −8r−6 (r · ny) (r · nx) [r ⊗ r] +
������������:0

2r−4 (r · ny) [nx ⊗ r] (A.57)

+ r−4 (r · ny) [r ⊗ nx] + r−4 (nx · ny) [r ⊗ r] (A.58)

+ r−4 (r · nx) (r · ny) I + r−4 (r · nx) [ny ⊗ r] (A.59)

+ r−2 [nx ⊗ ny]−
������������:0

2r−4 (r · ny) [nx ⊗ r] (A.60)

= −8r−6 (r · ny) (r · nx) [r ⊗ r] + r−4 (r · ny) [r ⊗ nx] (A.61)

+ r−4 (nx · ny) [r ⊗ r] + r−4 (r · nx) (r · ny) I (A.62)

+ r−4 (r · nx) [ny ⊗ r] + r−2 [nx ⊗ ny] . (A.63)
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D′ is defined as

D′[ρ](x) =
µ

4π

∫
Γ

KD′

ij ρjdSy =
µ

π

∫
Γ

1

4
KD′

ij ρjdSy (A.64)

=
µ

π

∫
Γ

(
−8r−6 (r · ny) (r · nx) [r ⊗ r] + r−4 (r · ny) [r ⊗ nx]

)
ρjdSy

(A.65)

+
µ

π

∫
Γ

(
r−4 (nx · ny) [r ⊗ r] + r−4 (r · nx) (r · ny) I

)
ρjdSy (A.66)

+
µ

π

∫
Γ

(
r−4 (r · nx) [ny ⊗ r] + r−2 [nx ⊗ ny]

)
ρjdSy (A.67)

the same as equation (54) in Wu et al. [80].

A.2 Derivations of Stokes Layer Potentials in C

A.2.1 Some partial derivatives in complex variables

In general, for an analytic complex variable function f(z, z) = f(x, y) where z ∈ C

and x, y ∈ R, the partial derivative of f with respect to real x

∂f

∂x
=


Re

{
∂f
∂x

}
+ Im

{
∂f
∂x

}
,

∂
∂x

(Re {f}+ iIm {f}) = ∂
∂x
Re {f}+ i ∂

∂x
Im {f}

(A.68)

holds by definition.

∴


Re

{
∂f
∂x

}
= ∂

∂x
[Re {f}] ,

Im
{

∂f
∂x

}
= ∂

∂x
[Im {f}] .

(A.69)

These hold similarly for the partial derivative with respect to y.

Let z := (y1 − x1)+ i(y2 − x2) ∈ C corresponding to −r = y−x ∈ R2. Also let

∀v = (v1, v2)
T ∈ R2 and c = v1 + iv2 ∈ C.

Now we consider the partial derivatives of ∂
∂x1

[r−2 (r · v)] with respect to the

variables of x = (x1, x2)
T . Since c

z
depends only on z (independent of z), the first
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order derivative with respect to x1 is

∂

∂x1
[r−2 (r · v)] = ∂

∂x1

[
−Re

{ c
z

}]
(A.70)

= −Re

{
∂

∂x1

( c
z

)}
(A.71)

= −Re

{
∂

∂z

( c
z

) ∂z

∂x1

}
(A.72)

= −Re
{
− c

z2
(−1)

}
(A.73)

= −Re
{ c

z2

}
. (A.74)

The first equality is because of the identity we have already seen, the second equality

is because of the just above discussion, and the third equality is because of the chain

rule. We can compute other partial derivatives similarly using

∂z

∂x1
= −1,

∂z

∂x2
= −i, ∂z

∂y1
= 1,

∂z

∂y2
= i, (A.75)

∂z

∂x1
= −1,

∂z

∂x2
= −i, ∂z

∂y1
= 1,

∂z

∂y2
= i. (A.76)

For example, the partial derivatives with respect to the variables of x = (x1, x2)
T up

to the second order can be written as

∂

∂x1
[r−2 (r · v)] = ∂

∂x1

[
−Re

{ c
z

}]
= −Re

{ c

z2

}
, (A.77)

∂

∂x2
[r−2 (r · v)] = ∂

∂x2

[
−Re

{ c
z

}]
= −Re

{
i
c

z2

}
= Im

{ c

z2

}
, (A.78)

∂2

∂x21
[r−2 (r · v)] = ∂2

∂x21

[
−Re

{ c
z

}]
= −2Re

{ c

z3

}
, (A.79)

∂2

∂x22
[r−2 (r · v)] = ∂2

∂x22

[
−Re

{ c
z

}]
= 2Im

{
i
c

z3

}
= 2Re

{ c

z3

}
(A.80)

∂2

∂x1∂x2
[r−2 (r · v)] = ∂2

∂x1∂x2

[
−Re

{ c
z

}]
= −2Re

{
i
c

z3

}
= 2Im

{ c

z3

}
. (A.81)
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A.2.2 Laplace layer potentials

We recall the layer potentials S and D for the Laplace equation. They can be written

in C as

S[τ ](zx) :=
∫
Γ

log
1

r
τ(zy)|dzy|, (A.82)

D[τ ](zx) :=

∫
Γ

∂

∂ny

(
log

1

r

)
τ(zy)|dzy| =

∫
Γ

r · ny

r2
τ(zy)|dzy|. (A.83)

By the definitions of IL, IC , and the identity

r · ny

r2
= −Re

[νy
z

]
, (A.84)

S[τ ](zx) = −IL[τ ](zx), (A.85)

D[τ ](zx) = Re [iIC [τ ]] . (A.86)

A.2.3 Stokes layer potentials

Stokes layer potentials are written as compositions of the singular integrals and

Laplace layer potentials in C. Now we convert the single and double layer potentials

S and D for Stokes flow equations into complex forms.

A.2.4 Stokes single-layer potential S

As to Stokes single layer potential S, we rewrite S as the following form

S[τ ](zx) = S[ρ](x) =

∫
Γ

Gij(x,y)ρj(y)dsy

=

∫
Γ

[
−δij log(r) +

1

r2
rirj

]
ρj(y)dsy

= S[ρ](x) +
∫
Γ

[r ⊗ r]

r2
ρdsy

= S[ρ](x) +
∫
Γ

(r · ρ)∇x [log(r)] dsy

= S[ρ]−
∫
Γ

Re[zτ ]∇x [log(r)] |dzy|. (A.87)
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We used another identity below to obtain the fourth line

[r ⊗ r]

r2
ρ = (r · ρ) r

r2
= (r · ρ)∇x log(r). (A.88)

Noting z = (y1 − x1) + i(y2 − x2) and τ = ρ1 + iρ2,∫
Γ

Re[zτ ]∇x [log(r)] |dzy| (A.89)

=

∫
Γ

[(y1 − x1)ρ1 + (y2 − x2)ρ2]∇x [log(r)] |dzy|

=

∫
Γ

(y · ρ)∇x [log(r)] |dzy| − x1

∫
Γ

ρ1∇x [log(r)] |dzy| − x2

∫
Γ

ρ2∇x [log(r)] |dzy|

= −∇x

∫
Γ

(y · ρ) log 1

r
|dzy|+ x1∇x

∫
Γ

ρ1 log
1

r
|dzy|+ x2∇x

∫
Γ

ρ2 log
1

r
|dzy|

= −∇xS[(y · ρ)] + x1∇xS[ρ1] + x2∇xS[ρ2]. (A.90)

∴ S[τ ] = S[ρ]−
∫
Γ

Re[zτ ]∇x [log(r)] |dzy|

= S[ρ] +∇xS[(y · ρ)]− x1∇xS[ρ1]− x2∇xS[ρ2]. (A.91)

This matches the derivation in Wu et al. [80].

To compute this more explicitly, we need the gradient of log r in complex

variable.

∂

∂x1
log(r) =

∂

∂x1
Re {log(zy − zx)}

= Re

{
∂

∂x1
log(zy − zx)

}
= Re

{
−1

zy − zx

}
= −Re

{
1

z

}
, (A.92)

∂

∂x2
log(r) =

∂

∂x2
Re {log(zy − zx)}

= Re

{
∂

∂x2
log(zy − zx)

}
= Re

{
−i

zy − zx

}
= Im

{
1

z

}
. (A.93)

∴ ∇x log(r) =

−Re
{

1
z

}
Im

{
1
z

}
 . (A.94)
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S[τ ] = S[ρ]−
∫
Γ

Re[zτ ]∇x [log(r)] |dzy|

= S[ρ] +∇xS[(y · ρ)]− x1∇xS[ρ1]− x2∇xS[ρ2]. (A.95)

∴ ∇xS[ρ] = ∇x

∫
Γ

ρ log
1

r
|dzy|

= −
∫
Γ

ρ∇x log
1

r
|dzy|

= −
∫
Γ

ρ

−Re
{

1
z

}
Im

{
1
z

}
 |dzy|

=

 Re
{∫

ρ
z

dz
iνy

}
−Im

{∫
ρ
z

dz
iνy

}


=

 Re
{
IC [

ρ
iνy

]
}

−Im
{
IC [

ρ
iνy

]
}
 . (A.96)

for ρ ∈ R.
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∴ S[τ ] = S[ρ] +∇xS[(y · ρ)]− x1∇xS[ρ1]− x2∇xS[ρ2] (A.97)

= −

IL[ρ1]
IL[ρ2]

+

 Re
{
IC [

(y·ρ)
iνy

]
}

−Im
{
IC [

(y·ρ)
iνy

]
}
 (A.98)

− x1

 Re
{
IC [

ρ1
iνy

]
}

−Im
{
IC [

ρ1
iνy

]
}
− x2

 Re
{
IC [

ρ2
iνy

]
}

−Im
{
IC [

ρ2
iνy

]
}
 (A.99)

= −

IL[ρ1]
IL[ρ2]

+

 Re
{
IC [

1
iνy

((y1 − x1)ρ1 + (y2 − x2)ρ2)]
}

−Im
{
IC [

1
iνy

((y1 − x1)ρ1 + (y2 − x2)ρ2)]
}
 (A.100)

= −

IL[ρ1]
IL[ρ2]

+


 Re

{
IC [

1
iνy

· ]
}

−Im
{
IC [

1
iνy

· ]
}
⊗

y1 − x1

y2 − x2



ρ1
ρ2

 (A.101)

= −

IL[ρ1]
IL[ρ2]

+


Im {IC [νy · ]}

Re {IC [νy · ]}

⊗

Re {z}

Im {z}



ρ1
ρ2

 . (A.102)

A.2.5 Stokes double-layer potential D

Next, we convert Stokes double layer potential D. Here we use another identity

∇x

[
(r · ny)

r2

]
=

ny

r2
− 2 (r · ny)

r

r4
. (A.103)
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Then

D[τ ](zx) = D[ρ](x) =

∫
Γ

Tijk(x,y)nk(y)ρj(y)dsy

=

∫
Γ

(r · ny)

r2
[r ⊗ r]

r2
ρ(y)dsy

=
1

2

∫
Γ

(r · ρ)
(
ny

r2
−∇x

[
(r · ny)

r2

])
dsy

= −1

2

∫
Γ

Re
{τ
z

}νy,1
νy,2

 |dzy|+
1

2

∫
Γ

Re [zτ ]

−Re
{νy

z2

}
Im

{νy
z2

}
 |dzy|

= −1

2
Im

∫
Γ

νy,1/νy
νy,2/νy

⊗

1/z

i/z


Re {τ}

Im {τ}

 dzy


+

1

2

∫
Γ

Im
{ ·

z2

}
Re

{ ·
z2

}
⊗

−Re {z}

−Im {z}


−Re {τ}

−Im {τ}

 dzy

= −1

2
Im

IC
[
νy,1
νy
τ
]

IC

[
νy,2
νy
τ
]
+

1

2

Re {IH [·]}

Im {IH [·]}

⊗

−Re {z}

−Im {z}


−Re {τ}

−Im {τ}

 .

(A.104)

A.2.6 S ′

S ′[ρ] = −
∫
Γ

1

r4
[r ⊗ r] (r · nx)ρydsy

= −
∫
Γ

1

r4
rirjrknx,kρy,jdsy

= −
∫
Γ

(
1

r4
rjρy,jri

)
(rknx,k) dsy. (A.105)

We substitute the following identity into the first term of the integrand

∇x

[
(r · ρ)
r2

]
=

ρ

r2
− 2

r4
(r · ρ) r

⇔ (r · ρ)
r4

r =
1

2

[
ρ

r2
−∇x

[
(r · ρ)
r2

]]
. (A.106)
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Then

S ′[ρ] = −
∫
Γ

1

2

[
ρ

r2
−∇x

[
(r · ρ)
r2

]]
(r · nx) dsy

= −1

2

∫
Γ

(r · nx)

r2
ρdsy +

1

2

∫
Γ

∇x

[
(r · ρ)
r2

]
(r · nx) dsy

= −1

2

∫
Γ

(r · nx)

r2
ρdsy

(I)

+
1

2
(x · nx)

∫
Γ

∇x
(r · ρ)
r2

dsy
(II)

− 1

2

∫
Γ

(y · nx)∇x
(r · ρ)
r2

dsy
(III)

.

(A.107)

(I) − 1
2

∫
Γ

(r·nx)
r2

ρdsy : Using the following identity

(r · nx)

r2
= −Re

{νx
z

}
(A.108)

where νx = nx,1 + inx,2 and nx = (nx,1, nx,2),

(I) =

∫
−Re

{νx
z

}
ρ|dzy|

= −Re

{∫
1

z
νxρ|dzy|

}
= −Re

{∫
1

z

νx
iνy

ρdzy

}
= −Re

{
IC

[
νx
iνy

ρ

]}
= −Re

{
−iIC

[
νx
νy

ρ

]}
= −Im

{
IC

[
νx
νy

ρ

]}
. (A.109)

(II)
∫
Γ
∇x

(r·ρ)
r2
dsy : Here using the identity below

∇x

[
(r · ρ)
r2

]
= ∇x

[
−Re

{νx
z

}]
=

(
−Re

{ τ

z2

}
, Im

{ τ

z2

})
(A.110)
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where τ = ρ1 + iρ2,

(II) =

∫ −Re
{

τ
z2

}
Im

{
τ
z2

}
 |dzy|

=

−Re
{∫

τ
z2
|dzy|

}
Im

{∫
τ
z2
|dzy|

}


=

−Re
{∫

τ
z2

dzy
iνy

}
Im

{∫
τ
z2

dzy
iνy

}


=

−Re
{
IH

[
τ
iνy

]}
Im

{
IH

[
τ
iνy

]}


=

−Re {IH [−iνy(ρ1 + iρ2)]}

Im {IH [−iνy(ρ1 + iρ2)]}


=

−Im {IH [νyρ1]} − Re {IH [νyρ2]}

−Re {IH [νyρ1]}+ Im {IH [νyρ2]}


=

−Im {IH [νy·]} , −Re {IH [νy·]}

−Re {IH [νy·]} , Im {IH [νy·]}


ρ1
ρ2

 . (A.111)

(III)
∫
Γ
(y · nx)∇x

(r·ρ)
r2
dsy :

(III) =

∫
(y1nx,1 + y2nx,2)∇x

[
(r · ρ)
r2

]
dsy

= nx,1

∫
y1∇x

[
(r · ρ)
r2

]
dsy + nx,2

∫
y2∇x

[
(r · ρ)
r2

]
dsy

= nx,1

∫
y1

−Re
{

τ
z2

}
Im

{
τ
z2

}
 |dzy|+ nx,2

∫
y2

−Re
{

τ
z2

}
Im

{
τ
z2

}
 |dzy|. (A.112)
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−
∫
y1Re

{ τ

z2

}
|dzy| = −Re

{∫
y1
τ

z2
dzy
iνy

}
= −Re

{∫
1

z2
y1(−iνy)(ρ1 + iρ2)dzy

}
= Re

{
i

∫
1

z2
y1νyρ1dzy

}
− Re

{∫
1

z2
y1νyρ2dzy

}
= −Im

{∫
1

z2
y1νyρ1dzy

}
− Re

{∫
1

z2
y1νyρ2dzy

}

=

−Im {IH [y1νy·]}

−Re {IH [y1νy·]}

 ·

ρ1
ρ2

 . (A.113)

Other terms involving Im
{

τ
z2

}
and y2 in the integrals give similar forms. As a result,

(III) =
2∑

j=1

nx,j

−Im {IH [yjνy·]} , −Re {IH [yjνy·]}

−Re {IH [yjνy·]} , Im {IH [yjνy·]}


ρ1
ρ2

 . (A.114)

Noting z = (y1 − x1) + i(y2 − x2), we summarize S ′ as

S ′[ρ] =
1

2
Im

{
IC

[
νx
νy

ρ

]}
+

(x · nx)

2

−Im {IH [νy·]} , −Re {IH [νy·]}

−Re {IH [νy·]} , Im {IH [νy·]}

ρ

− 1

2

2∑
j=1

nx,j

−Im {IH [yjνy·]} , −Re {IH [yjνy·]}

−Re {IH [yjνy·]} , Im {IH [yjνy·]}

ρ

=
1

2
Im {IC [νxνyρ]}

+
1

2

−Im {IH [(r · nx) νy·]} , −Re {IH [(r · nx) νy·]}

−Re {IH [(r · nx) νy·]} , Im {IH [(r · nx) νy·]}

ρ (A.115)

here we can compute (r · nx) as −Re {zνx}.

A.2.7 D′

Let n(x) := nx = (nx,1, nx,2), n(y) := ny = (ny,1, ny,2), νx := nx,1 + inx,2, and

νy := ny,1 + iny,2. ν The kernel KD′
ij of D′

Γ1
[ρ](x) =

∫
Γ1
KD′

ij (x,y)ρ(y)jdsy (x ∈ Γ2)
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is given by

[
∇

(
Tijknyk

)
+
{
∇

(
Tijknyk

)}T − Πik(x,y)nyk

]
nx

=

[
∂

∂xl
Tijk +

∂

∂xi
Tljk

]
nyknxl − Πik(x,y)nxjnyk (i, j, k, l ∈ {1, 2}) (A.116)

where Tijknyk is the kernel of the double layer potential, and Πiknyk is defined as

1
π

(
− 1

2r2
δik +

1
r4
x̂ix̂k

)
nyk (2.6.21) in Pozrikidis [69].

The first term of (A.116) is computed as

∇
(
Tijknyk

)
n(x) =

∂

∂xl

(
1

πr4
x̂ix̂jx̂knyk

)
nxl

=

{
1

πr4
(δilx̂jx̂k + x̂iδjlx̂k + x̂ix̂jδkl)− 4

1

πr6
x̂ix̂jx̂kx̂l

}
nyknxl

=
1

πr4
{nxix̂j (r · ny) + x̂inxj (r · ny) + x̂ix̂j (nx · ny)}

− 4
1

πr6
x̂ix̂j (r · nx) (r · ny)

=
1

πr4
{([nx ⊗ r] + [r ⊗ nx]) (r · ny) + [r ⊗ r] (nx · ny)}

− 4
1

πr6
[r ⊗ r] (r · nx) (r · ny) . (A.117)

Similarly, noting the transpose is about indices i and l, the second term is

{
∇

(
Tijknyk

)}T
n(x) =

∂

∂xi

(
1

πr4
x̂lx̂jx̂knyk

)
nxl

=

{
1

πr4
(δlix̂jx̂k + x̂lδjix̂k + x̂lx̂jδki)− 4

1

πr6
x̂lx̂jx̂kx̂i

}
nyknxl

=
1

πr4
{nxix̂j (r · ny) + δij (r · nx) (r · ny) + nyix̂j (r · nx)}

− 4
1

πr6
x̂ix̂j (r · nx) (r · ny)

=
1

πr4
{[nx ⊗ r] (r · ny) + [r ⊗ nx] (r · ny) I + [ny ⊗ r] (r · nx)}

− 4
1

πr6
[r ⊗ r] (r · nx) (r · ny) . (A.118)
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The third term Πik(x,y)nxjnyk is

Πik(x,y)nxjnyk =
1

2π
· 2

(
−δik

1

r2
+

2

r4
x̂ix̂k

)
nxjnyk

=
1

π

(
− 1

r2
nyinxj +

2

r4
(x̂knyk)x̂inxj

)
=
1

π

(
− 1

r2
[ny ⊗ nx] +

2

r4
(r · ny) [r ⊗ nx]

)
. (A.119)

Therefore, we have the kernel of D′ below

[
∇

(
Tijknyk

)
+
{
∇

(
Tijknyk

)}T − Πik(x,y)nyk

]
n(x)

=
1

πr2
(ny ⊗ nx)

+
1

πr4
{(ny ⊗ r) (r · nx) + (r ⊗ r) (nx · ny) + (r · nx) (r · ny) I + (r · ny) (r ⊗ nx)}

− 8

πr6
(r · nx) (r · ny) (r ⊗ r) . (A.120)

This result matches equation (54) in Wu et al. [80]
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We want to apply the special quadrature technique for close evaluations. For this

purpose, we need to change the expression (A.120) into a form of complex variables.

Converting D′ into another form in C.

At first, the following equation holds for ∀v ∈ R2.

∇x

[
r−2 (r · v)

]
= r−2v−2r−4 (r · v) r ⇔ r−4 (r · v) r =

1

2

{
r−2v −∇x

[
r−2 (r · v)

]}
(A.121)

So, the kernel of the double layer potential can be written as

KDρ = r−4rirjrkρjnyk = r−4 (r · ny) (r · ρ) r = (r · ρ) r−4 (r · ny) r

= (r · ρ) 1
2

{
r−2ny −∇x

[
r−2 (r · ny)

]}
=

1

2

{
r−2 (r · ρ)ny − ((x− y) · ρ)∇x

[
r−2 (r · ny)

]}
=

1

2

{
r−2 (r · ρ)ny − (x · ρ)∇x

[
r−2 (r · ny)

]
+ (y · ρ)∇x

[
r−2 (r · ny)

]}
(A.122)

where x = (x1, x2)
T and y = (y1, y2)

T are the target point and a source point

respectively, r = x − y, ρ = (ρ1, ρ2)
T the density vector, ny = (ny1, ny2)

T the

unit normal vector at y. Also let nx = (nx1, nx2)
T be the unit normal vector at x.

We use this to compute the first two terms of

KD′
ρ =

{
∇x

[
KDρ

]
+
(
∇x

[
KDρ

])T −
(
ΠD · ρ

)}
nx. (A.123)
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∇x

[
KDρ

]
=

1

2

{
∇x

[
r−2 (r · ρ)ny

]
+∇x∇x

[
r−2 (r · ny)

]
(y · ρ)

}
+

1

2

{
−
[
∇x [(x · ρ)]⊗∇x

[
r−2 (r · ny)

]]
− (x · ρ)∇x∇x

[
r−2 (r · ny)

]}
=

1

2

{
∇x

[
r−2 (r · ρ)ny

]
+∇x∇x

[
r−2 (r · ny)

]
(y · ρ)

}
+

1

2

{
−
[
ρ⊗∇x

[
r−2 (r · ny)

]]
− (x · ρ)∇x∇x

[
r−2 (r · ny)

]}
=

1

2

{[
∇x

[
r−2 (r · ρ)

]
⊗ ny

]
+∇x∇x

[
r−2 (r · ny)

]
(y · ρ)

}
+

1

2

{
−
[
ρ⊗∇x

[
r−2 (r · ny)

]]
− (x · ρ)∇x∇x

[
r−2 (r · ny)

]}
.

(A.124)(
∇x

[
KDρ

])T
=

1

2

{[
ny ⊗∇x

[
r−2 (r · ρ)

]]
+
(
∇x∇x

[
r−2 (r · uy)

])T
(y · ρ)

}
=

1

2

{
−
[
∇x

[
r−2 (r · ny)

]
⊗ ρ

]
− (x · ρ)

(
∇x∇x

[
r−2 (r · ny)

])T}
.

(A.125)

Also, we write the last term as

ΠD · ρ =
(
r−2ny − 2r−4 (r · ny) r

)
· ρ = −∇x

[
r−2 (r · ny)

]
· ρ. (A.126)

Hence, we write (A.123) as

∇x

[
KDρ

]
+
(
∇x

[
KDρ

])T −
(
ΠD · ρ

)
=
1

2

{[
∇x

[
r−2 (r · ρ)

]
⊗ ny

]
+
[
ny ⊗∇x

[
r−2 (r · ρ)

]]}
+

1

2

{
∇x∇x

[
r−2 (r · ny)

]
+
(
∇x∇x

[
r−2 (r · ny)

])T}
((y − x) · ρ)

− 1

2

{[
ρ⊗∇x

[
r−2 (r · ny)

]]
+
[
∇x

[
r−2 (r · ny)

]
⊗ ρ

]}
+
(
∇x

[
r−2 (r · ny)

]
· ρ

)
=
1

2

{[
∇x

[
r−2 (r · ρ)

]
⊗ ny

]
+
[
ny ⊗∇x

[
r−2 (r · ρ)

]]}
− 1

2

{
∇x∇x

[
r−2 (r · ny)

]
+
(
∇x∇x

[
r−2 (r · ny)

])T}
(r · ρ)

− 1

2

{[
ρ⊗∇x

[
r−2 (r · ny)

]]
+
[
∇x

[
r−2 (r · ny)

]
⊗ ρ

]}
+
(
∇x

[
r−2 (r · ny)

]
· ρ

)
. (A.127)
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We compute each term separately or similar terms together using the complex variable

expressions in the following sections.

The first term of (A.127)

Let τ := ρ1 + iρ2 ∈ C correspond to the density vector of the boundary integral

equations ρ = (ρ1, ρ2)
T ∈ R2. Noting [a1 ⊗ a2]a3 = (a2 · a3)a1,

[[
∇x

[
r−2 (r · ρ)

]
⊗ ny

]]
nx =


−Re {τz−2}

Im {τz−2}

⊗ ny

nx = (ny · nx)

−Re {τz−2}

Im {τz−2}

 .

(A.128)
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∫
Γ

[
∇x

[
r−2 (r · ρ)

]
⊗ ny

]
nxdSy

=

−
∫
Γ
(nx · ny) Re {τz−2} dSy∫

Γ
(nx · ny) Im {τz−2} dSy


=

−Re
{∫

Γ
(nx · ny) τz

−2dSy

}
Im

{∫
Γ
(nx · ny) τz

−2dSy

}
 (∵ The integrand except τz−2 is real.)

=

−Re
{∫

Γ
Re {nxνy} τz−2−i

ny
dzy

}
Im

{∫
Γ
Re {nxνy} τz−2−i

ny
dzy

}
 (∵ dSy = |dzy| =

−i
νy
dzy, (nx · ny) = Re {νxνy} .)

=

 Re
{
i
∫
Γ
Re {νxνy} τz−2νydzy

}
−Im

{
i
∫
Γ
Re {νxνy} τz−2νydzy

}
 (∵ νyνy = 1.)

=

−Im
{∫

Γ
Re {νxνy} τz−2νydzy

}
−Re

{∫
Γ
Re {νxνy} τz−2νydzy

}
 (∵ Re {ic} = −Im {c} , Im {ic} = Re {c} for ∀c ∈ C.)

=

−Im
{∫

Γ
Re {νxνy} (ρ1 + iρ2)z

−2νydzy
}

−Re
{∫

Γ
Re {νxνy} (ρ1 + iρ2)z

−2νydzy
}


=

−Im
{∫

Γ
Re {νxνy} ρ1z−2νydzy

}
− Im

{
i
∫
Γ
Re {νxνy} ρ2z−2νydzy

}
−Re

{∫
Γ
Re {νxνy} ρ1z−2νydzy

}
− Re

{
i
∫
Γ
Re {νxνy} ρ2z−2νydzy

}


=

−Im
{∫

Γ
Re {νxνy} ρ1z−2νydzy

}
− Re

{∫
Γ
Re {νxνy} ρ2z−2νydzy

}
−Re

{∫
Γ
Re {νxνy} ρ1z−2νydzy

}
+ Im

{∫
Γ
Re {νxνy} ρ2z−2νydzy

}


=

−Im {IH [Re {νxνy} νyρ1]} − Re {IH [Re {νxνy} νyρ2]}

−Re {IH [Re {νxνy} νyρ1]}+ Im {IH [Re {νxνy} νyρ2]}

 , (A.129)

here and after this section we use the notations of following these.

IH [f ] (x) :=

∫
Γ

f

z2
dzy, (A.130)

IS [f ] (x) :=

∫
Γ

f

z3
dzy (A.131)
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The second term of (A.127)

Since r−2 (r · ρ) = −Re
{

τ
z

}
,

∂

∂x1

[
r−2 (r · ρ)

]
= −Re

{
(−1)z−2(−1)τ

}
= −Re

{ τ

z2

}
, (A.132)

∂

∂x2

[
r−2 (r · ρ)

]
= −Re

{
(−1)z−2(−i)τ

}
= −Re

{
i
τ

z2

}
= Im

{ τ

z2

}
. (A.133)

Also, noting [a1 ⊗ a2]a3 = (a2 · a3)a1 for a1,a2,a3 ∈ R2,

{[
ny ⊗∇x

[
r−2 (r · ρ)

]]}
nx =

{(
∇x

[
r−2 (r · ρ)

]
· nx

)}
ny

=


−Re {τz−2}

Im {τz−2}

 ·

nx1

nx2


ny

=
(
−Re

{
τz−2

}
nx1 + Im

{
τz−2

}
nx2

)
ny

= −Re
{
τz−2nx

}
ny

= −Re
{
(ρ1 + iρ2)z

−2νx
}
ny

= −
(
ρ1Re

{
z−2νx

}
+ ρ2Re

{
iz−2νx

})
ny

= −


Re {z−2νx}

Re {iz−2νx}

 · ρ

ny

=


−Re {z−2νx}

Im {z−2νx}

 · ρ


ny1

ny2

 (A.134)
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∫
Γ

[
ny ⊗∇x

[
r−2 (r · ρ)

]]
nxdSy =

∫
Γ


−Re {z−2νx}

Im {z−2νx}

 · ρ

nydSy

=

∫
Γ

−ny1Re {z−2νx} ρ1 + ny1Im {z−2νx} ρ2

−ny2Re {z−2νx} ρ1 + ny2Im {z−2νx} ρ2

 dSy

=

−Re
{∫

Γ
ny1z

−2νxρ1dSy

}
+ Im

{∫
Γ
ny1z

−2νxρ2dSy

}
−Re

{∫
Γ
ny2z

−2νxρ1dSy

}
+ Im

{∫
Γ
ny2z

−2νxρ2dSy

}


=

Re
{
i
∫
Γ
ny1z

−2νxνyρ1dzy
}
− Im

{
i
∫
Γ
ny1z

−2νxνyρ2dzy
}

Re
{
i
∫
Γ
ny2z

−2νxνyρ1dzy
}
− Im

{
i
∫
Γ
ny2z

−2νxνyρ2dzy
}


=

−Im
{∫

Γ
ny1z

−2νxνyρ1dzy
}
− Re

{∫
Γ
ny1z

−2νxνyρ2dzy
}

−Im
{∫

Γ
ny2z

−2νxνyρ1dzy
}
− Re

{∫
Γ
ny2z

−2νxνyρ2dzy
}


=

−Im {IH [ny1νxνyρ1]} − Re {IH [ny1νxνyρ2]}

−Im {IH [ny2νxνyρ1]} − Re {IH [ny2νxνyρ2]}

 .

(A.135)

∴
∫
Γ

1

2

{[
∇x

[
r−2 (r · ρ)

]
⊗ ny

]
+
[
ny ⊗∇x

[
r−2 (r · ρ)

]]
nx

}
dSy

=
1

2

−Im {IH [Re {nxνy} νyρ1]} − Re {IH [Re {nxνy} νyρ2]}

−Re {IH [Re {nxνy} νyρ1]}+ Im {IH [Re {nxνy} νyρ2]}


+

1

2

−Im {IH [ny1nxνyρ1]} − Re {IH [ny1nxνyρ2]}

−Im {IH [ny2nxνyρ1]} − Re {IH [ny2nxνyρ2]}

 . (A.136)
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The third and forth terms of (A.127) Here we compute

−
[
∇x∇x

[
r−2 (r · ny)

]
+
(
∇x∇x

[
r−2 (r · ny)

])T]
(r · ρ)nx. (A.137)

Since

∇x∇x

[
r−2 (r · ny)

]
= 2

−Re {νyz−3} Im {νyz−3}

Im {νyz−3} Re {νyz−3}

 , (A.138)

∇x∇x

[
r−2 (r · ny)

]
+
(
∇x∇x

[
r−2 (r · ny)

])T
= 4

−Re {νyz−3} Im {νyz−3}

Im {νyz−3} Re {νyz−3}

 .
(A.139)

Also using (r · ρ)nx = [nx ⊗ r]ρ, we have

−
[
∇x∇x

[
r−2 (r · ny)

]
+
(
∇x∇x

[
r−2 (r · ny)

])T]
(r · ρ)nx

=− 4

−Re {νyz−3} Im {νyz−3}

Im {νyz−3} Re {νyz−3}

 [nx ⊗ r]ρ

=− 4

−Re {νyz−3} Im {νyz−3}

Im {νyz−3} Re {νyz−3}


nx1r1 nx1r2

nx2r1 nx2r2

ρ

=− 4

−Re {νyz−3}nx1r1 + Im {νyz−3}nx2r1 −Re {νyz−3}nx1r2 + Im {νyz−3}nx2r2

Im {νyz−3}nx1r1 +Re {νyz−3}nx2r1 Im {νyz−3}nx1r2 +Re {νyz−3}nx2r2

ρ

=− 4

−Re {νyz−3}nx1r1 −Re {νyz−3}nx1r2

Im {νyz−3}nx1r1 Im {νyz−3}nx1r2

ρ− 4

Im {νyz−3}nx2r1 Im {νyz−3}nx2r2

Re {νyz−3}nx2r1 Re {νyz−3}nx2r2

ρ

=− 4

−Re {νyz−3}nx1r1ρ1 − Re {νyz−3}nx1r2ρ2

Im {νyz−3}nx1r1ρ1 + Im {νyz−3}nx1r2ρ2


− 4

Im {νyz−3}nx2r1ρ1 + Im {νyz−3}nx2r2ρ2

Re {νyz−3}nx2r1ρ1 +Re {νyz−3}nx2r2ρ2

 (A.140)
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The integral of each element along the boundary can be written like below.∫
Γ

Re
{
νyz

−3
}
nx1r1ρ1dSy = Re

{∫
Γ

νyz
−3nx1r1ρ1dSy

}
= Re

{∫
Γ

νyz
−3nx1r1ρ1

−i
νy
dzy

}
= −Re

{
i

∫
Γ

z−3nx1r1ρ1dzy

}
(A.141)

∴
∫
Γ

−
[
∇x∇x

[
r−2 (r · νy)

]
+
(
∇x∇x

[
r−2 (r · νy)

])T]
(r · ρ)nxdSy

=− 4

 Re
{
i
∫
Γ
nx1r1ρ1z

−3dzy
}
+Re

{
i
∫
Γ
nx1r2ρ2z

−3dzy
}

−Im
{
i
∫
Γ
nx1r1ρ1z

−3dzy
}
− Im

{
i
∫
Γ
nx1r2ρ2z

−3dzy
}


− 4

−Im
{
i
∫
Γ
nx2r1ρ1z

−3dzy
}
− Im

{
i
∫
Γ
nx2r2ρ2z

−3dzy
}

−Re
{
i
∫
Γ
nx2r1ρ1z

−3dzy
}
− Re

{
i
∫
Γ
nx2r2ρ2z

−3dzy
}


=− 4

−Im
{∫

Γ
nx1r1ρ1z

−3dzy
}
− Im

{∫
Γ
nx1r2ρ2z

−3dzy
}

−Re
{∫

Γ
nx1r1ρ1z

−3dzy
}
− Re

{∫
Γ
nx1r2ρ2z

−3dzy
}


− 4

−Re
{∫

Γ
nx2r1ρ1z

−3dzy
}
− Re

{∫
Γ
nx2r2ρ2z

−3dzy
}

Im
{∫

Γ
nx2r1ρ1z

−3dzy
}
+ Im

{∫
Γ
nx2r2ρ2z

−3dzy
}


=4

Im {IS [nx1r1ρ1]}+ Im {IS [nx1r2ρ2]}

Re {IS [nx1r1ρ1]}+Re {IS [nx1r2ρ2]}

+ 4

 Re {IS [nx2r1ρ1]}+Re {IS [nx2r2ρ2]}

−Im {IS [nx2r1ρ1]} − Im {IS [nx2r2ρ2]}


(A.142)

∴ − 1

2

∫
Γ

[
∇x∇x

[
r−2 (r · νy)

]
+
(
∇x∇x

[
r−2 (r · νy)

])T]
(r · ρ)nxdSy

=2

Im {IS [nx1r1ρ1]}+ Im {IS [nx1r2ρ2]}

Re {IS [nx1r1ρ1]}+Re {IS [nx1r2ρ2]}

+ 2

 Re {IS [nx2r1ρ1]}+Re {IS [nx2r2ρ2]}

−Im {IS [nx2r1ρ1]} − Im {IS [nx2r2ρ2]}


(A.143)
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The fifth and sixth terms of (A.127) Noting

[
ρ⊗∇x

[
r−2 (r · ny)

]]
nx =

(
∇x

[
r−2 (r · ny)

]
· νx

)
ρ, (A.144)[

∇x

[
r−2 (r · ny)

]
⊗ ρ

]
nx =

[
∇x

[
r−2 (r · ny)

]
⊗ nx

]
ρ. (A.145)

∴−
{[

ρ⊗∇x

[
r−2 (r · ny)

]]
+
[
∇x

[
r−2 (r · ny)

]
⊗ ρ

]}
nx

=−
{(

∇x

[
r−2 (r · ny)

]
· nx

)
+
[
∇x

[
r−2 (r · ny)

]
⊗ nx

]}
ρ

=−


−Re {νyz−2}

Im {νyz−2}

 · nx +

−Re {νyz−2}

Im {νyz−2}

⊗ nx

ρ. (A.146)

The integral of the first term on the boundary is

∫
Γ

−


−Re {νyz−2}

Im {νyz−2}

 · nx

ρ dSy =

∫
Γ

(
Re

{
νyz

−2
}
nx1 − Im

{
νyz

−2
}
nx2

)
ρ dSy

=

∫
Γ

Re
{
νyz

−2
}
nx1ρ dSy −

∫
Γ

Im
{
νyz

−2
}
nx2ρ dSy

= Re

{∫
Γ

νyz
−2nx1ρ dSy

}
− Im

{∫
Γ

νyz
−2nx2ρ dSy

}
= Re

{∫
Γ

νyz
−2nx1ρ

−i
νy
dzy

}
− Im

{∫
Γ

νyz
−2nx2ρ

−i
νy
dzy

}
= −Re

{
i

∫
Γ

z−2nx1ρ dzy

}
+ Im

{
i

∫
Γ

z−2nx2ρ dzy

}
= +Im

{∫
Γ

z−2nx1ρ dzy

}
+Re

{∫
Γ

z−2nx2ρ dzy

}
= Im {IH [nx1ρ]}+Re {IH [nx2ρ]}

=

Im {IH [nx1ρ1]}+Re {IH [nx2ρ1]}

Im {IH [nx1ρ2]}+Re {IH [nx2ρ2]}


(A.147)

120



The second term of (A.146) is

−


−Re {νyz−2}

Im {νyz−2}

⊗ nx

ρ =

 Re {νyz−2}nx1 Re {νyz−2}nx2

−Im {νyz−2}nx1 −Im {νyz−2}nx2

ρ (A.148)

=

 Re {νyz−2}nx1ρ1 +Re {νyz−2}nx2ρ2

−Im {νyz−2}nx1ρ1 − Im {νyz−2}nx2ρ2


(A.149)

Hence, we write the integral of the second term of (A.146) as

∫
Γ

−


−Re {νyz−2}

Im {νyz−2}

⊗ nx

ρdSy

=

 ∫
Γ
Re {νyz−2}nx1ρ1dSy +

∫
Γ
Re {νyz−2}nx2ρ2dSy

−
∫
Γ
Im {νyz−2}nx1ρ1dSy −

∫
Γ
Im {νyz−2}nx2ρ2dSy


=

 Re
{∫

Γ
νyz

−2nx1ρ1dSy

}
+Re

{∫
Γ
νyz

−2nx2ρ2dSy

}
−Im

{∫
Γ
νyz

−2nx1ρ1dSy

}
− Im

{∫
Γ
νyz

−2nx2ρ2dSy

}


=

 Re
{∫

Γ
νyz

−2nx1ρ1
−i
νy
dzy

}
+Re

{∫
Γ
νyz

−2nx2ρ2
−i
νy
dzy

}
−Im

{∫
Γ
νyz

−2nx1ρ1
−i
νy
dzy

}
− Im

{∫
Γ
νyz

−2nx2ρ2
−i
νy
dzy

}


=

−Re
{
i
∫
Γ
z−2nx1ρ1dzy

}
− Re

{
i
∫
Γ
z−2nx2ρ2dzy

}
Im

{
i
∫
Γ
z−2nx1ρ1dzy

}
+ Im

{
i
∫
Γ
z−2nx2ρ2dzy

}


=

Im
{∫

Γ
z−2nx1ρ1dzy

}
+ Im

{∫
Γ
z−2nx2ρ2dzy

}
Re

{∫
Γ
z−2nx1ρ1dzy

}
+Re

{∫
Γ
z−2nx2ρ2dzy

}


=

Im {IH [nx1ρ1]}+ Im {IH [nx2ρ2]}

Re {IH [nx1ρ1]}+Re {IH [nx2ρ2]}

 (A.150)
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The last term of (A.127) We write the last term of (A.127) as

(
∇x

[
r−2 (r · ny)

]
· ρ

)
nx =

[
nx ⊗∇x

[
r−2 (r · ny)

]]
ρ

=

nx ⊗

−Re {νyz−2}

Im {νyz−2}


ρ

=

−nx1Re {νyz−2} nx1Im {νyz−2}

−nx2Re {νyz−2} nx2Im {νyz−2}


ρ1
ρ2


=

−nx1Re {νyz−2} ρ1 + nx1Im {νyz−2} ρ2

−nx2Re {νyz−2} ρ1 + nx2Im {νyz−2} ρ2

 (A.151)

The integral on the boundary is

∫
Γ

nx ⊗

−Re {νyz−2}

Im {νyz−2}


ρ dSy

=

−
∫
Γ
nx1ρ1Re {νyz−2} dSy +

∫
Γ
nx1ρ2Im {νyz−2} dSy

−
∫
Γ
nx2ρ1Re {νyz−2} dSy +

∫
Γ
nx2ρ2Im {νyz−2} dSy


=

−Re
{∫

Γ
nx1ρ1νyz

−2dSy

}
+ Im

{∫
Γ
nx1ρ2νyz

−2dSy

}
−Re

{∫
Γ
nx2ρ1νyz

−2dSy

}
+ Im

{∫
Γ
nx2ρ2νyz

−2dSy

}


=

Re
{
i
∫
Γ
nx1ρ1z

−2dzy
}
− Im

{
i
∫
Γ
nx1ρ2z

−2dzy
}

Re
{
i
∫
Γ
nx2ρ1z

−2dzy
}
− Im

{
i
∫
Γ
nx2ρ2z

−2dzy
}


= −

Im
{∫

Γ
nx1ρ1z

−2dzy
}
+Re

{∫
Γ
nx1ρ2z

−2dzy
}

Im
{∫

Γ
nx2ρ1z

−2dzy
}
+Re

{∫
Γ
nx2ρ2z

−2dzy
}


=

−Im {IH [nx1ρ1]} − Re {IH [nx1ρ2]}

−Im {IH [nx2ρ1]} − Re {IH [nx2ρ2]}

 (A.152)
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The summary of another form of D′∫
Γ

[
∇x

[
KDρ

]
−

(
∇x

[
KDρ

])T −
(
ΠD · ρ

)]
nxdSy

=
1

2

∫
Γ

{[
∇x

[
r−2 (r · ρ)

]
⊗ ny

]
+
[
ny ⊗∇x

[
r−2 (r · ρ)

]]
nx

}
dSy

− 1

2

∫
Γ

[
∇x∇x

[
r−2 (r · ny)

]
+
(
∇x∇x

[
r−2 (r · ny)

])T]
(r · ρ)nxdSy

− 1

2

∫
Γ

[[
ρ⊗∇x

[
r−2 (r · ny)

]]
+
[
∇x

[
r−2 (r · ny)

]
⊗ ρ

]]
nxdSy

+

∫
Γ

(
∇x

[
r−2 (r · ny)

]
· ρ

)
nxdSy

=
1

2

−Im {IH [Re {νxνy} νyρ1]} − Re {IH [Re {νxνy} νyρ2]}

−Re {IH [Re {νxνy} νyρ1]}+ Im {IH [Re {νxνy} νyρ2]}


+

1

2

−Im {IH [ny1νxνyρ1]} − Re {IH [ny1νxνyρ2]}

−Im {IH [ny2νxνyρ1]} − Re {IH [ny2νxνyρ2]}


+ 2

Im {IS [nx1r1ρ1]}+ Im {IS [nx1r2ρ2]}

Re {IS [nx1r1ρ1]}+Re {IS [nx1r2ρ2]}

+ 2

 Re {IS [nx2r1ρ1]}+Re {IS [nx2r2ρ2]}

−Im {IS [nx2r1ρ1]} − Im {IS [nx2r2ρ2]}


+

1

2

���������: 0

Im {IH [nx1ρ1]}+Re {IH [nx2ρ1]}

Im {IH [nx1ρ2]}+
���������: 0

Re {IH [nx2ρ2]}

+
1

2

���������: 0

Im {IH [nx1ρ1]}+ Im {IH [nx2ρ2]}

Re {IH [nx1ρ1]}+
���������: 0

Re {IH [nx2ρ2]}


+

−
���������: 0

Im {IH [nx1ρ1]} − Re {IH [nx1ρ2]}

−Im {IH [nx2ρ1]} −
���������: 0

Re {IH [nx2ρ2]}


=
1

2

−Im {IH [Re {νxνy} νyρ1]} − Re {IH [Re {νxνy} νyρ2]}

−Re {IH [Re {νxνy} νyρ1]}+ Im {IH [Re {νxνy} νyρ2]}


(H1)

+
1

2

−Im {IH [ny1νxνyρ1]} − Re {IH [ny1νxνyρ2]}

−Im {IH [ny2νxνyρ1]} − Re {IH [ny2νxνyρ2]}


(H2)

+
1

2

Re {IH [nx2ρ1]}+ Im {IH [nx2ρ2]}

Re {IH [nx1ρ1]}+ Im {IH [nx1ρ2]}


(H3)

+

−Re {IH [nx1ρ2]}

−Im {IH [nx2ρ1]}


(H4)

+ 2

Im {IS [nx1r1ρ1]}+ Im {IS [nx1r2ρ2]}

Re {IS [nx1r1ρ1]}+Re {IS [nx1r2ρ2]}


(S1)

+ 2

 Re {IS [nx2r1ρ1]}+Re {IS [nx2r2ρ2]}

−Im {IS [nx2r1ρ1]} − Im {IS [nx2r2ρ2]}


(S2)

.

(A.153)
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We rearrange each term as matrix-vector products of corresponding kernels and

densities.

(H1) = −

Im {IH [ · ]} Re {IH [ · ]}

Re {IH [ · ]} −Im {IH [ · ]}


Re {νxνy} νyρ1
Re {νxνy} νyρ2


=

Im {IH [ · ]} Re {IH [ · ]}

Re {IH [ · ]} −Im {IH [ · ]}

Re {νxνy} νyρ (A.154)

(H2) = −

Im {IH [ny1 · ]} Re {IH [ny1 · ]}

Im {IH [ny2 · ]} Re {IH [ny2 · ]}


νxνyρ1
νxνyρ2


=


ny1

ny2

⊗

Im {IH [ · ]}

Re {IH [ · ]}



νxνyρ1
νxνyρ2


=


ny1

ny2

⊗

Im {IH [ · ]}

Re {IH [ · ]}


 νxνyρ (A.155)

(H3) =

0 1

1 0


Re {IH [nx1·]} Im {IH [nx1·]}

Re {IH [nx2·]} Im {IH [nx2·]}


ρ1
ρ2


=

0 1

1 0


Im {IH [nx1·]} Re {IH [nx1·]}

Im {IH [nx2·]} Re {IH [nx2·]}


0 1

1 0


ρ1
ρ2


=

0 1

1 0


nx ⊗

Im {IH [ · ]}

Re {IH [ · ]}



0 1

1 0

ρ (A.156)

124



(H4) =

 0 −Re {IH [nx1 · ]}

−Im {IH [nx2 · ]} 0


ρ1
ρ2


= −


nx1

nx2

⊗

Im {IH [ · ]}

Re {IH [ · ]}



ρ1
ρ2

+

Im {IH [nx1 · ]} 0

0 Re {IH [nx2 · ]}


ρ1
ρ2


= −

nx ⊗

Im {IH [ · ]}

Re {IH [ · ]}


ρ+

nx1 0

0 nx2


Im {IH [ · ]}

Re {IH [ · ]}

ρ

= −

nx ⊗

Im {IH [ · ]}

Re {IH [ · ]}


ρ+

nx ·

Im {IH [ · ]}

Re {IH [ · ]}


 Iρ (A.157)

(S1) = nx1


Im {IS [ · ]}

Re {IS [ · ]}

⊗

r1
r2



ρ1
ρ2

 = nx1


Im {IS [ · ]}

Re {IS [ · ]}

⊗ r

ρ (A.158)

(S2) = nx2


 Re {IS [ · ]}

−Im {IS [ · ]}

⊗

r1
r2



ρ1
ρ2

 = nx2


Re {IS [ · ]}
Im {IS [ · ]}

⊗ r

ρ (A.159)
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∴ (A.153) =
1

2
(H1) +

1

2
(H2) +

1

2
(H3) + (H4) + 2(S1) + 2(S2)

= −1

2

Im {IH [ · ]} Re {IH [ · ]}

Re {IH [ · ]} −Im {IH [ · ]}

Re {νxνy} νyρ

+
1

2


ny1

ny2

⊗

Im {IH [ · ]}

Re {IH [ · ]}


 νxνyρ

+
1

2

0 1

1 0


nx ⊗

Im {IH [ · ]}

Re {IH [ · ]}



0 1

1 0

ρ

−

nx ⊗

Im {IH [ · ]}

Re {IH [ · ]}


ρ+

nx ·

Im {IH [ · ]}

Re {IH [ · ]}


 Iρ

+ 2nx1


Im {IS [ · ]}

Re {IS [ · ]}

⊗ r

ρ+ 2nx2


Re {IS [ · ]}
Im {IS [ · ]}

⊗ r

ρ. (A.160)
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A.2.8 Pressure P

P (x,y) =
1

2π

∫
Γ

(r · ρ)
r2

dsy (A.161)

=
1

2π

∫
Γ

−Re
{σ
z

}
|dzy| (A.162)

= − 1

2π
Re

{∫
Γ

σ

z
|dzy|

}
(A.163)

= − 1

2π
Re

{∫
Γ

ρ1 + iρ2
z

(
− i

νy

)
dzy

}
(A.164)

= − 1

2π
Re

{
i

∫
Γ

ρ1
νy

1

z
dzy −

∫
Γ

ρ2
νy

1

z
dzy

}
(A.165)

=
1

2π

(
−Im

{
IC

[
ρ1
νy

]}
− Re

{
IC

[
ρ2
νy

]})
(A.166)

= − 1

2π

Im
{
IC

[
·
νy

]}
Re

{
IC

[
·
νy

]}
 ·

ρ1
ρ2

 . (A.167)

A.2.9 P ′

Here we compute

P ′ =

∫
Γ

µ

π

[
−ny

r2
+

2

r4
(r · ny) r

]
· ρdsy. (A.168)

Recalling an identity

∇x

[
(r · ny)

r2

]
=

ny

r2
− 2

r4
(r · ny) r (A.169)

and

(r · ny)

r2
= −Re

{νy
z

}
, (A.170)
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the integrand of P ′ is

−ny,j

r2
+

2

r4
(r · ny) rj = −∇x

[
(r · ny)

r2

]
= ∇xRe

{νy
z

}
=

 Re
{νy

z2

}
−Im

{νy
z2

}
 . (A.171)

∴ P ′ =
µ

π

∫
Γ

 Re
{νy

z2

}
−Im

{νy
z2

}
 · ρ|dzy|

=
µ

π

∫
Γ

[
Re

{νyρ1
z2

}
− Im

{νyρ2
z2

}]
|dzy|

=
µ

π

[
Re

{∫
Γ

νyρ1
z2

|dzy|
}
− Im

{∫
Γ

νyρ2
z2

|dzy|
}]

=
µ

π

[
Re

{∫
Γ

νyρ1
z2

dzy
iνy

}
− Im

{∫
Γ

νyρ2
z2

dzy
iνy

}]
=
µ

π

[
Re

{
−i

∫
Γ

ρ1
z2
dzy

}
− Im

{
−i

∫
Γ

ρ2
z2
dzy

}]
=
µ

π

[
Im

{∫
Γ

ρ1
z2
dzy

}
+Re

{∫
Γ

ρ2
z2
dzy

}]

=
µ

π

Im {IH [ · ]}

Re {IH [ · ]}

 ·

ρ1
ρ2

 . (A.172)

A.3 A Derivation of Equation (2.57)

The aim of this section is to obtain a linear system (2.57)

(I +K +K ′)ρ = 0 (A.173)

with the identity to be able to the RCIP method for the composite boundary

conditions in section 2.2.6.

Let (xi)
N
i=0 be the target discretization points on the boundary Γ. First, we

consider the following (2N×1) vectors equivalent to matrix-vector products involving
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(N ×N) diagonal matrices Λnj (j ∈ {1, 2}) and the density (2N × 1) vector ρ. We

denote xi by (i) for the simplicity of the following equations.

(ρ(1) · n(1))n1(1)

...

(ρ(N) · n(N))n1(N)

(ρ(1) · n(1))n2(1)

...

(ρ(N) · n(N))n2(N)


=

 Λ2
n1 Λn1Λn2

Λn1Λn2 Λ2
n2

ρ (A.174)



(ρ(1) · t(1))n1(1)

...

(ρ(N) · t(N))n1(N)

(ρ(1) · t(1))n2(1)

...

(ρ(N) · t(N))n2(N)


=

 Λ2
t1 Λt1Λt2

Λt1Λt2 Λ2
t2

ρ (A.175)

We see that

(A.174) + (A.175) = Iρ (A.176)

by the orthogonality of n(x) and t(x).

Next, we focus on one target discretization point xi (1 ≤ i ≤ N) for the moment.

Let

M =

 M11 M12

M21 M22

 (A.177)

be the (2N × 2N) block matrix composed of four (N ×N) matrices, and define

Mi =

 Mi,11 Mi,12

Mi,21 Mi,22

 (A.178)
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as the 2×2N block matrix composed of the ith and (N+i)th rows of M for arbitrary

i ∈ {1, . . . , N}. We also denote the (2×1) vector obtained by taking the dot product

of ith and (N + i)th rows of Mρ and n(i) by (Mρ)i. Then,

[(Mρ)i · n(xi)]n(i) (A.179)

=

(Mi,11ρ1 +Mi,12ρ2)n
2
1(i) + (Mi,21ρ1 +Mi,22ρ2)n1(i)n2(i)

(Mi,11ρ1 +Mi,12ρ2)n2(i)n1(i) + (Mi,21ρ1 +Mi,22ρ2)n
2
2(i)

 (A.180)

=

(Mi,11n
2
i,1 +Mi,21ni,1ni,2)ρ1 + (Mi,12n

2
i,1 +Mi,22ni,1ni,2)ρ2

(Mi,11ni,1ni,2 +Mi,21n
2
i,2)ρ1 + (Mi,12ni,1ni,2 +Mi,22n

2
i,2)ρ2

 (A.181)

=

 n2
i,1Mi,11 + ni,1ni,2Mi,21 n2

i,1Mi,12 + ni,1ni,2Mi,22

ni,1ni,2Mi,11 + n2
i,2Mi,21 ni,1ni,2Mi,12 + n2

i,2Mi,22

ρ (A.182)

holds for each xi ∈ Γ. The alignment of the 2N equations ([(Mρ)1 · n(1)]n(1))Ni=1

leads to

[(Mρ)1 · n(1)]n1(1)

...

[(Mρ)N · n(N)]n1(N)

[(Mρ)1 · n(1)]n2(1)

...

[(Mρ)N · n(N)]n2(N)


=

 Λ2
n1M11 +Λn1Λn2M21 Λ2

n1M12 +Λn1Λn2M22

Λn1Λn2M11 +Λ2
n2M21 Λn1Λn2M12 +Λ2

n2M22

ρ

(A.183)
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Similarly,

[(M ′ρ)1 · t(1)] t1(1)
...

[(M ′ρ)N · t(N)] t1(N)

[(M ′ρ)1 · t(1)] t2(1)
...

[(M ′ρ)N · t(N)] t2(N)


=

 Λ2
t1M

′
11 +Λt1Λt2M

′
21 Λ2

t1M
′
12 +Λt1Λt2M

′
22

Λt1Λt2M
′
11 +Λ2

t2M
′
21 Λt1Λt2M

′
12 +Λ2

t2M
′
22

ρ.

(A.184)

Noting (A.174) + (A.175) = Iρ as we have seen in (A.176),

(A.174) + (A.175) + (A.183) + (A.184) (A.185)

= Iρ+

 Λ2
n1M11 +Λn1Λn2M21 Λ2

n1M12 +Λn1Λn2M22

Λn1Λn2M11 +Λ2
n2M21 Λn1Λn2M12 +Λ2

n2M22

ρ (A.186)

+

 Λ2
t1M

′
11 +Λt1Λt2M

′
21 Λ2

t1M
′
12 +Λt1Λt2M

′
22

Λt1Λt2M
′
11 +Λ2

t2M
′
21 Λt1Λt2M

′
12 +Λ2

t2M
′
22

ρ (A.187)

Now we set M and M ′ to

M := − (DΓD
+DΓC

+ SΓC
) (A.188)

M ′ := D′
ΓD

+D′
ΓC

+ S′
ΓC

(A.189)

The ith element and (N+i)th element of vector (A.174)+(A.183) are [(Iρ)i + (Mρ)i]·

n(i)n1(i) and [(Iρ)i + (Mρ)i] · n(i)n2(i). Both of them are zero because of the

boundary condition of zero normal velocity (2.51). The same argument applies to

(A.175) + (A.184). Therefore, (A.174) + (A.175) + (A.183) + (A.184) are a zero

vector. In conclusion, we see the construction of

(I +K +K ′)ρ = 0 (A.190)
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where K and K ′ are the second and third matrices in (A.187) for the composite

boundary conditions.
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APPENDIX B

SUPPLEMENTS TO INTEGRATED PHOTONICS

B.1 Proof of Theorem 3.3.1

Let the number of ports be P . Let mp be the number of modes on the interface of pth

port (1 ≤ p ≤ P ). Let h > 0 be the width of the cross-section. Along a cross-section

{(xp, y)| − h/2 < y < h/2} near pth port,

u(x, y) ≃
mp∑
j=1

σp,j
(
cincp,j ϕ

inc
p,j + cscp,jϕ

sc
p,j

)
(B.1)

where

ϕinc
p,j (xp, y) = eiβp,jxpgp,j(y), (B.2)

ϕsc
p,j(xp, y) = eiβp,jxpgp,j(y), (B.3)

gp,j(y) :=

√
2

h

∫ h/2

−h/2

sin
(
j
π

h
(y + h/2)

)
(B.4)

with ∥g∥ = 1,

σp,j =


1 (ϕinc

p,j = eiβp,jxpgp,j(y)),

−1 (ϕinc
p,j = e−iβp,jxpgp,j(y)).

(B.5)

The sign σp,j is determined by an arbitrary choice of the pth port being set to

an input or output channel, and by the direction of propagation modes depending

on the local coordinate we choose. Once we fix all the ports, then the set of signs

{σp,j}1≤p≤P,1≤j≤mp is also uniquely fixed.

We focus our attention on the cross-section of the pth port for a while, and

construct a mathematical identity by some equation derived later and the definition

of the scattering matrix. We fix the x-coordinate to be xp.
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∂u

∂x
(xp, y) =

mp∑
j=1

σp,j(iβ)
(
cincp,j ϕ

inc
p,j − cscp,jϕ

sc
p,j

)
(B.6)

⟨u, u
x
⟩Γp =

〈
mp∑
j=1

σp,j
(
cincp,j ϕ

inc
p,j + cscp,jϕ

sc
p,j

)
,

mp∑
k=1

σp,k(iβp,k)
(
cincp,kϕ

inc
p,k − cscp,kϕ

sc
p,k

)〉
Γp

=

mp∑
j=1

mp∑
k=1

δj,kσ
2
p,j(−iβp,k)

〈
cincp,j ϕ

inc
p,j + cscp,jϕ

sc
p,j, c

inc
p,kϕ

inc
p,k − cscp,kϕ

sc
p,k

〉
Γp

= −i
mp∑
j=1

βp,j
〈
cincp,j ϕ

inc
p,j + cscp,jϕ

sc
p,j, c

inc
p,j ϕ

inc
p,j − cscp,jϕ

sc
p,j

〉
Γp
. (B.7)

The cross terms with respect to j and k vanish because of the orthogonality of gp,j and

gp,k. Also, {σp,j}1≤j≤mp by the arbitrary choice do not affect the following calculations.

Each dot product inside the summation of the last equation is

〈
cincp,j ϕ

inc
p,j + cscp,jϕ

sc
p,j, c

inc
p,j ϕ

inc
p,j − cscp,jϕ

sc
p,j

〉
= |cincp,j |2∥ϕinc

p,j ∥2 − cincp,j c
sc
p,j⟨ϕinc

p,j , ϕ
sc
p,j⟩+ cscp,jc

inc
p,j ⟨ϕsc

p,j, ϕ
inc
p,j ⟩ − |cscp,j|2∥ϕsc

p,j∥2. (B.8)

Noting ϕinc
p,j (xp, y) = eiβp,jxpgp,j(y), ϕ

sc
p,j(xp, y) = eiβp,jxpgp,j(y), and ∥gp,j∥ = 1, the first

term equals |cincp,j |2. Other terms can be simplified similarly. As a result, we obtain

〈
cincp,j ϕ

inc
p,j + cscp,jϕ

sc
p,j, c

inc
p,j ϕ

inc
p,j − cscp,jϕ

sc
p,j

〉
= |cincp,j |2 − cincp,j c

sc
p,je

2iβp,jxp + cscp,jc
inc
p,j e

−2iβp,jxp − |cscp,j|2. (B.9)

∴

〈
u,
∂u

∂x

〉
Γp

= −i
mp∑
j=1

βp,j

(
|cincp,j |2 − |cscp,j|2 − cincp,j c

sc
p,je

2iβp,jxp + cscp,jc
inc
p,j e

−2iβp,jxp

)
= −i

mp∑
j=1

βp,j
(
|cincp,j |2 − |cscp,j|2

)
(B.10)

− i

mp∑
j=1

βp,j

(
−cincp,j c

sc
p,je

2iβp,jxp + cscp,jc
inc
p,j e

−2iβp,jxp

)
. (B.11)
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Now we take all of the pth ports (1 ≤ p ≤ P ) into account to construct an identity

involving the scattering matrix S. We deal with (B.10) and (B.11) separately.

By the definition of the scattering matrix satisfying Scinc = csc where

cinc and csc are column vectors that are alignments of all (cincp,j )1≤p≤P,1≤j≤mp and

(cscp,j)1≤p≤P,1≤j≤mp , equations (B.10) for all (p, j)1≤p≤P,1≤j≤mp give us

∑
1≤p≤P,1≤j≤mp

βp,j(|cincp,j |2 − |cscp,j|2) =
∑

1≤p≤P,1≤j≤mp

(
cincp,j βp,jc

inc
p,j − cscp,jβp,jc

sc
p,j

)
= (cinc)∗D[β](cinc)− (Scinc)∗D[β]Scinc

= (cinc)∗ (D[β]− S∗D[β]S) cinc (B.12)

where β := (β1,1, . . . , β1,mp , . . . , βp,1, . . . , βp,mp , . . . , βP,1, . . . , βP,mP
)T .

Next, we consider equations of (B.11) for all (p, j).

∑
1≤p≤P,1≤j≤mp

βp,jc
inc
p,j c

sc
p,je

2iβp,jxp =
∑

1≤p≤P,1≤j≤mp

cincp,j βp,je
2iβp,jxpcscp,j

= (cinc)TD[β]D[e2iβ·xp ]Scinc

= (cinc)∗D[β]D[e−2iβ·xp ]Scinc (B.13)

where xp := (x1, . . . , x1, . . . , xp, . . . , xp, . . . , xP , . . . , xP )
T . Similarly, from the second

terms in the summation (B.11) for all (p, j), we have

∑
1≤p≤P,1≤j≤mp

βp,jc
sc
p,jc

inc
p,j e

−2iβp,jxp = (cinc)∗D[β]D[e−2iβ·xp ]Scinc. (B.14)

Thus, the summation (B.11) for all (p, j) leads to

− (cinc)∗D[β]D[e−2iβ·xp ]Scinc + (cinc)∗D[β]D[e−2iβ·xp ]Scinc

= 2iIm
{
(cinc)∗D[β]D[e−2iβ·xp ]Scinc

}
. (B.15)
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∴

〈
u,
∂u

∂x

〉
Γ

=

〈
u,
∂u

∂x

〉
Γp(1≤p≤P )

= −i [ (B.12) + (B.15) ]

= −i
[
(cinc)∗ (D[β]− S∗D[β]S) cinc + 2iIm

{
(cinc)∗D[β]D[e−2iβ·xp ]Scinc

} ]
= −i(cinc)∗ (D[β]− S∗D[β]S) cinc + 2Im

{
(cinc)∗D[β]D[e−2iβ·xp ]Scinc

}
.

(B.16)

Noting the second term is a real number,

Im

〈
u,
∂u

∂x

〉
Γ

= −Re
{
(cinc)∗ (D[β]− S∗D[β]S) cinc

}
= 0. (B.17)

Since cinc can be chosen arbitrarily,

D[β]− S∗D[β]S = 0 ⇔ D[β] = S∗D[β]S (B.18)

holds. The diagonal entries on both sides lead to βj =
∑M

k=1 |Sk,j|2βk for all j ∈

{1, 2, . . . ,M}. □

B.2 An Example of Non-unitary Scattering Matrix

Consider a straight waveguide with two ports each of which admits a single

propagation mode βl and βr in the same manner as the previous discussion. In

this case, the size of the scattering matrix is two by two. Assuming S is unitary,

S∗S =

 |S11|2 + |S21|2 S11S12 + S21S22

S11S12 + S12S22 |S12|2 + |S22|2

 = I, (B.19)

SS∗ =

 |S11|2 + |S12|2 S11S21 + S21S22

S21S11 + S22S12 |S21|2 + |S22|2

 = I. (B.20)
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These lead to the following conditions:

|S11|2 + |S21|2 = 1,

|S12|2 + |S22|2 = 1,

S11S12 + S21S22 = 0,

|S11|2 + |S12|2 = 1,

|S21|2 + |S22|2 = 1,

S11S21 + S12S22 = 0,

|S11| = |S22|,

|S12| = |S21|.

(B.21)

Consider the linear system with the scattering matrix and incident and scattered

coefficients

S

c+l
c−r

 =

c+r
c−l

 ⇔


S11c

+
l + S12c

−
r = c+r ,

S21c
+
l + S22c

−
r = c−l .

(B.22)

We choose an arbitrary complex pair (c+l , c
−
r ) = (α1, α2). Then the identity (3.69)

becomes

Im⟨u, ∂u
∂n

⟩ = βl
(
|c+l |

2 − |c−l |
2
)
− βr

(
|c+r |2 − |crr|2

)
= βl

[
|α1|2 − |α1S21 + α2S22|2

]
− βr

[
|α1S11 + α2S12|2 − |α2|2

]
(B.23)

The following expansions

|α1S21 + α2S22|2 = |α1|2(1− |S11|2) + |α2|2|S11|2 + α1α2S21S22 + α1α2S21S22,

(B.24)

|α1S11 + α2S12|2 = |α1|2|S11|2 + |α2|2(1− |S11|2) + α1α2S11S12 + α1α2S11S12 − |α2|2,

(B.25)
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lead to

Im⟨u, ∂u
∂n

⟩

= βl

[
�
��*0

|α1|2 −�
��*0

|α1|2 + |α1|2|S11|2 − |α2|2|S22|2 − α1α2S21S22 − α1α2S21S22

]
− βr

[
|α1|2|S11|2 +�

��*0
|α2|2 − |α2|2|S11|2 − α1α2S11S12 − α1α2S11S12 −�

��*0
|α2|2

]
= (βl − βr)(|α1|2 − |α2|2)|S11|2 − βlα1α2S21S22 − βrα1α2S11S12

− βlα1α2S21S22 − βlα1α2S11S12

= (βl − βr)(|α1|2 − |α2|2)|S11|2 + βlα1α2S11S12 − βrα1α2S11S12

+ βlα1α2S11S12 − βlα1α2S11S12 (∵ S21S22 = −S11S12)

= (βl − βr)(|α1|2 − |α2|2)|S11|2 + (βl − βr)α1α2S11S12

+ (βl − βr)α1α2S11S12

= (βl − βr)
[
(|α1|2 − |α2|2)|S11|2 + α1α2S11S12 + α1α2S11S12

]
= 0. (B.26)

If S11 is not zero, then we can conclude βl = βr selecting (α1, α2) = (1, 0). However, if

S11 is zero, βl = βr can be false. In such a case, the linear system with the scattering

matrix is

S

cl+
cr−

 =

0 ω

ω 0


cr+
cl−

 ⇔


cr+ = ωcr−,

cl− = ωcl+

(B.27)

where ω is some complex number with a magnitude of one.

B.3 Phase Adjustment for The Merged Scattering Matrix

Here we discuss the phase term adjustments for the terms of eβx needed to be

considered when modularized scattering matrices are merged. Once we determine

the modularized scattering matrices separately, the next step is to merge the pieces

into one matrix to obtain the representation of the whole structure. In the merging
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process, we need to take the change of coordinates into account when multiple

components are connected. Modularized scattering matrices are constructed by

fixing local coordinates independently. When we merge multiple components, the

coordinates for one component can remain the same, while the coordinates of the

other merged components can be changed by translation, rotation, or both of them,

depending on the original coordinates chosen before merging. For example, when

we merge two components with the same structure, both represented by the same

scattering matrices denoted by S, we can still use one S but the other S has to be

adjusted appropriately because we need to choose one coordinate system after the

merge.

Suppose we have two waveguide components represented by two scattering

matrices S1 and S2. We assume the corresponding two components have two ports

respectively and a single mode for each port. And we consider the situation in which

the two components are merged by connecting one port to another. Let the origins

of two coordinates be O1 and O2 respectively. Suppose we keep the origin O1 of one

component unchanged before and after the merge. Then the coordinates of the other

component are affected. Before the merge, S2 satisfies

S2

c+l
c−r

 =

c−l
c+r

 (B.28)

with the origin O2. As we see in (3.49), C± is independent of y. We only need to

adjust the terms of e±βx, more precisely, the distance of the path with respect to x

from O1 and O2 after the merge. Let x be the first local coordinate for S2 with the

origin O2, and define d± := exp (±iβ(O2 −O1)). Since

exp(±iβ(x−O2)) = exp (±iβ(x−O1 +O1 −O2)) (B.29)

= exp (∓iβ(O2 −O1)) exp (±iβ(x−O1)) (B.30)

= d∓ exp (±iβ(x−O1)) , (B.31)
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(B.28) with the origin O2 is equivalent to

S2

c+l d−
c−r d

+

 =

c−l d+
c+r d

−

 (B.32)

with the origin O1. Assuming another set of coefficients (c±l,2, c
±
l,2) which can be

obtained by having distinct boundary data, we have

S2

c+l,1d− c+l,2d
−

c−r,1d
+ c−r,2d

+

 =

c−l,1d+ c−l,2d
+

c+r,1d
− c+r,2d

−

 . (B.33)

This equation is decomposed as follows

S2

d− 0

0 d+


c+l,1 c+l,2

c−r,1 c−r,2

 =

d+ 0

0 d−


c+r,1 c+r,2

c−l,1 c−l,2

 (B.34)

⇔ S2

d− 0

0 d+

Minc =

d+ 0

0 d−

Msc (B.35)

With the same assumption that Minc is invertible as section 3.3.4,

S2 =

d+ 0

0 d−

MscM
−1
inc

d+ 0

0 d−

 (B.36)

Adjustments for cases of multiple modes or more ports are similarly derived.

For example, in the case of two ports each of which admits two propagation modes,

The adjusted scattering matrix component Sadj is

Sadj = DSD (B.37)

where S is the individually computed original scattering matrix andD := diag
(
d+l,1, d

+
l,2, d

−
r,1, d

−
r,2

)
.
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B.4 Derivations of Equations (3.4) and (3.5)

In this appendix, we give the detailed derivations of (3.4) and (3.5). Applying

separation of variables u(x) = eβx1g(x2) along the cross-section with the height h > 0,

then the Helmholtz equation (3.12) leads to

∆u(x) + k2(x) = eβx1
[
(k2 + β2)g(x2) + g′′(x2)

]
(B.38)

= eβx1kv
[
(n2 + n2

e)g(x2) + g′′(x2)
]

(B.39)

= 0. (B.40)

∴ (n2 + n2
e)g(x2) + g′′(x2) = 0. (B.41)

We non-dimensionalize the above equation with h̃ := kvh as follows.

g(x̃2) = c1 cos(
√
n2 − n2

e(x̃2 + h̃/2)) + c2 sin(
√
n2 − n2

e(x̃2 + h̃/2)) |x̃2| < h̃/2

(B.42)

where c1 and c2 are some constants.

The boundary conditions at x̃2 = ±h̃/2 to c1 = 0 and

g(h̃/2) = c2 sin
(√

n2 − n2
eh̃
)
= 0 (B.43)

which implies that
√
n2 − n2

e h̃ = mπ with some positive integer m for some

propagation mode β to exist. Then we obtain

(n2 − n2
e)h̃

2 = (mπ)2 (B.44)

⇔ k2v(n
2 − n2

e)h̃
2 = k2v(mπ)

2 (B.45)

⇔ (k2 − β2)h̃2 = k2v(mπ)
2 (B.46)

⇔ β2 = k2 −
(mπ
h

)2

(B.47)

since k = kvn, β = kvne and h̃ = kvh.
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In the case that M modes (βm)
M
m=1 are allowed,

β2 = k2 −
(mπ
h

)2

> 0 (B.48)

and

β2 = k2 −
(
(m+ 1)π

h

)2

< 0 (B.49)

need to hold, which leads to

π

k
< h < 2

π

k
. (B.50)

As h increases, more integers of m satisfy Hence, we can restrict the number of modes

with the adjustment of h.

Once h is fixed, we can also determine β = nekv. For example, in the case of a

single mode,

√
n2 − n2

ekvh = π (B.51)

⇒ n2 − n2
e =

(
π

kvh

)2

(B.52)

⇒ ne =

√
n2 −

(
π

kvh

)2

. (B.53)

The inside of the square root is positive as long as the left inequality holds (??) since

π

k
< h⇔ π

kh
=

1

n

π

kvh
< 1 ⇒ π

kvh
< n. (B.54)
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