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ABSTRACT

PROGRAM ANALYSIS FOR ANDROID
SECURITY AND RELIABILITY

by
Sydur Rahaman

The recent, widespread growth and adoption of mobile devices have revolutionized the

way users interact with technology. As mobile apps have become increasingly prevalent,

concerns regarding their security and reliability have gained significant attention. The

ever-expanding mobile app ecosystem presents unique challenges in ensuring the

protection of user data and maintaining app robustness. This dissertation expands

the field of program analysis with techniques and abstractions tailored explicitly to

enhancing Android security and reliability. This research introduces approaches for

addressing critical issues related to sensitive information leakage, device and user

fingerprinting, mobile medical score calculators, as well as termination-induced data

loss. Through a series of comprehensive studies and employing novel approaches

that combine static and dynamic analysis, this work provides valuable insights and

practical solutions to the aforementioned challenges. In summary, this dissertation

makes the following contributions: (1) precise identifier leak tracking via a novel

algebraic representation of leak signatures, (2) identifier processing graphs (IPGs), an

abstraction for extracting and subverting user-based and device-based fingerprinting

schemes, (3) interval-based verification of medical score calculator correctness, and

(4) identifying potential data losses caused by app termination.



PROGRAM ANALYSIS FOR ANDROID
SECURITY AND RELIABILITY

by
Sydur Rahaman

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2023



Copyright © 2023 by Sydur Rahaman

ALL RIGHTS RESERVED



APPROVAL PAGE

PROGRAM ANALYSIS FOR ANDROID
SECURITY AND RELIABILITY

Sydur Rahaman

Dr. Iulian Neamtiu, Dissertation Advisor Date
Professor, Department of Computer Science, NJIT

Dr. Ali Mili, Committee Member Date
Professor, Associate Dean for Academic Affairs, Department of Computer Science,
NJIT

Dr. Cristian Borcea, Committee Member Date
Professor, Associate Dean for Strategic Initiatives, Department of Computer Science,
NJIT

Dr. Abdallah Khreishah, Committee Member Date
Professor, Electrical and Computer Engineering Department, NJIT

Dr. Zhiyun Qian, Committee Member Date
Associate Professor, Computer Science and Engineering, UC Riverside, CA



BIOGRAPHICAL SKETCH

Author: Sydur Rahaman

Degree: Doctor of Philosophy

Date: August 2023

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2023

• Bachelor of Science in Computer Science and Engineering,
Bangladesh University Of Engineering and Technology, Dhaka, Bangladesh, 2015

Major: Computer Science

Presentations and Publications:

Sydur Rahaman, Raina Samuel, and Iulian Neamtiu, “Diagnosing Medical Score
Calculator Apps”. In Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, IMWUT 2023.

Sydur Rahaman, Umar Farooq, Iulian Neamtiu, and Zhijia Zhao “Detecting
Potential User-Data Save and Export Losses due to Android App Termination”.
In Proceedings of the 4th ACM/IEEE International Conference on Automation
of Software Test, 2023.

Sydur Rahaman, Iulian Neamtiu, and Xin Yin “Algebraic-datatype Taint Tracking,
With Applications to Understanding Android Identifier Leaks”. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2021,
Association for Computing Machinery, New York, NY, USA, Pages 70–82.
https://doi.org/10.1145/3468264.3468550.

Sydur Rahaman, Raina Samuel, and Iulian Neamtiu “Quantifying Nondeterminism
and Inconsistency in Self-organizing Map Implementations”, 2021 IEEE
International Conference on Artificial Intelligence Testing (AITest), Pages
85-92, doi: 10.1109/AITEST52744.2021.00026.

Raina Samuel, Iulian Neamtiu, and Sydur Rahaman “Could Medical Apps Keep
Their Promises?,” E-Health ’22: 16th Multi Conference on Computer Science
and Information Systems, Pages 173-180, July 2022.

iv



Raina Samuel, Iulian Neamtiu, Sydur Rahaman, and James Geller “Characterizing
Medical Android Apps,” E-Health ’22: 16th Multi Conference on Computer
Science and Information Systems, Pages 155-162, July 2022.

Priyam Patel, Gokul Srinivasan, Sydur Rahaman, and Iulian Neamtiu “On
the Effectiveness of Random Testing for Android: or How I Learned
To Stop Worrying and Love the Monkey”. In Proceedings of the 13th
International Workshop on Automation of Software Test , AST 2018.
Association for Computing Machinery, New York, NY, USA, Pages 34–37.
https://doi.org/10.1145/3194733.3194742.

Rayhan Shikder, Sydur Rahaman, Farzia Afroze, and ABM Alim Al Islam
“Keystroke/Mouse Usage Based Emotion Detection and User Identification”.
2017 International Conference on Networking, Systems and Security (NSysS).
Dhaka, Bangladesh, Pages 96-104, doi: 10.1109/NSysS.2017.7885808.

v



To my family and my loved ones:
Onti (my beautiful wife), Abba, Amma,
Vaiya, Sani, Ajim vai, Farhan, BSA family
and my inspiration CR7 (the GOAT)

vi



ACKNOWLEDGMENT

I would like to express my deepest gratitude and appreciation to the following

individuals who have contributed significantly to the completion of my PhD

dissertation:

First and foremost, I extend my sincere gratitude to my dissertation advisor,

Professor Iulian Neamtiu. Your guidance, expertise, and unwavering support

throughout the research process have been invaluable. Your insightful feedback

and encouragement have greatly shaped the outcome of this work, and I am truly

grateful for the opportunity to have worked under your mentorship.

My sincere appreciation goes to the honorable members of my dissertation

committee, Dr. Ali Mili, Dr. Cristian Borcea, Dr. Zhiyun Qian, and Dr. Abdallah

Khreishah. I am honored to have had the privilege of benefiting from your expertise

and thoughtful feedback. Your invaluable guidance and constructive criticism have

significantly shaped the development and quality of this research.

I would like to express my deepest gratitude to the National Science Foundation

(NSF) for their generous financial support throughout my doctoral research. The

funding provided by the NSF under grant numbers CCF-2106710 and 2007730 has

played a crucial role in enabling the successful completion of this dissertation.

I would also like to thank my colleagues, Raina Samuel, Umar Farooq, Muyeed

Ahmed, and Xin Yin, for their collaboration, insightful discussions, and support

throughout this journey. Your contributions and friendship have been invaluable, and

I am grateful for the shared experiences and mutual support we have provided to one

another.

Lastly, I want to express my deepest gratitude to my family, and in particular,

to my wife. Your unwavering support, love, and understanding have been the bedrock

of my academic journey. Your patience, encouragement, and belief in me have been

vii



instrumental in overcoming the challenges faced throughout this endeavor. I am truly

blessed to have you by my side, and I cannot thank you enough for your constant

support and sacrifices.

To all those mentioned above, as well as to anyone else who has contributed to

my academic and personal growth, I extend my heartfelt appreciation. Your support

and encouragement have made this achievement possible, and I am forever grateful

for the role each of you has played in my journey towards earning my PhD.

viii



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Android devices and apps . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Android platform . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Dissertation Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Dissertation Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 ALGEBRAIC-DATATYPE TAINT TRACKING . . . . . . . . . . . . . . . 7

2.1 Motivation and Design Choices . . . . . . . . . . . . . . . . . . . . . 7

2.2 Algebraic-datatype Representation for Signatures . . . . . . . . . . . 9

2.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Dataflow-centric call graph construction and analysis . . . . . . 15

2.3.3 Hash analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.4 Third-party vs. own code analysis . . . . . . . . . . . . . . . . 17

2.3.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 What IDs are leaked, and in what form? . . . . . . . . . . . . . 21

2.5.2 Multiple-identifier leaks . . . . . . . . . . . . . . . . . . . . . . 21

ix



TABLE OF CONTENTS
(Continued)

Chapter Page

2.5.3 Library leaks vs. app’s own leaks . . . . . . . . . . . . . . . . . 24

2.5.4 Leakiest libraries . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.5 Leakiest apps . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.6 Longitudinal study: 2018 vs. 2020 . . . . . . . . . . . . . . . . 28

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 IDENTIFIER SCHEMES BASED FINGERPRINTING . . . . . . . . . . . 32

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Unique identifiers . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Extracting and Categorizing the Fingerprinting Mechanism . . . . . . 36

3.2.1 IPG: Definition and extraction . . . . . . . . . . . . . . . . . . 37

3.2.2 Constructing precise and effective IPGs . . . . . . . . . . . . . 38

3.2.3 Identifiers used in practice . . . . . . . . . . . . . . . . . . . . 42

3.3 Constructing and Conducting the Attack . . . . . . . . . . . . . . . . 43

3.3.1 Re-registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Bytecode rewriting . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.3 Wiretap injector . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.4 End-to-end automated attack example . . . . . . . . . . . . . . 51

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.3 Ethical considerations . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.4 Attack effectiveness . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.5 App X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.6 IPG effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . 60

x



TABLE OF CONTENTS
(Continued)

Chapter Page

3.4.7 Comparison with alternative approaches . . . . . . . . . . . . . 61

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Defense schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.2 Anti-tampering . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.3 Other target groups . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.4 Generalizability . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 DIAGNOSING MEDICAL SCORE CALCULATOR APPS . . . . . . . . . 69

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Mobile medical apps usage . . . . . . . . . . . . . . . . . . . . 70

4.1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.3 Error source #1: inconsistent reference table . . . . . . . . . . 73

4.1.4 Error source #2: inconsistent GUI . . . . . . . . . . . . . . . . 75

4.1.5 Error source #3: incorrect score calculation . . . . . . . . . . . 76

4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1 Partition checking via satisfiability . . . . . . . . . . . . . . . . 78

4.2.2 Reference table validation . . . . . . . . . . . . . . . . . . . . . 80

4.2.3 App verification and validation . . . . . . . . . . . . . . . . . . 80

4.3 Checking Reference Scores . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.1 Reference scores . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3.2 Why is score accuracy critical? . . . . . . . . . . . . . . . . . . 90

4.3.3 Specification extraction accuracy . . . . . . . . . . . . . . . . . 90

4.3.4 Inconsistent reference table . . . . . . . . . . . . . . . . . . . . 91

4.3.5 Correcting the specification . . . . . . . . . . . . . . . . . . . . 93

4.4 Finding Errors in Apps . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xi



TABLE OF CONTENTS
(Continued)

Chapter Page

4.4.1 App dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.2 App errors: inconsistent GUI . . . . . . . . . . . . . . . . . . . 94

4.4.3 App errors: incorrect score calculations . . . . . . . . . . . . . 95

4.4.4 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.5 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 USER-DATA LOSSES DUE TO ANDROID APP TERMINATION . . . . 100

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.1 Background: file writes and termination in Android . . . . . . 101

5.1.2 Motivational examples . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.2 Dynamic report verification . . . . . . . . . . . . . . . . . . . . 111

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.2 Example of confirmed write loss cases . . . . . . . . . . . . . . 115

5.3.3 Comparison with existing tools . . . . . . . . . . . . . . . . . . 117

5.3.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3.5 False positives and false negatives . . . . . . . . . . . . . . . . 118

5.3.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.7 Potential solutions . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 EFFECTIVENESS OF RANDOM TESTING FOR ANDROID . . . . . . 122

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1.1 Monkey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1.2 EMMA code coverage . . . . . . . . . . . . . . . . . . . . . . . 124

xii



TABLE OF CONTENTS
(Continued)

Chapter Page

6.2 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.2 Application crashes . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.3 Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.4 Manual vs Monkey coverage . . . . . . . . . . . . . . . . . . . 136

6.2.5 Throttling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7 SOM NONDETERMINISM AND INCONSISTENCY . . . . . . . . . . . . 140

7.1 Definitions and Experimental Setup . . . . . . . . . . . . . . . . . . . 143

7.1.1 SOM definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.1.2 SOM performance metrics . . . . . . . . . . . . . . . . . . . . 143

7.1.3 Toolkits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.1.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2 Nondeterminism Definition and Test . . . . . . . . . . . . . . . . . . . 145

7.3 Nondeterminism Results: Internal metrics . . . . . . . . . . . . . . . 146

7.3.1 Quantization error . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.3.2 Topographic product . . . . . . . . . . . . . . . . . . . . . . . 147

7.3.3 Trustworthiness/Neighborhood preservation . . . . . . . . . . . 149

7.3.4 Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3.5 Kruskal-Shepard error . . . . . . . . . . . . . . . . . . . . . . . 152

7.3.6 Topographic error . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.4 Nondeterminism Results: External Metrics . . . . . . . . . . . . . . . 153

7.4.1 Clustering accuracy . . . . . . . . . . . . . . . . . . . . . . . . 153

7.4.2 Purity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.4.3 Class scatter index (CSI) . . . . . . . . . . . . . . . . . . . . . 154

7.5 Inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

xiii



TABLE OF CONTENTS
(Continued)

Chapter Page

7.5.1 Inconsistency Examples . . . . . . . . . . . . . . . . . . . . . . 156

7.5.2 Statistical test and results . . . . . . . . . . . . . . . . . . . . 156

7.5.3 Mutual ARI comparison . . . . . . . . . . . . . . . . . . . . . 157

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.1 Static and Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . 159

8.2 Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.3 Medical Research Studies . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.4 GUI Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.5 Automated GUI Testing . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.6 Android State Volatility Testing . . . . . . . . . . . . . . . . . . . . . 166

8.7 SOM Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 168

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.2.1 Improved leak signatures . . . . . . . . . . . . . . . . . . . . . 169

9.2.2 Expanding to iOS and WebView-based calculators . . . . . . . . 170

9.2.3 Addressing partition violations in GUIs . . . . . . . . . . . . . 170

9.2.4 Evolution of medical score errors . . . . . . . . . . . . . . . . . 171

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

xiv



LIST OF TABLES

Table Page

2.1 Identifiers Considered and Their Semantics . . . . . . . . . . . . . . . . 9

2.2 The Number of Top Google Play Apps Where FlowDroid, and Our
Approach Respectively, Found Leaks . . . . . . . . . . . . . . . . . . . 18

2.3 The Number of Ground Truth Apps Where FlowDroid, and Our Approach
Respectively, Found Leaks . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Efficiency Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Identifiers Stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Most Common Multi-ID Leaks; R=Raw, H=Hashed . . . . . . . . . . . 22

2.7 Third-Party vs. Own Code Statistics: Number and Percentage of Leaks
(T=third-party, O=own code) . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Third Party Libraries: the Number of Methods Leaking Each ID, and
the Form of the Leak (H=Hashed, R=Raw). Raw Hardware Leaks in
Non-financial Libraries Shown in Red . . . . . . . . . . . . . . . . . . 24

2.9 “Leakiest” Apps. Non-financial Apps With No Financial Libraries Shown
in Red; R=Raw, H=Hashed . . . . . . . . . . . . . . . . . . . . . . . 25

2.10 Identifier-centric Study Results: 2018 → 2020 Changes in Identifier Use 27

2.11 App-centric Study Results: Subsumption Kind, Informal Definition, and
# of Apps Exhibiting Subsumption . . . . . . . . . . . . . . . . . . . 29

3.1 Android Identifiers’ Persistence . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 App Dataset for Our Study . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Most Common IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Core Results. Regeneration Success Rate was 100%, i.e., All Apps’
Fingerprinting Schemes were Subverted . . . . . . . . . . . . . . . . . 56

3.5 Financial Losses Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 App X Successful Activations via Wiretap Injection . . . . . . . . . . . . 60

3.7 IPG Results for Different App Families . . . . . . . . . . . . . . . . . . . 60

3.8 Number of Identifier Flows for 64 Ground Truth Apps . . . . . . . . . . 62

xv



LIST OF TABLES
(Continued)

Table Page

4.1 Medical Scores Analyzed, The Year scores Were Introduced, Errors Found,
Score Ranges, and Action Thresholds . . . . . . . . . . . . . . . . . . 89

4.2 Inconsistent GUI: Coverage Violations . . . . . . . . . . . . . . . . . . . 95

4.3 Inconsistent GUI: Non-overlap Violations . . . . . . . . . . . . . . . . . 96

4.4 Calculation Errors in Apps . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Apps Fixed Thanks to Our Reporting . . . . . . . . . . . . . . . . . . . 98

4.6 Efficiency Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 File Write API Prevalence . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 App Selection and Findings . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Categories of Confirmed Losses . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Losses Found and Confirmed by Our Approach; Results of Running LiveDroid116

5.5 Efficiency Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1 Monkey’s Default Events and Percentages . . . . . . . . . . . . . . . . . 124

6.2 Stress Testing Results for Top Apps: The Number of Events at Which the
App Crashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3 Results for Touch Events . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Results for App Switch Events . . . . . . . . . . . . . . . . . . . . . . . 130

6.5 Results for Motion Events . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.6 Results for Trackball Events . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.7 Results for Navigation Events . . . . . . . . . . . . . . . . . . . . . . . . 132

6.8 Results for Major Navigation Events . . . . . . . . . . . . . . . . . . . . 134

6.9 Correlation Between Coverage Types: Class (C), Method (M), Block (B),
and Line (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.10 Monkey vs Manual Testing . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.11 Line Coverage When Varying Throttle . . . . . . . . . . . . . . . . . . . 138

7.1 Number of Datasets With Statistically Invariant Runs; ‘-’ Indicates that
All Datasets’ Runs Varied Significantly. “Med” and “TrM” are Short
Forms of Median and Trimmed Mean, Respectively . . . . . . . . . . . 144

xvi



LIST OF TABLES
(Continued)

Table Page

7.2 Widest-3 Differences in Quantization Error Across Runs . . . . . . . . . 148

7.3 Widest-3 Differences in Topographic Product . . . . . . . . . . . . . . . 149

7.4 Widest-3 Differences in Trustworthiness . . . . . . . . . . . . . . . . . . 150

7.5 Widest-3 Differences in Distortion . . . . . . . . . . . . . . . . . . . . . 150

7.6 Widest-3 Differences in Kruskal-Shepard Error . . . . . . . . . . . . . . 152

7.7 Widest-3 Differences in Clustering Accuracy . . . . . . . . . . . . . . . . 154

7.8 Widest-3 Differences in Purity . . . . . . . . . . . . . . . . . . . . . . . . 155

7.9 Widest-3 Differences in CSI . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.10 #Datasets With Statistically Significant Inconsistency . . . . . . . . . . 156

7.11 Worst-3 Inconsistencies (Mutual ARI) Across Tools . . . . . . . . . . . . 157

xvii



LIST OF FIGURES

Figure Page

1.1 Dissertation overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 UUID generation in the Audiobooks.com app. . . . . . . . . . . . . . . . . 12

2.3 Prior taint approaches (top) vs. our approach (bottom). . . . . . . . . . 13

2.4 Source code and its dataflow-centric call graph. . . . . . . . . . . . . . . 14

2.5 Cryptographic hashing in app CGTN. . . . . . . . . . . . . . . . . . . . . 17

2.6 DeviceID signatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Hashed leak (top) vs. raw leak (bottom) in the same, com.threatmetrix library. 26

3.1 (a) Offer re-generation; (b) fake device activation. . . . . . . . . . . . . . 33

3.2 Methodology: Extracting the fingerprinting mechanism (left) and conducting
the attack (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 PDG reduction to IPG for the Penn Station Subs app. . . . . . . . . 40

3.4 Fingerprint scheme in the Fazoli’s Rewards app (left) and Pita Pit
app (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 ReOffer: workflow (top), tool in action (bottom). . . . . . . . . . . . . 43

3.6 App restricting the number of user accounts. . . . . . . . . . . . . . . . 47

3.7 Fingerprinting in Fazoli’s Rewards app. . . . . . . . . . . . . . . . . . 48

3.8 Bypassing fingerprinting in Fazoli’s Rewards. . . . . . . . . . . . . . . 49

3.9 Fingerprinting in Texas Roadhouse Mobile. . . . . . . . . . . . . . . 49

3.10 App X network packet sequence diagram. . . . . . . . . . . . . . . . . . 51

3.11 a) DroidBot-only attack; b) Ineffective identifier extraction via dynamic
slicing; c) Complete automated attack using ReOffer on app Sixty
Vines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 SOFA Score (from Vincent et al. [201]). . . . . . . . . . . . . . . . . . . 70

4.2 Inconsistent GUI errors in three apps: Nursing Calculator (left), Child-Pugh
Score (center), SOFA 1.2.0 (right). . . . . . . . . . . . . . . . . . . . . 74

xviii



LIST OF FIGURES
(Continued)

Figure Page

4.3 Nursing Calculator incorrect score (left); MEWS Brasil incorrect scores for
Temperature and overall (right). . . . . . . . . . . . . . . . . . . . . . 75

4.4 Overview of our approach and toolchain. . . . . . . . . . . . . . . . . . . 77

4.5 Heterogeneous GUI mapping example for Cardiovascular Mean arterial
pressure attribute and Renal function Creatinine attribute in apps
Nursing, Nursing Calculator, SOFA score, SOFA score, and SOFA Score. . . 81

4.6 Score extraction from heterogeneous GUIs: Blue Rock SOFA (left); SOFA
Score (center); Nursing (right). . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 GUI of br SOFA app (left); extracting an interval-based semantics (top-
right); prior GUI extraction approaches (bottom-right). . . . . . . . . 87

4.8 GUI exploration of Child-Pugh Score (KSoft Apps). . . . . . . . . . . . . . 87

4.9 Reference tables with no straightforward fixes. . . . . . . . . . . . . . . . 92

5.1 Acrylic Paint app: success scenario (a-c) and user file write data loss scenario
(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Acrylic Paint app code (left) and file write operation termination events
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Wabbitemu app: success scenario (a-c) and user file write data loss scenario
(d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Wabbitemu app code (left) and file write operation termination events (right).104

5.5 Overview of our approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.6 Backward control-flow analysis in the Privacyfriendlynotes app. . . . . . . 108

5.7 Backward data-flow analysis in the Acrylic Paint app. . . . . . . . . . . . 109

5.8 Strace differences between a) successful file write and b) lossy execution
in app PrivacyFriendlyNotes. . . . . . . . . . . . . . . . . . . . . . . . . 113

5.9 Progress bar for ongoing I/O operations in Android. . . . . . . . . . . . 120

6.1 Injected events that lead to crash. . . . . . . . . . . . . . . . . . . . . . 126

6.2 Coverage achieved for regular event distribution vs 75% touch events. . . 127

6.3 Coverage achieved for regular event distribution vs 75% motion events. . 131

6.4 Coverage achieved for regular event distribution vs 75% navigation events. 133

xix



LIST OF FIGURES
(Continued)

Figure Page

6.5 Coverage achieved for regular event distribution vs 75% major navigation
events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.6 Monkey vs. manual testing coverage. . . . . . . . . . . . . . . . . . . . . 137

6.7 Coverage % comparison with changes to throttle. . . . . . . . . . . . . . 138

7.1 SOM for dataset Zoo, toolkit RKoh. . . . . . . . . . . . . . . . . . . . . 140

7.2 Different SOMs obtained via two different runs in RKoh, dataset AP Colon

Lung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.3 Clustering accuracy ranges for dataset Zoo. . . . . . . . . . . . . . . . . 142

7.4 Quantization error nondeterminism for dataset ecoli, toolkit RKoh. Low
error in dark blue, higher error in light blue/green/red. The run with
minimum quantization error (59.75) is shown on the left while the run
with maximum error (79.07) is shown on the right. . . . . . . . . . . . 146

7.5 Topographic product nondeterminism for dataset colic, toolkit RKoh,
exposed by plotting the number of inputs mapped to each neuron. Grey
spaces (representing empty nodes) indicate that the map size is too
large. The left map (predominantly red or darker orange) shows a more
uniform distribution, TP = 0.0006. The right map shows more empty
nodes and thus a higher topographic product, TP = 0.0023; yellow
or lighter orange spaces indicate a skewed distribution, where many
samples map to a single node. . . . . . . . . . . . . . . . . . . . . . . 148

7.6 Distortion nondeterminism: in the analcatdata boxing1 dataset, toolkit
RKoh, there are variations in distortion between each node and its
neighbors. The figure on the left (distortion = 4.36) shows significantly
less distortion than the right (distortion = 6.53): orange indicates
more similar nodes. The higher the distance, the more dissimilar the
nodes are (depicted in yellow or white). An ideal mapping would have
predominantly red nodes. . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.7 Clustering accuracy ranges for dataset AP Colon Lung. . . . . . . . . . . . 154

7.8 Neighborhood Preservation inconsistency in the dataset analcatdata challenger,
toolkit RKoh. Though invariant across runs, NP varies across toolkits.
The red indicates an ideal mapping, with fewer samples being mapped
to the same node. In contrast, yellow or white indicate many samples
mapped to the same node, showing a poor map fit and neighborhood
preservation. Grey represents empty nodes, i.e., map might be too large.155

xx



CHAPTER 1

INTRODUCTION

Mobile applications (“apps”) have become an integral part of our daily lives, offering

a wide range of functionalities and services. However, the rapid growth of the Android

platform and the increasing complexity of mobile apps have introduced numerous

challenges related to security, privacy, and reliability. Addressing these challenges is

crucial to ensure the trustworthiness and effectiveness of Android apps in meeting user

expectations. This dissertation aims to investigate and provide insights into several

key areas of concern, including: identifier use and abuse; app reliability; and app

testing. We now provide an overview of the scope of this work, describe the problem

landscape, state the objectives, and outline the organization of the dissertation.

1.1 Background

1.1.1 Android devices and apps

As of July 2023, there are 16.8 billion mobile devices in use globally; of these, 70% run

Android and 28% run iOS [9]. Google Play, the main Android app store, offers more

than 3.5 million apps [1]. The number of apps on Google Play has increased alongside

Android’s rising popularity until December 2017, when nearly 700,000 apps were taken

down [2]. Google has consistently taken measures against apps that impersonate other

apps, contain inappropriate content, or pose potential harm. Users have the option to

download apps from alternative sources like F-Droid [3] or OEM-based stores such as

the Samsung Galaxy Store [7].

Over the years, there has been a significant increase in mobile app usage. On

average, smartphone users: spend 3 hours daily on their devices; use 10 apps per day;

and have over 80 apps installed on their phones [4]. Initially, apps were primarily

used for general productivity and information retrieval purposes, such as email clients,
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web browsers, or weather. However, due to growing demand, social media apps

have become the most downloaded and popular apps [8]. Mobile apps now serve

a broader range of functions, beyond leisure and entertainment. Most importantly,

apps are being increasingly employed for critical tasks, including e-commerce [6],

finance, or healthcare. For example, 86.5% of Americans use mobile banking apps [5].

Furthermore, medical apps have seen a rise in popularity, offering the ability to handle

sensitive information and perform essential tasks. For these reasons, app reliability

and security have become crucial concerns.

1.1.2 Android platform

The Android system is based on the Linux kernel; on top of the kernel sits middleware

written in C/C++ and Java. Android apps, written in Java and (optionally) C/C++

native code, run on top of the middleware. Java code is compiled into Dalvik bytecode

(DEX), which is translated to native binary code (in older Android versions, apps

were executing on top of the Dalvik VM). Android apps are distributed as APK files –

compressed archives which hold the DEX files, native code if present, and the app

resource files. Android apps are high-level, event-driven, and with shallow method

stacks. Below the application layer is the Android Framework which provides libraries

containing APIs. This allows the use of hardware functionality without incurring

any complexities inherent when working at a lower level. Since Android is constantly

evolving with the introduction of new features and APIs, fragmentation becomes an

issue that app developers must address. Thus, Android developers should test their

apps on multiple Android versions and multiple hardware devices, to ensure that other

platforms are also supported.
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1.2 Dissertation Scope

This dissertation focuses on exploring critical aspects of Android app security, privacy,

and reliability. It encompasses a range of topics, including algebraic-datatype taint

tracking, understanding and breaking user and device fingerprinting in Android,

diagnosing medical score calculator apps, detecting potential user-data save and

export losses due to Android app termination, and evaluating the effectiveness of

Monkey as a random testing tool.

1.3 Problem Description

The Android platform poses unique challenges in terms of security vulnerabilities,

privacy risks, and reliability issues. The diverse and interconnected nature of Android

apps makes them susceptible to identifier leaks, deceptive practices, and unauthorized

data access. Furthermore, the accuracy and reliability of medical score calculator

apps, as well as the potential losses of user data due to app termination, are critical

concerns. Additionally, there is a need to evaluate the effectiveness of existing testing

tools, such as Monkey, in ensuring the reliability and robustness of Android apps.

1.4 Dissertation Objectives

The primary objectives of this dissertation are as follows:

• Quantify the security risks associated with identifier leaks and deceptive practices
in Android apps by precisely representing the identifier leaks.

• Explore techniques to understand user device-based fingerprinting schemes
represented in Android and how to subvert them.

• Develop methods for diagnosing and verifying the accuracy of medical score
calculator apps.

• Detect and analyze potential user-data save and export losses due to Android
app termination.

• Evaluate the effectiveness of Monkey as a random testing tool for Android apps.
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• Analyze the nondeterminism and inconsistency present in SOM implementations.

We provide a visualization of this dissertation in Figure 1.1.

1.5 Dissertation Organization

The dissertation is organized along two main thrusts:

Identifiers Usage and Abuse. The investigation on “Identifiers Usage and Abuse”

in this dissertation explores the ways in which Android app developers utilize and

potentially exploit user and device identifiers for various purposes. By delving into

the realm of “Identifiers Usage and Abuse,” this research sheds light on the potential

privacy risks associated with the collection, storage, and transmission of sensitive user

and device information by Android applications.

Algebraic-datatype taint tracking: this research investigates the security of

Android apps by analyzing the flow of sensitive data, identifying leaks, and

characterizing their behavior using novel algebraic-datatype taint analysis techniques

(Chapter 2).
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Financial attacks and “limitless” offers: using our dynamic slicing approach,

we extract and characterize fingerprinting schemes in Android and show how these

schemes are constructed from a wide range of customer-identifying information: from

ephemeral sources such as registration information to persistent sources such as device

information. We also discuss different methods to break these fingerprinting schemes

to achieve unlimited offers/promotions leading to financial losses (Chapter 3).

Reliability. The examination of “Reliability” in this dissertation focuses on

investigating and enhancing the dependability and consistency of Android applications,

including the effectiveness of testing tools, the diagnosis of potential errors, and

the quantification of uncertainties within the app ecosystem. Diagnosing medical

score calculator apps: this research focuses on verifying the accuracy of medical

score calculator apps through automated correctness checking of reference tables and

dynamic analysis-based verification techniques (Chapter 4).

Detecting potential user-data save and export losses due to Android app

termination: this investigation aims to identify and address issues related to the

termination of Android apps, specifically focusing on potential losses of user data and

analyzing the reliability of file-write operations (Chapter 5).

Effectiveness of Monkey as a random testing tool: this research evaluates how

Monkey’s parameters affect code coverage (at class, method, block, and line levels)

and answers several research questions centered around improving the effectiveness

of Monkey-based random testing in Android and how it compares with manual

exploration (Chapter 6).

Quantifying nondeterminism and inconsistency in self-organizing map implemen-

tations: this study investigates the reliability of self-organizing map implementations in

neural network-based unsupervised learning. It examines the properties of determinism

and consistency in four popular self-organizing map implementations using internal
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and external metrics. The research identifies violations of these properties across a

range of datasets, highlighting the importance of multiple runs and toolkit comparisons

for reliable results in critical applications (Chapter 7).

In the following chapters, we will delve into each of these research areas, present

our findings, discuss the implications, and provide practical solutions to enhance the

security, privacy, and reliability of Android apps.
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CHAPTER 2

ALGEBRAIC-DATATYPE TAINT TRACKING

Current taint analysis techniques used for tracking data flow from sources to sinks

in Android apps have certain limitations, making them imprecise and ineffective in

real-world scenarios. These shortcomings include difficulties in handling mutually

exclusive sources and flows that combine multiple sources, which are common in

complex Android app environments. To address these issues, we introduce a novel

approach to taint analysis using algebraic-datatype representations. This technique

generates expressive and concise taint signatures that involve operations such as AND,

XOR, and hashing, akin to algebraic types. The proposed analysis is implemented

as a static analysis tool for Android apps, specifically focusing on deriving app

leak signatures that represent how sensitive hardware and software identifiers are

manipulated before being exfiltrated to the network.

We introduce our algebraic representation for taint analysis in Section 2.2.

The static analysis design in Section 2.3 includes a dataflow-centric call graph

and two refinement phases to generate algebraic leak signatures. The evaluation

in Section 2.4 demonstrates its effectiveness with 2.1x more leak discoveries than

FlowDroid, achieving 72.6% precision and 100% recall. Section 2.5 presents empirical

studies on privacy leaks in top Google Play apps and their embedded libraries. We

also compare the apps’ versions from 2018 with their 2020 counterparts finding a

decrease in the use of raw/hardware identifiers, indicating that apps have become

more privacy-friendly.

2.1 Motivation and Design Choices

Taint analyses determine whether data from a privacy-sensitive source (e.g., MAC

Address) flows to an insecure sink (e.g., Internet). Current analyses’ imprecision affects
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their usability. For example, applying a standard Android taint analysis produces the

same result (IMEI→Internet), in three different scenarios:

• The app exfiltrates the IMEI to a third-party server (e.g., Blink Health RX [34]);
this practice is discouraged or forbidden by Google Play guidelines, depending
on the nature of the app.

• The app (e.g., CareZone [26]) links with a financial library that uses the IMEI
for payment fraud prevention; this is allowed by the guidelines.

• The app (e.g., Spectrum TV [60]) concatenates the IMEI with another identifier,
e.g., AndroidID, hashes the result, and uses this hash value for customer
identification. Since the actual IMEI cannot be reverse-engineered, the privacy
loss is lower compared to the first and second scenarios.

Conflating these three use cases is problematic, as they are very different in

terms of guidelines compliance and privacy implications. We combine a precise static

analysis with an algebraic representation that can distinguish between these, and

other, scenarios.

Android identifiers. Our analysis considers the seven popular Android IDs

described in Table 3.1. The first four are “hardware” identifiers, i.e., tied to the

specific phone hardware, and cannot be reset/changed in software; the remaining three

are resettable identifiers. Google/Android developer guidelines have specific policies

designed to protect user privacy [14] by discouraging, or even forbidding, access to

hardware identifiers, such as:

• “Avoid using hardware identifiers”.
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Table 2.1 Identifiers Considered and Their Semantics

ID Semantics

H
a
rd

w
a
re

IMEI/MEID 15-digit; identifies mobile phone
IMSI 15-digit; identifies SIM/network

subscriber
MAC 48-bit; identifies the network card
Address -actual value reported by Android <6

-“02:00:00:00:00:00” reported by
Android 6−9
-randomized value reported by Android
≥10

Serial# Manufacturer-assigned; identifies device

R
e
se
tt
a
b
le AndroidID Android ≥8: unique for an app or app

group
Android <8: unique user&device combi-
nation

GUID identifies app instance
AdvertisingID identifies user for ad tracking purposes

• “Only use an Advertising ID for user profiling or ads”.

• “Use an Instance ID or GUID whenever possible for all other use cases, except for
payment fraud prevention and telephony”.

• “By its nature, fraud prevention requires proprietary signals”.

To sum up, the only acceptable use of hardware identifiers is financial/fraud

detection; all other scenarios, e.g., advertising or analytics, require the use of resettable

identifiers. Many apps violate these guidelines; to counter this abuse, as shown

in Table 3.1’s “MAC Address” line, the Android platform’s recent versions took

increasingly stringent measures, first reporting a constant MAC Address, and then a

randomized one. Android version 10 (used by 8.2% of Android devices as of February

25th, 2021, per Android Studio) restricts access to hardware identifiers to privileged

(e.g., system, vendor) apps; this does not affect the generality of our approach.

2.2 Algebraic-datatype Representation for Signatures

In type theory, a product type is the type of an n-ary tuple, e.g., in OCaml, the tuple:

(1,3.14,”foo”)

has type
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int * float * string.

A sum type is the type of a union, e.g., the C language union:

union u {int i; float f;}

or the OCaml [150] variant

type number = Int of int | Float of float

have the product type:

int ⊕ float

(either an int or a float, but not both, inhabit the variant). Our core insight is

an algebraic-datatype definition of taint: identifiers are base types and leak signatures

are finite (non-recursive) algebraic types over base types.

2.2.1 Definitions

We define these shorthands for the Android identifiers: e for the IMEI, s for the IMSI,

a for the AndroidID, r for Serial, m for MAC Address, v for AdvertisingID, g for

GUID.

Signatures can be identifiers; hashes; or combinations thereof introduced via

AND or XOR. We use S and T as metavariables for signatures. Hence our signature

grammar is defined simply as:

Identifier i ::= e | s | a | r | m | v | g

Signature S ::= i | h(S) | S ⊕ S | S ∧ S

AND, denoted S ∧ T , indicates that both S and T (which can be identifiers

or signatures), are used. This corresponds to a product type in type theory, and

Cartesian product in set theory. Note that we deliberately use ‘∧’ instead of the

standard type theory symbol ‘×’ as it is more suggestive in our context.
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XOR, denoted S ⊕ T , indicates that either S or T is used, but not both. This

corresponds to a sum type in type theory,1 and disjoint set union in set theory. We

use ‘⊕’ instead of the standard ‘+’ from type theory as it is more suggestive in our

context.

Hash. The hash, denoted h(S), indicates that an identifier’s hash (or the hash of

an identifier combination) is leaked, not the actual “raw” identifier(s); e.g., h(e) could

be computed via hashing methods nameUUIDFromBytes(IMEI.getBytes()) or md.digest(IMEI.getBytes()).

2.2.2 Properties

Defining formally what it means for a program to leak less than another program is

key. For this purpose we introduce the subsumption relation, ‘<:’, induced by subset

semantics. Informally, app A leaks less than app B, aka B subsumes A, if the set of

all possible values leaked by A is a subset of the set of all possible values leaked by B.

We now define subsumption for the algebraic representation.

Subsumption (AND). An app whose signature is S leaks less than an app whose

signature is S ∧ T ; this is denoted S <: S ∧ T . Similarly, an app whose signature is T

leaks less than an app whose signature is S ∧ T ; this is denoted T <: S ∧ T .

Subsumption (XOR). An app with signature S ⊕ T leaks less than an app whose

signature is S ∧ T .

Subsumption (hash). An app with signature h(S) leaks less2 than an app with

signature S; this is denoted h(S) <: S.

First, note how subsumption introduces a partial order (in certain cases, a total

order) on apps’ leaking properties: its power becomes apparent in Section 2.5 when

1Technically, in the Curry-Howard isomorphism [131], sum types correspond to OR in logic,
not to XOR. However OR is not our intended semantics, since a = TRUE in a∨ b = TRUE
does not force b to be FALSE whereas in our semantics it does (mutual exclusion); a
longer explanation is available here [162]. Our semantics is readily apparent in the Church
Boolean [104] function XOR, i.e., λa.λb.a (not b) b, where if a reduces to TRUE, (not b)
must reduce to FALSE for the XOR to reduce to TRUE.
2“Leaks less” in a privacy/cryptographic sense, rather than strictly h(S) ⊆ S.
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1 String getTelephonyDeviceId(Context context) {
2 String deviceIMEI = ((TelephonyManager) context.getSystemService(”phone”)).getDeviceId();
3 return deviceIMEI; }
4 String getAndroidId(Context context) {
5 String androidId = Secure.getString(context .getContentResolver() , ”android id”);
6 return androidId ; }
7 String getWifiMacAddress(Context context){...
8 String mac=wifiManager.getConnectionInfo().getMacAddress();
9 return mac; }

10 String getUniqueDeviceID(Context context) {
11 return generateDeviceId(getTelephonyDeviceId(context) , getWifiMacAddress(context),

getAndroidId(context)) ;
12 }
13 String generateDeviceId(String str , String str2 , String str3 ) {
14 if (! TextUtils . isEmpty(str)) { // str3 → {a}
15 str3=str; // str3 → {e}
16 }
17 else if (! TextUtils . isEmpty(str2) && !TextUtils.isEmpty(str3)) {// str3 → {a}
18 str3 = new UUID((long) str3.hashCode(), (long) str2 .hashCode()).toString () ;// str3 → {h(m) ∧ h(a)}
19 } else if ( TextUtils . isEmpty(str3)) {// str3 → {a}
20 str3=UUID.randomUUID().toString();// str3 → {g}
21 }
22 return str3 ; // str3 → {e ⊕ a ⊕ h(m) ∧ h(a) ⊕ g }
23 void SendDeviceinfo() {...
24 httpParaMap.put(”deviceID”, getUniqueDeviceID(context).toString()) ;
25 ...}

Figure 2.2 UUID generation in the Audiobooks.com app.

we use it to check whether a signature subsumes another (i.e., an app leaks more than

another app, or more than a different version of the same app). Second, the algebraic

representation naturally induces equivalence classes: apps with the same signature

will leak the same identifiers (and semantically, the identifiers are manipulated in the

same way, e.g., hashed).

2.3 Approach

The architecture of our system is shown in Figure 4.4. Given an Android app (APK

file), we perform a chain of analyses to construct the app’s leak signature: control- and

data-flow analyses that compute and propagate algebraic taint; a secondary analysis

to detect hashing; and a third-party vs. own analysis. The initial control-flow graph

is produced by the Amandroid static analyzer [208] (shown in gray; not a contribution

of this work).
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Our Analysis

Figure 2.3 Prior taint approaches (top) vs. our approach (bottom).

Our approach operates from generic sources/sinks: any variable or API method

can be used as source; similarly for sinks. These are specified in a source input file

and sink input file, respectively, as is common for flow trackers.

2.3.1 Motivating example

We illustrate our approach, and contrast it with prior taint analyses, on the

Audiobooks.com [32] app. The relevant source code is shown in Figure 2.2. The app

attempts to leak an unique device ID, aka UUID onto the network via SendDeviceInfo()

(lines 23–25). The UUID is: the IMEI, if available (retrieved on lines 1–3); if not

available, the hashes of MAC Address and AndroidID if they are available (lines 4–12);

otherwise the GUID, if available (line 20); finally, if none of these conditions are met,

AndroidID is the UUID.

Traditional taint analyzers, e.g., FlowDroid or Amandroid, perform taint analysis

of each source separately and report the leaks separately. For the aforementioned

code snippet, such tools perform four tainted paths calculations for four different

sources (IMEI, MAC Address, AndroidID, and GUID), as illustrated in Figure 2.3

(top). Eventually, they produce a report stating that all four identifiers are leaked.

This, however, is imprecise for two reasons. First, the identifiers’ hashed values are

leaked, which is less dangerous than raw leaks. Second, the tools fail to report the
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aggregation: actually MAC address and AndroidID are used together, exclusive of

IMEI and GUID – i.e., a signature, whereas the tools report separate leaks.

In contrast, our analysis produces the correct signature. The high-level view is

shown in Figure 2.3 (bottom); lower-level dataflow analysis will be discussed shortly.

Instead of simple taint propagation, we propagate algebraic taint. For the example

shown in the figure, instead of four different leaks, we report one precise signature,

the leak actually present here, that is: e⊕ (h(m) ∧ h(a))⊕ g ⊕ a.

1 public class PersistentUUID {
2 JSONObject jsonObject = new JSONObject();
3 private static final String UUID KEY = ”nr uuid”;
4 ...
5 private void generateUniqueID(Context context) {...
6 TelephonyManager tm = (TelephonyManager) context.getSystemService(”phone”);
7 hardwareDeviceId = tm.getDeviceId();
8 putUUID(hardwareDeviceId);...
9 }
10 protected void putUUID(String uuid) {...
11 jsonObject .put(UUID KEY, uuid); ...
12 }
13 public String getPersistentUUID() {...
14 uuid = jsonObject. getString (UUID KEY);...
15 return uuid;
16 }
17 }
18 public class AndroidAgentImpl {
19 public void sendDeviceInformation() {...
20 hashMap.put(”Model”,Build.MODEL);
21 hashMap.put(”deviceID”,persistentUUID.getPersistentUUID()) ;...

tm
(generateUniqueID)

IMEI API

….

Dataflow-centric Call Graph

hardwareDeviceID
(generateUniqueID)

jsonObject
(putUUID)

uuid
(getPersistentUUID)

hashMap
(sendDeviceInformation)….

Figure 2.4 Source code and its dataflow-centric call graph.
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2.3.2 Dataflow-centric call graph construction and analysis

While other static taint analyzers [88, 208] perform interprocedural control- and

data-flow analyses (as we do), their taint facts and propagation are both imprecise

and insufficient for our purposes. We address this via a series of analyses, the first of

which is call graph extraction, as explained next.

Call Graph Extraction. We start our analysis from the Amandroid-generated

control-flow graph, and soundly3 extract the sub-graph where the algebraic taint-

relevant data propagates. We illustrate our approach in Figure 5.7: the top shows

the source code while the bottom shows our dataflow-centric call graph (the grey

edges/vertices depict the parts of the control flow graph that can be soundly abstracted

away). In the source code, the IMEI is obtained via the Android API on lines 6 and 7,

and stored in hardwareDeviceId. On line 8, the IMEI flows into the putUUID() method as a

parameter; the IMEI is saved into a JSONObject on line 11. Our graph captures this

dataflow. We can see a dataflow edge between the hardwareDeviceID and jsonObject variables

where the IMEI data is saved as key-value JSON data. Next, if we follow the dataflow

of the jsonObject currently holding the IMEI data, the data is saved into a new variable

uuid on line 14 in the getPersistentUUID() method. This is captured by the edge between

jsonObject and uuid. Finally, on line 21, the hashMap creates an entry (key-value pair) with

deviceID as key and IMEI as value, resulting in an edge from uuid to hashMap in the graph.

Our dataflow analysis (forward/may – a variant of reaching definitions [79]) propagates

algebraic taint on top of the graph.

Dataflow Analysis. We illustrate our dataflow analysis on the program in Figure 2.2,

method generateDeviceID. A simplified-for-legibility version of the Out(s) sets limited to

variable str3 are shown as comments on the right side of the code. At the beginning,

3Technically soundy [160] – our approach is sound up to native code (because we leverage
Amandroid, which is sound up to native code) which is par for the course for Java/Android
analyses.
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the set contains the value {a}, i.e., AndroidID. At line 15, str3 is assigned a new value

which contains the IMEI, {e}. The Out(s) set for the statement at line 18 contains the

combined hash value signature, (h(m)∧ h(a)); str3 is then assigned {g}, GUID, at line 20.

For each statement, the union of the Out(s′) of all the predecessors s′ of s gives the

In(s) value [139, 79]. In our example, line 22’s predecessor set is lines {14,15,18,20}

(of course, in the actual analysis, conditional statements are more fine-grained hence

we typically performs two-way joins rather than a four-way join). Hence at program

joint point (line 22), the In set, in this case identical to the Out set, which represents

the UUID signature, is:

e⊕ (h(m) ∧ h(a))⊕ g ⊕ a

A key factor that informed our analysis design, and helps keep the analysis

precise, was our observation (drawn from manual taint analysis, Section 5.3.5) that

apps’ code for constructing the signature, such as the code discussed above, tends to

lack back edges, which helps contain dataflow sets size.

2.3.3 Hash analysis

As illustrated in Figure 4.4, hashed leaks are leaks that flow through hashing methods,

e.g., MD5. We detect such flows by setting up another flow analysis as follows. First,

we set the entry of hash methods as sinks. Next, we set the return of hash methods as

sources and network API methods as sinks. As a result, we separate the underlying

identifiers leaks into raw leaks and hashed leaks. Note that our analysis takes a “Hashing

Methods” list as input; we constructed this list based on an exhaustive analysis of

hashing functions/practices available in Java and practices used by manually-analyzed

Android apps. For example, some common hashing Java API methods include MD5, SHA

and nameUUIDFromBytes(), or Java classes such as MessageDigest. This list is user-configurable

hence easily extended.
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1 public static String getDeviceId(Context me) {
2 TelephonyManager telephonyManager = (TelephonyManager) me.getSystemService(”phone”);
3 String IMEI = telephonyManager.getDeviceId();
4 MessageDigest md = MessageDigest.getInstance(”SHA”);
5 byte [] dat = null ;
6 if (IMEI == null) return ””;
7 md.update(IMEI.getBytes());
8 return hashByte2String(md.digest()) ;
9 }

Figure 2.5 Cryptographic hashing in app CGTN.

2.3.4 Third-party vs. own code analysis

To separate own leaks from third-party leaks we used a predefined list of common

third-party libraries as reference,4 along with flow partitioning. Specifically, if an

identifier’s entire flow involves only third-party library methods, we tag that leak

as third-party leak; otherwise we tag it as own code leak. We have not found any

cross-flow between third-party code and own code in our examined apps.

2.3.5 Example

In Figure 2.5, we show an example that illustrates both hashing and third-party vs.

own analysis, from app CGTN. The IMEI is being hashed by the cryptographic hashing

method MessageDigest(SHA) (lines 4, 7 and 8). The leak happens inside the app’s own

package, so we categorize it as ‘own’. The leak signature is, therefore : h(e) [own]

2.4 Evaluation

We evaluated our approach, and performed six studies, on 1,000 top apps from Google

Play. The 1,000 apps span 19 popular categories from Google Play. The number of

apps varied slightly across categories as we favored popular apps. For the evolution

study only (Section 2.5.6), we compared apps’ year 2018 versions with their year 2020

counterparts, i.e., 2,000 APKs.

4The same library can appear under different names in different apps due to obfuscation;
we mapped obfuscated libraries’ names to a unique name, common across all apps, for that
library.
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Table 2.2 The Number of Top Google Play Apps Where FlowDroid, and Our
Approach Respectively, Found Leaks

IM
E
I

IM
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I
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l

M
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d
.I
D

A
d
v
ID

G
U
ID

FlowDroid 104 23 n/s 101 336 n/s 519

Our Approach
Total 405 108 316 372 722 455 728
Raw 334 43 235 324 695 455 728
Hashed 145 79 142 83 297 0 0
False Negatives 3 0 n/a 7 0 n/a 11

Table 2.3 The Number of Ground Truth Apps Where FlowDroid, and Our Approach
Respectively, Found Leaks

IM
E
I

IM
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I

S
e
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a
l

M
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C

A
n
d
.I
D

A
d
v
ID

G
U
ID

FlowDroid 11 9 n/s 5 24 n/s 53

Our Approach 21 9 18 15 44 32 56

2.4.1 Effectiveness

We first evaluate the effectiveness of our approach by comparing, on the 1,000 apps,

with state-of-the-art FlowDroid; next, we compare with ground truth on 64 apps

where flows were tracked manually.

Comparison with FlowDroid. We ran the July 2020 version of FlowDroid from its

official GitHub page [27] on our 1,000-app dataset. We configured FlowDroid to match

our configuration: we enabled implicit flow analysis and context sensitivity. Dataflow

analysis, callback collection during call graph construction, and result collection time

limits were set to 1000 seconds, 1000 seconds, and 500 seconds respectively. As a

point of reference, our analysis’ median time per app was 347 seconds (Section 2.4.2),

so we believe the aforementioned time limits are reasonable. We directed FlowDroid

to use sources and sinks that match ours. As sources, we used the API methods

responsible for retrieving the 7 identifiers we track (Table 3.1). For sinks, we used the

SuSi list [28], i.e., all possible sinks under NETWORK INFORMATION category, as
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we are only interested in exfiltration to the network. Note that the API methods that

read the ‘Serial’ and ‘AdvertisingID’ cannot be expressed in FlowDroid’s taint source

format, so we marked those as ‘n/s’.

We show the results in Table 2.2: the number of apps where leaks were found,

by FlowDroid and our approach, respectively. We make three observations. First,

FlowDroid misses a substantial number of leaks, as it reports 46% of the leaks we

report, 1083 vs. 2335 (for those five IDs we could run FlowDroid on); prior work

suggests that false negatives’ root causes in FlowDroid/SuSi include inter-component

communication (ICC) and imprecise sink/source lists [174]. Our approach handles ICC

by default (via Amandroid). Even with the generous time limits we set, FlowDroid

timed out and could not find all the leaks. Second, FlowDroid cannot distinguish

between raw and hashed leaks, as our approach does (third and fourth rows show

the raw/hashed split). Third, our approach has some false negatives compared to

FlowDroid (i.e., we miss leaks that FlowDroid does not miss), as depicted in the last

row. We found that false negatives originate in the CFG provided by Amandroid –

when Amandroid missed some control-flow edges, our approach missed those edges as

well.

Comparison with Ground Truth. We measured the False Positives (FP) and

False Negatives (FN) by comparing the results of our static analysis with ground truth

– known flows found in prior work via a manual analysis on 64 apps;5 these “ground

truth flows” are not a contribution of this work. The confusion matrix is:

True Positives: 186 False Positives: 70

False Negatives: 0 True Negatives: 512

5The manual flow analysis was exhaustive, e.g., went so far as capturing and rewriting
network packets.
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Table 2.4 Efficiency Results

Analysis time (seconds) Bytecode size (MB)

min max median mean min max median mean

140 47,651 347 411 0.04 103.4 16.6 15

These figures, a 72% precision and 100% recall, are par for the course for a static

analysis, indicating that our approach is effective.

We also show a comparison of our approach with FlowDroid on these 64 ground

truth apps in Table 3.8. Our approach found more leaks than FlowDroid on these

apps as well.

2.4.2 Efficiency

We conducted the experiments on a MacBook Pro (3.5 GHz dual-core Intel Core i7

with 16GB RAM), running Mac OS X 10.14.6. We show statistics (computed across

the entire app dataset) of analysis running time, along with app bytecode size, in

Table 5.5. A typical app took about 6 minutes to analyze – median 347 seconds,

geometric mean 411 seconds – which is efficient for a static analysis; the longest

analysis time was 13 hours, which we believe can be reduced substantially with more

engineering. The app bytecode statistics – median 16.6MB, geometric mean 15MB,

maximum 103MB – show that our approach is capable of analyzing large apps.

Table 2.5 Identifiers Stats
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ID
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U
ID

Apps (%) 51 21 40 47 91 58 92

Raw (%) 83 38 75 88 96 100 100

Hashed (%) 37 74 46 23 41 0 0

Raw & Hashed (%) 20 12 21 11 37 0 0
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2.5 Applications

We now present six studies that provide evidence for the expressiveness and effectiveness

of algebraic-datatype taint tracking.

2.5.1 What IDs are leaked, and in what form?

We first studied the frequency and nature of identifier leaks. In Table 2.5 we show the

percentage of apps that leak that identifier, and the form of the leak. Three critical

identifiers, IMEI/Serial/MAC Address, are leaked by 40–51% of the apps, which is the

first reason for concern. The second reason for concern is that identifiers are leaked

raw by 75–88% of the apps that leak them; 23–46% of apps leak these IDs hashed – in

lieu of, or in addition to, the raw leak. On a more positive note, the IMSI is leaked to

a lesser extent, only 21% of the apps, and mostly hashed (74%).

For the remaining three, resettable identifiers, we found that the AndroidID

and GUID are leaked routinely: by 91% and 92% of the apps, respectively. The

Advertising ID is seeing a reduced leak rate (58% of the apps). Raw leaks are the

norm for these identifiers: 96–100% of the leaks are in raw form.

We observed that certain apps leak both the raw and hashed ID (last row of

Table 2.5). Note that for IMEI, IMSI, Serial, and AndroidID, this figure is quite high,

12–37% of the apps. We believe this practice to be particularly pernicious, because

such apps essentially have the h(ID)→ ID mapping. If these apps communicate the

mapping to other apps that only have h(ID), then the raw ID value, unique to the

device, can be de-anonymized.

2.5.2 Multiple-identifier leaks

We now study cases where multiple identifiers are leaked by a single app. We present

the most frequent signatures in Table 2.6. On a positive note, 3 out of top-10 most

common signatures are h(a)∧g, a∧g, and a∧v, that is, resettable identifiers (10%, 7%,
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Table 2.6 Most Common Multi-ID Leaks; R=Raw, H=Hashed

IM
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I

IM
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ID
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ID

#
A
p
p
s

R H R H R H R H R H R R

✓ ✓ 100

✓ ✓ 70

✓ ✓ ✓ ✓ 55

✓ ✓ 41

✓ ✓ 40

✓ ✓ 33

✓ ✓ 31

✓ ✓ 28

✓ ✓ 27

✓ ✓ ✓ 26

✓ ✓ ✓ ✓ ✓ 24

✓ ✓ ✓ 24

✓ ✓ ✓ 17

✓ ✓ ✓ 14

✓ ✓ ✓ 13

✓ ✓ 13

✓ ✓ 11

✓ ✓ 11

✓ ✓ 10

and 3.1%, respectively). The flip side is that the other 7 out of top-10 use hardware

identifiers: we have h(e)∧ h(r)∧ h(a), then h(m)∧ h(a), then e∧ a, at 4% and above.

We have h(r)∧ h(a), then h(e)∧ h(s), then h(e)∧ h(m), then h(e)∧ h(a)∧ g, at 2.6%

and above.

Note how these findings underline the effectiveness of our approach. A standard

taint analysis would conflate the 100 apps whose signature is h(a) ∧ g with the 70

apps whose signature is a ∧ g; and would conflate the 24 apps using h(e) ∧ h(s) ∧

h(r) ∧ h(m) ∧ h(a) with the 4 apps using e ∧ s ∧ r ∧m ∧ a.

Examples: complex yet common signatures. Our prior work on manual taint

analysis (Section 5.3.5) has revealed groups of apps with common signatures – apps

use the same mechanism for constructing a unique “DeviceID”. Our analysis can

group apps into equivalence classes induced by app signatures; this has a variety of
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String deviceID = new 
UUID( 

imei.toString().hashCode(), 
(imsi.hashCode() | 

androidID.hashCode()))
.toString();

String androidID = 
Secure.getString(...ANDROID_ID)

String imsi = telephonyManager. 
getSubscriberId()

String imei = 
telephonyManager.getDeviceId();

Signature 1: h(e)∧ h(s)∧ h(a)

Identifier Read Identifier Processing
Exfiltration

(to the network)

String deviceID = imei or 
new 

UUID(androidID.hashCode(), 
macAddress.hashCode()).to

String() or androidID or 
macAddress or GUID

String androidID = 
Secure.getString(...ANDROID_ID)

String imei = 
telephonyManager.getDeviceId();

String macAddress = WifiInfo. 
getMacAddress();

Signature 2: e⊕ (h(a)∧ h(m))⊕ a⊕ m⊕ g

String GUID = 
UUID.randomUUID().toString();

Figure 2.6 DeviceID signatures.

applications, from finding groups of apps with common behavior [120] to groups of

apps with common developers, etc. We show two such examples in Figure 3.4. The left

side (first stage) of the figure lists all the identifiers involved in signature construction.

The second stage shows how those identifiers are combined or processed to generate a

hashed unique DeviceID, which is then exfiltrated.

Signature 1 (app: Texas Roadhouse Mobile [62]) creates a DeviceID from the

combination of IMEI, IMSI, and AndroidID. Since all identifiers are used, the signature

uses ANDs:

h(e) ∧ h(s) ∧ h(a)

Signature 2 (library io.intercom) is quite complex, as the DeviceID is exactly one of:

either the IMEI, or the AndroidID, or the MAC Address, or the GUID, or the AND

of hashed Android ID and hashed MAC Address. Our representation captures this

effectively:

e⊕ (h(a) ∧ h(m))⊕ a⊕m⊕ g
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Table 2.7 Third-Party vs. Own Code Statistics: Number and Percentage of Leaks
(T=third-party, O=own code)

IMEI IMSI Serial MAC And.ID

T O T O T O T O T O

R 183 208 28 16 128 120 223 145 586 418

H 97 63 56 25 120 33 61 23 198 144

R(%) 33 38 22 13 32 30 49 32 44 30

H(%) 18 11 45 20 30 8 14 5 15 11

Table 2.8 Third Party Libraries: the Number of Methods Leaking Each ID, and the
Form of the Leak (H=Hashed, R=Raw). Raw Hardware Leaks in Non-financial
Libraries Shown in Red

Library IMEI IMSI Serial MAC AndroidID AdvID GUID Purpose
H R H R H R H R H R R R

com.paypal 35 8 35 4 35 4 35 6 35 4 30 142 finance
io.fabric 0 38 0 0 0 30 0 35 0 543 0 285 analytics
net.hockey.app 0 0 0 0 0 0 0 0 114 69 0 266 analytics
com.apps.flyer 0 2 0 0 0 0 0 2 7 91 95 106 ads
com.kochava 0 3 0 0 0 0 0 3 0 36 34 33 ads
com.threat.metrix 2 24 0 6 3 32 0 0 2 12 0 37 analytics
com.google 0 0 0 0 0 0 0 0 3 22 164 16 ads
io.intercom 0 9 0 0 0 0 0 8 0 9 0 106 analytics
io.branch 0 0 0 0 0 0 0 0 0 65 0 66 analytics
com.appsee 15 0 15 0 0 15 0 0 0 0 0 60 analytics
bo.app 0 0 0 0 0 7 0 0 0 0 0 60 analytics
com.tune 0 0 0 0 0 0 0 0 0 12 0 107 finance
com.segment 0 24 0 0 0 24 0 0 0 24 3 76 analytics
com.adjust 0 0 0 0 0 0 0 55 0 55 0 57 finance
com.leanplum 0 0 0 0 0 0 12 0 1 11 0 11 analytics
com.nielsen 0 0 0 0 0 4 0 1 0 26 6 4 analytics
com.iovation 0 9 0 8 0 0 0 9 0 9 0 7 analytics
com.startapp 0 0 0 0 0 0 0 0 0 32 32 99 ads
com.newrelic 34 0 0 0 34 0 0 0 34 0 0 174 analytics
com.mobvista 0 22 0 0 0 0 0 22 27 22 22 65 analytics

2.5.3 Library leaks vs. app’s own leaks

We motivate this analysis via two scenarios. In the first scenario, a developer submits

an app for publishing onto Google Play, and the app is rejected for violating guidelines,

e.g., a raw hardware leak in a non-financial app. Even though the developer has used

no IDs, the app is linked with a “leaky” advertising library that causes the ID leak.

The developer should be able to extract the library’s signature and the app’s signature

to determine the leak’s cause and course of action. In the second scenario, the Google

Play marketplace itself tries to determine whether a raw hardware leak is allowable or

not, prior to publishing an app. If the app uses a payments services library, the leak

would be allowed in the name of fraud prevention. Hence it is essential to find whether
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Table 2.9 “Leakiest” Apps. Non-financial Apps With No Financial Libraries Shown
in Red; R=Raw, H=Hashed

App #Installs Category IMEI IMSI Serial MAC AndrID AdvID GUID
(million) R H R H R H R H R H R R

Spectrum TV [60] 10 Entertainment ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CGTN [37] 5 News &
Magazines

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GPS Navigation
System [46]

10 Maps &
Navigation

✓ ✓ ✓ ✓ ✓ ✓ ✓

WiFi Map [44] 50 Productivity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bitcoin, Crypto
News [33]

1 Finance ✓ ✓ ✓ ✓ ✓ ✓ ✓

CheapOair [38] 1 Travel &
Local

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Greyhound
Lines [47]

1 Travel &
Local

✓ ✓ ✓ ✓ ✓ ✓

JCPenney [49] 5 Shopping ✓ ✓ ✓ ✓ ✓ ✓

CBS News [36] 1 News &
Magazines

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wendy’s [64] 5 Food & Drink ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Zipcar [66] 1 Maps &
Navigation

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lyft Rideshare [51] 10 Maps &
Navigation

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Western
Union [65]

5 Finance ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

NJ TRANSIT [55] 1 Maps &
Navigation

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Curb The Taxi
App [40]

1 Maps &
Navigation

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Apartments.com [29] 5 House &
Home

✓ ✓ ✓ ✓ ✓ ✓

CareZone [26] 1 Medical ✓ ✓ ✓ ✓ ✓ ✓ ✓

BURGER
KING [35]

10 Food &
Drinks

✓ ✓ ✓ ✓ ✓ ✓ ✓

Fox Now [43] 10 Entertainment ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

One Dollar [56] 0.5 Shopping ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sam’s Club [58] 1 Shopping ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Aaptiv [30] 1 Health &
Fitness

✓ ✓ ✓ ✓ ✓ ✓ ✓

Letgo [50] 100 Shopping ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Amber
Weather [31]

1 Weather ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Blink Health
Rx [34]

0.1 Medical ✓ ✓ ✓ ✓ ✓ ✓

a leak is caused by a library or the app itself. Our analysis isolates the source of the

leak (Figure 4.4) and attributes it to either third-party (library) code or own code.

In Table 2.7 we present the results of leak attribution in our examined apps. For

each ID, we show the number of third-party (T) vs. own (O) leaks, whether the leak

is raw or hashed, as well as the percentage distribution. All the hardware identifiers –

IMEI, IMSI, Serial, and MAC Address – as well as the AndroidID, are leaked more

by libraries than own code (51%, 67%, 62%, 63%, 59%, respectively). For identifiers
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AdvertisingID and GUID (omitted from the table for space), leaks were substantial

but balanced: 297 third-party vs. 291 own for AdvertisingID and 639 vs. 631 for

GUID.

This finding – hardware ID leaks are attributable more to third-party code than

own code – is important, because it shows that apps could unwittingly be the source

of problematic leaks, e.g., due to “leaky” libraries, and could be unfairly blamed for

leaks that apps’ own developers did not introduce, or were not even aware of.

1 // JCPenney app
2 static String g(Context context) {...
3 hashMap.put(”di”,(telephonyManager.getDeviceId()). digest ()) ;
4 ...
5 jSONObject.put(”di”, hashMap.get(”di”)) ;...
6 }
7
8 // Dunkin app
9 final HttpParameterMap getRiskBodyParameterMap(){...

10 httpParameterMap.add(”imei”, (TelephonyManager) context.getSystemService(”phone”)).getDeviceId(),
true) ;...

11 return httpParameterMap;
12 }

Figure 2.7 Hashed leak (top) vs. raw leak (bottom) in the same, com.threatmetrix

library.

2.5.4 Leakiest libraries

As mentioned previously, libraries are a significant source of leaks. Summarizing

leaks in libraries is non-trivial, however, because of context-sensitivity: a leak would

materialize (or not) depending on how an app invokes the library. We illustrate this in

Figure 2.7, on library com.threatmetrix. When the library is invoked from the JCPenney

app (top), the IMEI is leaked hashed: on line 3 the IMEI is read and its hash (digest)

added to hashMap. However, when the library is invoked from the Dunkin app (bottom),

the IMEI is leaked raw: on line 10 the IMEI is read and added, raw, to httpParameterMap.

Therefore, in Table 2.8 we present the results of our library analysis; of the 821

libraries used in our apps, we show the top-20 “leakiest”; for each library and each

ID, we show the number of library methods that leak the raw ID and the number
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Table 2.10 Identifier-centric Study Results: 2018 → 2020 Changes in Identifier Use

IMEI IMSI Serial MAC AndroidID AdvID GUID
TP O TP O TP O TP O TP O TP O TP O

Raw +8 +19 +1 +8 +14 +23 +8 +10 +41 +44 +24 +44 +47 +52
-45 -59 -8 -2 -28 -25 -48 -28 -75 -52 -48 -23 -45 -27

Net -37 -40 -7 +6 -14 -2 -40 -18 -34 -8 -24 +21 +2 +25
Hashed +12 +8 +5 +5 +15 +10 +5 +5 +33 +26 0 0 0 0

-19 -16 -10 -8 -21 -5 -12 -2 -34 -18 0 0 0 0
Net -7 -8 -5 -3 -6 +5 -7 +3 -1 +8 0 0 0 0

of library methods that leak the hashed ID. For example, library com.paypal has 35

methods that leak the hashed IMEI, 8 methods that leak the raw IMEI, 35 methods

that leak the hashed IMSI, etc.

For each library, we also present the library’s purpose, as indicated on the

library’s website or GitHub page. Note that only three libraries are financial:

com.paypal, com.tune, com.adjust; hardware ID leaks are expected, and allowed, in

these libraries. However, the analysis shows that most leaks are in non-financial

libraries, the overwhelming majority of which are advertising and analytics.

Table 2.8 paints a grim picture of the Android library landscape when it comes

to privacy: advertising and analytics libraries make heavy use of hardware IDs,

but this use appears aimed at identifying users and devices rather than preventing

fraud. Ironically, financial libraries com.tune and com.adjust are among the most

privacy-friendly libraries (least intensive users of hardware IDs).

2.5.5 Leakiest apps

We examined the “leakiest” apps in light of the Google guidelines for acceptable use

of hardware IDs. We focus on the top-25 apps that manage to leak all hardware

identifiers, raw. Moreover, many of these apps also leak hashed versions of hardware

identifiers; leaking both raw and hashed versions is a concern for de-anonymization.

We show the results in Table 2.9. For each app we show the popularity (the floor of

the number of installs, as indicated on Google Play on February 25th, 2021), the app

category, and the list of leaks.
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We identified those apps that have a legitimate financial reason to use hardware

IDs as follows: apps that are in the Finance category, or apps that link with a financial

library, and the leaks are due to the library (third-party) code rather than the app code.

The apps that did not meet these conditions, shown in red in the table, potentially

violate ID usage guidelines. Our approach distinguishes between raw and hashed,

and between third-party vs. own leaks, helping spot potential violations. In contrast,

an approach that misses these nuances might flag a substantial number of benign,

policy-abiding apps as problematic (i.e., a high rate of false positives).

Altogether, our dataset had 190 apps that either use a financial library, or the

app itself is in the Finance category. These apps might need hardware identifier

information for fraud & abuse checking purposes, so leaks from these apps can be

accepted. However, 47 out of these 190 apps leak at least one raw hardware ID via a

non-financial third-party library, which is a concern.

2.5.6 Longitudinal study: 2018 vs. 2020

To investigate whether apps are becoming more guidelines-compliant and privacy-

friendly, we conducted a longitudinal study, comparing the 2018 versions of 1,000-app

dataset with their 2020 counterparts.

Identifier-Centric Study. We first investigate how the prevalence/use of a certain

identifier has changed over two years. We tabulate the findings in Table 2.10. For each

ID, each code location (third-party (TP) or own (O)), and each leak type (hashed or

raw) we show the number of apps that added that ID leak with ‘+’ and the number

of apps that removed that ID leak with ‘-’. For example, for raw IMEI we have: in

third-party code, 8 apps have added this leak and 45 apps have removed this leak,

yielding a net change of -37; whereas in own code, 19 apps have added this leak

and 59 apps have removed this leak, yielding a net change of -40. The results reveal
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Table 2.11 App-centric Study Results: Subsumption Kind, Informal Definition, and
# of Apps Exhibiting Subsumption

Kind Subsumption Definition #Apps

A
N
D

hardware ID leaks decreased 108
hardware ID leaks decreased, software 11
ID leaks increased

raw IMEI leak removed 87
raw MAC Address leak removed 71
raw Serial leak removed 49
raw IMSI leak removed 12
raw AndroidID leak removed 107

H
a
sh

raw hardware ID leak → hashed hw. ID leak 26
raw IMEI → hashed IMEI 14
raw IMSI → hashed IMSI 3
raw MAC Address → hashed MAC Address 6
raw Serial → hashed Serial 3
raw AndroidID → hashed AndroidID 20

R
e
v
e
rs
e

hashed hardware ID leak → raw hw. ID leak 35
hashed IMEI → raw IMEI 20
hashed IMSI → raw IMSI 3
hashed MAC Address → raw MAC Address 7
hashed Serial → raw Serial 5

several trends. First, the use of raw IDs has decreased across the board: notice the

negative net figures for IMEI, Serial, MAC Address, AndroidID. Two groups saw an

increase: AdvertisingID and GUID,6 especially in own code, as well as hashed own

code (AndroidID, Serial, MAC). These results, also corroborated by the app-centric

study in Section 2.5.6, indicate (1) a move away from hardware identifiers and toward

resettable identifiers, and (2) replacing raw with hashed values, which is encouraging.

App-Centric Study. The second part of our study is app-centric. Assuming the

signature of an app in 2018 was S2018 while in 2020 the signature is S2020, we check

whether S2020 <: S2018. We show how our notion of subsumption allows for flexible

definitions, hence we can gauge, along several dimensions, whether the apps have

become more privacy-friendly.

6We keep the ‘0’ values for AdvertisingID and GUID in the table for uniformity; since these
IDs were not used in the hashed form to begin with, there was no change.
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We show the results in Table 2.11. We start with AND subsumption, e.g.,

e ∧ s <: e ∧ s ∧ r indicates a reduction in hardware identifiers; we found that 108

apps exhibit this condition, which is encouraging as it means dropping the use of one

or more hardware identifiers. When relaxing the subsumption notion to allow for

increases in software IDs, we found a further 11 apps that exhibit this condition, which

is still positive, as the use of software IDs is preferred to the use of hardware IDs. We

also show the number of apps that drop each ID; IMEI and MAC Address are the

most-dropped hardware identifiers (87 and 71 apps, respectively), while AndroidID

was dropped by 107 apps.

Hash subsumption, e.g., e ∧ h(ID) <: e ∧ ID, indicates that the app has switched

from leaking the raw ID to leaking the hashed ID. While few apps exhibit this

subsumption (26 for hardware IDs, 20 for AndroidID), it is nevertheless a privacy

gain.

Reverse subsumption. Finally, 35 apps were in the undesirable “reverse

subsumption” situation: at least one hardware ID leak was added in the 2020 version.

We show these findings in the last five rows of Table 2.11. Of the 35 apps that went

from a hashed to a raw leak, the majority did so for the IMEI (20 apps), while fewer

apps did so for the IMSI, MAC Address, and Serial, respectively.

To conclude, the longitudinal analysis reveals an overall move away from

usage/leaks of hardware IDs, toward resettable IDs; and to smaller extent, a move

toward hashed hardware IDs.

2.6 Summary

We introduce an algebraic taint representation that solves a key problem with existing

taint analyses: distinguishing between programs that leak data in ways that are

similar on the surface, but very different underneath. We implemented algebraic taint

tracking as a static analysis for Android, and demonstrate its effectiveness through six
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studies on identifier (ab)use in top Android apps and libraries. We found that being

able to capture subtle yet critical differences is key for understanding app behavior

w.r.t. user privacy or abiding by developer guidelines. Our longitudinal study shows

that over the past two years, apps have become more privacy-friendly.

Now that we have demonstrated the effectiveness of precise representation of leak

signatures involving device identifiers in capturing critical differences in app behavior,

we will turn our attention to the topic of fingerprinting in the next chapter.
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CHAPTER 3

IDENTIFIER SCHEMES BASED FINGERPRINTING

In this chapter, we tackle the challenge of automatically extracting and understanding

fingerprinting schemes used for uniquely identifying mobile users or devices in mobile

development. To achieve this, we introduce identifier processing graphs (IPGs) that

capture fingerprinting mechanisms concisely, allowing for high-precision, high-recall

dynamic taint analysis. Through our study, we analyze and break fingerprinting

schemes in 436 Google Play apps, and we demonstrate how automated subversion

of these schemes enables us to obtain free or discounted offers and credits. Our

findings shed light on the vulnerabilities of fingerprinting schemes and their financial

implications.

The identifier processing graphs (IPGs) are a novel, graph-based encoding of

identifier processing to streamline the extraction process in Section 3.2. We present

our systematic and scalable approach for breaking fingerprinting schemes including a

re-registration attack using ReOffer and network traffic injection in Section 3.3. Our

experiments reveal vulnerabilities. The evaluation of 436 apps shows a 100% success

rate in breaking fingerprinting schemes (Section 3.4). Finally, we discuss strategies

to hinder attackers and offer improvement suggestions for developers, vendors, app

markets, and users based on our findings in Section 3.5.

3.1 Overview

We start with a brief discussion of unique identifiers in Android (Section 3.1.1), followed

by our threat model (Section 3.1.2), then our workflow (Section 3.1.3).
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Figure 3.1 (a) Offer re-generation; (b) fake device activation.

3.1.1 Unique identifiers

App developers and businesses with a mobile presence have an interest in fingerprinting

users or devices via unique identifiers. We call these interested entities “fingerprinters.”

A wide range of identifiers (IDs) can be employed; depending on whether the ID is

tied to the user, app, software installation, or hardware, it can survive various level

of reset. However, the “deeper” the identifier, the more intrusive the fingerprinting,

hence Google has provided ID usage guidelines for app developers, e.g., “Avoid

using hardware identifiers”[14]. Generally, IDs are tied to either users or devices, so

fingerprinting schemes fall into two categories:

Type 1: Registration-based: Fingerprinters use registration information

(e.g., email address or credit card number) to identify a unique entity.

Type 2: Device-based: Fingerprinters identify a unique entity by using device

IDs, e.g., IMEI, Android ID, serial number; no registration information is required.

Naturally, fingerprinters can also employ a combination of these identifiers, from

both types. We investigate weaknesses (unsafe assumptions) in these uniqueness

enforcement schemes in two scenarios, as discussed next.
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3.1.2 Threat model

We analyze how fingerprinting mechanisms are applied in practice for discounts and

promotions, i.e., to enforce “one device/user, one discount/promotion”. In our model,

victims are businesses that rely on a fingerprinting scheme to either 1) limit offers to

a unique user/device, or 2) track unique device activations. Attackers aim to gain

multiple unauthorized benefits or cause financial losses to app developers/vendors by

breaking the fingerprinting scheme.

Scenario 1. For this scenario, illustrated in Figure 3.1(a), we consider mobile

apps that give out initial offers to new users. The attacker breaks the “one offer per

unique user” scheme, gaining multiple illegitimate offers. Our analysis has revealed

various types of offers in terms of “redeemability”. In the first type, the offer appears

as a QR code or barcode in the app. Hence, an attacker generates codes repeatedly.

In the next type, offers are shown as string codes or in-app GUI elements confirming

offer eligibility; unlike the previous case, the offer can usually be redeemed by making

an in-app purchase (e.g., delivery). In a few cases, the user needs to show the string

code to the cashier, who then enters the code into the register to redeem the offer.

Attackers can profit from multiple offers in several ways, while reducing the risk

of getting caught: codes can be sold to, and redeemed by, other users (besides the

“original” offer recipient); or the attacker can use different codes in different stores. All

these translate to lost revenue for the victim.

Scenario 2. For this scenario (Figure 3.1(b)), we consider the case where

app developers/vendors distribute their apps through several channels such as third-

party app promoters (or different app stores, named distributors). Promoters charge

developers an amount proportional to the number of unique devices that have installed

the app. Hence, developers need a precise mechanism to track the number of unique

devices that have installed the app, to ensure that promoters charge fairly. The

attacker aims to break the “one credit per fresh install on unique device”
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scheme, e.g., by deceiving the back-end servers via multiple fake activations (no real

device installs their app); as a result, promoters receive illegal financial gains, while

victims (developers/vendors) are charged abusively.

The main difference between these two threat models is that in Scenario 1, a

single device can have multiple, unique users, whereas Scenario 2 allows only one user

per device.

3.1.3 Workflow

Our attacks consist of two main phases: a) Extracting and categorizing the

fingerprinting schemes according to the types introduced in Section 3.1.1; and b)

Constructing and conducting the attack, which can give the attacker repeated benefits

or cause financial damages.

Figure 4.4 presents our approach. For a given APK (Android app), our automated

UI analysis checks whether the app requires a user account and finds registration

pages (Section 3.3.1). Registration information is saved and ReOffer “mines” app

offers. For 36% of our examined apps, ReOffer automatically regenerates offers via

re-registration. For 41% of the apps, a re-registration attack alone is not enough, so
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we leverage IPGs to understand how device IDs are combined and processed into a

fingerprinting scheme (Section 3.2); then we use a combination of bytecode rewriting

(Section 3.3.2) and ReOffer to automatically re-generate offers. For the remaining

23% of apps, ReOffer’ UI automation is not powerful enough to bypass customized,

sophisticated GUIs, or verification steps; in such cases we conduct the attack manually.

There was a single app (‘App X’) that employed anti-tampering, where bytecode

rewriting was insufficient. For App X we “injected” IDs into network traffic to subvert

the fingerprinting scheme (Section 3.3.3).

3.2 Extracting and Categorizing the Fingerprinting Mechanism

Extracting the fingerprinting scheme is akin to “finding the needle in the haystack”:

we need to precisely identify relevant data- and control-flow in the app execution,

from fingerprint construction to fingerprint sending.

Motivating Example. Consider, for example, extracting the fingerprinting

mechanism for the rewards-offering, Penn Station Subs app.1 Intuitively, we know

that the app performs fingerprinting (i.e., accesses, processes, and sends identifiers),

but we do not know which identifiers, how identifiers are combined/processed, and how

this identifying information is exfiltrated. The most popular approach for exposing

identifier leaks, taint analysis, can help with the “ends” but not with the crucial

middle: taint analysis can at best expose leaks of individual identifiers, but not the

intricate way in which identifiers are processed and combined into a scheme. Other

disadvantages of taint tracking are imprecision (in Section 3.4.7 we quantify this

inadequacy) and the risk of over-tainting aka “taint explosion” [105]. An alternative to

taint analysis, dynamic dependence tracking, holds promise, but the resulting number

of dependences can be overwhelming, since only a tiny fraction of dependences are

1https://apkpure.com/penn-station-subs/com.ak.app.pennstation/download/18-APK,
Retrieved on DATE: 2023-06-01
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germane to fingerprint construction. For example, dynamic slices can be in the range

of 500–5,000 instructions for popular apps [89].

Insights. Our strategy is based on three insights:

1. Dynamic program dependence graphs soundly capture data- and control-
dependences in a specific execution.

2. Fingerprinting information is constructed from registration and/or device
information.

3. The fingerprint is sent to the fingerprinter’s servers.

Based on these insights, we can construct the IPG-based fingerprint, as discussed next.

(Figure 3.3 shows Penn Station Subs app’s fingerprint, as extracted by our approach).

3.2.1 IPG: Definition and extraction

A dynamic program dependence graph G = (V,E) is induced by control- and

data-dependences between instruction instances (nodes vi) as follows. Let v
k
i be an

instruction instance, i.e., the k’s executed instance of bytecode instruction vi; without

loss of generality we omit k in the subsequent presentation. A data-dependence

edge vj ←d vi ∈ E is created when computation performed in vi depends on values

produced by vj . A control-dependence edge vj ←c vi ∈ E is created when the decision

to execute vi is made by vj, that is, vj contains a predicate whose outcome controls

the execution of vi. Dynamic program dependence graphs are created via dynamic

program analyzers that track dependences, e.g., slicers [89].

IPG construction as transitive reduction on G. We show the algorithm for

IPG construction as transitive reduction on G in Algorithm 1. The algorithm takes as

inputs the program dependence graph (PDG) of G; the slicing criteria (which in our
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case is X, the set of network API calls); and the identifier APIs set U . The algorithm

produces the IPG as output. We define D as the set of data dependence edges and C

as control dependence edges (lines 3–4). Let X = {x1, . . . , xj, . . . , xm} be the bytecode

instructions responsible for exfiltrating the fingerprint, e.g., when the fingerprint is sent

over the network, these x’s are network API calls. Let U = {u1, . . . , ui, . . . , un} be

the bytecode instructions responsible for reading unique identifiers, e.g., the API calls

for retrieving the MAC address, or the IMEI. Naturally, X and U are subsets of V ;

let V ′ = X ∪ U (line 5) and G′ = (V ′, E ′) (line 10) be the subgraph of G induced by

this restricted set of nodes; we calculate the restricted set of edges E ′ from the union

of data dependence and control dependence edges that have program dependences on

any of the APIs from the identifier APIs set U (line 8). The transitive reduction of G′

is G′
rdx = (V ′, E ′

rdx), that is, the subgraph of G′ with the minimum set of vertices so

that if there exists a path from ui to xj in G′, that path exists in G′
rdx. Therefore we

add a new edge (xj, ui) to edges set E ′
rdx of graph G′

rdx (line 15). Since dependence

paths point “backwards” from xj’s to ui’s, we transpose G′
rdx to obtain a natural,

ID → exfiltration, flow. To conclude, we define the IPG as (G′
rdx)

T , the transpose

of G′
rdx (line 20), i.e., the graph capturing the crucial paths from ID-retrieving to

processing/combining to exfiltration, ui → pm → xj. Consequently, IPGs are concise:

typically 3–8 vertices and 2–7 edges per app.

3.2.2 Constructing precise and effective IPGs

Our approach first extracts program dependences via dynamic slicing (theAndroidSlicer

tool [89]). Given a slicing criterion that defines the property of interest (we explain

next how we achieve this), a dynamic slicer captures program traces, containing

control- and data-dependences, then reduces the dependence to a small set of executed

instructions. This reduction typically leaves just 0.3% of executed instructions [89] for
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Algorithm 1 Constructing the IPG

Input: Program dependence graph (PDG), Slicing Criteria=X, Identifier APIs=U
Output: IPG (Transitive reduction graph, G′

rdx=(V ′, E′
rdx))

1: procedure IPGCreation(PDG, X, U )
2: V ← X
3: D ← DataDependence(PDG)
4: C ← ControlDependence(PDG)
5: V ′ ← X ∪ U
6: E′ ← ∅
7: for each node n in V do
8: E′ ← E′∪ calculateEdgesSET((Dn ∪ Cn), U)
9: end for
10: G′ ← (V ′, E′)
11: E′

rdx ← ∅
12: for each xj in X do
13: for each ui in U do
14: if IsConnected(xj , ui, G

′) then
15: E′

rdx ← E′
rdx∪ CreateEdge(xj , ui)

16: end if
17: end for
18: end for
19: G′

rdx ← (V ′, E′
rdx)

20: G′
rdx ← Transpose(G′

rdx)
21: end procedure

further processing; while a 99.7% reduction is substantial, for popular apps this can

still leave hundreds or thousands of instructions to be analyzed.

We present an example of an IPG reduction graph for the Penn Station Subs

app in Figure 3.3. On the left side of the figure, we present a small portion of the

program dependence graph, consisting of nodes representing bytecode-level instructions.

The edges between these nodes capture data-flow dependences (red arrows) and

control-flow dependences (black arrows). In practice this graph typically consists

of thousands of nodes and edges, most of which are not relevant to fingerprinting.

The black-background boxes highlight nodes of interest, namely those representing

Identifier APIs, intermediate processing of identifiers, and network APIs. We identify

these intermediate processing nodes by tracing data flow edges from the identifier
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Entry: onCreate(android.os.bundle)
[com.ak.app.pennstation.MainActivity]

com.ak.app.pennstation.models.Extern
alSignUpModel$ExternalSignUpRequest

com.ak.app.pennst
ation.utils.Engine

com.ak.app.pennstation.models
.RecentOrderResponse

virtualinvoke $r1.<android.content.Context: java.lang.Object
getSystemService(java.lang.String)>("phone")

….

virtualinvoke $r3.<..TelephonyManager: 
…. getDeviceId()>()

$r0.<com.ak…: 
java.lang.String email>

virtualinvoke
$r8.<java.lang.String: int 

hashCode()>()

virtualinvoke $r13.< org.json.JSONObject
put(java.lang.String)>("email", $r14)

virtualinvoke
$r2.<com.ak.app.pennstation.fragments.info.SignUp

: void submitSignUpDetailsToServer
(java.lang.String)>()

specialinvoke $r9.<java.util.UUID: 
void <init>(long,long)>($l1, $l2)

….….

com.ak.app.pennstation.m
odels.PlaceBasketRespons

e$Payments

staticinvoke <java.lang.Integer: 
java.lang.Integer valueOf(int)>($i0)

virtualinvoke
$r6.<android.app.Alert
Dialog: void show()>()

….

….

Program Dependence Graph (G) IPG (Transitive Reduction Graph G’)

IPGCreation
(PDG, X, U) 

virtualinvoke
$r3.<..TelephonyManager: 

…. getSimSerialNumber()>()
….

$r0.<com.ak…: 
java.lang.String PhoneNum>

X1: Network

U5: IMEI

P1

U3: AndroidID

U4: Serial

U1: Email

String imei = 
telephonyMngr
.getDeviceId();

String androidId = 
getString(...ANDROID_ID);

String serial
=Build.SERIAL;

String deviceID = new UUID( 
androidID.hashCode(), 
(serial.hashCode() | 
imei.hashCode())).toString();

POST 
API Call

String email = 
emailEdit.getText();

String phone = 
phoneEdit.getText();

U2: Phone 

JsonConverter.toJson(email
, phone, androidID, 
deviceID);

P2

….

….

….

….

U1: Email U2: Phone 

U4: Serial U5: IMEI

P1

P1

P2

X1: Network

Nodes of Interest

Control Flow Edges 

Data Flow Edges 

Figure 3.3 PDG reduction to IPG for the Penn Station Subs app.

APIs to other PDG nodes. The nodes of interest and the edges connecting them are

then translated (using Algorithm 1, IPGcreation) into a precise IPG subgraph derived

from this PDG, which originally contained numerous instructions.

To specify the slicing criteria that maintain soundness but increase effectiveness,

we need to understand where uniqueness checks originate; we observed that all

uniqueness checks occur on servers, hence, slicing should start at the point where the

app puts the fingerprint onto the wire (the xj ’s). This initial app–server communication

takes place after app start (e.g., after launching the app, or as part of registration/login);

therefore our insight is that slicing criteria should include the start and registration

communication. We specify Android Framework’s network API as criteria; Figure 4.4’s

IPG box (bottom left) contains examples of such API calls. Note that a pre-defined

API list is not a limitation, as other API calls can simply be added to the list. As

a result, after we run the app in AndroidSlicer with the aforementioned slicing

criteria, the program slices contain fingerprint-relevant code and IDs.
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X1: Network

U1: IMEI

P1
U2: AndroidID

U3: Serial

U4: GUID

P1

U1: Email

String imei = 
telephonyMngr
.getDeviceId();

String androidId = 
getString(...ANDR
OID_ID);

String serial
=Build.SERIAL;

String guid = 
String.valueOf(new 
Random().nextLong())

String string1=imei or
androidId or serial or guid;
String deviceID = new 
UUID( string1. hashCode(), 
(long) 
ApplicationPackageName().
hashCode());

POST 
API Call

U2: AndroidID

String androidId = 
getString(...ANDR
OID_ID);

String email = 
emailEdit.getText();

JsonConverter.toJson(
email, androidID);

X1: Network

POST 
API Call

Figure 3.4 Fingerprint scheme in the Fazoli’s Rewards app (left) and Pita Pit
app (right).

In the third step, we compute the IPG via transitive reduction on the slicing-

exposed relevant dependences using Algorithm 1. In Figure 3.3, the IPG is the

right-side graph, computed from the left-side program dependence graph. Figure 3.3

(right) shows the scheme for the Penn Station Subs app: it consists of vertices

connecting ID-retrieving nodes (ui, e.g., Android ID), with nodes that process these

IDs (pm, e.g., via hashing), and nodes that send the fingerprint over the network (x1,

e.g., POST). Note how this fingerprint is concise yet effective; it is also sound because

registration must involve server communication and transitive reduction preserves

reachability.

We show two additional examples of extracted fingerprinting schemes and their

corresponding IPGs in Figure 3.4. On the left, the IPG for app Fazoli’s Rewards

shows which identifiers are used (IMEI, AndroidID, Serial Number, and GUID); and

how they are processed, in this case hashed, before being leaked onto the network; the

IPG has just 6 vertices and 5 edges. On right, the IPG for the Pita Pit app, shows

how the source identifiers (Email and AndroidID) are combined and converted into

a key-value pair JSON object, which is then leaked onto the network; the IPG has
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Table 3.1 Android Identifiers’ Persistence

Persists after IMEI IMSI Serial MAC AndroidID Advert.ID GUID Registration Info

App restart ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
App reinstall ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗
Factory reset ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

just 4 vertices and 3 edges, illustrating the conciseness and effectiveness of our scheme

extraction approach.

Comparison with existing dynamic analyzers. In contrast with our precise IPG

representation, existing dynamic analyzers suffer from program dependences explosion,

and traditional taint trackers are subject to over-tainting. We compare our toolchain

with existing approaches in detail in Section 3.4.7.

3.2.3 Identifiers used in practice

Our study has revealed four categories of unique identifiers used by apps for

fingerprinting.

(1) Hardware IDs. The IMEI/MEID uniquely identifies mobile phones,

whereas the IMSI identifies the cellular network subscriber. The MAC address

uniquely identifies the network interface controller. The Serial Number, only present

in certain devices, is manu-facturer-assigned and unique.

(2) Software IDs. Android ID [13], the most popular software ID in our

analysis, uniquely identifies an app or app group: it is a 64-bit identifier, constructed

from a combination of APK signing key [20], user, and device.2 Android also provides

a random, instance-scoped ID, named GUID (Global Unique Identifier) [14].

(3) Advertising ID. Google Play Developer Policy3 mandates the use of

Advertising IDs for advertising purposes (users can easily reset this ID). The policy

2This is the Android ID semantics in Android 8.0 (API level 26) and later, and the semantics
used in this dissertation.
3https://play.google.com/about/monetization-ads/ads/, Retrieved on DATE: 2023-
06-01
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Figure 3.5 ReOffer: workflow (top), tool in action (bottom).

also requires that the Advertising ID not be connected to any personally identifiable

information (PII) or persistent (hardware) identifier.

(4) Registration-based IDs. Fingerprinters can also leverage user registration

information (e.g., email or phone number) as identifier. This information is not tied

to devices or software; rather, it is loosely tied to individual users. Credit cards

are “tighter” registration-based identifiers. Section 3.4 shows that registration-based

information is implemented insecurely in many apps, enabling offer abuse.

We categorize the IDs observed in our examined apps, based on ID persistence,

in Table 3.1. For example, the IMEI, MAC, and Serial survive factory reset, while

Android ID survives app reinstalls but changes upon a factory reset. To balance

usability (e.g., asking users to provide additional IDs such as emails) and ID persistence,

fingerprinters combine these IDs, or create their own custom identifiers. Note that

Google provides privacy-focused guidelines for selecting appropriate IDs depending on

use [14]: resettable IDs are preferred, hardware IDs should be avoided. Google warns

developers that “fraud prevention requires proprietary signals” and hardware IDs can

be spoofed. Hence, the guidelines per se do not offer protection against (financially

motivated) attacks on fingerprinting.

3.3 Constructing and Conducting the Attack

UI analysis reveals the registration information involved in fingerprinting (registration-

based), whereas IPGs reveal the unique identifiers and the associated relevant code
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(device-based). Therefore, we consider three fingerprinting categories: (a) registration-

based, (b) registration- and device-based, and (c) device-based. Next we discuss how

we conduct the attacks with respect to these categories.

For category (a), we use our automated ReOffer tool (Section 3.3.1) to register

multiple fake accounts, hence, gain multiple offers. For categories (b) and (c), that

build the fingerprint on device IDs (alone or coupled with registration), we employ

device masquerading: generating and sending fake values for relevant device IDs.

Masquerading can be achieved in many ways – rewriting app bytecode, instrumenting

the network layer (wiretap injection), instrumenting the Android Framework, etc. We

use two such techniques: Bytecode Rewriting and Wiretap Injection. For bytecode

rewriting, we modify the fingerprinting methods’ return values (Section 3.3.2).

When bytecode rewriting is not possible, e.g., an app employs anti-tampering,

we use our “Wiretap Injector” module to send fake IDs to servers (Section 3.3.3). We

combine masquerading with ReOffer to automate the attacks on schemes that use

both registration- and device-based fingerprinting. Section 3.3.4 shows an end-to-end

automated attack example on the app Sixty Vines [59].

3.3.1 Re-registration

Fingerprinting analysis. In this category, apps use registration information alone

as the fingerprint. Users first register, e.g., by providing their email address, phone

number, username, password, name, date of birth. Once the user is logged in for the

first time, the app makes the offer available.

Attack. Regardless of offer type, e.g., QR code or barcode, since the offer is

only tied to the user account, an attacker can register again and again using the same

device, by creating different accounts; therefore redeeming offers again and again.

We have automated the registration and sign-up processes for such apps using our

tool, ReOffer (discussed next). Using ReOffer, an attacker can create as many
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accounts as desired on the same device, as a new code (QR, barcode, or in-app code)

will be generated every time.

ReOffer Design. This section presents our automatedReOffer (Offer ReGenerator)

tool. The ReOffer box in Figure 4.4 shows the major components. As input,

ReOffer takes the app (APK file), automatically logs-in using fake credentials and

redeems offers repeatedly, at scale. Next, we describe ReOffer’s components.

Input generator. ReOffer uses DroidBot [154] as input generator to

automatically fill-in registration information and navigate app pages to complete

the registration. DroidBot’s GUI-based model enables ReOffer to identify various

screens, such as sign-up and offers’ pages, and different views, such as username

and password fields. Three main components in DroidBot are events, states, and

views. An event triggers the transition between different states. A state contains

views and is represented by a foreground Activity (screen). Finally, a view is any

user interface element such as a TextView or an ImageView. We use UI-based scripts

(described next) on top of DroidBot to direct the transitions. The main challenges

when dealing with automated UI-based analysis are (1) identifying the relevant screens

(e.g., sign-up page) and (2) filling out the relevant views (e.g., email address) in those

screens properly as shown in Figure 3.5. We apply the UI-based scripts in two stages:

Automatic Registration and Automatic Offer Mining, as discussed next.

Automatic registration. The first step in guiding app execution to the “redeem

offer” or “show offer” page is registering/logging into the app. Apps use a wide variety

of UI models, which complicates scalable, automatic registration. We extended the

DroidBot model by attaching auto registration scripts to its main exploration model.

As discussed previously, the first challenge is to identify the relevant screens. We found

that view attributes make effective indicators of whether a view is registration-related

or not. These attributes include the element’s text, resource-id, content-desc,
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checkable, checked, and password. The first three attributes indicate registration

relevance for a majority of elements such as username, email, phone number, name, ZIP

code, etc. The next three attributes are good indicators for widgets, e.g., checkboxes,

passwords, and their status. For example, the checked attribute’s value indicates the

status of a checkbox. The password attribute is a unique indicator of password fields.

While the aforementioned strategy covers the majority of relevant elements, there are

some cases in practice where this information is not enough (due to custom UIs). For

example, an app might use an ImageView with two states: On (visible) and Off (invisible)

as a checkbox. For these cases, we leverage coordinate (bound) and size attributes.

For the second challenge – filling out the relevant views – we have extended

DroidBot’s model with a state machine of operations per screen (it originally supported

one state, i.e., one operation per screen). We have also automated the sign-up (input

filling) portion by appropriate random values for each parameter.

Automatic offer mining. Once ReOffer has logged into the app, it guides

the input generator to the “Redeem Offer” page (which contains a QR code, barcode,

text, or digit code). The underlying mechanism is the same as for auto registration.

Here, ReOffer looks for offer-related UI elements using the aforementioned set

of attributes (text, resource-id, clickable, etc.). For example, ReOffer looks

for view objects whose resource-id or text are offer-related, and their clickable

attribute is true. After navigating to the “Redeem Offer” page, the generated QR

code or barcode is saved as a screenshot, so it can be redeemed (Section 3.1.2).

3.3.2 Bytecode rewriting

We now discuss our approach for identifying relevant device IDs and generating fake

ID values by rewriting app bytecode.

Fingerprinting analysis. For device-based fingerprinting, the app collects

device information, usually for the purpose of limiting offers to new users or new devices.
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Figure 3.6 App restricting the number of user accounts.

This scheme can be used by itself or combined with registration-based fingerprinting.

Figure 3.6 shows an example of a combined case – the Fazoli restaurant chain’s

Rewards app:4 the app throws an error when the user attempts to create multiple

accounts using the same device but different user registration data. When subverting

device-based fingerprinting, our approach (1) detects the set of identifiers that are

involved in fingerprinting, and (2) conducts the attack, by replacing original values

with fake generated values, then sending these to “fool” the servers into accepting a

fake activation. The Bytecode Rewriting module (Section 3.1.3) replaces identifiers

with forged values.

Attack. We illustrate our attack methodology by showing successful attacks on

two restaurant chain apps.

Case Study: Fazoli’s Rewards apps. To enforce one-per-user restrictions, the

app saves the fingerprint in local storage and sends it to the server for verification.

Figure 3.7 shows the app code for unique ID generation. The app first checks whether

a local file exists or not. If the file exists, meaning the ID has already been created (line

3), it returns the string in the file as Device ID (line 6). Otherwise, it creates a new

UUID (lines 11–22), stores it in the file (line 23), and returns the value as Device ID

(line 24). Lines 11–22 show device ID information (depending on availability, this can

be the IMEI, the Android ID, the serial number, or a random value) being hashed to

form a new UUID and saved in a local file to be retrieved later. Using the Bytecode

4https://play.google.com/store/apps/details?id=com.punchh.fazolis, Retrieved on
DATE: 2023-06-01
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1 synchronized(f.class) {

2 File file = new File(context.getFilesDir(),"CONSTANT_INSTALLATION_APP_GENERATED_ID");

3 if (file.exists()) {

4 String a = a(file);

5 g.a(context).a("DEVICE_ID", a);

6 return a;

7 }

8 TelephonyManager tm = (TelephonyManager)context.getSystemService("phone");

9 String aid = Secure.getString(context.getContentResolver(), "android_id");

10 long acontext = (long)context.getApplicationContext().getPackageName().hashCode();

11 if (tm.getDeviceId().toString() == ""){

12 if (aid.equalsIgnoreCase("9774d56d682e549c"){

13 if ((TextUtils.isEmpty(Build.SERIAL))

14 uuid = new UUID((long) (String.valueOf(new Random().nextLong())).hashCode(),

acontext);

15 else

16 uuid = new UUID((long) (Build.SERIAL).hashCode(), acontext);

17 }

18 else

19 uuid = new UUID((long) (aid).hashCode(), acontext);

20 }

21 else

22 uuid = new UUID((long) (tm.getDeviceId()).hashCode(), acontext);

23 g.a(context).a("DEVICE_ID", uuid);

24 return uuid;

25 }

Figure 3.7 Fingerprinting in Fazoli’s Rewards app.

Rewriting module, we replace the identifier with fake values to enable multiple fake

registrations on the same device. Specifically, we decompile the app and replace the

return values in the Smali (Android) bytecode by a hard-coded UUID of our choice.

Figure 3.8 shows the code after replacement; the replacement allows us to forge the

actual Device ID and generate a new fingerprint.

Case Study: Texas Roadhouse Mobile app.5 Figure 3.9 shows the app’s

fingerprinting code. The app does not store the fingerprint in a file, instead calculating

the device ID by combining the IMEI, IMSI, and Android ID, as shown in getDeviceID()’s

return statement (line 6). To bypass this fingerprinting, we modified line 3’s bytecode,

replacing the on-the-fly constructed value with a hard-coded UUID. For both case

study apps, we leveraged ReOffer for automated re-registration. As a result, the

apps do not show an error anymore, and we receive the offer again.

5https://play.google.com/store/apps/details?id=
com.relevantmobile.texasroadhouse, Retrieved on DATE: 2023-06-01
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1 ...

6 return "00000000-6950-bd75-0000-00007a908258";

. . . ...

12 return "00000000-6950-bd75-0000-00007a908258";

Figure 3.8 Bypassing fingerprinting in Fazoli’s Rewards.

1 public String getDeviceID(Context context) {

2 TelephonyManager tm = (TelephonyManager)context.getSystemService("phone");

3 int androidId = Secure.getString(context.getContentResolver(),"android_id").hashCode();

4 int simserial = tm.getSimSerialNumber().toString().hashCode();

5 int imei = tm.getDeviceId().toString().hashCode();

6 return new UUID((long) androidId, ((long) simserial | (long) imei << 32)).toString());

7 }

Figure 3.9 Fingerprinting in Texas Roadhouse Mobile.

As these two apps belong to app “families” (PunchhTech and Relevant Mobile,

respectively, see Section 3.4.1), each of these case studies is representative of

conducting an attack on the entire family. In our experiments for similar device-based

fingerprinting apps (within these apps’ families, and beyond), replacing return values

with hard-coded ones successfully subverted fingerprinting.

3.3.3 Wiretap injector

We now describe our wiretap injection attack, for apps that employ anti-tampering

(which hinders bytecode rewriting).

Fingerprinting analysis. Similar to the previous case, the main challenge here

is detecting the set of identifiers and devising an automated process to replace original

values, by replying with fake generated values, to trick the servers into accepting fake

activations.

Case Study: ‘App X’. We studied the app of a popular Chinese company focused

on retail and online group buying. For security reasons, we anonymize the company

name by the term ‘App X’. We established collaborations with the company which

gave us the unique opportunity to peek into the activation results at their backend

and get ground truth for our analysis/attack.
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As discussed in Section 3.1.2, in this scenario, app vendors (here, App X)

distribute their app through multiple channels, e.g., different app stores or third-party

app promoters. Promoters, who charge App X-like vendors for promotion services,

compute the charged amount based on the number of unique devices that have installed

the app. Hence, a precise mechanism to track the number of devices that have installed

the app is very important for such vendors. We analyzed and subverted the mechanism

used by App X. Our automated fingerprint extraction has revealed that multiple IDs

are sent to the server via an elaborate scheme. Specifically, the app sends the IMEI,

Android ID, serial number, MAC address, brand, model, etc. over the network during

the first communication with the server. For retrieving the IMEI, the app needs a

specific permission. If the permission is not granted, App X has its own algorithm

(combining hashes of parameters such as Android ID, serial number, MAC address,

brand) to form a 15-character device ID similar to IMEI.

Attack. With the IDs and relevant fingerprinting code revealed by IPG

extraction, we fake the parameters using network packet replay: the Wiretap injector

module (Figure 4.4) forges network packets containing device info to contain real

or fake device info, depending on the configuration. The reason for sending real

parameters in some configurations and fake parameters in other configurations is that

checking takes places on the server, hence, App X’s activation acceptance logic is

unknown (and practically unknowable) to us. Therefore, we analyze the vulnerability

of the system as a blackbox.

IPG analysis on network API calls has revealed the App X protocol, shown in

Figure 3.10. Three back-to-back network packets containing the above IDs are sent to

App X servers in the first moments of running the app, indicating that the servers

compute the number of unique device installations based on the parameters received

over the wire. The response packets, from register and report servers, always contain

a UUID value and a successful status code, meaning that the server (regardless of
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UUID
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Status	Code

AppInfo,	DeviceInfo

UnionID

Figure 3.10 App X network packet sequence diagram.

whether parameters sent from the phone are unique or not) always assigns a new UUID

to each installation and the unique device installation acceptance logic is separately

computed on the server. Therefore, based on server responses alone, the client cannot

distinguish between a successful and a failed activation. Because of this, we asked the

App X company to verify which activation attempts were successful.

3.3.4 End-to-end automated attack example

To provide an overview of our automated approach and the rationale for each phase,

we present an example end-to-end attack in Figure 3.11. First, we compare other

existing solutions (Figure 3.11(a) and (b)) with ours, highlighting their inadequacy in

effectively countering fingerprinting. Subsequently, we illustrate how our approach

(Figure 3.11(c)) combines these solutions to successfully bypass fingerprinting.

One solution, shown in Figure 3.11(a), would be to use just a customized version

of DroidBot to allow re-registration; however, this approach would fail to actually

repeat the offer generation due to the one offer per user limitation, and would just lead

to the error message shown in the figure (or a similar error message). Another solution

would be to use slicing, shown in Figure 3.11(b), to attempt identifier extraction.

However, slicing alone would be inadequate, since fingerprinting extraction cannot
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Figure 3.11 a) DroidBot-only attack; b) Ineffective identifier extraction via dynamic
slicing; c) Complete automated attack using ReOffer on app Sixty Vines.

be achieved effectively: slices, even when specifying precise criteria, might include

thousands of instructions, as shown in the figure.

In contrast, Figure 3.11(c) shows our approach: the flow of the attack on an

example app, Sixty Vines [59]. Given the APK, first, we perform re-registration

as discussed in Section 3.3.1. After the offer is generated ($10 in this case), the

app checks whether the device is already registered on their servers, to enforce the

one-offer-per-user limitation. Hence, repeating the attack fails with the error message

as shown in the figure. This app falls under the registration- and device-based

fingerprinting category. Therefore, we first use IPG-based fingerprinting extraction

as discussed in Section 3.2.1. Then, we leverage bytecode rewriting as explained in

Section 3.3.2 which leads to successful, repeated generation of the $10 credit.

3.4 Evaluation

We now present the experimental results of extracting and attacking Android

fingerprinting schemes on a large dataset of apps collected from Google Play, in
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accordance with our threat model (Section 3.1.2). We first introduce our dataset,

followed by the categorization of apps based on the type of offer they provide and the

type of identifiers used for detecting unique users in those apps. We then demonstrate

the effectiveness of our attack in successfully redeeming different offers, the effectiveness

of the IPG representation, and the overall effectiveness of our toolchain by comparing

it with existing dynamic analyzers and taint trackers.

3.4.1 Dataset

As discussed in Section 3.1.2, businesses that provide offers assuming fingerprint-

centered uniqueness are vulnerable to fingerprint scheme subversion. To ensure broad

coverage, we chose Google Play apps using several criteria: (1) popular, by #installs,

apps in the Food and Drink category; (2) apps of restaurant chains with high sales

figures; (3) specific types (families) of apps with initial offers; and (4) other potential

offer-related apps with relevant keywords in their Google Play description. We now

discuss each criterion.

Popular Food and Drink Apps. We analyzed the top-200 (top-grossing and

highest #installs) Food and Drink apps; we found that 38 out of 200 apps provide

some types of initial offers for new users.

High Annual Sales Apps. We analyzed top-200 apps ranked based on their

companies’ most recently available (2018) sales [23]: 47 out of 200 apps have initial

offers.

App Families (Loyalty Solutions). Our analysis of popular and high-sales

apps has revealed that many apps share the same developer. These developers are

actually “loyalty solution” businesses providing loyalty programs (e.g., initial offers

for new users). We studied seven such families. The set of apps induced by the same

loyalty solution is mass-exploitable: the common scheme among those apps can lead

to low-effort, massive exploitation (Section 3.4.4). Within a family, different apps
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Table 3.2 App Dataset for Our Study

Category Apps in category Apps with initial offers Offer available on website
Top Google Play 200 38 9
Top Yearly Sales 200 47 4
Families

LevelUp Cons.[15] 100 74 2
Paytronix Sys.[17] 100 53 42
PunchhTech[18] 56 39 18
Relevant Mobile[19] 10 5 0
TapMango Inc[21] 100 70 0
Thanx[22] 44 40 0
Total Loyalty S.[24] 100 97 0

Others 100 15 0
Total 436 67

have different offer types, from free food to credits/discounts to loyalty points which

can be used to get free items. Some families (e.g., Total Loyalty Solutions and Thanx)

publish apps in various Google Play categories, e.g., Shopping and Lifestyle. We found

that most offers can be redeemed without any up-front expense; for a small fraction

of offers, the user has to spend some threshold amount to get the discount, e.g., $10

off user’s first purchase. For apps with loyalty points as initial offers, points can be

accumulated via subsequent purchases; once the points reach a certain threshold,

the user can redeem them. In our evaluation, we only consider apps that offer free

products, or discounts as their initial offers; we do not consider apps with initial

points as they might not be profitable targets.

Other Initial Offer-related Apps. To extend our coverage, we used a

Google Play scraper to find additional offer-related apps. Specifically, we selected

apps whose descriptions met the following criterion: a word from set A is followed (up

to a distance threshold) by a word from set B:

A=[sign up, sign-up, signing up, signing-up, new, first]

B=[free, discount, off, offer, reward]

While we found 100 candidate apps, 85 overlapped with apps from previous criteria;

we put the 15 new apps in the “Others” category.
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Table 3.3 Most Common IDs

Scheme Registration-based Device-based
Top-5 IDs Email Password Name Phone# C.Card# And.ID IMEI Serial# IMSI Mac
Apps using the ID 97% 83% 75% 53% 41% 36% 14% 12% 4% 2%

3.4.2 Categorization

Offer categories. Table 3.2 shows the dataset of our study. We found 436 unique

apps that have some types of initial offers (note that there is some overlap between

categories). The fourth column shows that most of these initial offers are only available

or redeemable via a mobile device and not through their corresponding websites; in

the majority of cases, the website counterpart does not exist. Where websites do

exist, they usually direct users to the mobile app for registration or offer redemption.

We also found cases where the offer was higher in the app than on the website (e.g.,

Wildflower app in the LevelUp Consulting family). In total, only 67 out of 436 apps

(17%) have offers available on their website as well.

Identifier Categories. Table 3.3 shows the most common IDs used in fingerprinting.

Apps in the registration-based fingerprinting category ask for email in 97% of the

cases and password in 83% of the cases. Other registration information collected by

apps are user’s name (First Name, Last Name or Full Name), phone number and

credit card. On the other hand, for apps in the device-based fingerprinting category,

the top-most used unique device identifiers are Android ID and IMEI (36% and 14%

of the cases, respectively). Other top device IDs used for fingerprinting are Serial

Number, IMSI, and MAC Address.

3.4.3 Ethical considerations

Before presenting the evaluation results, we discuss the measures we took for ethical

experiments. When verifying multiple redemptions of one-time offers (Section 3.4.4),

we made sure to conduct the experiments ethically. For each offer, we made only one

real purchase (as intended by the promotion). We then verified that the offer can
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Table 3.4 Core Results. Regeneration Success Rate was 100%, i.e., All Apps’
Fingerprinting Schemes were Subverted

Category # Apps Redeemed Unique identifiers ReOffer Manual
In- In-

E
m
ai
l

P
ho
ne
#

C
.C
ar
d#

IM
E
I

A
nd
.
ID

Se
ri
al
#

G
U
ID

Alone +Bytecode GUI
app store rewriting attack

Top Google Play 28 10 18 28 15 1 6 10 6 6 5 10 13
Top Yearly Sales 15 15 - 15 8 - 5 5 5 5 7 5 3
Families

LevelUp Consulting 74 74 74 74 - - - 74 - - - 74 -
Paytronix Systems 53 - 53 53 53 - - - - - 35 - 18
PunchhTech 39 - 39 39 39 - 39 39 39 39 - 39 -
Relevant Mobile 5 - 5 5 5 - 5 5 5 - - 5 -
TapMango Inc 70 - 70 70 70 - - - - - - - 70
Thanx 40 - 40 40 - 40 - 40 40 - - 40 -
Total Loyalty S. 97 - 97 97 - - - - - - 97 0 -

Others 15 5 10 15 1 - 2 2 2 2 3 2 10

be generated again by getting to the point where the price/item was confirmed, and

stopped there. We believe that reaching this point is sufficient because once the offer

is confirmed on the checkout screen, vendors typically have to honor the price as it is

considered a material claim by the FTC [45].

For App X, our analysis was performed in collaboration with the App X company.

The logic for accepting unique device installations in App X is executed independently

on the server. Consequently, if we were to rely solely on server responses, we would be

unable to differentiate between a successful and unsuccessful activation. Therefore, we

sent the computed unique deviceID from the app to App X company for verification,

determining which activation attempts were successful.

3.4.4 Attack effectiveness

We now evaluate the effectiveness of our automated scheme breaking approach.

Table 3.4 shows the results. The first and second columns show app families and the

number of apps with initial offers for new users, respectively. We were able to break

the fingerprinting scheme for all these apps – in other words, the offer regeneration

success rate was 100% – as explained shortly.

The “Redeemed” split column shows how offers can be redeemed. In-App

redeemable offers are presented either as plain text confirming offer eligibility, or as
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a digit code. Users redeem these offers via in-app purchases (e.g., order free food or

apply the discount/code to their order). In-Store redeemable offers are presented as

QR codes, barcodes, or digit codes. Users redeem the offers in-store, by showing the

code to the cashier. In most cases, screenshots of QR codes/barcodes can be used

by other users on other phones. We found that 406 apps use codes which can be

redeemed in-store, while 104 apps have offers redeemable via in-app purchases.

The “Unique identifiers” grouped columns show the IDs used in each scheme

(number of apps in a certain family/set using that ID). The columns capture each

scheme concisely, e.g., the PunchhTech family makes use of all device-based IDs,

whereas the Thanx family uses two device-based IDs and credit card information.

Attack techniques. The last three columns show the attack techniques required:

ReOffer alone (36%), ReOffer and bytecode rewriting (41%), or manual GUI

attack (23%). Apps which use device IDs, e.g., the LevelUp Consulting, PunchhTech

and Thanx families, require ReOffer and bytecode rewriting. In contrast, Paytronix

and Total Loyalty Solutions families use only registration information, hence, could

be subverted by ReOffer alone. Finally, there were cases requiring a manual GUI

attack (last column). The reasons that ReOffer cannot automate the attack in

these apps are as follows: some apps use email or phone verification, hence, hindering

ReOffer; apps in the TapMango Inc family use a WebView [25] which complicates

identifying relevant screens/views automatically; and lastly some apps use highly

customized UIs which complicate ReOffer’s interaction. These failures are not

a fundamental limitation in ReOffer, and would be overcome with additional

engineering (Section 4.2.3).

Financial Losses. To show the financial implications of attacks on fingerprinting,

we present potential financial losses in Table 3.5: the minimum, average, and maximum

dollar value offered by apps in each family. In those cases where the dollar value was

not explicit, we assigned free drink as a $2, free desert as a $3, and free food as a $5
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Table 3.5 Financial Losses Statistics

Category Dollar Amount Qualitative Range
Min Avg Max

Top Google Play 2 3 5 free beverage–free food
Top Yearly Sales 2 2 5 free drink–free sandwich
Families
LevelUp Consulting 2 3.2 10 free drink–free dessert
Paytronix Systems 2 3.8 10 free drink–50% off wine
PunchhTech 2 4 5 free mini blizzard–free pizza
Relevant Mobile 2 6.5 10 free drink–free meal
TapMango Inc 2 2.3 10 free topping–free ice cream
Thanx 2 10 25 free dessert–free car wash
Total Loyalty S. 2 4 10 free beverage–free movie tickets

Others 2 6.6 50 free drink–free car wash
Overall 2 5 50

value. We chose these amounts based on the fact that many apps use similar amounts

as the upper bound for such offers. Among the total 436 apps, in 131 apps, the offer

(e.g., free sandwich or pastry) can be redeemed without having to purchase anything;

for the rest, the offer is in the form of discounts (e.g., “buy one, get one free” or “X

dollars off of first purchase”). The highest offer we observed was $25 for restaurants

and $50 for groceries.

To conduct the “free meals and groceries, using just a single device” attack,

we redeemed offers resulting from subverting fingerprinting schemes in 4 apps. Note

that for ethical reasons, we performed only one real purchase, which has no ethical

implications, as the offers are available to the general public (including the authors).

For subsequent repeated orders, we got to the checkout point where the price/item

was confirmed and stopped there to avoid repeated financial gains. We now present

the attacks. The Seamless delivery app (>1M installs), offers discounts for first time

in-app orders of newly registered users. We were able to register multiple user accounts

on the same mobile device. For verification, we ordered food one time and verified

that $7 and $8’s worth of food for pickup is ready, for free, for next times. In the

Del Taco app, weak fingerprinting allows receiving the initial offer, two free tacos,

multiple times. The offer is limited to one per device, hence, simply re-installing the

app issues an “already redeemed offer”. Using bytecode rewriting, we enabled the offer

repeatedly; we ordered the free tacos (original value: $2) one time and confirmed the
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free tacos are ready to pickup for next four attempts. Jamba Juice offers $3’s worth

of free food per unique user; with bytecode rewriting we could re-enable the offer.

Each time, despite using a deliberately invalid credit card number (only for profile

creation), the app still issued the offer. For the Delivery.com app, we got $11’s worth

of groceries ($17 worth of groceries minus a $6 delivery fee) one time and verified the

next attempts by getting to the point that items/offers are confirmed. To conclude,

an attacker can get free meals and groceries by leveraging the fingerprinting schemes’

weaknesses in these apps.

3.4.5 App X

As shown in Figure 3.1b, unlike the apps with initial offers, the scenario in App X is

different: the uniqueness test is performed silently on the server and is not disclosed to

the app or user (all financial exchanges occur in the backend). We had the opportunity

to collaborate with the App X company, hence, we could check whether each activation

in our experiments was successful or not.

We subverted the fingerprinting scheme via wiretap injection (Section 3.3.3) on

App X. Experiments were performed on real Android phones, as follows. We used

real device info as a base and unilaterally, then multilaterally, modified hardware

IDs (IMEI, Android ID, etc.) with both legitimate and forged values; we checked

for successful activations with the company. Table 3.6 shows the minimum set of

identifiers required to successfully activate a fake device – in two cases, forging just

the IMEI is sufficient. Hence, despite the vendor being aggressive in catching any

potential fake fingerprints, holes still exist. In the end, considering that the global cost

per install for an Android app is $0.44 [11], an adversary can generate fake activations

at scale, and as long as a reasonable fraction of them go through (e.g., 50%), cause

serious financial damage.
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Table 3.6 App X Successful Activations via Wiretap Injection

Phone Minimal Successful Attack

Google Pixel 3 IMEI

Nexus 5 IMEI/AndrID/Serial

Galaxy 8 IMEI

Xperia XA2 IMEI/AndrID/Serial/MAC

Table 3.7 IPG Results for Different App Families

App Family Nodes IPG
Source Identifiers Intermediate Sink

E
m
ai
l
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ho
ne
#
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ar
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I
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nd
.
ID
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#

G
U
ID

Nodes (Network) |V| |E|

LevelUp Consulting 1 1 1 (serialization) 1 4 3
Paytronix Systems 1 1 1 (serialization) 1 4 3
PunchhTech 1 1 1 1 1 1 1 (hashing) 1 8 7
Relevant Mobile 1 1 1 1 1 2 (concatenation, serialization) 1 8 7
TapMango Inc 1 1 1 (serialization) 1 4 3
Thanx 1 1 1 1 1 5 4
Total Loyalty S. 1 1 (serialization) 1 3 2

3.4.6 IPG effectiveness

We demonstrate the effectiveness of our IPG scheme representation and extraction by

showing how IPGs capture the processing of various identifiers for our seven examined

app families. Table 3.7 shows the results. The first column lists the app families, while

the next column displays the various types of nodes within the IPG for each specific

app family. The nodes, or vertices, fall into three categories: source identifiers (e.g.,

email, IMEI), intermediate nodes that summarize how the identifiers are processed

or combined before being leaked (e.g., hashed, concatenated), and sink nodes, which

represent the destination of the leaked information. The last two columns contain the

total count of IPG vertices and edges.

In the case of the LevelUp Consulting app family, the fingerprinting scheme

involves utilizing email and AndroidID as source identifiers, which are serialized in the

form of a key-value pair JSON object (intermediate processing node), and subsequently

leaked onto the network. Therefore, the IPG associated with this family comprises a

total of 4 vertices (email, AndroidID, intermediate JSON object, and network sink)

and 3 edges. Similarly, the PunchhTech and Relevant Mobile app families use email,
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phone number, IMEI, AndroidID, and serial number as source identifiers. In the case

of PunchhTech, these identifiers undergo hashing using the hashCode() function, while

for Relevant Mobile apps, the identifiers are concatenated and then exposed on the

network as a JSON object. The last two IPG columns show the median graph size

among apps in that row. Typically, IPGs have 3–8 vertices and 2–7 edges, which

confirms the conciseness of our graph-based encoding and the effectiveness of our

scheme extraction.

3.4.7 Comparison with alternative approaches

In this section, we compare our approach with possible alternatives: taint analysis,

GUI automation, and slicing.

Taint trackers, static or dynamic, are popular tools for studying ID leaks, but

their goal is to enumerate the identifiers leaked (as sink→source pairs), whereas in

our fingerprint setting, our IPG-based approach summarizes how identifiers, including

registration, are processed and combined to produce a fingerprint. Moreover, in the

context of offer abuse, identifiers deemed as “leaked” by a taint tracker might or might

not be involved in fingerprinting.

To quantify the suitability of taint tracking in our setting, we performed a study

that compared our approach with the state-of-the-art (and de facto benchmarks)

FlowDroid and Amandroid taint trackers, on 64 ground truth apps that cover all

categories in Table 3.2. For each app, we performed an exhaustive manual flow analysis,

including network packet analysis, to find all possible device identifiers’ flows to the

network. We show the results in Table 3.8. The first column contains the ground

truth, i.e., the number of apps (out of 64), where the identifiers have an actual flow

to the network. Then, in each column, we show the number of apps where the tool

has found a network leak for the specified identifier. For FlowDroid, we added source

methods in the SuSi list (FlowDroid’s predefined sink and source list) for AndroidID,
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Table 3.8 Number of Identifier Flows for 64 Ground Truth Apps

Ground Truth Our Approach FlowDroid Amandroid
IMEI 28 28 11 21
IMSI 9 9 9 9
Serial 29 29 n/s 18
MAC 10 10 5 15
Android ID 57 57 24 44
Advert. ID 9 9 n/s 32
GUID 35 35 53 56
FP n/a 0 18 49
FN n/a 0 55 24

Serial, AdvertisingID, GUID (not included by default). FlowDroid missed IMEI, MAC,

and AndroidID leaks in about half the apps that actually contain a leak; for GUID,

FlowDroid reported leaks that do not exist; FlowDroid could not find any flows for

Serial and AdvertisingID, though for the same APIs, our approach and Amandroid did

find flows. Overall, FlowDroid under-reported leaks in 55 apps and over-reported leaks

in 18 apps. Amandroid performed slightly better than FlowDroid because it handles

ICC (Inter Component Communication) by default: the tool under-reported 24 leaks

and over-reported 49 leaks. While false positives are inherent due to static analysis’

over-approximation, false negatives are particularly pernicious in our setting as they

lead to incomplete fingerprinting schemes. In contrast, as shown in the second column,

our approach captures all the flows precisely, with zero false-positive and false-negative

rates. Finally, our approach produces concise IPGs, with median |V | = 5 and median

|E| = 4 across the 64 apps.

GUI automation. Even a highly effective GUI automation approach, e.g., a

customized version of DroidBot that could reliable navigate app activities and fill-in

fields, would fail to repeat the offer generation due to the one offer per user limitation.

Slicing. Note that slicing already improves precision compared to standard

dynamic bytecode analysis, e.g., program dependence tracking, thanks to slicing

criteria that reduce the set of program dependences to only those dependences that end

in (or start at) the stated criteria. Still, using slicing alone would be inadequate, since

fingerprinting extraction cannot be achieved effectively: slices, even when specifying
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precise criteria, might include thousands of instructions [89] for substantial real-world

apps (our setting).

3.5 Discussion

We now discuss actionable insights and key takeaways: defense schemes for developers

to protect against fingerprinting attacks; methods to prevent anti-tampering; recom-

mendations for app markets, third-party developers, and users; the generalizability of

our approach, as well as its limitations.

3.5.1 Defense schemes

We propose several measures that developers and vendors can take to ensure more

robust defenses against attacks on fingerprinting.

a) Verifying Phone Number’s Authenticity. Phone numbers are commonly used

IDs (Table 3.3), but only a few apps verify their authenticity (e.g., Uber Eats, Dunkin,

Postmates). Apps can authenticate phone numbers via: One Time Passwords (though

blocking “free SMS” websites [93]); handshaking, where users have to both send and

receive an SMS; or receiving a phone call. Interestingly, we found no email authenticity

checks: throwaway addresses worked perfectly fine.

b) Limiting Losses. Businesses can limit losses by asking users to first spend

$X, or fill the in-app account with $Y from a credit card, before receiving an offer.

For example, the LevelUp family [15] asks users to add at least $25 into the in-app

account from a credit card to redeem the initial sign-up offer. The maximum available

offer is $10, limiting losses to 10/25 = 40%. In contrast, Seamless directly provides a

$15 offer without minimum purchase or credit card requirements, hence, losses can

be 100%. Per Table 3.4, in 41 apps, a credit card is required to redeem the offer.

Surprisingly, we could easily bypass this requirement in all 41 apps using made-up,

confirmed invalid credit card numbers [73], showing that these apps do not verify the
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credit card information when the amount due becomes $0 (after the offer is redeemed).

Another defense strategy is to limit the total number of offers or the offer budget

for the promotional campaign, e.g., $10K. Such limits though may actually lead to a

failed marketing campaign, e.g., when the campaign benefits one attacker as opposed

to 1,000 legitimate users.

c) Hardware Cryptographic IDs. Modern hardware (e.g., TPM, Intel SGX, and

ARM Trustzone) stores private keys, allowing devices to be “attested” (device is

unique and valid) by a remote party [12]. Such technologies, in principle, enable much

more reliable uniqueness tests, as an adversary would need multiple pieces of real

hardware to create multiple profiles (which can be too expensive to be practical).

d) Biometric Authentication. Authentication using biometrics such as fingerprint

scanning can verify real users and ensure one offer per unique user scheme. While

biometric authentication is vulnerable to presentation attacks and puppet attacks,

FINAUTH [209], Bianchi et al. [95] show defense schemes against such attacks.

e) App Anti-tampering. Preventing app bytecode and traffic tampering, discussed

shortly, can add another layer of security.

3.5.2 Anti-tampering

We now discuss methods that can be used to protect apps from unauthorized

modifications (bytecode-rewriting) and tampering with the API communication

between a client app and server.

Preventing Bytecode Rewriting. One effective method to detect tampering

is through checksum verification. By incorporating a checksum within the application’s

binary file and verifying it during runtime, any modifications made to the app will

result in a mismatched checksum [190]. Another approach involves dynamic class

loading, where crucial segments of the app’s code are loaded at runtime instead of

being included in the binary file. This presents a challenge for attackers attempting to
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alter the code since they would need to modify the loaded code during runtime [156].

Additionally, encryption and decryption techniques can be employed. This method

entails encrypting vital components of the app’s code or data and decrypting them

during runtime. By doing so, attackers face increased difficulty in modifying the app’s

code or data, as they would have to reverse-engineer the encryption algorithm and

acquire the decryption key [144].

Preventing Wiretap Injection. A MAC (Message Authentication Code) is

a short piece of information that is used to authenticate a message and detect any

changes made to it. By using MACs, both the client and server can verify that messages

have not been tampered with during transit [143]. Another technique that can be

employed for authentication is API token authentication, i.e., using unique tokens to

verify API requests. These tokens are generated on the server side and provided to the

client app upon login. By authenticating API requests with these tokens, unauthorized

access and tampering with API communication can be mitigated [127].

3.5.3 Other target groups

Our toolchain could benefit other target groups: app markets by enhancing

regulatory checks, third-party developers by promoting compliance and privacy-aware

development, and users by providing them with knowledge and tools to protect their

privacy in the face of fingerprinting practices.

App Markets. App stores/markets can integrate an automated fingerprinting

vulnerability detector, similar to our methodology (Section 3.1.3). This mechanism

would allow app stores to assess whether app developers are adhering to the guidelines

set by the stores. For instance, the Google Play store could determine whether an app

adheres to the developer guidelines (Section 3.2.3), e.g., regarding the use of persistent

hardware identifiers, and then decide whether to keep or remove the app.
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Third-party developers. Vendors, such as restaurant chains, can extract and

check the fingerprinting schemes implemented by 3rd party developers (e.g., developers

of app families) to ensure compliance with the vendor’s fingerprinting requirements.

Research has shown that a substantial share of identifier leaks occurs in 3rd party

code, i.e., libraries [179]. Developers can extract fingerprinting schemes from apps to

understand the extent of, and mechanisms for, fingerprinting performed by 3rd party

code, e.g., analytics and advertising libraries.

Users. Our toolset empowers users to better understand the extent of

fingerprinting performed by apps on users’ devices, and the nature of sensitive

information leaked onto the network by apps. As a potential solution to protect their

privacy, users can deny apps the permission to access sensitive device information. For

example, in Android, the android. permission .READ\ PHONE\ STATE permission allows an app to

read the phone’s state, including information such as the device’s IMEI, IMSI, network

information, and call status. Users can deny such permissions, thereby regaining control

over their personal data and minimizing their exposure to fingerprinting. Another

solution to avoid being tracked by third-party trackers is to reset the Advertising ID

periodically.

3.5.4 Generalizability

We now discuss potential generalizations of our approach to other settings.

iOS. Apple uses unique identifiers such as the IDFA [74] (similar to Android

Advertising ID), Vendor ID, MAC address, and Bluetooth MAC address to fingerprint

iOS devices. While in this dissertation we only studied Android apps, since iOS

apps can use similar fingerprinting approaches they could potentially be vulnerable

to similar attacks. While it is possible to reverse-engineer iOS apps, the process is

generally more difficult than for Android apps due to the closed ecosystem, obfuscation

techniques, and stronger security features [109, 206].
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Browser fingerprinting. Our general techniques of dynamic dependence

analysis and reduction to IPG could be combined with a dynamic JavaScript tracer

to understand browser fingerprinting. However, browser fingerprinting techniques

are commonly circumvented by simply restarting the browser, blocking cookies, or

utilizing a different browser [146].

3.5.5 Limitations

For the 23% of apps that employ WebView or have a scrolling feature in the UI, we had

to conduct a manual attack in addition to ReOffer. With additional engineering,

this limitation can be resolved, and manual efforts can be automated. For example,

to overcome the WebView issue, one option is to inject custom JavaScript code into

the WebView, leveraging its built-in JavaScript support to extract specific elements and

content. Another approach is to utilize the Android Accessibility APIs, accessing

the WebView’s accessibility tree to retrieve information about the rendered content. In

complex scrolling scenarios where ReOffer alone is insufficient, we can combine

it with other testing frameworks. For instance, we could integrate our toolchain

with Espresso [72], a UI testing framework that provides more advanced scrolling

capabilities.

3.6 Summary

Fingerprint encoding, extraction, and studies, require abstractions and techniques

beyond the capabilities of current analysis tools. We address this by introducing

IPGs. By automatically constructing IPGs we could encode, extract, characterize,

and ultimately subvert fingerprinting schemes. We conducted the first study that

explored and attacked fingerprinting schemes in 436 Android apps. We show that

registration-based schemes are vulnerable, yet widely used; we constructed a tool,

ReOffer, for conducting re-registration attacks at scale. We show that device-based
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(and combined registration/device-based) schemes can be subverted via bytecode

rewriting and network injection, leaving apps, or entire app families, vulnerable.

We expect our contributions to be usable and generalizable in other contexts.

Using our approach, users can understand how they are being fingerprinted, or

how to establish new identities. Developers/companies can implement more effective

promotion systems and promotional campaigns: more user privacy-friendly yet avoiding

financial losses or unfair app promotion charges. Program analysis and security

researchers can use our approach to extract the semantics of complex leaks that

combine multiple taint sources.

Now that we have examined the aspects of device identifiers usage and abuse

in detail, we turn our attention to another crucial aspect of our research: reliability.

In the upcoming chapters, we will explore various dimensions of reliability in the

context of Android applications. Through these chapters, we will address different

aspects of reliability in Android applications, ranging from medical calculators to user

interactions, automated testing, and neural network implementations.
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CHAPTER 4

DIAGNOSING MEDICAL SCORE CALCULATOR APPS

Mobile medical score calculator apps are widely used in clinical settings to aid in

patient treatment and diagnosis decisions. However, errors in score definition, input,

or calculations can have severe consequences. In this chapter, we address this issue

with a novel, interval-based score-checking approach. We first introduce automated

correctness checking of medical reference tables to identify errors that may propagate

to apps. Next, we implement an automatic, dynamic analysis-based approach to

verify score correctness in Android apps. Our evaluation of 90 Android apps revealed

violations and incorrect score calculations, leading to improvements and fixes. We

aim to enhance the reliability and accuracy of medical score calculators, particularly

crucial in acute care settings, where precision can significantly influence outcomes.

Specifically, we aim to answer the following research questions:

RQ1) Can our approach extract and verify medical score specifications?

RQ2) Is our approach effective at analyzing and finding errors in real-world apps?

In Section 4.1, we define the properties we check, highlighting three sources of errors in

score calculations: inconsistent reference tables, GUI inconsistency, and incorrect score

calculation. In Section 4.2, we describe our approach, utilizing the Z3 theorem prover

to automatically check medical reference tables for partition condition violations. We

then present a novel dynamic approach in Section 4.2.3 to verify the app for GUI

consistency, reference table compliance, and correct score calculation. We examine 12

long-established medical scores, uncovering errors in five reference tables in Section 4.3.

In Section 4.4 we evaluate our app-checking approach on 90 Google Play apps,

achieving 100% precision and 80% recall. The results reveal GUI inconsistencies and

score calculation errors that can have critical implications for patient care.
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Figure 4.1 SOFA Score (from Vincent et al. [201]).

4.1 Motivation

To motivate our approach, we first quantify the adoption of mobile apps in clinical

care; next, we define the key terms and concepts used throughout the dissertation,

and then provide examples of errors in actual reference tables and apps.

4.1.1 Mobile medical apps usage

Medical apps and calculators in acute cure. The adoption of mobile medical

apps in a clinical setting in general is already strong, with clinical smartphone use

among physicians being reported at 70% and above as early as 2012 [169, 204].

Mobile medical apps and smartphone-based reference material are widely used in

emergency/acute care. For example, Hitti et al.’s 2021 study [129] regarding emergency

department personnel has revealed that 91.8% of those surveyed used medical apps on

their devices during their shifts, amidst heavy workloads and a stressful environment.

Flynn et al.’s 2018 study [115] showed that 98% of acute care nurses used a smartphone

in acute settings “to access information on medications, procedures, and diseases”.

Green et al.’s 2019 study [122] revealed that “60% of users indicated that they are

somewhat or very likely to use newly published medical calculators”.
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Higher app usage for inexperience personnel. Another impetus for studying

and improving medical app reliability is that less-experienced personnel might rely

more on apps. There is evidence that users of medical calculator apps are clinicians

and nurses, especially inexperienced and younger doctors, according to Hitti et al. [129].

A 2015 study among surgeons found that “Junior doctors were more likely to use

medical apps over their senior colleagues (p = 0.001) as well as access the Internet on

their smartphone for medical information (p <0.001)” [172]. Additionally, per Green

et al.’s survey [122], clinicians with less experience are more likely to use medical

calculator software; conversely, experienced clinicians had doubts on the credibility of

medical calculators.

Medical score calculator accuracy. Pelletier et al.’s 2022 study [175] on

both online and mobile bleeding risk calculators, such as HAS-BLED, has found

inconsistencies in calculated risk estimates which can result in harmful clinical decisions.

The study has shown that such imprecise results found in apps are due to incorrect

calculations, using alternative validation studies, and inaccurate translations of risk

factors to risk elements. Fajardo et al.’s 2019 study [112] of online type 2 diabetes

risk calculators has revealed that while calculator results are generally understandable,

such calculators may not be suited for patients who lack general health literacy; the

study also found that these calculators have high variability in terms of determining

estimated risk.

Therefore, the reliability of scores and score calculator apps is important in

general due to heavy reliance on under-regulated mobile apps, and particularly

important in acute care settings where rapid and correct decisions are key for achieving

positive patient outcomes. However, there is a lack of a regulatory framework

and enforcement regarding medical apps. For example, the US Food and Drug

Administration (FDA) has jurisdiction over medical apps. However, the FDA does
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not regulate apps that “automate clinical calculations and basic tasks for health

professionals” [70]. Additionally, apps that are FDA-approved went through an

approval process initiated by the developers themselves.

4.1.2 Definitions

Reference Table We use the term reference table for the table in the form it was first

introduced, e.g., in a medical research article or a regulatory agency document. For

example the Sequential Organ Failure Assessment (SOFA) score, shown in Figure 4.1

and discussed shortly, was introduced by Vincent et al. [201] in the Intensive Care

Medicine research journal in 1996. The NEWS score, another score we consider, was

introduced by the UK’s National Health Service (NHS) in 2012 and later updated in

2017 to NEWS2 [54]. Score tables are structured as follows: most commonly, each

cell in the table contains intervals for one physiological parameter, while the row

or column header contains a numeric value, typically 0–4. For example, in SOFA’s

reference table (Figure 4.1) the third row shows intervals 1.2–1.9, 2.0–5.9, and so on,

for parameter Bilirubin. The header row in the table shows numeric values, in SOFA’s

case 1 through 4, which correspond to individual scores for the intervals in that column.

Occasionally, a table entry contains just a threshold value, e.g., MAP < 70 mmHg in

SOFA’s fourth row. Finally, a cell can contain intervals or thresholds for more than

one parameter, e.g., Dopamine > 15 or norepinephrine > 0.1 in SOFA’s fourth row.

Next we describe score computation.

Score A score is computed by adding the individual scores corresponding to

each cell. For example, a patient with Respiration=350 (score=1), Coagulation=90

(score=2), Liver=7.0 (score=3), Central nervous system=13 (score=1), Renal=1.5

(score=1) would have an overall SOFA score:

SOFAscore = 1 + 2 + 3 + 1 + 1 = 8
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The overall value determines the course of action. In Table 4.1 (discussed at

length later) we show action thresholds, e.g., “aggressive treatment if HEART score

≥ 7”; hence, an accurate value is critical for patients’ health outcomes.

Partition. Let min ∈ R and max ∈ R be the minimum and maximum values

for a parameter, respectively. Let min < p1 < p2 < ... < pn < max be ordered

values. Based on the pi’s we can define intervals (e.g., closed, Ii = [pi, pi+1], open,

I ′i = (pi, pi+1), or combinations thereof). Let I1, I2, . . . , Ii, . . . , In be nonempty (Ii ≠ ∅)

intervals on [min,max]. Then I1, I2, . . . , Ii, . . . , In form a partition of [min,max] if

two conditions are met:

1. Coverage (exhaustion):

I1 ∪ I2 ∪ . . . ∪ Ii, . . . ∪ In = [min,max]

2. Non-overlap (disjointness):

∀i, j, 1 ≤ i < j ≤ n→ Ii ∩ Ij = ∅

As we will illustrate shortly, many errors, in reference tables themselves or the

apps implementing the tables, stem from violations of the aforementioned partition

conditions.

4.1.3 Error source #1: inconsistent reference table

Errors such as inconsistent definitions in reference tables are the most concerning kinds

of issues we found, because, unlike apps, tables are hard to update or fix. Moreover,

as our evaluation shows, an incorrect reference table is likely to lead to incorrect

implementations in apps, because developers tend to implement tables ad literam.

Finally, an inconsistent table will lead to an inconsistent GUI that confuses app users

and invites score calculation errors.

We illustrate several such inconsistencies on the SOFA Score reference table.

The SOFA score predicts ICU mortality as follows: it evaluates the dysfunction of six
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Should be 
< 1.7

Should be
2.0 to 5.9

Should be 
2.0 to 3.4

Should be
> 0.1

Figure 4.2 Inconsistent GUI errors in three apps: Nursing Calculator (left), Child-Pugh
Score (center), SOFA 1.2.0 (right).

systems by scoring each organ from 0, which is considered normal functionality, to

4, the most abnormal [201]. Thus the highest possible score to obtain would be 24,

indicating severe morbidity, and the lowest would be 0.

The reference table for the SOFA score is shown in Figure 4.1. Notice how for

Liver (Bilirubin), the second-to-last interval is defined as 6.0–11.9. As the parameter

is a real number, the actual interval specification is [6.0, 12.0). That is, a value such

as 11.95 would still be in the interval because only the first decimal is specified. The

last interval for bilirubin is > 12.0. Hence, the interval-based specification for these

two entries is: [6.0, 12.0) and (12.0,max). This squarely violates the coverage property

of the partition, because value 12.0 is not covered by any interval. The same issue is

present for parameter Renal (Creatinine), where value 5.0 is not covered. It is unclear

how developers are supposed to cope with this incorrect specification, e.g., the SOFA

score of a patient with Bilirubin=12 and Creatinine=5 can be off by as much as 2

points, depending on how the table is interpreted.

Finally, when bilirubin is specified in µmol/l, the table’s last column shows

‘(< 204)’ which is incorrect: the entry should be ‘(> 204)’ (note how values < 204 are

already covered in the preceding intervals). If the developer implements the table ad
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Figure 4.3 Nursing Calculator incorrect score (left); MEWS Brasil incorrect scores for
Temperature and overall (right).

literam and offers ‘(< 204)’ as a GUI option, the SOFA score of a patient can be off

by as much as 3 points.

Note that even a off-by-one error can affect patients’ condition classification, e.g.,

between “patient should be monitored” and “urgently inform a clinician”. Section 4.3.2

discusses these issues at length.

4.1.4 Error source #2: inconsistent GUI

We now turn to the first kind of implementation errors, where the GUI is inconsistent;

our approach detects two kinds of errors. In the first kind, the user can input the same

parameter value into two different GUI boxes, which impacts the score; in the second

kind there is no input box for a certain value. Essentially, these embody violations

of the coverage and non-overlap conditions, respectively; in Section 4.2.3 we discuss

how we check GUIs for such errors automatically via dynamic analysis and constraint

solving.

Example 1: SOFA Score in App Nursing Calculator. The app Nursing Calculator,1

with over 50,000 installs, provides a variety of medical calculators, including the SOFA

score. The app’s GUI has two inconsistency errors (first kind), as highlighted in

1https://play.google.com/store/apps/details?id=
com.niya.lijo.nursingcalculators, Retrieved on DATE: 2023-06-01
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Figure 4.2 (left), and described next. The option for Bilirubin shows a range of 1.0–5.9

when it is supposed to be 2.0–5.9. Moreover, for Creatinine the range in the app is

1.0–3.4, when it should be 2.0–3.4. Due to these errors, a patient’s score can be off by

as much as 2 points.

Example 2: Child-Pugh Score in App Child-Pugh Score. The Child-Pugh score

is generally used to assess the potential for liver diseases, mainly cirrhosis. The app

Child-Pugh Score2 has an inconsistency error (first kind) regarding values for INR, as

highlighted in Figure 4.2 (center): the first option should be ‘< 1.7’ instead of ‘> 1.7’.

Due to this error, a patient’s score can be off by as much as 2 points.

Example 3: SOFA Score in App SOFA 1.2.0. This app exemplifies the second

kind of error. The app SOFA 1.2.0,3 removed from Google Play in the course of our

research, exhibited a GUI inconsistency error as highlighted in Figure 4.2 (right). Note

that the reference table’s last column in the Cardiovascular row specifies the score for

. . . norepinephrine > 0.1; the app however incorrectly lists ‘norepinephrine < 0.1’.

Basically, the app offers no option where users can indicate the norepinephrine > 0.1

condition; this error can alter the score by 1 point.

4.1.5 Error source #3: incorrect score calculation

Even with a consistent table and consistent GUI, apps can still be prone to errors

in score calculation, e.g., per the table the score is 4, but the app displays 6. These

calculation errors are silent, hence, particularly pernicious (the user does not have any

indication that the calculation has gone awry).

2https://play.google.com/store/apps/details?id=br.child pugh, Retrieved on DATE:
2023-06-01
3https://apksos.com/app/com.varendrasoft.sofascore, Retrieved on DATE: 2023-06-01
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Figure 4.4 Overview of our approach and toolchain.

We now present several examples, based on the Modified Early Warning Score

(MEWS), used by professionals to determine whether or not a surgical in-patient

requires intensive care [118].

Nursing Calculator. When the app starts, parameter values are in their default

settings, i.e., individual scores are 0, hence, the MEWS score is 0. After the user

changes the Heart rate to 40, the output score is 1 instead of the expected value of

2 (screenshot in Figure 4.3 left). Note that a higher MEWS value indicates a more

severe situation.

Another example is the MEWS Brasil app [69], Figure 4.3 (right). Suppose the

user inputs a 41–50 Heart rate and BP between 71–80; cumulatively, the score is 3.

The error manifests when the temperature is in the interval 35.1–36; per the table,

the individual temperature score value is 1. In the app however, the value is 0, hence,

the displayed overall MEWS score, 3, is incorrect (correct value: 4). This error is

particularly problematic, because for MEWS, 4 is a threshold value: “[at ≥ 4] surgical

team should be informed immediately” [118].

These incorrect implementations can lead to differences in assessment, and

subsequently outcome, making verification of scoring systems crucial.

4.2 Approach

We now describe our approach to finding errors in reference tables, app GUIs, and

app score calculations. An overview is shown in Figure 4.4. In the first stage for each
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scoring system, we extract a specification for the reference table; our toolchain then

checks the specification for consistency, i.e., for coverage and non-overlap violations

using Z3. We then fix the inconsistency found in the reference table before using it as

a reference. Next, for a given app (APK) implementing that score, our toolchain first

performs a dynamic analysis to extract a GUI specification (aka the GUI instantiation

of specification) using the DroidBot automator [155]. The GUI specification is

(a) validated against the correct reference table specification, and (b) verified for

consistency, using Z3. Finally, our approach drives app execution (GUI interaction)

automatically, according to specific input parameter combinations, to produce the app’s

output score, and verifies this score against the reference score for that parameter

combination. We now discuss each phase, including a brief introduction to the

underlying tools.

4.2.1 Partition checking via satisfiability

The Z3 Theorem Prover. Z3 [107] is a widely-used automated theorem prover

for solving logical formulas in various domains. Z3 is based on Satisfiability Modulo

Theories (SMT) techniques, which allow it to handle a wide range of logical theories,

including arithmetic over integers or reals, bit-vectors, or arrays. Given an input

formula, Z3 returns “Sat” or “Unsat”. “Sat”, short for “satisfiable,” indicates that

there exists at least one assignment of values to the variables in the formula that

makes the formula true. For example, assuming A and B are integers, the formula:

A > 20 ∧B > A

is satisfiable, with Z3 returning Sat, and the model A = 21, B = 22.

“Unsat”, short for “unsatisfiable,” indicates that there is no assignment of values

to the variables in the formula that makes the formula true. For example, formula:

A > 20 ∧B > A ∧B < 19

is unsatisfiable, hence, Z3 returns Unsat.
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We use Z3 to check the satisfiability of logical formulas composed of numerical

ranges/intervals. Note that most score calculations involve parameters whose values

span a set of ranges, or intervals. In order to be defined as a valid set of input ranges,

the ranges should meet the coverage and non-overlap conditions, as per Section 4.1.2.

Hence, we encode parameter ranges into a Z3 specification (sets of intervals over

integer or real numbers, as appropriate) and then use Z3 to check whether the set of

intervals meets the partition conditions.

Coverage (exhaustion) Checking. We encode coverage checking into Z3 by

requiring that the union of a given set of intervals cover a range, defined by its

minimum and maximum values. When Z3 finds a counterexample, it proves that there

exists a “gap” in coverage. For example, the intervals [≥10, 6-9, ≤5], encoded into Z3

as:

¬(∨(X ≥ 10,∧(X ≥ 6, X ≤ 9), X ≤ 5)))

cover the range, hence, Z3 will not find a counterexample. However, the intervals

[≥10, 6-9, <5] with encoding:

¬(∨(X ≥ 10,∧(X ≥ 6, X ≤ 9), X < 5)))

do not cover the range, and Z3 will successfully find the counterexample X=5, i.e., a

non-covered value. Note that our implementation automatically generates a Python

program that invokes Z3 via its Python API.

Non-overlap (disjointness) Checking. In this case, we use the equation solver

feature of Z3. Given a set of variables and corresponding constraints, Z3 generates a

solution (if a solution exists) that satisfies the constraints. Hence, to check for overlap

between two intervals, we add them as constraints composing two sets, and as an

additional constraint we check for overlap between the sets. For example, given an

interval with incorrect partitioning [≥65, 45-65], which we encode as:

(X ≥ 65,∧(Y ≥ 45, Y ≤ 65), X == Y )
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Z3 finds an overlapping value X = 65, Y = 65. If this set of intervals were correctly

partitioned ([>65, 45-65]), Z3 would return Unsat.

4.2.2 Reference table validation

We check the validity of reference tables in two steps. First, we extract the reference

table from the source PDF file into a tabular specification in CSV format. Though we

employed a PDF→CSV conversion tool, the resulting CSV is still subject to human

scrutiny to ensure accurate conversion (this is one of the only two manual steps of our

approach; the accuracy of this extraction step is discussed in Section 4.3.3).

The tabular specification is then automatically encoded into a Python program

that invokes Z3 to verify that each parameter of a reference table meets the partition

conditions. Note that some of the scores we considered contain real numbers, specified

to one or two decimal places (e.g., 5.9, 5.32). We convert such decimals to integers,

multiplying by 10 or 100, respectively (5.9 becomes 59; 5.32 becomes 532). Section 4.3.4

discusses the reference table errors we found.

4.2.3 App verification and validation

App score verification and validation presents several challenges: a) mapping

heterogeneous GUI elements to reference table cells, which we solve via semi-supervised

clustering (Section 4.2.3); b) systematically and automatically exercising the GUI,

which we address by coupling Depth-first Search with DroidBot-based static and

dynamic GUI information extraction (Section 4.2.3, Section 4.2.3); and c) identifying

app score-related heterogeneous GUI elements and extracting the corresponding score

value (Section 4.2.3). We now present our approach to solving these challenges in

detail.

Mapping Heterogeneous GUIs to Specifications. We need to handle hetero-

geneous GUIs to create the correct specifications set for different parameters of a
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Figure 4.5 Heterogeneous GUI mapping example for Cardiovascular Mean arterial
pressure attribute and Renal function Creatinine attribute in apps Nursing, Nursing
Calculator, SOFA score, SOFA score, and SOFA Score.

specific scoring system. In Figure 4.5, we provide two sets of examples of heterogeneous

GUI elements that must be translated to SOFA score parameters. The Cardiovascular

Mean arterial pressure parameter (top) has the score value 0 which appears as a “No

Hypotension” Radio Button in the Nursing app (top left) whereas the Nursing Calculator

app (top center) uses a different GUI element, Spinner, labeled “≥ 70 mmHg”, while

the SOFA score app (top center) uses a different label, “MAP ≥ 70 mmHg”; all for

the same parameter value. To address this challenge, we first extract all the GUI

information from the apps automatically using DroidBot (to be introduced later) and

then we create a mapping from the heterogeneous, free-text GUI to the reference table

entry. We use semi-supervised clustering, i.e., we manually labeled the first points,

and when analyzing a new app, the new text is binned into the cluster containing the

most similar text. Each of these clusters’ title represents the reference table entry –

typically an interval or parameter. We defined reference table entries manually (right

side of Figure 4.5); text clusters (shown to the left of reference entries) are populated

automatically using edit distance as a similarity metric. In Figure 4.5 (top right), we

show how different phrasings of Cardiovascular Mean arterial pressure parameter are
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mapped. The text clusters are formed from the phrasings (No Hypotension, ≥ 70

mmHg, MAP ≥ 70 mmHg), which are then mapped to the same cluster, whose title is

‘MAP ≥ 70 mmHg’. Similarly, the Creatinine parameter (bottom) poses the challenge

of heterogeneous GUIs: note how the same score value, 1.2-1.9, is expressed in four

different ways in four different apps. In this case, the text cluster entries are mapped

to the reference entry ‘1.2-1.9 (110-170)’. We separate reference table entries by units,

e.g., mg/dl were not mixed with µmol/l; this was necessary only for the SOFA score.

Background (DroidBot). DroidBot [155] is a tool that facilitates test automation

for Android apps. DroidBot allows users to customize the app testing/exploration

strategy by specifying input events for certain app states. DroidBot models the app

as a finite state machine and is driven by a specification consisting of States (e.g., a

particular screen), Views (specific GUI elements), and Operations (action to perform on

a View, e.g., click, swipe, or enter text). A JSON script specifies the input events to

generate for each state transition. For example, the script might specify that when

the app is in a particular state, DroidBot should generate a specific sequence of taps,

swipes, or other input events to simulate a user interacting with the app. DroidBot

can also monitor app behavior. We use DroidBot to extract the GUI and automate

the exploration, e.g., systematically exploring Radio Button elements to select an interval,

clicking the ‘Calculate Score’ button, and retrieving the resulting score.

Leveraging DroidBot. Our approach uses DroidBot to collect score-relevant GUI

information dynamically, i.e., while the app runs. Note that, for practical reasons,

dynamic analysis is required for GUI extraction, because static GUI information

alone (e.g., from app resources) is incomplete: extracting the GUI at runtime, when

all the GUI View objects have been instantiated, is more effective. DroidBot’s GUI

model helps automatically identify various View objects (such as Radio Button or TextView)

related to target score calculation. To trigger the necessary events for completing
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the score calculation procedure (GUI Interaction in Figure 4.4), we wrote custom

DroidBot scripts that automatically activate GUI elements. For example, the scripts

automatically trigger different user inputs such as choosing from RadioButtons and selecting

from Spinner items. Note that score calculators appear in different Android activities in

different apps. We manually directed DroidBot to the activity that corresponds to

the score of interest (this is the second of the two manual steps of our approach; the

manual effort could be avoided with more engineering, which we leave to future work).

In the course of dynamic analysis, i.e., when using DroidBot scripting to populate

different score calculations automatically, the states and transitions, e.g., events, are

recorded into separate JSON files. These JSON files contain the necessary dynamic

information required to construct the GUI specification, as explained next.

Algorithm 2 Constructing the GUI Specification and Finding GUI Specification
Errors

Input: ReferenceGUISpecification (Correct specifications from the score reference table)
JSON files (DroidBot-generated GUI information from the target APK file)

Output: GUI specification errors

1: procedure FindCalculatorErrorsViaGUISpecification(ReferenceGUISpecification,
JSON files)

2: for each JSON file F in JSON files do
3: ExtractedIntervals← []
4: for each view objects V in F do
5: IsScoreRelevantParameterOptionCheck(V )
6: RunDFSToGetParameterValueOptions(V )
7: IntervalText←ProcessParameterGUIText(V [“text”])
8: MappedInterval←MapExtractedIntervalToCluster(IntervalText)
9: ExtractedIntervals.add(MappedInterval)
10: end for
11: FindGUISpecificationMismatch(ReferenceGUISpecification,

ExtractedIntervals)
12: CheckCoverageViolation(ExtractedIntervals)
13: CheckOverlappingViolation(ExtractedIntervals)
14: end for
15: end procedure
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Constructing GUI Specification and Finding GUI Specification Errors.

Algorithm 2 presents our GUI specification construction and verification approach.

The FindCalculatorErrorsViaGUISpecification algorithm takes the target score

system’s correct reference GUI specification, the DroidBot-generated JSON files from

the target APK as input, and outputs the GUI specification errors found.

For a given app, our toolchain explores its score-relevant screens (aka activities)

using DroidBot, generating multiple JSON files. These JSON files are then fed to our

validation method to check for GUI specification errors. We perform a DFS search

to find and save all the View objects representing score parameters and their values

(lines 5,6). The GUI text, e.g., “dopamine ≥ 5 mg/kg/min” is extracted (line 7). Then,

we map the extracted text to its corresponding reference entry using the semi-supervised

clustering approach discussed in Section 4.2.3 (line 8). The mapped values will be

used as final extracted intervals (line 9). Finally, GUI specification discrepancies

(Inconsistent GUI errors) are found by comparing correct reference parameter value

options and extracted parameter value options from the app (line 11). The extracted

GUI intervals are checked for coverage violations (line 12) and overlapping violations

(line 13) via Z3 (Section 4.2.1).

Finding Calculation Errors Via GUI Exploration. We also check the score

resulting from GUI interaction against the formal specification; in other words, we

check the validity of the app-computed final score, given the selected parameter values,

w.r.t. the reference table’s score calculation. This step discovers incorrect score errors.

Algorithm 3 shows our approach to finding score calculation errors. The

FindCalculatorErrorsViaGUIExploration algorithm takes the DroidBot-generated

JSON files and the reference GUI specification as input. We first check whether the

View object corresponds to a score parameter option or interval (line 5). If the View

object is a relevant score parameter option, then all the attributes and values of that
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Algorithm 3 Finding Calculation errors via Automatic, DroidBot-driven GUI
Exploration

Input: ReferenceGUISpecification (Correct specifications from the score reference table)
JSON files (DroidBot-generated GUI information from the target APK file)

Output: Score calculation errors

1: procedure FindCalculatorErrorsViaGUIExploration(ReferenceGUISpecification,
JSON files)

2: for each JSON file F in JSON files do
3: SelectedParameterV alues← []
4: for each view objects V in F do
5: IsScoreRelevantParameterOptionCheck(V )
6: RunDFSToGetParameterAttributes(V )
7: ParameterV alue←ProcessParameterGUIText(V [“text”])
8: if V [“checked”]==true OR V [“selected”]==true then
9: SelectedParameterV alues.add(ParameterV alue)
10: end if
11: end for
12: CorrectScore ←GetReferenceScore(SelectedParameterV alues,

ReferenceGUISpecification)
13: AppScore←GetAppScore(V )
14: CheckScoreValidity(CorrectScore, AppScore)
15: end for
16: end procedure

parameter are extracted using DFS (lines 6,7). Next, on lines 8 and 9, we find which

score parameter option is selected (set to true for spinners) or checked (set to true for

radio buttons). By looping through all the score parameters all their selected values

are saved and passed as input to GetReferenceScore along with the reference GUI

specification (line 12). This method calculates the expected correct score by mapping

each selected option to its correct value and then simply performing an addition to

get the total score. We extract the app-generated score via GetAppScore method

(line 13) using a similar JSON file View object analysis and text processing approach.

We show an example of score value extraction in Figure 4.6. The figure shows three

different apps, where the computed score appears in three different forms. Finally, we

compare the two scores: the app-calculated score and the expected correct score, to

find any existing score-related error (line 14).
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GUI Information Extraction

Processed Final Score 2 11 11

Figure 4.6 Score extraction from heterogeneous GUIs: Blue Rock SOFA (left); SOFA
Score (center); Nursing (right).

Comparison With Existing Dynamic Analyzers. Our work makes two key

advances that permit rigorous, automatic score verification: extracting a formal

interval semantics from GUIs, and systematic GUI exploration. We illustrate these

advances by comparing with existing dynamic analyses.

GUI Specification Extraction Although traditional dynamic analyzers [149] can

extract GUI information from apps, such as button size and word count, they do not

capture semantics. Furthermore, they are not suitable for dealing with heterogeneous

GUIs as discussed in section Section 4.2.3. Our approach solves these issues by

accurately mapping diverse textual representations of GUI specifications to a reference

entry, using interval semantics. These intervals are then used as inputs to Z3 for

coverage and overlap error-checking.

Figure 4.7 shows how our approach maps GUI elements to intervals for the

Creatinine parameter in the br SOFA app (top-right part of the figure). Additionally,

we separate the extracted numeric intervals based on the different units present for an

attribute (e.g., mg/dL, µmol/L) for error-checking. These interval-based specifications

can be encoded into Python and passed to Z3 for error checking (Section 4.2.2). In

contrast, prior GUI extractors do not map GUI elements to an abstract semantics

but rather produce lexical or layout metrics, such as the number of words and text

spacing, as shown on the bottom-right part of the figure.
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<1.2, 1.2-1.9, 2.0-3.4, 3.5-4.9, >5.0
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Lee et al.

• User actions: 2
• Number of words: 30
• Text spacing: 8mm

Figure 4.7 GUI of br SOFA app (left); extracting an interval-based semantics
(top-right); prior GUI extraction approaches (bottom-right).

GUI Exploration. Traditional dynamic analyzers typically explore the app based on

either fixed static GUI states [149] or random GUI states (explored via Android Monkey

[180, 126]). However, the lack of systematic exploration makes these approaches

inadequate for identifying calculation errors that only manifest in a specific GUI state,

that typically differs from the default GUI state.

Hao et al., Ravindranath et al.

(a) Default-based strategy (b) Random strategy (c) Our approach, finding the error

Figure 4.8 GUI exploration of Child-Pugh Score (KSoft Apps).

In Figure 4.8 we illustrate the inadequacy of these approaches and how our

approach discovers an actual error in the Child-Pugh Score app. The error only manifests

when the GUI state is exactly as shown in Figure 4.8(c), e.g., the attribute INR value

is “> 2.2”.

Defaults-based approaches use the statically-defined default GUI settings, so

the GUI setting that induces the error is not explored (Figure 4.8(a)). Random-based

approaches simply conduct a single random sampling of GUI settings, as illustrated in
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Figure 4.8(b). This has an exponentially low chance of “stumbling” upon the error,

as it would require the random configuration to land in the exact GUI state shown in

Figure 4.8(c).

In contrast, our approach (Figure 4.8(c)) first reveals a specific attribute for

which there exists a discrepancy with the reference score (in this example, the INR

option parameter “> 2.2” mismatches with the reference specification “> 2.3”). Next,

our DroidBot-based exploration (described in Section 4.2.3) reaches that specific GUI

state (INR value “> 2.2”) and generates the overall score. Finally, when our approach

compares the app-generated score with the expected reference score, the calculation

error is revealed.

Limitations. Our approach has two small limitations which can be addressed with

more engineering. First, DroidBot failed to produce proper JSON GUI data in 5

cases when apps used WebView. Second, we had to correct occasional minor errors in

PDF-to-CSV conversion, e.g., SOFA mixes numbers with text for Dopamine, while

other scores are purely numeric.

4.3 Checking Reference Scores

We evaluated our approach on 12 medical scores. We focused on scores used in critical

settings, where errors have serious implications. The scores, ranges, potential errors

and action thresholds are shown in Table 4.1. We first discuss scores’ nature, argue

why score accuracy is critical, and then present the errors we found.

4.3.1 Reference scores

We only provide details and citations numbers (Table 4.1, first column) for those

scores that contain errors.

The SOFA (Sequential Organ Failure Assessment) score predicts the mortality

rate of an ICU patient based on the functionality of six organ systems. The score is
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Table 4.1 Medical Scores Analyzed, The Year scores Were Introduced, Errors Found,
Score Ranges, and Action Thresholds

Score Year Errors Range Thresholds
Name Interval/Value Overlap

Not Covered

E
r
r
o
r

F
o
u
n
d

SOFA 1996 Bilirubin=12.0 Bilirubin 0-24 ≥ 11: “higher mortality rate” [114]
Creatinine=5.0 ([102-204],

(11,162 citations) [<204])
APACHE II 1985 Age=44 0-71 25: “predicted mortality of 50%”
(21,863 citations) ≥ 35 “predicted mortality of 80%” [98]
HEART 2008 Age([45-65], 0-10 4-6:“cannot discharge;

[≥ 65]) admit for clinical observation,
Troponin(≤normal limit, noninvasive investigation”

1x normal limit) ≥ 7: “early aggressive treatment
(582 citations) including invasive strategies” [186]

Pulmonary 2002 Resp. rate (<6 yrs)=30 0-9 9 “severe exacerbation” [189]
Asthma Score Resp. rate (≥6 yrs)=20

(157 citations)
RAPS “retold” 2004 Respiratory rate=5 0-20 ≥ 7 “increased mortality” [168]

Heart rate=39
(357 citations) Mean arterial press.=49

N
o

e
rr
o
r
fo
u
n
d

MEWS 2006 0-18 ≥ 4:“surgical team should be
informed immediately” [118]

NEWS 2012 0-18 Any value of 3 in a parameter:
“urgent ward based response”
5 or 6: “key threshold for urgent response”
≥ 7: “urgent or emergency response” [100]

NEWS2 2017 0-21 5 or 6: “patient should be monitored”
≥ 7: “urgently inform a clinician competent
in the assessment of acutely ill patients” [167]

Child Pugh 1973 0-15 8-10: “increased mortality”
≥ 11:“hepatic failure” [215]

HAS-BLED 2010 0-9 ≥ 3 “high risk of bleeding” [158]
CHA2DS2VASc 2010 0-9 ≥ 2 “high risk of stroke

and thromboembolism” [157]
Glasgow 1974 3-15 13-15: “mild neuroemergency ”
Coma Scale 3-5 “mortality is high and long-term

neurological outcomes are generally poor” [81]

updated and calculated every 24 hours until the patient is discharged [201]. APACHE

II (Acute Physiology and Chronic Health Enquiry II) is used to provide a general

measure of disease severity while taking into account current measurements, age, and

health history [140]. The HEART (History, EKG, Age, Risk Factors, Troponin) score

is used to predict the risks of a major cardiac event while taking into account risk

factors from a patient’s history or age and other parameters [186]. The RAPS (Rapid

Acute Physiology Score) predicts patient mortality in critical care transport [181].

The Pulmonary Asthma Score was developed to simplify children’s asthma severity

calculation [189].

The remaining scores do not contain errors (though apps implementing the scores

do); the scores’ domains are: identifying the severity of patients’ conditions in critical

care (MEWS [118], NEWS [100], NEWS2 [54]); chronic liver disease severity (Child-

Pugh [215]); risk of bleeding (HAS-BLED [158]); stroke risk (CHA2DS2VASc [157]);

and severity of a brain injury (Glasgow Coma Scale [197]).
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4.3.2 Why is score accuracy critical?

We chose these scores because they capture critical conditions, where action is urgently

needed. Errors in the app-calculated scores can result in under-estimating the real

score, i.e., patient state is more critical than the app indicates, which potentially

means that time-critical life-saving actions will not be taken. Conversely, errors that

result in the app over-estimating the real score might lead to an overly aggressive,

disproportionate intervention, as well as unnecessary use of resources (personnel, ICU

beds, etc.).

For each score, Table 4.1’s second-to-last and last columns show the range

of possible values and threshold values, respectively; the third and fourth columns

show errors (if any) and will be discussed in Section 4.3.4. The threshold column is

particularly revealing, as it indicates the score value(s) at which a more aggressive

intervention is warranted, or values where the prognosis turns dim. For example, for

the HEART score, a patient who “scores” ≤ 3 can be discharged; a patient who scores

4–6 would be admitted for noninvasive investigation; whereas a patient who scores

≥ 7 will receive “early aggressive treatment including invasive strategies”. Hence, a

score calculation error at or around the threshold value is particularly concerning.

4.3.3 Specification extraction accuracy

We measured the accuracy of specification extraction in terms of true positives

(reference table entries that should be checked for coverage and non-overlap), true

negatives (entries that should not be checked), false positives (entries that should not

be checked, but our approach does check), and false negatives (entries that should be

checked but our approach does not check). Specifically, the results obtained via the

automated analysis (A) described in Section 4.2.2, were checked and cross-referenced

by three human analyzers (H1, H2, H3) as follows.
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Human Analysis. To establish ground truth, all the reference tables were verified

manually by three human analyzers, H1, H2, and H3. H1/H2/H3 analyzed each

table and individually recorded any observed errors, i.e., violations of coverage or

non-overlap. Next, each human analyzer compared their findings against the errors

reported by the automatic analysis (A) and recorded TP/FP/TN/FN. Finally, a

cross-checking was performed to measure agreement. The observed multiple-rater

agreement across H1, H2, and H3’s findings was 100%.

Results. Across all tables, there were 418 rows, of which 319 should be checked for.

The resulting confusion matrix was:

True Positives: 318 False Positives: 0

False Negatives: 1 True Negatives: 99

i.e., 100% precision and 99.69% recall. The false negative was in the APACHE II

score, where the error was hidden in a supplementary, nonstandard, age adjustment

footnote (relevant excerpt shown in Figure 4.9b).

4.3.4 Inconsistent reference table

We found errors in the original reference tables for 4 of the 11 scores; we also found

errors in one score as defined in follow-up work to the original reference table; these

errors are shown in the top part of Table 4.1.

For SOFA, as discussed in Section 4.1.3, the partition condition (1) coverage, is

violated for Bilirubin=12.0 and Creatinine=5.0; these values do not appear in the table

though values lower or higher do appear in the table (Figure 4.1). The second issue

for SOFA was a violation of the partition condition (2) non-overlap, where multiple

table entries satisfy Bilirubin < 204. While the latter issue might be alleviated if an

app/medical system does not use the µmol/l units, it is unclear how an app developer

is supposed to deal with the former issue: should the 12.0 and 5.0 values be included

into the left or right cells in the table?
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(a) HEART score has two non-overlap
violations: Age=65 and Troponin=(1x)
normal limit.

(b) APACHE II has a coverage violation
for Age=44.

(c) Pulmonary Asthma Score has two
coverage violations for Respiratory Rate.

(d) RAPS “retold” has three coverage
violations for Respiratory rate, Heart rate,
and Mean arterial pressure.

Figure 4.9 Reference tables with no straightforward fixes.

The HEART score’s reference table (relevant excerpt shown in Figure 4.9a)

violates the non-overlap condition at two points: Age=65 and Troponin=normal limit;

possible resolutions include changing Age≤65 to Age>65 and Troponin: ≤normal

limit to Troponin: <normal limit.

The APACHE II reference table [140], dating back to 1985, violates the coverage

condition for Age=44. This table would be particularly challenging to verify manually

as it has 117 entries (13 rows by 9 columns).

The Pulmonary Asthma Score’s reference table (relevant excerpt in Figure 4.9c)

violates coverage at two points: RespiratoryRate=30 and RespiratoryRate=20; it is

unclear how an app developer is supposed to cope with these, and whether the scores

for those values should be 0 or 1.

The “RAPS retold” score was an interesting find. Note that the original RAPS

score, introduced by Rhee et al. [181], does not violate the partition conditions. A new

score, REMS, was introduced by Olsson et al. [168] to improve upon RAPS; the paper

presents both scores, but the “retold” RAPS table (Figure 4.9d) has three coverage

violations, as shown in Table 4.1.
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4.3.5 Correcting the specification

Although we have found faulty reference tables, they do not introduce false positives,

as we first translate such tables into correct ones (partition-wise), then compare apps’

GUI specifications against corrected tables. We now discuss approaches for, and

challenges associated with, fixing the incorrect tables.

Straightforward case One of the specification errors found in the SOFA reference

table (Figure 4.1) for Bilirubin, originally ‘<204’, can be easily fixed by changing it

to ‘> 204’.

“Reasonable” fix In addition, the SOFA reference table has no coverage for

Bilirubin=12.0 mg/dl. However, by observing that 204µmol/l = 11.93mg/dl we could

infer a reasonable fix, that is, to change ‘> 12.0’ to ‘≥ 12.0’. Similarly, Creatinine=5.0

mg/dl is not covered, but since 440µmol/l = 4.98mg/dl, a reasonable fix would be to

change ‘> 5.0’ to ‘≥ 5.0’.

Challenging cases In the remaining cases (Figure 4.9), it is unclear how to “fix”

the specification. To fix the HEART reference table (Figure 4.9a), Age=65 can be

assigned a score of either 2 or 1. In fact the paper itself is ambiguous as it says

“one point if the patient was between 45 and 65 years and two points if the patient

was 65 years or older” [186]. Similarly, in the case of the Pulmonary Asthma score

(Figure 4.9c), RespiratoryRate=30 and RespiratoryRate=20 can be assigned score

values of either 0 or 1. For the APACHE II reference table (Figure 4.9b), Age=44 can

be assigned 0, 1, or 2 points. Finally, for RAPS retold (Figure 4.9d), different score

interpretations can be made for RespiratoryRate=5, HeartRate=39, and MAP=49.

How Developers Cope With Faulty Scores. We found 14 instances where

developers attempted to correct a faulty score when implementing that score in their

apps. For SOFA, we found 4 apps that performed the straightforward ‘> 204’ fix,

and 4 apps that used the reasonable ‘Bilirubin ≥ 12.0’ and ‘Creatinine ≥ 5.0’ fixes.
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For APACHE II, 4 apps performed an ad-hoc fix (changing Age < 44 to Age ≤ 44).

Finally, for the HEART score, which has overlap errors at Age=65 and Troponin ≤

normal limit, no app has fixed the overlap errors; moreover, three apps have introduced

additional overlap errors at Age=45.

We can now summarize our RQ1 findings.

RQ1: Can our approach extract and verify medical score specifi-

cations?

Answer: Yes. Specification extraction has a 99.5% F1-score and verification has

uncovered all 11 violations in the 5 incorrect scores.

4.4 Finding Errors in Apps

We have evaluated our approach on a dataset of 90 apps; the selection process is

explained next, followed by a discussion of the errors we found, effectiveness, and

efficiency.

4.4.1 App dataset

We selected our apps from the Medical category on Google Play. We scraped 3,762

apps and their descriptions from Google Play; using ranked retrieval, we identified

556 apps classified as medical calculators. We then focused on apps which computed

one or more among the 12 scores we verified, resulting in a total of 90 apps.

4.4.2 App errors: inconsistent GUI

We now present our findings: coverage violations and non-overlap violations.

Coverage violations. Table 4.2 shows the results; we found 23 coverage errors in 11

apps. The first column shows the official app name on Google Play, the second column

shows the affected score calculator, while the third column shows values or ranges that
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Table 4.2 Inconsistent GUI: Coverage Violations

App Name Score Parameter value(s)

Sepsis Clinical Guide APACHE II Hct(%) =60

Child Pugh Calculator Child Pugh INR =1.7

Child-Pugh Score (Blue Rock) Child Pugh INR < 1.7, INR > 2.2

HAS-BLED Score HAS-BLED Age=65

Nursing Calculator MEWS Systolic BP=70, Resp=8, Temp=35.0

Quick EM SOFA PaO2 ≥ 400, Dopamine=5

Nursing SOFA Bilirubin=12.0, Creatinine (mg/dl)=5.0

SOFA Score (widebitsbd) SOFA GCS=15, PaO2 ≥ 400, Platelets ≥ 150,
Creatinine (mg/dl) <1.2

SOFA Score (Blue Rock) SOFA Bilirubin=12.0, Creatinine (mg/dl)=5.0,
Dopamine=5

Merck Manual Professional SOFA Bilirubin=12.0, Creatinine (mg/dl)=5.0

SOFA SOFA Bilirubin=12.0, Creatinine (mg/dl)=5.0

are not covered. Interestingly (though somewhat predictably), the “original sin” in

the SOFA reference table (no coverage for Bilirubin=12.0 and Creatinine=5.0) leads

to non-coverage issues for those parameter values in four apps.

Non-overlap violations. Table 4.3 shows the results; we found 32 non-overlap

errors in 12 apps. The parameters with overlapping ranges are shown in the third

column. In this case, all the HEART score apps’ errors appear attributable to the

error in the original HEART reference table (Table 4.1).

4.4.3 App errors: incorrect score calculations

Table 4.4 shows errors in score calculation; we found 16 calculation errors in 16

apps. The Calculation Errors grouped columns show the parameter values for which

the errors manifest, and the app value vs. reference score value. We make several

observations. First, app errors lead to both under-estimating the true score (e.g., apps

Atrial fibrillation risk calc, MEWS, Nursing Calculator-MEWS) and over-estimating the true

score (e.g., apps Sepsis3 or MediCalc). Both error types are problematic due to potential

under-intervention and over-intervention respectively, as explained in Section 4.3.2.
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Table 4.3 Inconsistent GUI: Non-overlap Violations

App Name Score Overlapping Ranges

Child-Pugh Score Child-Pugh INR: [>1.7], [1.7-2.2]

HEART Score HEART Age: [≤45], [45-65], [ ≥ 65]
Troponin: ≤normal limit, 1-3x normal limit, ≥3x normal limit

HEART Score HEART Age: [45-65], [ ≥ 65]

Calculator Troponin: 1-3x normal limit, ≥3x normal limit

Quick EM HEART Age:[45-65], [ ≥ 65],
Troponin: ≤normal limit, 1-3x normal limit

HEART Score HEART Age: [45-65], [ ≥ 65]

Gumption Troponin: ≤normal limit, 1-3x normal limit, ≥3x normal limit

REBELEM HEART Age: [≤45], [45-65], [ ≥ 65],
Troponin: 2-3x normal limit, ≥3x normal limit

Medical Calculators HEART Age: [≤45], [45-65], [ ≥ 65]
Troponin: ≤normal limit, 1-3x normal limit, ≥3x normal limit

MEWS MEWS Heart Rate: [51-101], [101-111], Respiratory rate: [15-21],
[21-30]
Systolic BP: [71-81], [81-101], Temperature: [≤35], [35-
38.5],[≥38.5]

Nursing Calculator SOFA Bilirubin: [1.2-1.9], [1.0-5.9], Creatinine (mg/dl): [1.2-1.9][1.0-
3.4]
Platelets: [≥ 150], [100-150]

SOFA Score (Blue Rock) SOFA Creatinine (µmol/L): [110], [110-170],[300-440],[440]

SOFA SOFA Norepinephrine: [≤0.1], [<0.1]

Sepsis Clinical Guide SOFA Creatinine (mg/dl): [≤1.2],[1.2-1.9], Platelets: [≥ 150], [≤ 150]

Second, as the last column indicates, certain errors “straddle” the threshold, which,

as discussed previously, can put the patient in a different class.

We have reached out to the developers of apps where we found errors. So far, 6

apps (listed in Table 4.5) have been fixed and updated.

4.4.4 Effectiveness

We measured the accuracy of our automated app analysis via a process similar to the

one described in Section 4.3.3. Specifically, the results obtained via the automated

analysis (A) described in Section 4.2.3 were checked and cross-referenced by three

human analyzers (H1, H2, H3) as follows.

Human Analysis. To establish ground truth, all the apps were first explored

manually by three human analyzers (H1, H2, H3). The analyzers performed several

tasks: (a) ensure that the app implements a score that was among our examined

scores, (b) find the app activity implementing the score (which formed the start of

the automated analysis), (c) check for inconsistent GUIs, and (d) exercise all GUI
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Table 4.4 Calculation Errors in Apps

App Name Score Calculation Errors Meets or
Exceeds

Parameter Option App Score Ref. Table Threshold
Score

Atrial
fibrillation
risk calc

CHA2DS2VASc Age=75 1 2 N

Child-Pugh
Score (KSoft
Apps)

Child Pugh INR=2.3 11 10 Y

Child-Pugh
Score (Blue
Rock)

Child Pugh INR=2.3 11 10 Y

Child-Pugh
Score (Liver)

Child Pugh INR=2.3 11 10 Y

Nursing
Calculator

MEWS Heart rate=40 3 4 N

MEWS MEWS Temperature=[35.1-36] 3 4 N

Nursing
Calculator

SOFA Platelets=150 12 11 Y

Sepsis 3 SOFA Dopamine=5 12 11 Y

Nursing SOFA PaO2=300 12 11 Y

MediCalc SOFA Dopamine=5 12 11 Y

SOFA Score
(widebitsbd)

SOFA Creatinine (µmol/L)=106 12 11 Y

Merck Manual
Professional

SOFA PaO2=300 12 11 Y

SOFA SOFA Creatinine(µmol/L)=106 12 11 Y

SOFA - (Sepsis) SOFA Dopamine=5 12 11 Y

Sepsis Clinical
Guide

SOFA Bilirubin=1.2 12 11 Y

Sepsis SOFA
Calculator

SOFA Platelets=20 4 3 Y

options and check for score calculation errors. Next, each human analyzer compared

their findings against the errors reported by the automatic analysis (A) and recorded

TP/FP/TN/FN. A cross-checking was performed to measure multiple-rater agreement

among the errors discovered. The observed multiple-rater agreement across H1, H2,

and H3’s findings was 100%. A fourth human H4 (the research lead) performed a final

cross-check between the manual and automatic analysis results. Note that the manual

app analysis was a considerable task, due the large space induced by the number of

apps, number of scores, and manual GUI interaction; overall the task took H1, H2,

and H3 about four person-months.
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Table 4.5 Apps Fixed Thanks to Our Reporting

App Name Package Name #Installs

Nursing pe.com.codespace.nurse 100,000

MEWS Brasil appinventor.ai blinkeado.InformaticasaudeMEWS 500

Atrial fibrillation com.gumptionmultimedia.atrialfibrillationriskscore 5,000

Nursing Calculator com.niya.lijo.nursingcalculators 50,000

Sepsis Clinical Guide app.escavo.sepsis 100,000

SOFA gumptionmultimedia.com.sofascore 1,000

Results. The confusion matrix resulting from comparing the automated analysis

findings with ground truth was:

True Positives: 20 False Positives: 0

False Negatives: 5 True Negatives: 65

The false negatives are due to apps using WebView (Section 4.2.3). These figures,

a 100% precision and 80% recall, are par for the course for a dynamic analysis.

4.4.5 Efficiency

Table 5.5 provides details on the efficiency of our approach. The median size of app

bytecode alone (.dex) was 3.8MB; note that app size (.apk) would be much larger as

that includes app resources. A typical app takes about 3 seconds to analyze. Reference

table verification, including running Z3, took less than 1 second for any table; for any

app, GUI extraction followed by verification/validation took at most 2 seconds.

Table 4.6 Efficiency Results

Analysis time (seconds) Bytecode size (MB)
min max median min max median
2 3 3 0.17 125 3.8

We can now summarize our RQ2 findings.

RQ2: Is our approach effective at analyzing and finding errors in

real-world apps?
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Answer: Yes. The analysis could tackle all 90 real-world apps, achieving 100%

precision and 80% recall, and taking 3 seconds per app on average.

4.5 Summary

Mobile health apps are seeing increasing adoption in acute care settings, and mobile

app developers, including developers who are not medically qualified, are eager to

capitalize on this growing demand. Though errors in medical scores and score calculator

apps can have severe negative consequences, at this point, such scores and apps are

subject to no scrutiny. We tackle this issue via rigorous, automated approaches:

(1) extracting reference tables into interval-based specifications and checking them for

partition violations, and (2) validating apps against the aforementioned specification,

as well as verifying app GUIs. We have uncovered errors in long-standing medical

reference articles. We found that incorrect specifications translate to incorrect app

implementations, and that even correct specifications can be implemented incorrectly,

affecting the resulting scores. Our findings indicate a need for tighter scrutiny of

reference scores themselves, as well as apps implementing these scores.

In the next chapter, we will delve into the detection of potential user-data save

and export losses resulting from Android app termination.
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CHAPTER 5

USER-DATA LOSSES DUE TO ANDROID APP TERMINATION

Saving user data as files onto local storage is a common feature in Android apps.

However, the volatile nature of the mobile environment can lead to system-initiated

app terminations without notice, resulting in the loss of unsaved data. Testing apps

for such potential data losses presents challenges, including identifying user data

originating from inputs or actions and reproducing termination scenarios at the right

moment. In this chapter, we propose an approach to find potential “lost writes”– data

supposed to be written to files but not saved due to system-initiated termination. Our

approach employs static analysis to identify potential losses and dynamic verification to

confirm errors. Evaluation of a large set of apps revealed numerous cases of data losses

that were not detected by existing tools designed to find volatility errors in Android

apps. In Section 5.1, we delve into the background and motivation of our research.

We discuss the impact of system-initiated termination on file writes and illustrate

losses in example apps. Identifying potential losses presents challenges, requiring us

to define and identify the data to be saved and understand how this data flows to

files. To address these challenges, we introduce an automated approach that combines

static and dynamic analysis. We use static analysis to identify user-initiated file writes,

producing a list of objects that may be lost due to termination (Section 5.2.1). To

verify these losses, we compare system call traces from the original and terminated

executions (Section 5.2.2). Evaluating our approach on 2,220 apps revealed confirmed

losses in 163 apps, impacting user settings, artwork, edited photos, notes, history, and

bookmarks (Section 5.3.2). We also compare our approach with other state-of-the-art

methods, highlighting the superiority of our approach in identifying system-initiated
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a) User Action: Saving User Painting d) File Missing Due To Terminationc) User Data Saved In File 
(Screenshot From The File 

Storage App)

b) Confirmation Of File Write

Figure 5.1 Acrylic Paint app: success scenario (a-c) and user file write data loss
scenario (d).

termination-induced data losses (Section 5.3.3). Finally, we propose potential solutions

to address file write losses (Section 5.3.7).

5.1 Motivation

A fundamental principle in mobile app development – on both Android and iOS – is to

“not perform file writes on the synchronous UI thread, to keep the UI responsive” [198,

87]. This forces programmers to run file write operation in a separate thread, e.g.,

asynchronously via an AsyncTask in Android. However, asynchronous (and potentially

time-consuming) file writes are on a collision course with the volatility of mobile

platforms. Specifically, mobile apps can be terminated without notice (or on short

notice) by the system, due to low memory or runtime changes. We detail this by first

presenting a brief overview of Android app construction, file writes in app, and app

termination; next, to motivate our approach, we present a suite of examples of file

write losses due to termination.

5.1.1 Background: file writes and termination in Android

App Construction and File Writes. Android apps are constructed from four

fundamental components: Activities managing the UI, ContentProviders managing

access to data, Services that run in the background, and Broadcast Receivers which
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1 public boolean onOptionsItemSelected(MenuItem item) {
2 switch (item.getItemId()) {
3 ....
4 case R.id .save menu:
5 takeScreenshot(true) ;
6 break;
7 ....}}
8 private File takeScreenshot(boolean showToast) {
9 ......

10 Bitmap copyBitmap =
cachedBitmap.copy(Bitmap.Config.ARGB 8888, true);

11 File file = new File(path,”fileName.png”);
12 FileOutputStream output = new FileOutputStream(file);
13 copyBitmap.compress(CompressFormat.PNG, 100, output);

//Process gets terminated here
14 .....}

Main
Thread

onOptionsItemSelected

Process Terminated

takeScreenshot

write

compress

….

System-initiated
Termination

Figure 5.2 Acrylic Paint app code (left) and file write operation termination events
(right).

respond to system-wide events. The most common component, Activity, is a “page” in

the app; apps with a UI typically consist of one or more Activities. The UI elements

in an Activity are owned and managed by a special thread, named the UI thread

or main thread. The UI thread plays a critical role: timely processing of UI events,

to keep the UI (and app) responsive. Therefore, one of the first lessons in Android

programming is “you should not perform work on the UI thread” [198]: as file write is

potentially long-running and blocking, performing a file write on the UI thread could

render the app unresponsive. Hence, any long-running or blocking operations should

run asynchronously, in a different (background) thread. Occasionally though, apps

violate this requirement: among the apps we have analyzed, some perform file writes

on the UI thread.

App Termination. There is an inherent tension between long-running operations

and the constraints of the mobile platforms. Unlike desktop/server applications,

mobile applications cannot expect to “run forever”; rather, mobile applications can

be terminated summarily to free resources such as memory [148], conserve energy,

and protect user’s security (e.g., by preventing background apps from accessing users’

location). Therefore, long-running operations can be interrupted or terminated without
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a) User Action: Saving Calculator 
Screenshot

d) File Missing Due To Terminationc) User Data Saved In File
(Screenshot From The

File Storage App)

b) Confirmation Of File Write

Figure 5.3 Wabbitemu app: success scenario (a-c) and user file write data loss
scenario (d).

notice – in fact the entire process enclosing the Android app is terminated – for various

external reasons, as listed below.

• Memory pressure. Android’s Low Memory Killer Daemon (LMKD) [85]
handles low-memory situations: when the phone is under memory pressure,
the LMKD ranks apps based on their memory usage and acts according to a
configuration-described policy, e.g., the app which consumes most memory and
is not in the foreground will be killed to release memory.1

• Background process limit. The Android OS provides a developer option
to limit the number of background processes. When the option is set to “No
background processes” an app process is killed whenever the app is not in the
foreground.

• Kill via external signal. Apps can also be terminated by sending them a
traditional Unix signal, e.g., SIGKILL.

Besides system-initiated termination, an app process can also be terminated

internally, when the app invokes API methods such as System.exit or finishAndRemoveTask;

the use of these APIs in our app dataset was practically non-existent, so our approach

focuses on system-initiated termination.

1In smartphones, I/O consumes substantial energy [173], hence, apps that run background
I/O are at higher risk of termination due to resource pressure.
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1 private class ScreenshotCalcTask extends AsyncTask{
2 protected void onPreExecute() {...}
3 protected Boolean doInBackground() {
4 SaveScreenshotCalc();
5 }
6 void SaveScreenshotCalc() {
7 .....
8 Bitmap Screenshot =

Bitmap.createScaledBitmap(screenshot,
screenshot.getWidth() ∗ 2,
screenshot .getHeight() ∗ 2, true) ;

9 try {
10 FileOutputStream out = new

FileOutputStream(new File(outputDir,
”screenshot” + new
SimpleDateFormat(”yyyyMMdd”,
Locale.getDefault()).format(new Date())
+ ”.png”));

11 Screenshot.compress(CompressFormat.PNG,
100, out); //Process gets terminated here

12 ....
13 }
14 ....
15 }
16 protected void onPostExecute(Boolean success) {...} }

SaveScreenshotCalc()

Main
Thread

Background
Thread

onPostExecute

ScreenshotCalcTask.
execute()

System-initiated
Termination

Process Terminated 

write

compress

….

SaveScreenshotCalc()

Figure 5.4 Wabbitemu app code (left) and file write operation termination events
(right).

5.1.2 Motivational examples

We now present several examples where file write loss can occur due to system-initiated

termination.

Example: File write on the main thread. We show a case study on the Acrylic

Paint app [77] in Figure 5.1. Specifically, we show two scenarios: a successful scenario

where file write operation completes, and an unsuccessful scenario where the file write

is eschewed due to system-initiated termination, leading to user’s work being lost.

Acrylic Paint is a painting app: the user can save painting progress either by clicking

the ‘Save’ button (Figure 5.1(a)) or by exiting the app. The user’s progress or changes

to the drawing are saved in a local file inside the app directory, as shown in the middle

part of the figure: Figure 5.1(b) shows the confirmation message, whereas Figure 5.1(c)

shows the saved painting as a file in the app’s directory. However, in the case of a

system-initiated termination such as low memory, the app process is terminated before
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the user’s changes, or progress, can be saved. In that case, illustrated in Figure 5.1(d),

the valuable file write data is lost and the file is missing from the app’s local directory.

In Figure 5.2 we show the app source code (left) and event sequence diagram

(right). When the user clicks the ‘Save’ menu option, the onOptionsItemSelected event is

triggered (lines 1–4). The method takeScreenshot is called next (line 5); inside the method,

new Bitmap, File , and FileOutputStream instances are created (lines 10–12). Finally, the file

writing operation Bitmap.compress (line 13) executes on the main thread. If the app is

terminated prematurely, the file write operation is terminated, resulting in data loss.

The sequence of events, i.e., code that will not execute due to termination, is shown

in gray.

Example: file write on a background thread. Next, we show an example of

file write loss due to termination, where the file write operation is performed on a

background thread. Wabbittemu [203] is a graphic calculator app. We show relevant

app screenshots in Figure 5.3: the user can save calculator screenshots locally in a

file by selecting the ‘Screenshot’ menu item (Figure 5.3(a)); the save confirmation is

shown in Figure 5.3(b), whereas Figure 5.3(c) confirms the file’s presence in the app’s

own directory. The file write loss scenario, due to system-initiated termination, is

shown in Figure 5.3(d): data is lost, hence, the file is missing from the directory.

Figure 5.4 shows the relevant source code (left) and event sequence diagram

(right). When the user selects the screenshot menu item, the ScreenshotCalcTask executes.

Note that ScreenshotCalcTask extends the AsyncTask class hence, will execute asynchronously

as follows: ScreenshotCalcTask invokes the SaveScreenshotCalc method on a background thread

(line 4). Inside the SaveScreenshotCalc method, first, Bitmap and FileOutputStream instances are

created (lines 8,10), then the screenshot image is written into a file (line 11). App

termination in turn terminates both the main thread and its (child) background

thread, hence, the file write data will be lost; specifically, the file write operation and
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Figure 5.5 Overview of our approach.

the onPostExecute method do not execute. The gray-colored part of the sequence diagram

shows the parts that will not execute due to termination.

Hence, our goal is to automatically identify the file-bound data and file write

operations that are lost (and do not execute, respectively) due to termination.

5.2 Approach

In Figure 5.5 we provide an overview of our approach. Given an Android app we first

perform a static analysis which produces reports of user-initiated file writes, i.e., file

data that originates from UI events, hence, is potentially lost. Then, we verify the

potential losses in a dynamic report verification phase. We now discuss each phase in

detail.

5.2.1 Static analysis

In this phase, we perform a combination of control and data flow analyses to identify

data that originates from user interaction (UI) and flows into file write APIs; this

data is marked as potential loss.

Our static analysis has two main objectives:

• Finding all the file write operations initiated by (generated from) user interactions
with the app, and
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• Tracking the data that contains user input and flows into the aforementioned
file write operations.

We first define “user-initiated” more precisely, then proceed to describe how

we achieved the aforementioned objectives using a combination of control-flow and

data-flow analysis.

What is “User-initiated”. A key requirement for finding potential data losses

is defining exactly what data is “worth saving”. Intuitively, user’s work or changes

are worth saving, whereas logging operations happening in analytics libraries are not.

Hence, we define as “worth saving” two kinds of user-initiated file write operations.

We consider file write operations where the file content is coming directly from

UI input, e.g., the canvas in the Acrylic Paint app shown in Figure 5.1, which has type

ImageView. Another example is note contents, whose type is TextView. These file writes

are identified via data-flow analysis.

The second kind of worthy content is file-written but does not come from UI

input; rather, the file write operation depends on user interaction with the UI such

as saving screenshots or exporting log data. One such example is the ‘Export to

Excel’ UI action in the Auto-Away app to export call history log mentioned in detail

in Section 5.3.2. Though in that case the exported file does not contain UI data (in

contrast to the painting content above), the user nevertheless initiates this file write

or export operation. We find these type of file writes via control-flow analysis.

Defining UI Interaction Callbacks. Android apps do not have a main() method;

rather, apps have multiple entry points induced by top-level callback events, as follows.

Apps can register callbacks for events of interest, such as GPS location updates or

UI interaction (menu select, button click, etc.). We create a “dummy” main method

(similar to other static analyses such as FlowDroid [88]) which contains all top-level

callbacks and will serve as an end point for backward analyses. Among the top-level
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1 class SketchActivity extends
AppCompatActivity{

2 public boolean
onOptionsItemSelected(MenuItem item) {

3 int id = item.getItemId() ;
4 if ( id == R.id.action reminder) {
5 ....
6 }else if ( id == R.id.action save) {
7 ...
8 saveToExternalStorage() ;
9 ...
10 }
11 ...
12 }
13 public void onRequestPermissionsResult( int

requestCode ,..) {
14 switch (requestCode) {
15 ....
16 saveToExternalStorage() ;
17 }
18 }
19 private void saveToExternalStorage(){
20 .....
21 Bitmap bm = overlay(new

BitmapDrawable(getResources(),
mFilePath).getBitmap(),
drawView.getBitmap());

22 ...
23 bm.compress(Bitmap.CompressFormat.JPEG,

100, new FileOutputStream(file));
24 ....
25 } }

fileOutputStreamsaveToExternalStorageonOptionsItemSelected

onRequestPermissionsResult

…. ….

….

UI Interaction Callback Control-flow Propagation File Write API  

Figure 5.6 Backward control-flow analysis in the Privacyfriendlynotes app.

callbacks, we only retain UI-related ones. There are several UI interaction callback

APIs in Android, such as OnClick, onMenuItemClick, etc. Generally these callbacks are part

of the Android View (UI) components hence, defined in the android.view class hierarchy.

Non-UI callbacks are not a target of our analysis. For example onLocationChanged, defined

in android. location .Location and handling GPS location updates, does not correspond to

user interaction and is not considered a UI interaction endpoint.

Defining File Write APIs. Our analysis focuses on file write operations. We

manually identified 15 java . io classes that support file writes. The first column of

Table 5.1 lists these classes and the second column states the frequency of the APIs

observed in our evaluated app dataset. Within these classes, we identified API methods

that perform file writes, e.g., FileOutputStream.write(), Writer .append(), etc. We observed that
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Table 5.1 File Write API Prevalence

File Writing API % Apps

OutputStream 89

FileOutputStream 82

Writer 81

FilterOutputStream 81

ByteArrayOutputStream 79

StringWriter 72

BufferedOutputStream 66

BufferedWriter 54

ObjectOutputStream 47

DataOutputStream 43

FileWriter 15

PrintStream 10

PrintWriter 9

CharArrayWriter 3

FilterWriter 1

1 private File takeScreenshot(boolean showToast) {
2 ......
3 View v = findViewById(R.id.CanvasId);
4 v.setDrawingCacheEnabled(true);
5 Bitmap cachedBitmap = v.getDrawingCache();
6 Bitmap copyBitmap =

cachedBitmap.copy(Bitmap.Config.ARGB 8888,
true);

7 File file = new File(path,”fileName.png”);
8 FileOutputStream output = new

FileOutputStream(file);
9 copyBitmap.compress(CompressFormat.PNG, 100,

output);
10 .....}

compressv

…. ….

….

android.view Type Data-flow Propagation File Write

copyBitmap

….

cachedBitmap

Figure 5.7 Backward data-flow analysis in the Acrylic Paint app.

the most common API classes were the ∗Stream and ∗Writer families, e.g., OutputStream,

FileOutputStream, Writer. Note that this list is just an input configuration file in our

implementation hence, can be easily extended.

Finding User-initiated File Writes. Our static analyzer is built on top of the

Soot analysis framework [192]. Using Soot, we first build an inter-procedural call

graph, which will form the basis for the control- and data-flow analyses.

To find all the file write calls originating from user interaction, we proceed as

follows. We perform a backward control-flow analysis from every file write callsite back
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to its app entry point. If the callback belongs to UI interaction callbacks (Section 5.2.1),

then the write operation is initiated by the user, and we add this write to our list.

Example. We show an example of how our backward control-flow analysis

operates in Figure 5.6. The example is drawn from the Privacyfriendlynotes app (a

simple note-saving app). The relevant source code is shown on the left, and the

corresponding control-flow diagram along with the app UI screenshots are shown on

the right. We start our backward analysis from the file write API. In this case, the file

write API is on line 23: the compress method call (taking a FileOutputStream as an argument)

is the point where the note or sketch are saved in a file. From compress our analysis

lands in saveToExternalStorage; backtracking from the saveToExternalStorage method leads to two

different paths, as the method has two callers. One of them is onRequestPermissionsResult

(lines 13–18) which does not belong to android.view class, hence, is not a UI interaction

callback. The second control-flow path traces back to onOptionsItemSelected which belongs

to the android.view.MenuItem class, hence, is a UI interaction callback. When the user selects

the ‘SAVE’ option, the onOptionsItemSelected callback is triggered and saveToExternalStorage is

called (lines 6–8). Hence, this particular file write falls under the category of writes

initiated by the user. The control-flow path that satisfies our requirement and belongs

to the “user-initiated file write” path is marked with green color in the figure. Hence,

we add the file write operation on line 23 as a user-initiated file write.

Finding User Input Flowing to File Writes. To find the extent of the data

flowing to file write APIs, we perform a data-flow analysis. Similar to the control-flow

analysis, we start our data-flow analysis from the write callsite (but now consider the

method arguments) and trace whether the data transitively flows from a UI input

class. Starting from the file write API callsite, we run a backward data-flow analysis

up to the point where the data type belongs to a UI input type (android.view class) or

exits via an app entry point. We now illustrate this analysis with an example.
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Example. We show the data-flow analysis of the Acrylic Paint app in Figure 5.7.

The relevant source code is shown on the left, and the corresponding data-flow edges

on the right. The method in consideration here is takeScreenshot, which contains the file

write call compress (line 9). Data-flow analysis of copyBitmap leads to line 6, specifically

cachedBitmap. Tracing back from cachedBitmap leads to line 5, value v, which belongs to the

android.view class as per line 3. Therefore, we end the data-flow analysis here, concluding

that the file write content is coming from an UI input; in this example, it belongs to

ImageView type UI input. Therefore, we add v as potential loss.

5.2.2 Dynamic report verification

Our dynamic verification phase reduces the false positives resulting from the static

analysis phase. Given the list (reports) of user-initiated writes produced by the static

analysis, we proceed to verify the potential losses report. Dynamic report verification

has multiple components as discussed below:

GUI Exploration. Our goal is to explore the target app to find relevant file

write initiating action (i.e., button click to initiate Save/Export) and then inject a

termination event which should lead to a “lossy” execution and finally compare file

write traces in the original and lossy executions. Those writes that are confirmed

missing will help us verify whether the file writes containing user data is lost.

DroidBot Exploration. We have used DroidBot[155] to automate the app

exploration or trace generation process. DroidBot’s GUI-based model helped to

automatically identify various view objects (such as Button or TextView) related to target

user Save/Export actions. We wrote custom DroidBot scripts to identify these target

GUI elements and trigger necessary events (e.g., clicking Save button).

Manual Exploration. Besides DroidBot, we have explored apps manually (human-

driven) for cases where DroidBot failed. DroidBot failed in two types of scenarios.

First, the scenario where DroidBot could not reach targeted Save/Export options and
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the collected traces did not have the desired file write logs. Second, the cases where

automated GUI exploration using DroidBot crashed and no trace logs were generated.

Triggering Termination. While termination can be triggered via various system

events (Section 5.1.1), we used the background process limit option, based on the

observation that background apps are frequently/routinely terminated due to memory

pressure [148, 210, 178, 86].2 In other words, if the user switches away from app A

(which in the absence of termination would perform a file write operation, either on

the main thread or on a background thread) to app B, the file write operation can be

terminated, resulting in data loss. We automated switching from target app A to app

B via Monkey [83] (the adb shell monkey -p package.name command offered by

the Android Debugging Bridge). In case of manual exploration, we manually switched

from the target app to another.

Trace Comparison. We confirm the write loss via automated trace differencing:

we compare the strace Linux-level system call trace [195] across two runs: original

execution (normal, uninterrupted) and lossy execution (operation interrupted by

triggering termination via app switching). We have automated trace differencing

by checking for interrupted I/O, e.g., unfinished openat(), fstat (), or write () system calls.

We show an example of successful vs. lossy straces for app PrivacyFriendlyNotes

in Figure 5.8. The successful execution trace is shown on top – note the openat() call

completing (lines 2–3). The lossy trace is shown on the bottom: the openat() call fails

(unfinished) as shown in lines 6–7. Hence, aside from the visual confirmation of file

data loss (e.g., Figure 5.1(d), Figure 5.3(d)), which is not scalable for a large set of

apps, we automated the dynamic verification process via strace differencing; this

dynamic verification is key to achieving a low false positive rate (Section 5.3.5).

2Typical background process limit (number of concurrent apps): 16 apps for mobile devices
with 1GB memory and 26 apps for 2GB memory [178].
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1 // (a) succesful strace
2 openat(AT FDCWD,”/data/user/0/org.secuso.privacyfriendlynotes/
3 files /sketches/sketch 1606849053910.PNG”, O WRONLY|O CREAT|O TRUNC, 0666) = 71
4
5 // (b) lossy strace
6 openat(AT FDCWD,”/data/user/0/org.secuso.privacyfriendlynotes/
7 files /sketches/sketch 1607044227961.PNG”, O WRONLY|O CREAT|O TRUNC, 0666 <unfinished ...>

Figure 5.8 Strace differences between a) successful file write and b) lossy execution
in app PrivacyFriendlyNotes.

Table 5.2 App Selection and Findings

#Apps

Save/Export in UI 2,953
Soot Successful 2,220
Contains File Writes 1,476
User-initiated File Writes 298
Confirmed Losses 163

Automatically 107
Manually 56

5.3 Evaluation

We now discuss our evaluation in detail. We introduce our dataset, then quantify the

effectiveness of our approach. Next, we present 27 examples of verified losses. We

then compare our approach with existing tools, and quantify our analysis’ efficiency.

Finally, we discuss the limitations of our approach.

Dataset and test platform. To evaluate our approach, we focus on apps that

support saving or exporting user data. First, we collected an app dataset of interest

from the main Android app store, Google Play, and the open-source app store, F-Droid.

To identify apps that offer Save or Export facilities, we used an automated filtering

process on GUI data: more precisely, we extracted app resource XMLs from 20,000

popular Android apps split across across various app categories, and retained those

apps whose GUI resources (e.g., buttons or menus) match keywords such as Save,

Export, or similar. We found 2,953 apps whose GUI matched our keywords of interest.

Next, we excluded 733 apps that could not be analyzed with Soot (on top of which we

built our analysis). Soot failing on certain commercial apps is unsurprising, because

popular Google Play apps tend to employ anti-analysis techniques such as packing or
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Table 5.3 Categories of Confirmed Losses

Category # Apps

App-specific/misc. 61

Notes, documents, PDF files 28

Image, audio, video files 19

Database backups 17

Reports 14

Painting 8

Settings or preferences 6

History 4

Recipes 4

Schedules 2

obfuscation. We ran our dynamic analysis on a Nexus 5 smartphone running Android

6 (API level 23).

5.3.1 Effectiveness

Table 5.2 summarizes our evaluation results, and is discussed in detail next. Among

the 2,220 apps where Soot ran successfully, we identified those apps whose bytecode

contained file write APIs, yielding 1,476 apps. We found that certain categories of file

writes are not of interest: they are performed by third-party libraries, e.g., tracking

and analytics packages that write into log files. We configured our analysis to ignore

such writes – because they consist of logging and analytics data, they are out of our

purview. Instead, our focus is on user-initiated writes as mentioned in Section 5.2.1:

the static analysis has identified 298 such apps. Among the 298 candidate apps (apps

with potential losses) having user-initiated file writes, we found and confirmed losses

in 163 apps using our semi-automated dynamic verification approach – a combination

of automated and manual analysis discussed next. We show the summary of our

evaluation in Table 5.2.

We categorize these confirmed losses in Table 5.3. Most of the losses fall under

the app-specific data category (e.g., saving newborn vitals for a baby care app). Other

categories of lost data include notes, photos, database backups, artwork, or settings.
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DroidBot Exploration Results Using our automated GUI exploration with

DroidBot, we produced trace logs for 177 cases out of 298 potential losses. DroidBot

crashed and could not generate traces for 121 cases. This automated DroidBot-driven

approach verified losses in 107 cases by comparing original and lossy execution traces.

For the rest of the 70 cases, there were no differences between original and lossy

execution traces due to the lack of file writes in the original execution (DroidBot

exploration did not result in the desired file write operations).

Manual Exploration Results. For those 191 apps where DroidBot either crashed

or could not reach the target GUI exploration, we performed a manual (human-driven)

analysis. Our manual analysis confirmed losses in 56 apps, hence, a total of 163 apps

with automatically-confirmed or manually-confirmed losses. For 135 apps, the manual

analysis could not run or did not produce traces evidencing losses. These apps fell

into several categories: 58 apps could not be explored as they either required a paid

membership, their operation was geo-fenced, or could only run when connected to

specific hardware devices; 39 apps crashed on our test platform; finally, there were 38

apps where no save- or export-related option was found in the GUI.

5.3.2 Example of confirmed write loss cases

Table 5.4 summarizes data loss examples in 27 apps: 20 apps from Google Play (apps

with highest number of installs, shown in the second column) and 7 apps from the

open-source F-Droid store. We show a brief summary of the user file write data lost

in the third column and the result of running LiveDroid on these apps in the final

column (the results are discussed in Section 5.3.3). We now discuss selected apps

(more than 5M installations) and the semantics of lost data in detail.

SketchBook. This app allows users to sketch, paint, and draw; due to termination,

new sketch data, as well as changes to an existing sketch, can be lost.
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Table 5.4 Losses Found and Confirmed by Our Approach; Results of Running
LiveDroid

App #Installs
(Million)

Our Approach (Data Lost) LiveDroid

Google Play

SketchBook 100 User artwork (sketch, painting) Failed due to Soot error

WPS Office 100 User-made document changes No issues found

Drum Pad Machine 100 User created music beats No issues found

Smart TV Remote 10 Saved TV Channels export No issues found

Barcode Scanner
Pro

10 Barcode scanning history Failed due to Soot error

Beauty Camera 10 Edited photos Found 5 app states not saved
(user input loss)

AndrOpen Office 5 User-made document changes No issues found

King James Bible 5 User-settings / preferences No issues found

K-9 Mail 5 User-settings / preferences No issues found

Robin 1 App properties/preferences Failed due to Soot error

Soccer Tactic
Board

1 User-created soccer tactic Failed due to Soot error

Baby Care 1 User-created baby growth data Failed due to Soot error

Bills Reminder 0.5 Database backup Failed due to Soot error

SmartTruckRoute 0.5 Truck route exported data Failed due to Soot error

BCBSM 0.1 Patient’s medicare data sharing fails Failed due to Soot error

Wabbitemu 0.1 Calculator screenshot Failed due to Soot error

Gallery Slideshow
Music

0.1 Edited Video Failed due to Soot error

TV Show Favs 0.1 User backup data Failed due to Soot error
(e.g., favorite TV, watched shows)

User Dictionary
Manager

0.05 Dictionary words Failed due to Soot error

Bahamas Dining
Rewards

0.01 User credentials Failed due to Soot error

F-Droid

Sanity n/a Settings/preferences No issues found
(e.g., audio recording, call blocking)

Privacyfriendlynotes n/a New or updated note Found 6 app states not saved
(user input loss)

MedicLog n/a Medic log history No issues found

Acrylic Paint n/a New or updated drawing No issues found

Auto-Away n/a Call or message log export No issues found

ComfortReader n/a New or updated note No issues found

BeeCount n/a database table update No issues found

Smart TV Remote. This app is used to define and control TV channels via channel

logos; due to termination, exported data (TV channels) is lost.

WPS Office. This is an all-in-one office suite app; due to termination, user-made

document changes are lost.

Drum Pad Machine. This music mixer app can be used to create beats, mix loops

and record new melodies; due to termination, user-created music beats are not saved.
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AndrOpen Office. This office suite app allows users to view and edit PDF, Word,

Excel, and PowerPoint documents; due to termination, user-made document changes

are lost.

King James Bible. This Bible reader app provides options for adding bookmarks

and writing notes while reading; due to termination, user settings or preferences (e.g.,

related to bookmarks, highlights, and notes) can be lost.

K-9 Mail. This is an open-source email client app; due to termination, exported

data (user-settings backup) is lost.

Beauty Camera. This app allows editing pictures via filters or stickers; due to

termination, edited pictures are not saved.

Barcode Scanner Pro. In this app the user can scan, decode, create, and share QR

codes or barcodes; due to termination, the user’s barcode scanning history is lost.

5.3.3 Comparison with existing tools

We now compare the results of our approach with the results obtained by running two

state-of-the-art tools that aim to find volatility-induced UI losses in Android apps.

Comparison with KREfinder. KREfinder [184] is a static analyzer that looks for

incorrectly-handled instance state. Specifically, the analysis looks for app fields that

are written to, or modified, and for which there is no subsequent save. KREfinder

explicitly looks for state flowing into OutputStream or Writer objects, and generally

any Java API methods offering write or save. As the public version of KREfinder

is not maintained/updated (latest release: July 2016), we asked the KREfinder’s

corresponding author to run it on 14 selected apps (7 top Google Play apps, 7 F-Droid

apps); KREFinder reported no data losses.

Comparison with LiveDroid. LiveDroid [113] is a tool focused on finding UI

fields that might be lost during runtime changes (e.g., phone orientation changes).
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Table 5.5 Efficiency Results

Analysis time (seconds) Bytecode size (MB)

min max median min max median

35 25,200 115 0.04 103.4 21.2

LiveDroid identifies variables and GUI input which represent “necessary app state”;

this state essentially captures the subset of user input data which must “survive”

runtime changes. We ran LiveDroid on the 298 apps with user-initiated file writes.

The LiveDroid analysis summary is:

# Apps

Analyzed 298

Soot Error 157

Issues Found 13

LiveDroid is mainly designed for open-source apps and fails due to Soot error on

the 157 Google Play apps with large and/or obfuscated bytecode. For the remaining

Google Play apps and all the open-source F-Droid apps, LiveDroid ran to completion;

LiveDroid found app state-saving related issues in 13 apps. For example, LiveDroid

found app states saving related issues in Beauty Camera and Privacyfriendlynotes app as

shown in the third column of Table 5.4, but these issues are unrelated to file write

losses; LiveDroid reported no issues in the other 128 apps it successfully run on.

5.3.4 Efficiency

In Table 5.5 we present brief descriptive statistics for static analysis time and app

dataset. Analysis time varied between 35 seconds and 7 hours, with a typical time of

115 seconds, which we believe is efficient for a static analysis. App bytecode varied

between 40KB and 103MB, with a typical size of 21MB, which shows that our analysis

can handle sizable apps.

5.3.5 False positives and false negatives

We measured the False Positives (FP) and False Negatives (FN) by comparing the

results of our automated approach with a manual analysis on 60 apps (all containing
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file writes) where the file write data losses were confirmed manually. The 60 apps were

selected as follows: 30 true positive apps that contain user-initiated file writes and

30 true negative apps that contain file writes, but the writes are not user-initiated.

Rather than exploring apps using DroidBot and performing dynamic verification

of user data loss via Strace difference checking as mentioned in Section 5.2.2, we

performed a manual verification of data losses. We manually sent the target app

into the background after inducing file write operations and then manually checked

whether the expected file writes were missing, i.e., user data is lost. The confusion

matrix is:

True Positives: 30 False Positives: 0

False Negatives: 5 True Negatives: 30

We found 5 False Negatives, i.e., an 85% recall for the automated approach. These

are due to automated GUI exploration with DroidBot failing to reach targeted save or

export-related GUI options and as a consequence, no file write operation happened,

and no file write traces were found. We have no False Positives because static analysis

reports are subjected to dynamic verification.

5.3.6 Limitations

Our approach has two limitations. First, the static analysis to find user-initiated file

writes is implemented on top of Soot, which failed to produce call graphs for 733 apps.

As a result, we were unable to analyze those apps further. Second, our automated

dynamic verification used a customized version of the DroidBot input generator [155]

to drive app interaction. However, DroidBot, and Android input generators in general,

cannot achieve complete coverage [103]. This shortcoming led to manually exploring

cases where DroidBot failed to verify user data losses. These limitations can be

alleviated with more engineering efforts.
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Figure 5.9 Progress bar for ongoing I/O operations in Android.

5.3.7 Potential solutions

File write losses due to termination could be addressed by keeping the target app

alive as a foreground process. The app developers could show a progress bar for file

writes (e.g., Figure 5.9) so users do not switch to a different app while writes are

in progress. Another solution is to keep the app alive as a background process by

granting unrestricted battery usage (available for Android 8.0 or above), which ensures

the app is running with fewer limits while in background, hence, is less likely to be

killed due to memory pressure. Finally, another option for updating data is to write a

temporary copy and delete the old data upon successful writing of the new data, or

alternatively, use storage with transactional APIs such as SQLite or Firebase.

5.4 Summary

Mobile apps’ construction and operation is fundamentally different from “run forever”

desktop/server programs which complicates testing whether user data is inadvertently

lost due to resource pressure. In this dissertation, we focus on user work/data that

should be saved via user-initiated file writes; while expected to be stored in local

storage, such work and data can be lost due to system-initiated termination. We

constructed a static analysis to find potential losses in users’ work due to premature

file write termination and verified losses via an automated dynamic approach. We

were able to confirm such losses in 107 Google Play and F-Droid apps. Our approach

can improve the overall user experience of saving user data and form the basis of

further studies and explorations into (a) loss of mobile state due to volatility, (b)
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extending the findings from file writes to all possible I/O, and (c) the nature of losses

due to unexecuted I/O in programs in general.

Now that we have understood the significance of uncovering hidden bugs,

memory leaks, and the consequences of resource inefficiencies, let us now shift our

focus to random testing. This approach enables the exploration of diverse app

functionalities and features, ensuring their proper functioning across various conditions.

By incorporating randomness, the testing process becomes more thorough and resilient,

as it uncovers unforeseen issues that traditional testing methods may overlook. In the

upcoming chapter, we will delve into the effectiveness of random testing for Android

apps, specifically examining the reliability of the Monkey tool.
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CHAPTER 6

EFFECTIVENESS OF RANDOM TESTING FOR ANDROID

Random testing of Android apps is attractive due to ease-of-use and scalability, but

its effectiveness could be questioned. Prior studies have shown that Monkey – a

simple approach and tool for random testing of Android apps – is surprisingly effective,

“beating” much more sophisticated tools by achieving higher coverage. We study

how Monkey’s parameters affect code coverage (at class, method, block, and line

levels) and set out to answer several research questions centered around improving the

effectiveness of Monkey-based random testing in Android, and how it compares with

handcrafted exploration. First, we show that random stress testing via Monkey is

extremely effective at crashing apps, including 15 widely-used apps that have millions

(or even billions) of installs. Second, we vary Monkey’s event distribution to change

app behavior and measured the resulting coverage. We found that, except for isolated

cases, altering Monkey’s default event distribution is unlikely to lead to higher coverage.

Third, we manually explore 24 apps and compare the resulting coverages; we found

that coverage achieved via Monkey is practically indistinguishable from that achieved

via manual exploration. Finally, our analysis shows that course-grained coverage

is highly indicative of fine-grained coverage, hence coarse-grained coverage (which

imposes low collection overhead) hits a performance vs accuracy sweet spot.

Android apps are updated on average every 60 days. Testing all these apps and

their updated versions requires scalable, easy-to-use, and effective tools. One such tool

is Monkey [83], a random testing tool that ships with Android Studio (Android’s IDE).

Monkey simply generates random events from a predefined distribution (according to

some parameters, e.g., timing, event distribution, event kind) and sends the events

to the app. Many other, sophisticated, automated testing tools for Android have
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been proposed – tools that require static analysis, dynamic analysis, or symbolic

execution. Surprisingly though, a prior study that compared the coverage attained

by such tools has shown that, on average, Monkey manages to achieve the highest

coverage level across all tools, when comparing across a substantial set of 68 apps [103].

Code coverage is a widely-used measure for quantifying testing effectiveness – the

higher the coverage, the more effective the test suite. Code coverage can be defined at

various levels, e.g., method coverage indicates what percentage of the app methods

are invoked, block coverage indicates what percentage of the basic blocks are entered,

while statement coverage indicates what percentage of the app statements are executed.

Monkey achieves about 48% statement coverage, on average [103]. In Section 6.1 we

provide some background on the Android platform, Monkey, and the Emma code

coverage tool we used.

In Section 6.2, we present the approach and results of our study. Given Monkey’s

unparalleled combination of ease-of-use, negligible overhead, and portability, we study

whether Monkey is also effective. Specifically, we set up our study around several

research questions:

• Can Monkey crash popular apps via stress-testing?

• Can Monkey be made more effective (yielding higher coverage) when appro-
priately “tuned”?

• Can hand-crafted exploration lead to higher coverage than Monkey’s?

• Is collecting fine-grained (e.g., block/line) coverage preferable to coarse-grained
(e.g., class/method) coverage?

6.1 Background

6.1.1 Monkey

UI/Application Exerciser Monkey (aka “Monkey”) is an open-source random testing

tool included in the Android SDK [83]. Monkey can run on either a physical device or

123



Table 6.1 Monkey’s Default Events and Percentages

Event ID Description Frequency
(%)

TOUCH single touch (screen press
& release)

15

MOTION “drag” (press, move,
release)

10

TRACKBALL sequence of small moves,
followed by an optional
single click

15

NAV keyboard up/down/left-
/right

25

MAJORNAV menu button, keyboard
“center” button

15

SYSOPS “system” keys, e.g.,
Home, Back, Call, End
Call, Volume Up, Volume
Down, Mute

2

APPSWITCH switch to a different app 2
FLIP flip open keyboard 1
ANYTHING any event 13
PINCHZOOM pinch or zoom gestures 2

an emulator. The tool emulates a user interacting with an app, by generating and

injecting pseudo-random gestures, e.g., clicks, drags, or system events into the app’s

event input stream.

In addition to generating and injecting events into an app, Monkey also watches

for exceptional conditions, e.g., the app crashing or throwing an exception.

Monkey sends events from a predefined distribution described in Table 6.1, i.e.,

15% of the events it sends are TOUCH events (first row), 10% are drag events, 2% are

system key events, 2% are pinch or zoom events, etc. In addition to event probability

distribution, Monkey can also vary the “throttle”, i.e., the time delays between events;

by default there is no delay between events (throttle = 0).

6.1.2 EMMA code coverage

Emma [202] is an open source toolkit used to measure and report Java code coverage.

Emma measures coverage at various levels of granularity: from class to method, to

basic block, and line; it does so by instrumenting the app so the app “dumps” coverage
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information into log files. Importantly, Emma does not require access to source code

and its runtime performance overhead is typically less than 20%. Our experiments

use Emma to measure coverage.

6.2 Empirical Study

We now present the approach used in, and results of, our study. We phrase each

experiment as a research question (RQ); note that at the beginning of each subsection

we state the RQ and summarize the finding.

6.2.1 Experimental setup

Android VM. Our experiments were conducted on the same virtual machine setup

used by Choudhary et al. [103] for their comparison of automated Android testers.

Specifically, we used multiple Android virtual machines (Oracle VirtualBox) running

on a Linux server. Each VM was configured with 2 cores and 6 GB of RAM, running

Android version 2.3.3 (Gingerbread), API level 10.

App datasets. Our app dataset covered 40 real-world apps, drawn from a variety

of categories, and having a variety of sizes. The 40 apps included 15 “famous apps”,

e.g., Shazam, Spotify, and Facebook for which no source code was available (and many

of which use anti-debugging measures hence we did not measure coverage); this set

was used for stress-testing only. The remaining 25 apps were popular apps, e.g., K-9

Mail, whose source code is available on GitHub.

Monkey runs. Since Monkey’s exploration strategy is random, we use the same

seed value for analyses requiring multiple runs to ensure the same input sequences are

generated. After Monkey completes its run on each app, the emulator is destroyed

and a new one is created to avoid any side effects between runs.
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Figure 6.1 Injected events that lead to crash.

6.2.2 Application crashes

RQ1: Can Monkey crash “famous” apps via stress-testing?

Answer: Yes

Stress testing is used to study a program’s availability and error handling on

large inputs or heavy loads – a robust, well-designed program should offer adequate

performance and continuous availability even in extreme conditions. In Android, stress

testing reveals the ability of an app to handle events properly in situations where,

due to low resources or system load, long streaks of events arrive at a sustained rate.

The app should handle such streams gently, perhaps with degraded performance,

but certainly without crashing. Therefore, for our first set of experiments, we have

subjected the test apps to stress-testing via long event sequences at 0 throttle, i.e., no

delay between events – this is the default Monkey behavior.

For the 15 famous apps, we present the results in Table 6.2. The first column

shows the app name while the second column shows that app’s popularity (number

of installations, in millions). Note that four apps have in excess of 1 billion installs,

while 12 apps have in excess of 100 million installs. We found that we were able to

crash all 15 apps by letting Monkey inject 4,739 events on average.
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Figure 6.2 Coverage achieved for regular event distribution vs 75% touch events.
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Table 6.2 Stress Testing Results for Top Apps: The Number of Events at Which the
App Crashes

App Installs (millions) #Events
Shazam 100–500 2,330
Spotify 100–500 2,041
Facebook 1,000–5,000 637
Whatsapp 1,000–5,000 6,224
Splitwise 1–5 2,123
UC Browser 100–500 17,840
NY Times 10–50 4,949
Instagram 1,000–5,000 4,859
Snapchat 500–1,000 3,773
Walmart 10–50 2,537
MX Player 100–500 9,786
Evernote 100–500 786
Skype 500–1,000 7,342
Waze 100–500 2,484
Google 1,000–5,000 3,380
Mean 4,739

Table 6.3 Results for Touch Events

Coverage Mean
type Default 75%
Class 52.4 51.2
Method 44.6 46
Block 39.9 41.9
Line 40.7 43.6

Figure 6.1 shows stress testing results for the open-source apps; in this case we

ran stress testing at 0 msec and 100 msec, respectively. For brevity, the figure only

shows the results for a subset of apps. We found that, on average, apps crash after

8,287 events when throttle is set at 0 msec and 16,110 events when the throttle is set

at 100 msec.

To conclude, it appears that it is not a matter of if, but when Monkey manages

to crash an app. This demonstrates Monkey’s effectiveness at rooting out performance

stability bugs in such popular apps, and therefore we can answer RQ1 in the affirmative.
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6.2.3 Coverage

RQ2: Can we increase coverage by optimizing the event distributions?

Answer: No

We biased the event distribution by increasing the probability for a single event

type to 75% while proportionally shrinking the probabilities of the remaining 25%

events according to the distribution shown in Table 6.1. Doing so, we boost each

event kind’s relative importance in achieving coverage. We perform this analysis

for all “important” categories in Table 6.1 having a default probability of 10% or

higher: touch, motion, trackball, navigation, major navigation. We then measure the

difference in coverage when using the biased distribution compared to the baseline

Monkey distribution (i.e., default Monkey behavior).

We test this hypothesis via a one-tail heteroscedastic two-means t-test set up as

follows. Let Mdef be the mean coverage attained by default Monkey, and M75 be the

mean coverage attained when using the 75% distribution. We say that the hypothesis

is confirmed, i.e., the 75% biased distribution succeeds in increasing coverage, if

Mdef ≤ M75 at a statistically significant level (p-value < 0.05). Put otherwise, if

the hypothesis is rejected, it means that biasing the distribution does not result in

increasing coverage and the default Monkey is more effective.

Touch Events. We first increased touch event frequency to 75%. We show the

resulting coverage in Figure 6.2 and the means in Table 6.3. We obtained a higher class

coverage for isolated cases (Nectroid – a media & video app, DivideAndConquer and

hotdeath – games, Netcounter – a tool). Method coverage is similar to class coverage.

Block and line coverage results are similar to each other, with two more apps showing

higher coverage (Baterry Dog – a tools app, and munchlife – an entertainment app).

Note that these apps fall in the categories tools/media/video/entertainment and it is

129



Table 6.4 Results for App Switch Events

Coverage Mean
type Default 75%
Class 52.9 52.2
Method 45 45.2
Block 41.6 43.4
Line 42.9 42.7

natural to see them benefiting slightly from the touch events as they are driven mostly

by user clicking on certain screen items. Overall, however, the hypothesis is rejected –

the 75% distribution does not increase coverage in a statically significant way.

Table 6.5 Results for Motion Events

Coverage Mean
type Default 75%
Class 45.6 37.8
Method 40.8 31.1
Block 38 26.3
Line 38.8 26.6

App Switch Events. Next, we increased app switch event frequency to 75%. We

show the means in Table 6.4. For brevity, we omit per-app charts. We found that class

coverage is lower except for app multiSMSsender; method coverage was lower except

for apps multiSMSsender and K-9 Mail; block coverage however is slightly (but not

significantly) higher; line coverage is lower, except for app multiSMSsender. Note that

all these apps have two points in common: (1) background activity and substantial

app state. This state has to be saved (and restored) when switching to a different

app (and switching back to the app, respectively), which explains local increases

in coverage for the 75% app switch event mix. Overall, however, the hypothesis is

rejected.

Motion Events. Next, we increased motion event frequency to 75%. We show the

resulting coverage in Figure 6.3 and the means in Table 6.5. The 75% motion inputs

caused very noticeable decrease in coverage across the board: class, method, block,

line. The only apps that benefited (slightly) from this distribution were K-9 Mail and
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Figure 6.3 Coverage achieved for regular event distribution vs 75% motion events.
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Table 6.6 Results for Trackball Events

Coverage Mean
type Default 75%
Class 55.1 52.5
Method 48.1 46.3
Block 43.7 42
Line 44.2 42.4

Table 6.7 Results for Navigation Events

Coverage Mean
type Default 75%
Class 50.6 39.8
Method 43.2 32.2
Block 37.9 28
Line 38.7 28.5

aLogCat. aLogCat is a logcat (system log) viewer; since most of its usage consists of

scrolling and dragging, it benefits from increased motion event. However, overall the

hypothesis is rejected.

App Trackball Events. Next, we increased app trackball event frequency to 75%.

We show the means in Table 6.6. For brevity, we omit per-app charts. We found that

class, method, block, and line coverages were lower. The only apps that benefited

(slightly) from this distribution were K-9 Mail, Battery Dog and multiSMSsender.

Battery Dog runs a background service logging the battery state into a file, so small

moves and occasional single clicks are prevalent usage patterns for this app. However,

overall the hypothesis is rejected.

Navigation Events. Next, we increased app navigation event frequency to 75%.

We show the resulting coverage in Figure 6.4 and the means in Table 6.7. Using 75%

navigation inputs caused substantial decrease, about 10 percentage points in coverage:

class, method, block, line for all apps except DivideAndConquer and Nectroid (a game

and a media app, respectively). However, overall the hypothesis is rejected.
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Figure 6.4 Coverage achieved for regular event distribution vs 75% navigation
events.
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Table 6.8 Results for Major Navigation Events

Coverage Mean
type Default 75%
Class 56.8 62.2
Method 48.4 53.5
Block 45 50.7
Line 45.8 51.1

Major Navigation Events. Finally, we increased major navigation event frequency

to 75%. We show the resulting coverage in Figure 6.5 and the means in Table 6.8. We

found increases in coverage for all types – class, method, block, and line – but the

increases were not significant. Therefore, the hypothesis is rejected.

Correlation Between Coverage Values. We now turn to our analysis of

correlation among coverage values. For the coverages obtained previously, we compute

the pairwise correlation, i.e., for a certain experiment such as “Touch”, for each app,

we pairwise-correlate the class, method, block, and line coverage values. We show

the results in Table 6.9. With two exceptions (Class v. Block and Class v. Line

correlation for Motion events, whereas values are 0.78 and 0.82, respectively), the

correlation values are very high, greater than 0.9. This finding allows us to make two

observations about Android methods:

1. Methods are shallow and are generally a good indicator of coverage without
having to gather more detailed (but more expensive!) block or line coverage.
For example, Android includes a method profiler [82] that could be used in lieu
of specialized line coverage tools that require code instrumentation.

2. A method’s control flow graph appears to have a low number of paths: covering
a method tends to cover all of its constituent blocks.

To conclude, this suggests a pragmatic approach for measuring coverage – using

low-overhead but coarse-grained coverage (class or method) as proxy for high-overhead

but fine-grained coverage (block or line).
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Figure 6.5 Coverage achieved for regular event distribution vs 75% major navigation
events.
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Table 6.9 Correlation Between Coverage Types: Class (C), Method (M), Block (B),
and Line (L)

Touch App switch Motion Trackball Navigation Major Navigation
M B L M B L M B L M B L M B L M B L

C 0.93 0.91 0.92 0.94 0.93 0.94 0.95 0.78 0.82 0.97 0.94 0.96 0.98 0.96 0.96 0.97 0.93 0.95
M - 0.96 0.97 - 0.97 0.97 - 0.93 0.94 - 0.97 0.98 - 0.99 0.99 - 0.95 0.97
B - - 0.99 - - 0.99 - - 0.99 - - 0.99 - - 0.99 - - 0.99

Table 6.10 Monkey vs Manual Testing

Coverage Mean
type Monkey Manual
Class 56.12 56.45
Method 48.45 47.91
Block 47.33 47.45
Line 46.04 45.08

6.2.4 Manual vs Monkey coverage

RQ3: Does manual exploration achieve higher coverage than Monkey?

Answer: No

While manual exploration could be considered a “golden standard” at exploring

an app thoroughly, we found that not to be the case. Specifically, we picked 24 apps

and manually interacted with each app for 5 minutes trying to explore as many screens

and functionalities as possible. We show the results in Figure 6.6 and the means in

Table 6.10.

We can see that Monkey obtained higher coverage for between 9 and 13 apps

(depending on coverage type), e.g., aLogCat, Milage, Auto AutoAnswer, hectrone,

Addi, hotdeath, MunchLife, PhotoStream and WeightChart – these apps fall in the

categories of tools, media, and entertainment.

K-9 Mail is an interesting case; the human “beat” the Monkey by a factor of

4.3x (39% vs 9% coverage), 9.6x (29% vs 3%), 13.5x (27% vs 2%), 6.6x (20% vs

3%) for class, method, block, and line coverage, respectively. This is due to a highly

customized UI and the inability of Monkey to compose emails. The same holds for

app AnyMemo where the Monkey achieves lower coverage because it cannot compose

notes.

136



Class	coverage	%	(manual	vs.	monkey	stress	testing	coverage)	
	

	
0	 20	 40	 60	 80	 100	

aLogCat	
anymemo-stable-8.3	

baterrydog	
Book-Catalogue	
com.addi_44_src	

mileage	
autoanswer	

multismssender	
Nectroid	

CountdownTimer	
DivideAndConquer	

hotdeath	
k9mail	

MunchLife	
netcounter	

bomber	
Photostream	

RandomMusicplayer	
SpriteMethodTest	
tomdroid-src-0.5.0	

whohasmystuff-1.0.7	
net.fercanet.LNM_3_src	

weight-chart	
Translate	

Class	Coverage	(monkey)	

Class	Coverage	(manual)	

Method	coverage	%	(manual	vs.	monkey	stress	testing	coverage)	
	

	
0	 20	 40	 60	 80	 100	

aLogCat	
anymemo-stable-8.3	

baterrydog	
Book-Catalogue	
com.addi_44_src	

mileage	
autoanswer	

multismssender	
Nectroid	

CountdownTimer	
DivideAndConquer	

hotdeath	
k9mail	

MunchLife	
netcounter	

bomber	
Photostream	

RandomMusicplayer	
SpriteMethodTest	
tomdroid-src-0.5.0	

whohasmystuff-1.0.7	
net.fercanet.LNM_3_src	

weight-chart	
Translate	

Method	Coverage	(monkey)	

Method	Coverage	(manual)	

Block	coverage	%	(manual	vs.	monkey	stress	testing	coverage)	
	

	
0	 20	 40	 60	 80	 100	

aLogCat	
anymemo-stable-8.3	

baterrydog	
Book-Catlogue	

com.addi_44_src	
mileage	

autoanswer	
multismssender	

Nectroid	
CountdownTimer	
DivideAndConquer	

hotdeath	
k9mail	

MunchLife	
netcounter	

bomber	
Photostream	

RandomMusicplayer	
SpriteMethodTest	
tomdroid-src-0.5.0	

whohasmystuff-1.0.7	
net.fercanet.LNM_3_src	

weight-chart	
Translate	

Block	Coverage	(monkey)	

Block	Coverage	(manual)	

Line	coverage	%	(manual	vs.	monkey	stress	testing	coverage)	
	

	
0	 20	 40	 60	 80	 100	

aLogCat	
anymemo-stable-8.3	

baterrydog	
Book-Catalogue	
com.addi_44_src	

mileage	
autoanswer	

multismssender	
Nectroid	

CountdownTimer	
DivideAndConquer	

hotdeath	
k9mail	

MunchLife	
netcounter	

bomber	
Photostream	

RandomMusicplayer	
SpriteMethodTest	
tomdroid-src-0.5.0	

whohasmystuff-1.0.7	
net.fercanet.LNM_3_src	

weight-chart	
Translate	

Line	Coverage	(monkey)	

Line	Coverage	(manual)	

Figure 6.6 Monkey vs. manual testing coverage.
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Table 6.11 Line Coverage When Varying Throttle

Throttle Mean Coverage
(msec) (%)

0 40.8
100 44.95
200 42.5
600 42.55

	 	 	 				Line	coverage	%	differences	due	to	changes	in	throttle	
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Figure 6.7 Coverage % comparison with changes to throttle.

Conversely, though, Monkey beat the human at Photostream by a factor of

3.1x (40% vs 13%), 3.1x (28% vs 9%), 29x (23% vs 8%), and 2.8x (25% vs 9%)

respectively. To conclude, overall Monkey does exceedingly well – its coverage is

virtually indistinguishable from a human’s.

6.2.5 Throttling

RQ4: Does inter-event time (throttling) affect coverage?

Answer: No

Throttle is the delay between events sent by Monkey. We studied whether

varying throttle affects coverage. We experimented with setting the throttle value to 0

(default), 100, 200, and 600 msec, while collecting line coverage only. We present the

results in Figure 6.7 and the mean coverages in Table 6.11. We again ran two-means

t-tests, pairwise between coverages. We found that, while 100 msec throttle leads to

slightly higher coverage, the increase is not statistically significant. Therefore, the

138



hypothesis that throttle affects coverage is invalidated (at least for our chosen throttle

values).

6.3 Summary

We have conducted a study which has revealed that, despite its simplicity, random

testing for Android is effective. Specifically, random testing is effective at revealing

stress-related crashes, and in terms of coverage is on par with laborious approaches

such as manual exploration. Moreover, our study has revealed that, except for isolated

apps and event kinds, Monkey’s default event type distribution and settings are

appropriate for achieving high coverage in a wide range of apps.

We believe that our study reveals two “sweet spots” for Android app developers

and researchers. First, Monkey achieves high coverage while being easy to use

and efficient. Second, coarse-grained but low-overhead class or method coverage is

nevertheless effective (representative of finer-grained, block or line coverage).

Next, we will delve into the reliability of different tools’ implementations for

SOM neural networks. While SOM implementations may not be directly linked to

the reliability of Android applications, the use of neural networks on mobile devices

has become increasingly prevalent. Artificial intelligence is widely used in mobile

devices and hardware tools. Therefore, understanding the reliability of SOM neural

networks is a topic of significant interest. By exploring the reliability aspects of SOM

implementation, we can gain valuable insights into the performance and dependability

of neural networks on mobile platforms.
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CHAPTER 7

SOM NONDETERMINISM AND INCONSISTENCY

Self-organizing maps (SOMs) are a neural network-based approach for mapping

relationships between objects in high-dimensional spaces onto a low-dimension

space, usually a neuronal grid [142]. Main uses for SOMs include exploratory data

mining [200], dimensionality reduction, clustering, or pre-clustering. Figure 7.1 shows

an example SOM on dataset Zoo, which is used to cluster 101 animals into 7 groups

based on 17 characteristics (features). Each circle indicates a neuron, while the clusters,

e.g., “Fish” or “Mammal” are indicated via neurons of the same color. Note how

animals that have related attributes in the 17-dimensional space are clustered together

in the 2-dimensional output SOM.

Fish

Mammal

Amphibian

Bird Reptile

Insect

Invertebrate

crab

wasp

seahorse

swantoad

worm

seal

platypus

starfish

lion

flamingo

newt

turtle

slug

scorpion

aardvarkdolphin clam

chicken

Figure 7.1 SOM for dataset Zoo, toolkit RKoh.

SOM have been used in critical domains, e.g., finance [196, 108], drug

discovery [182, 183], or medical sciences [187]. However, SOM reliability has not

been questioned. In this dissertation, we do so, by focusing on two key issues. First,

nondeterminism: when running an SOM implementation repeatedly on the same

dataset yields different results. Second, inconsistency: when running two different

SOM implementations on the same dataset yields different results.
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AP Colon Lung Original Plot

↗

AP Colon Lung
 SOM Clusters

↘

AP Colon Lung
 SOM Clusters

(a) Original dataset (b) Output Clusterings (c) Resulting SOMs

Figure 7.2 Different SOMs obtained via two different runs in RKoh, dataset AP

Colon Lung.

We illustrate nondeterminism in Figure 7.2, on the AP Colon Lung dataset,

from the Gene Expression for Oncology repository.1 Specifically, we show that two

independent runs of the same, simple procedure – training an SOM on AP Colon Lung

– can yield two very different results between the two runs. Figure 7.2(a) shows the

original dataset with ground truth (two clusters shown in green circles and orange

triangles, respectively). Figure 7.2(b) shows the SOMs constructed by the R/Kohonen

(RKoh) toolkit, on this dataset, in two different runs. Finally, Figure 7.2(c) shows the

resulting SOMs and clusters, for the two runs in the middle; the red and cyan colors

indicate the different neurons clusters on the map (separated by the thick black line).

Notice the substantial differences in cluster assignments and SOMs between the top

and bottom figures; this is due to nondeterminism.

We now illustrate inconsistency: how SOM clustering outcomes (hence, accuracy)

for the same dataset differ not only across runs, but also across toolkits. We conducted

30 independent runs for each toolkit on the aforementioned Zoo dataset. Figure 7.3

1GEMLeR by Stiglic and Kokol [194]: using genetic markers to differentiate between different
clinical conditions such as various types of cancer.
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shows violin plots for clustering accuracy (i.e., distribution of accuracy across the

30 runs). Note that RKoh yields consistently high accuracy (0.78–0.79), whereas

for MiniSom, accuracy varies from 0.47 to 0.82 depending on the run. In contrast,

TFSom’s accuracy (0.23–0.29) is less than the minimum accuracy for the other toolkits.

Hence, the choice of toolkit crucially impacts the resulting accuracy.

In the rest of the dissertation we quantify, via statistical tests on internal/external

metrics, how SOMs obtained via training on the same dataset differ across runs and

across toolkits.

In Section 7.1 we define SOM and discuss the experimental setup: metrics,

datasets, toolkits. We investigate four popular toolkits (SOM packages) – MiniSom,

R/Kohonen, TensorFlow SOM, MATLAB – described in Section 7.1.3. We ran our

analysis on 381 datasets: about 290 of these were medical datasets, and the rest

were benchmarking datasets; a qualitative and quantitative description is provided in

Section 7.1.4.

MiniSom

MATLAB

RKoh

TFSom

Figure 7.3 Clustering accuracy ranges for dataset Zoo.

In Section 7.2, we define nondeterminism via a rigorous statistical test. In

Sections 7.3 and 7.4 we quantify nondeterminism using internal and external metrics.

For a given toolkit and dataset, we measure how output SOMs vary across 30 runs.

We found that, for our examined 381 datasets, at most 6 lead to deterministic results;
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hence, the vast majority of datasets induce nondeterministic SOM outcomes. In

Section 7.5, we define inconsistency via a statistical test, and present our findings:

for 51–92% of datasets, toolkits yield SOM clusterings with significantly different

accuracy distributions.

7.1 Definitions and Experimental Setup

We now define the main concepts and describe the setup for our approach.

7.1.1 SOM definition

SOMs are based on unsupervised competitive learning using neural networks. An SOM

clusters (maps) high-dimensional data onto a two-dimensional neuron grid. Typically,

the grid topology (how neurons are connected) is hexagonal or rectangular. The

network “learns” as the grid neurons adapt to the latent structure of the dataset; in

other words, SOMs apply competitive learning to adjust weights to neurons. SOMs

are useful for managing and visualizing large datasets or high-dimensional datasets,

because the datasets are simplified into clusters in the two-dimensional space. As

neurons might shift from run to run, SOMs might yield solutions and results that are

potentially inconsistent from run to run.

7.1.2 SOM performance metrics

Prior research [176, 125] has introduced metrics for SOM performance and the quality

of the training algorithm. Forest et al.’s SOMperf package [116] measures SOM quality

via internal and external metrics. Internal metrics reflect the “native” quality of the

SOM construction and its fit to the input data. In contrast, external metrics measure

the implementation based on output labels compared to ground truth, e.g., SOM

clusters vs. known clusters. We leverage Forest et al.’s metrics and package to collect

input data for our analyses.
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Table 7.1 Number of Datasets With Statistically Invariant Runs; ‘-’ Indicates that
All Datasets’ Runs Varied Significantly. “Med” and “TrM” are Short Forms of
Median and Trimmed Mean, Respectively

Quantization Topographic Trust- Neighborhood Distortion Kruskal-Shepard
Toolkit Error Product worthiness Preservation Error
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MiniSom - 1 - - - - 2 2 2 3 5 4 - 1 - - - -
MATLAB 1 4 1 - 4 - 1 4 1 5 6 5 - - - - - -
RKoh - - - - 3 - 3 4 3 5 6 6 - 4 - - 6 -
TFSom - 3 - - - - - 4 - - 2 - - 3 - - 5 -

7.1.3 Toolkits

We investigate four popular2 SOM packages, as follows. MiniSom [53], based

on Python/Numpy; RKoh3 – the Kohonen package [39] for R [63]; MATLAB’s

selforgmap toolbox [52]; and TFSom – the TensorFlow Self-Organizing Map

package [61] built on top of TensorFlow [10].

7.1.4 Datasets

We used 381 datasets from OpenML [57] for MiniSom, RKoh, and MATLAB. For

TFSom we only used 361 of these 381 datasets (on 20 datasets, runtime exceeded

our imposed 3-hour limit per run). About 290 of these datasets are drawn from

the medical domain or bioinformatics, while the rest are specifically designed to

evaluate ML implementations. As these datasets are used to benchmark classification

approaches we have cluster labels (ground truth). The following table summarizes the

characteristics of our datasets: on average, datasets have 219 instances, 16 dimensions,

and 2.38 clusters.

Min Max Geometric Mean

Instances 36 2201 219

Features (attributes) 1 61,359 16

K (# of clusters) 2 50 2.38

2As indicated by the number of users [16, 130] or GitHub stars [61, 53].
3The analyses run on RKoh implementation of SOM are not a contribution of this dissertation.
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7.2 Nondeterminism Definition and Test

We define nondeterminism for a toolkit as follows: constructing SOMs repeatedly

using that toolkit, on the same dataset, with the same parameters leads to statistically

significant variation in the resulting SOM.

Nondeterminism is fundamentally problematic for several reasons. First, it

violates users’ expectation that repeated runs have the same outcome, or at least

outcomes that are statistically indistinguishable. Second, it leaves SOM users at the

mercy of the random number generator, i.e., a “lucky” random seed can lead to a

better SOM. Finally, nondeterminism undermines users’ confidence in SOM reliability

in general. We now define nondeterminism in a statistically rigorous way.

Statistical Test for Nondeterminism. We use a sensitive statistical measure of

nondeterminism that improves over the tests introduced by Yin et al. in the context of

clustering nondeterminism [211]: the metric values are nondeterministic if the 30 runs’

outcomes have statistically significant variance. Yin et al. used Levene’s [151] test set

up as follows: the 30 values constitute one group, while the other group has the same

mean, size, and no variance (all 30 elements are equal to the mean of the first group).

If Levene’s test yields a p < 0.05, they concluded that the runs vary significantly. The

problem with using Levene’s test is that it is a mean-based test hence, it is most

appropriate for symmetric, moderate-tailed distributions. We improve the statistical

tests as follows: we run a Levene’s mean-based test, as well as Brown-Forsythe’s

median-based test (good for skewed distributions) and Brown-Forsythe’s trimmed

mean-based test (good for heavy-tailed distributions) [101]. Of these three, we pick

the most sensitive, i.e., the one that finds variance across the largest number of

datasets. If the underlying test results in a p < 0.05 we conclude that the toolkit is

nondeterministic.
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Quality Quality

Figure 7.4 Quantization error nondeterminism for dataset ecoli, toolkit RKoh. Low
error in dark blue, higher error in light blue/green/red. The run with minimum
quantization error (59.75) is shown on the left while the run with maximum error
(79.07) is shown on the right.

7.3 Nondeterminism Results: Internal metrics

Internal metrics use the native properties of the SOM model and input dataset in

order to evaluate the quality of the SOM implementation on dimensionality reduction.

We consider six internal metrics; we discuss their definition, significance, and analysis

results shortly.

Parameters. SOM’s recommended size is 5×
√
N neurons where N is the number

of samples in the dataset to analyze [161]. For example, if a dataset has 150 samples,

we have 5×
√
150 = 5× 12.24 = 61.23. Hence, the recommended map has 64 neurons,

arranged in an 8-by-8 grid. To keep the SOM map settings consistent across all the

tools, we have used a hexagonal topology and Manhattan distance as the activation

distance. We now discuss each metric in turn.

7.3.1 Quantization error

Definition. Quantization error applies to clustering algorithms in general. The error

is computed from the average Euclidean distance of sample vectors to the centroid, or

best matching unit, by which they are represented. A lower quantization error value

is desirable.
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Results. Our nondeterminism hypothesis was confirmed using the three statistical

tests. The “Quantization errors” columns of Table 7.1 show the number of datasets for

which the tests indicate statistical invariance across runs. These numbers are small and

consistent across tests (1–4 datasets depending on the toolkit and test). Put otherwise,

for the vast majority, 375–381 datasets quantization error differs significantly across

runs, confirming our nondeterminism hypothesis.

We illustrate one such difference between runs of the dataset ecoli4 in Figure 7.4.

The figure shows the quality, i.e., mean distance of objects mapped to a neuron to

the original data point. For each neuron, quality ranges from dark blue (low error) to

green (moderate error) to red (high error). Note the good fit on the left (mostly dark

blue) and the worse fit on the right (more green and light blue neurons).

Table 7.2 shows the widest-3 ranges across runs. For example, in MiniSom, for

dataset lsvt, quantization error varied between 5.8× 108 and 9.7× 108; for the same

dataset, but using MATLAB, the range varied between 1.7×108 and 4×108. Therefore,

MiniSom and MATLAB have non-overlapping ranges across our 30-run experiments,

which is a source for concern. Finally, note that the minimum vs. the maximum

quantization error can vary by 2x–3x, e.g., MATLAB schlvote (min: 1.6× 105, max:

5.2× 105) or TFSom sleuth ex1221 (min: 2.0× 104, max: 5.8× 104). A quantization

error that differs by a factor of 3 across different runs raises a reason for concern.

7.3.2 Topographic product

Definition. The topographic product (TP) indicates whether the size of the map is

an appropriate fit onto the dataset. TP is computed by comparing the ranking orders

in the input and output spaces, respectively; essentially, TP measures the quality

of the topology preservation. If TP < 0, the map size is too small. Conversely, if

TP > 0, the map size is too large. Surprisingly, we found datasets where the TP can

4Protein localization sites in bacteria.
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Table 7.2 Widest-3 Differences in Quantization Error Across Runs

Toolkit Dataset Min Max Range Stddev

MiniSom
lsvt 5.8E+8 9.7E+8 3.9E+8 9.3E+7
micro-mass 1.4E+7 1.5E+7 9.1E+5 2.2E+5
tokyo1 3.9E+5 5.1E+5 1.3E+5 2.7E+4

MATLAB
lsvt 1.7E+8 4.0E+8 2.3E+8 6.2E+7
micro-mass 9.1E+6 9.5E+6 3.7E+5 7.9E+4
schlvote 1.6E+5 5.2E+5 3.6E+5 9.0E+4

TFSom
tokyo1 1.2E+6 1.3E+6 9.1E+4 3.9E+4
analcatdataoly 1.8E+5 2.3E+5 4.6E+4 1.7E+4
sleuth ex1221 2.0E+4 5.8E+4 3.8E+4 8.1E+3

RKoh
lsvt 5.5E+8 6.9 E+8 1.4E+8 3.9E+7
micro-mass 1.2E+7 1.3E+7 4.0E+5 9.3E+4
schlvote 6.7E+5 9.8E+5 3.1E+5 6.4E+4
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Figure 7.5 Topographic product nondeterminism for dataset colic, toolkit RKoh,
exposed by plotting the number of inputs mapped to each neuron. Grey spaces
(representing empty nodes) indicate that the map size is too large. The left map
(predominantly red or darker orange) shows a more uniform distribution,
TP = 0.0006. The right map shows more empty nodes and thus a higher topographic
product, TP = 0.0023; yellow or lighter orange spaces indicate a skewed distribution,
where many samples map to a single node.

be positive in one run and negative in the next run. However, it is important to note

that the topographic product presents reliable results only for linear datasets [116].

Results. In Table 7.3, we see how topographic product varies across runs and tools.

Certain datasets such as analcatdata reviewer consistently have a larger topographic

product, indicating a larger mapsize. However despite this consistency, certain toolkits

have better results. For example, in MiniSom, the min TP for analcatdata reviewer is

0.70 and the max TP is 1.94, which, while still greater than 0, it is the best performing

toolkit as its max value is around the minimum value of the other toolkits. For

instance, MATLAB has a max TP of 3.52 and min of 1.86 for the same dataset.
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Table 7.3 Widest-3 Differences in Topographic Product

Toolkit Dataset Min Max Range Stddev

MiniSom
analcatdata reviewer 0.70 1.94 1.24 0.29
arsenic-male-bladder 0.16 0.50 0.34 0.07
arsenicfemalebladder 0.18 0.52 0.34 0.07

MATLAB
analcatdata reviewer 1.86 3.52 1.66 0.42
analcatdata neavote 2.24 3.84 1.60 0.38
aids 0.26 1.50 1.24 0.24

TFSom
haberman 0.25 3.77 3.52 1.10
energy-efficiency 0.37 2.80 2.43 0.75
rmftsa ctoarrivals 0.28 2.26 1.98 0.60

RKoh
analcatdata reviewer 1.66 2.41 0.75 0.14
Titanic 0.36 0.72 0.36 0.11
analcatdata neavote 0.15 0.37 0.22 0.06
fri c0 500 50 -0.17 -0.14 0.03 0.01

RKoh’s fri c0 250 50 -0.15 -0.12 0.03 0.01
negative fri c0 500 25 -0.15 -0.13 0.02 0.01
TP fri c1 1000 10 -0.14 -0.12 0.02 0.01
values analcatdatabankruptcy -0.003 0.01 0.01 0.002

autoUniv-au6-750 -0.003 0.003 0.006 0.002
volcanoes-e4 -0.003 0.002 0.005 0.001

In the last seven rows of Table 7.3 we focus on the RKoh toolkit. While TP is

positive for the other three toolkits in all cases, RKoh managed to produce negative TP

values for some datasets where other toolkits had positive TP values (see the four fri c*

rows). Additionally, RKoh also managed to simultaneously indicate that a dataset’s

SOM size is too small and too large as shown with the datasets analcatdata bankruptcy,

autoUniv-au6-750, and volcanoes-e4 (last three rows). Figure 7.5 provides a visualization

of TP nondeterminism for dataset colic,5 with a good fit on the left and a poor fit on

the right.

7.3.3 Trustworthiness/Neighborhood preservation

Definition. Trustworthiness and Neighborhood Preservation are both topological

preservation measures. Trustworthiness displays whether the projected data points

that are visualized are actually close to each other in the input space. Whenever one

of the neighbors on the map lattice is not one of the closest neighbors in the actual

input space, the error is increased. Trustworthiness is calculated from the average of

5Horse surgery: surgical lesions and surgery outcome dataset.
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Table 7.4 Widest-3 Differences in Trustworthiness

Toolkit Dataset Min Max Range Stddev

MiniSom
kc2 0.02 0.85 0.83 0.27
blood-transfusion 0.24 0.79 0.55 0.1
cm1 req 0.60 0.99 0.39 0.13

MATLAB
kc2 0.19 0.69 0.50 0.21
dbworld-subjects 0.41 0.73 0.32 0.07
dbworld-subjects-stem 0.50 0.78 0.28 0.07

TFSom
kc2 0.35 0.94 0.59 0.14
Titanic 0.35 0.88 0.53 0.23
pc1 req 0.45 0.88 0.43 0.14

RKoh
cm1 req 0.66 0.99 0.33 0.05
blood-transfusion 0.54 0.86 0.32 0.13
dbworld-subjects-stem 0.67 0.83 0.16 0.03

Table 7.5 Widest-3 Differences in Distortion

Toolkit Dataset Min Max Range Stddev

MiniSom
micro-mass 1.5E+15 1.6E+15 1.9E+14 4.6E+13
oil spill 1.3E+13 3.3E+13 2E+13 4.9E+12
tokyo1 1.2E+13 2.2E+13 1E+13 2.2E+12

MATLAB
micro-mass 1.9E+15 2.3E+15 3.8E+14 1E+14
tokyo1 4.2E+12 6E+12 1.8E+12 4.6E+11
PieChart3 1E+11 6.2E+11 5.2E+11 1.1E+11

TFSom
oil spill 3.0E+13 3.5E+13 5.4E+12 2.7E+12
tokyo1 1.9E+13 2.3E+13 3.5E+12 8.0E+11
analcatdataoly 1.5E+12 2.2E+12 7.0E+11 2.2E+11

RKoh
lsvt 5.1E+19 7.3E+19 2.2E+19 5.6E+18
micro-mass 9.2E+14 9.6E+14 4.4E+13 1E+13
analcatdatabo 1.7E+12 2.9E+12 1.2E+12 3E+11

these errors. By swapping the input and output space rankings in the calculations,

we obtain Neighborhood Preservation. This penalizes the data points which are close

in the input space but far apart in the output space. Both Trustworthiness and

Neighborhood Preservation values are weighted to be kept within 0 to 1 (where 1

means perfect).

Results. Table 7.4 shows trustworthiness results. For RKoh, while there is variation

across runs, ranging from 0.33 to 0.16, the overall trustworthiness is ideal, with values

being higher than 0.50 and closer to 1. MiniSom, however, has the widest range (min

0.02, max 0.85) for dataset for kc2.
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Figure 7.6 Distortion nondeterminism: in the analcatdata boxing1 dataset, toolkit
RKoh, there are variations in distortion between each node and its neighbors. The
figure on the left (distortion = 4.36) shows significantly less distortion than the right
(distortion = 6.53): orange indicates more similar nodes. The higher the distance,
the more dissimilar the nodes are (depicted in yellow or white). An ideal mapping
would have predominantly red nodes.

7.3.4 Distortion

Definition. Distortion is essentially the cost function that the SOM tries to optimize:

the sum of squared Euclidean distances between samples and SOM prototypes, weighted

by a neighborhood function that depends on the distances to the map’s best-matching

unit. As distortion measures loss (that the SOM function minimizes), a lower distortion

is more desirable.

Results. Table 7.5 shows the differences in distortion. We observed high distortion

in RKoh (lsvt where range was 2.2× 1019); for MATLAB, the largest range in variation

is found in the dataset micro-mass with 3.8 × 1014. Similarly for MiniSom, we see

the same dataset having a range of 1.9× 1014. For a more apparent understanding

of distortion, Figure 7.6 visualizes how distortion varies between runs on the same

dataset, analcatdata boxing1.6

6Boxing match results.

151



Table 7.6 Widest-3 Differences in Kruskal-Shepard Error

Toolkit Dataset Min Max Range Stddev

MiniSom
chscase adopt 0.09 0.24 0.15 0.03
kc1-binary 0.07 0.21 0.14 0.02
arsenic-female-lung 0.12 0.26 0.14 0.03

MATLAB
analcatdata reviewer 0.00 0.22 0.22 0.05
analcatdata neavote 0.03 0.18 0.15 0.05
fri c4 250 100 0.24 0.39 0.15 0.04

TFSom
eucalyptus 0.05 0.28 0.23 0.07
fri c4 250 100 0.21 0.41 0.20 0.04
fri c4 500 100 0.16 0.34 0.18 0.04

RKoh
analcatdata reviewer 0.02 0.14 0.12 0.04
ar5 0.06 0.15 0.09 0.02
aids 0.06 0.14 0.08 0.02

7.3.5 Kruskal-Shepard error

Definition. This value measures distance preservation between the input space and

the output space. The input space is measured using Euclidean distance; in the output

space, Manhattan distance between the best matching units is used.

Results. A low Kruskal-Shepard Error value is desirable as it indicates better

preservation between input and output spaces. Table 7.6 shows the differences that

occur across toolkits and runs. We see the best error rate (0), but largest range (0.22)

for MATLAB with the dataset analcatdata reviewer. For RKoh, again analcatdata reviewer

shows the greatest variance, having a range of 0.12. Finally, for MiniSom we see the

largest error (0.24) and range (0.15) in the dataset chscase adopt.

7.3.6 Topographic error

Definition. Topographic Error (TE), akin to Trustworthiness, is the ratio of total

number of errors and number of data points on a SOM. TE is normalized to a range

from 0 to 1, where 0 indicates perfect topological preservation.

Results. For lack of space we omit a Top-3 table, but results are in line

with the nondeterministic outcomes we observed for other metrics. For example,

analcatdata neavote’s best run with MATLAB has a min TE of 0.04 but its worst run
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is a TE of 0.96, showing a range of 0.92, whereas the other toolkits’ ranges were 0.73

and 0.64, respectively.

7.4 Nondeterminism Results: External Metrics

We studied internal map qualities; we now change our focus to external qualities,

measuring SOM performance on clustering tasks. Specifically, external metrics are

computed by comparing SOM-induced output with ground truth’s class labels. The

number of neurons is set to match the number of distinct output classes to be classified,

i.e., map size is C, the number of distinct output classes (recommended size when the

number of clusters is known[166, 177]). We used the same hexagonal topology and

Manhattan distance as in Section 7.3. We now define external metrics and present

the results.

7.4.1 Clustering accuracy

Definition. Clustering Accuracy divides the number of samples correctly classified

by the total number of samples.

Results. To emphasize the potential consequences of nondeterminism for medical

analysis, Figure 7.7 shows the clustering accuracy of MiniSom, MATLAB, and RKoh

on AP Colon Lung. Accuracy of MiniSom varies significantly per run (0.24–0.7): this

bimodal distribution can be interpreted as a coin toss for classification, which is

undesirable. Table 7.7 further details how the accuracy varies greatly across runs

and tools. Hence, when using SOMs for medical data analysis, a particular run can

influence the outcome decisively.

7.4.2 Purity

Definition. Purity is calculated by assigning each cluster to the class which is

most frequent in the cluster, and computing the ratio between how many points are
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MiniSom

MATLAB

RKoh

Figure 7.7 Clustering accuracy ranges for dataset AP Colon Lung.

Table 7.7 Widest-3 Differences in Clustering Accuracy

Toolkit Dataset Min Max Range Stddev

MiniSom
confidence 0.40 0.86 0.46 0.12
AP Prostate Lung 0.24 0.69 0.45 0.16
AP Omentum Prostate 0.60 0.97 0.37 0.16

MATLAB
solar-flare 0.39 0.69 0.30 0.09
dbworld-bodies 0.55 0.83 0.28 0.08
dbworld-bodies-stem 0.58 0.86 0.28 0.07

TFSom
ar3 0.50 0.77 0.27 0.11
mw1 0.51 0.76 0.25 0.11
CostaMadre1 0.50 0.75 0.25 0.11

RKoh
AP Omentum Prostate 0.57 0.98 0.41 0.11
AP Endometrium Lung 0.50 0.90 0.40 0.12
water-treatment 0.50 0.83 0.33 0.05

accurately assigned to the total number of points. A higher purity value indicates

better SOM clustering performance.

Results. Table 7.8 shows the widest-3 results. For MiniSom and RKoh we

observed higher purity values, occasionally at the expense of wide range (e.g., on

AP Omentum Prostate, purity ranges were as high as 0.41).

7.4.3 Class scatter index (CSI)

Definition. The class scatter index measures how the ground truth labels are

scattered in the SOM map. Classes that are not scattered (i.e., distributed into fewer

groups of neighboring units) indicate a better map.

154



Neighbor Distance (RKoh)

0

5

10

15

20

25

30

35

Neighbor Distance (MiniSom) 

0

5

10

15

20

25

30

35

Neighbor Distance (MATLAB)

0

5

10

15

20

25

30

35

Figure 7.8 Neighborhood Preservation inconsistency in the dataset
analcatdata challenger, toolkit RKoh. Though invariant across runs, NP varies across
toolkits. The red indicates an ideal mapping, with fewer samples being mapped to
the same node. In contrast, yellow or white indicate many samples mapped to the
same node, showing a poor map fit and neighborhood preservation. Grey represents
empty nodes, i.e., map might be too large.

Table 7.8 Widest-3 Differences in Purity

Toolkit Dataset Min Max Range Stddev

MiniSom
AP Omentum Prostate 0.60 0.97 0.37 0.16
confidence 0.50 0.86 0.36 0.09
Smartphone 0.48 0.75 0.27 0.07

MATLAB
dbworldbodies 0.54 0.82 0.28 0.08
dbworldbodies-stem 0.57 0.85 0.28 0.07
confidence 0.55 0.79 0.24 0.05

TFSom
aids 0.50 0.74 0.24 0.11
analcatdatahappiness 0.38 0.58 0.20 0.07
pollution 0.52 0.70 0.18 0.06

RKoh
AP Omentum Prostate 0.56 0.97 0.41 0.11
dbworldbodies-stem 0.54 0.85 0.31 0.05
dbworldbodies 0.54 0.81 0.27 0.04

Results. Table 7.9 shows the widest-3 CSI results. We see that with RKoh the CSI

is varied but better performing with the max found in breast-tissue and user-knowledge

of 2.00. Other than leaf which has a large value across toolkits, the remaining datasets

have a max CSI of 2.00. Meanwhile, for MiniSom and MATLAB with the dataset

amazon-commerce-rev we have a max of 7.90 and 7.16 respectively, indicating a map

with larger groups of neighboring units than ideal.

7.5 Inconsistency

We believe that SOM toolkit users should expect toolkits to be interchangeable: when

training an SOM on the same dataset via different toolkits one would expect if not

the same, at least remotely similar results. However our experiments show that this
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Table 7.9 Widest-3 Differences in CSI

Toolkit Dataset Min Max Range Stddev

MiniSom
amazon-commerce-rev 4.80 7.90 3.10 0.83
leaf 3.47 5.53 2.06 0.50
eucalyptus 1.00 2.60 1.60 0.41

MATLAB
amazon-commerce-rev 5.42 7.16 1.74 0.44
leaf 3.00 4.67 1.67 0.42
LED-display 2.00 2.90 0.90 0.17

TFSom
soybean 1.95 3.68 1.73 0.37
spectrometer 2.54 4.17 1.63 0.53
leaf 3.27 4.77 1.50 0.36

RKoh
leaf 3.80 5.50 1.70 0.39
breast-tissue 1.00 2.00 1.00 0.19
user-knowledge 1.00 2.00 1.00 0.27

expectation is typically not met, e.g., the results of two different toolkits on the same

dataset are inconsistent. We first illustrate inconsistency, then introduce the statistical

test and its results, and finally discuss the toolkits and datasets that display the

strongest contrast between toolkits.

7.5.1 Inconsistency Examples

To emphasize the consequences of inconsistency on a medical dataset note that in

Figure 7.7, on dataset AP Colon Lung, one toolkit’s observed accuracy could be 3

times as high compared to another toolkit. Hence, when using SOMs for medical data

analysis, a particular toolkit can influence the outcome decisively.

7.5.2 Statistical test and results

To expose statistically significant inconsistency between toolkits, for each dataset

and each pair of toolkits, we ran a Mann-Whitney U test where the two populations

were the clustering accuracies (30 runs). If p < 0.05 we conclude that the toolkits are

inconsistent. The number of datasets displaying inconsistency are shown in Table 7.10;

these numbers translate to 51–92% of datasets yielding inconsistent results.

Table 7.10 #Datasets With Statistically Significant Inconsistency

MiniSom MiniSomMATLAB MATLAB MiniSom RKoh
vs. MATLABvs. RKohvs. RKohvs. TFSomvs. TFSomvs. TFSom

298 254 196 332 333 332
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Table 7.11 Worst-3 Inconsistencies (Mutual ARI) Across Tools

MiniSom MiniSom MATLAB MATLAB MiniSom RKoh
vs. MATLAB vs. RKoh vs. RKoh vs. TFSom vs. TFSom vs. TFSom

shuttle-landing-c -0.14 shuttle-landing-cl -0.14 trains -0.13 pasture -0.08 MyIris -0.11 MyIris -0.12
trains -0.07 fabert -0.08 dbworld-bodies -0.06 ar4 -0.07 pasture -0.08 pasture -0.08
fri c4 100 50 -0.06 triazines -0.06 dbworld-sbjs-s -0.05 wine -0.07 wine -0.07 wine -0.07

Even in those rare cases where toolkits are deterministic on a certain dataset

(the few non-zero values in Table 7.1) inconsistencies still arise between toolkits. For

example, Figure 7.8 shows how Neighborhood Preservation is inconsistent for the

deterministic dataset analcatdata challenger.7

7.5.3 Mutual ARI comparison

We now quantify and discuss those cases where the resulting SOMs disagree strongly

between toolkits. We use the Adjusted Rand Index (ARI), a metric introduced by

Hubert and Arabie [134] that indicates how dissimilar two clusterings of the same

dataset are. An ARI = −1 indicates strong dissimilarity between clusterings, ARI = 0

suggests that the clusterings are independent, whereas ARI = 1 indicates a perfect

agreement.

For each dataset, we compute “mutual ARIs” between all toolkits pairs, that

is, ARI scores between all six toolkits pairs. In other words, for each toolkits pair,

say RKoh vs. TFSom, we compute the 30 runs × 30 runs ARI scores. We focus on

the minimum of these 900 pairs, as it indicates the worst-possible disparity users can

experience.

We present the worst disparities in Table 7.11. The strongest observed

dissimilarity were between MiniSom and MATLAB, and MiniSom and RKoh,

respectively: for dataset shuttle-landing-control we have ARI = −0.14. When comparing

MATLAB and RKoh, other than trains with ARI = −0.13, we see that overall the

discrepancy between toolkits is much less than compared with MiniSom. These negative

7Space Shuttle Challenger parameters.
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ARI values are concerning, because a negative ARI indicates that the clusterings

achieved via the two toolkits are worse than unrelated and tend toward disagreement.

7.6 Summary

Given the popularity of SOMs and neural networks in general, we conduct the first

study to investigate SOM reliability in terms of determinism and consistency. Running

four popular SOM packages on 381 datasets shows that users should expect wide

variation across runs and toolkits. Our findings indicate a need to scrutinize SOM

results, especially in high-stakes scenarios. Our study could spur further research into

the causes of, and remedies for, SOM nondeterminism and inconsistency.
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CHAPTER 8

RELATED WORK

Related work regarding this dissertation falls into several categories: program analysis

(Section 8.1), fingerprinting (Section 8.2), medical research studies (Section 8.3), GUI

extraction (Section 8.4), automated GUI testing (Section 8.5), and Android state

volatility testing (Section 8.6).

8.1 Static and Dynamic Analysis

Many static flow analyzers for Android have been developed, including Amandroid [208],

DIALDroid [41], DidFail [42], DroidSafe [119], FlowDroid [88] and IccTA [48]. A prior

study [174] found that a typical analyzer takes on average 6 minutes per app, on

par with our approach. Most of these tools use the predefined sources and sinks list

from Susi [28], with the binary goal of deciding whether a source flows to a sink; this

renders the results quite imprecise, limiting tools’ usability.

Other static flow analyzers for Android (whose goal is still deciding whether

a source flows to a sink) improve precision over the aforementioned analyzers, at

the expense of running time. For example, P/Taint [121] is a Datalog-based static

information flow analyzer. Their evaluation, like ours, include popular Android apps

(such as Facebook Messenger or Google Chrome). Thanks to additional features such

as taint transfer and sanitization, P/Taint achieves higher precision and recall.

Horndroid [102] focused on improving the precision of existing static analyses

by determining whether a sink will be reached by tainted flows, and refining branch

conditions to avoid false positives. However, Horndroid does not allow naming sources

(as we do with the seven IDs), so their approach is not directly comparable to ours.

DroidInfer [133] uses a context-sensitive information flow type system to improve

static analysis precision and scalability, and supports analysis of libraries; their focus is
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on sensitive data leaks (to network or logs). Evaluation on top Google Play apps (144)

shows high precision (FP=15%). DroidInfer’s goal is intuitive source→sink tracking

rather than algebraic signatures and ID (ab)use studies.

The Taintdroid [110] dynamic taint tracker has exposed that location and phone

information are routinely leaked to advertising and content servers. Taintdroid’s

focus is on efficiently tracking taint within an app and the Android OS, whereas we

perform static tracking, and within the confines of the app only. TaintDroid does not

distinguish between raw and hashed leaks.

Myers and Liskov’s label model (Jif/DLM) [165] describes “unions” of labels:

set union, i.e., AND in our model. Our XORs, not supported in Jif, would be set

disjoint union. While we do not support label polymorphism as Jif does, polymorphism

would only help if there was cross first-party to third-party flow which we did not

find (Section 2.3.4). Stefan et al.’s disjunction category labels [193] are defined as

conjunctions and disjunctions on principals; “can-flow” as logical implication governs

safe information flow. They implement dclabel-static, a prototype information

flow control in Haskell, but no evaluation is provided. Montagu et al. [163] introduced

label algebras – a set of labels that form a pre-lattice, i.e., with a pre-order (the term

“algebraic” in our work, from algebraic data types, refers to the product and sum

operations on types). The focus of these approaches was the formalism/flow model.

In contrast, for us, the algebraic taint representation is a conduit to implementing a

static analysis for Android and conducting six studies on 1,000 top apps.

MAPS [214] distinguishes between first-party and third-party ID leaks by the

call site of sensitive API methods but does not perform taint tracking or static analysis

– understandable for the scale (1,035,853 apps). This is prone to false positives, e.g.,

ID-retrieving calls in dead code, or IDs which are read but not used/leaked.

Dynamic taint analysis [110, 105, 145] has different goals compared to us:

reduce false positives or track which servers packets go to (which is impossible
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with our approach). Our static approach aims to reduce false negatives and allows

analysis at scale. Dynamic analysis, in general, needs to overcome two issues (1) low

coverage [103, 90, 75, 171], and (2) signing-in successfully – this is problematic in

cases such as the Western Union banking app, which requires a Western Union customer

account (as do other apps in Table 2.9).

8.2 Fingerprinting

Physical sensor-based device fingerprinting has been used for forensics, fraud prevention,

and quality control. Researchers have measured signals from built-in electronic

components (e.g., camera, radio frequency front-end) [91], flash memory chips [207],

USB firmware [92], audio and accelerometer readings [97] to create unique fingerprints

of hardware devices. However, as such measurements are not available through an

on-device API (they require measuring the physical components of the device) app

developers cannot employ any of these fingerprinting techniques, to identify the device

and app users upon app installation.

Network-traffic based fingerprinting techniques analyze the host’s online activity

to create a unique fingerprint of the host. From Website Fingerprinting (WF)

attacks [152, 205] to App Fingerprinting (AF) attacks [153] to TCP/IP Stack

Fingerprinting attacks [188], all of them analyze network traffic data to identify

remote users and wireless devices [141, 117, 99]. Kuzuno et al. [145] analyzed network

traffic for 1,188 free popular apps from Japan’s Google Play. They found that hardware

IDs (Android ID, IMEI, IMSI, and SIM Serial ID) are leaked over the network by

apps’ advertising modules and that Android ID is the most frequently leaked sensitive

information. Our scope is different: scheme (complex ID manipulation) extraction

and subversion.

Studies [147, 191, 199, 111, 136] show that has replaced browser cookies to

track users. Browser Fingerprinting constructs a device fingerprint entirely from the
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information given by a web browser (JavaScript APIs, HTTP headers). Browser

fingerprinting does not cover the concept of, and attacks on, device identification

through smartphone apps, as in our case. Kang et al. [138] proposed a zero-permission

mobile device identifier similar to browser fingerprinting. The algorithm generates

a device fingerprint from device features, such as PixelRatio, ScreenResolution, or

UserAgent. However, this approach might not be able to identify the device after

changes such as browser upgrades, installing new fonts, or others.

8.3 Medical Research Studies

Bierbrier et al.’s 2014 study [96] tested medical scores (including Child-Pugh and

HAS-BLED) and calculations, e.g., BMI. The authors asked 5 physicians to identify

relevant scores. Two of their analyzed scores were on our list as well: 5 physicians

selected Child-Pugh and 4 physicians selected HAS-BLED as scores of interest. The

authors then tested each of the 14 apps (2 Android and 12 iOS) with 10 values: 2

extreme values and 8 middle values. There were errors in two Child-Pugh apps, though

they were at the low score ranges hence, would not place the patient over the threshold

or in a different class. No issues were found with HAS-BLED implementations. Instead

of random testing, our approach verifies reference tables and apps automatically, which,

aside from rigor, makes the approach more scalable. As Table 4.2, Table 4.3, and

Table 4.4 show, we found issues with both these scores, including issues at the threshold.

Haffey et al. [124] performed a study on 23 Android opioid conversion apps. Their

study revealed two main issues. First, 11 out of 23 apps failed to identify the sources

related to their calculations; 12 apps failed to state whether any medical professionals

were involved in the app creation. More importantly, these apps’ calculations resulted

in highly variable results and significantly different outputs across apps. Huckvale et

al. [135] studied 46 insulin dose calculator apps. They found that 31 of the apps pose

a risk to users due to incorrect dosage calculation. Further issues included lack of
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disclaimers, lack of input validation, no updates in response to changes in input, etc.

Hers et al.’s 2021 study [128] has revealed an inaccurate risk assessment in an aortic

surgery risk calculator. They found that the calculator underestimated complications

consistently when taking into account patient demographics and data. While the

study focused on the overall accuracy of the calculator in a clinical setting, it shows

general reliability issues with medical calculators which we also manage to uncover in

our study. Akbar et al.’s [80] meta-analysis on 74 app studies (none of which have

looked at score calculators, however) has revealed numerous safety concerns, including

calculation errors, potentially harmful recommendations, etc. Though somewhat

complementary to our work, all these efforts underline the importance of verification

and tighter scrutiny in the medical app domain.

8.4 GUI Extraction

Extracting semantic information from Android app GUIs is notoriously difficult,

especially when it has to be done automatically and at scale (Choudhary et al. [103]

discuss challenges and some approaches). Abbas et al. [76] extracted text data

from medical text images using Optical Character Recognition (OCR). The extracted

unstructured text data is then processed to produce relevant medical terms. Guigle [94]

builds a searchable index of GUI elements in Android apps. Liu et al. [159] discuss

a method for automatically annotating mobile UIs using a lexical database that

contains design semantics. The approach involves identifying different components and

concepts in UIs by leveraging the vocabulary provided by the database and a set of

labeled examples. The method can automatically identify 25 UI component categories,

197 text button concepts, and 99 classes of icons in Android UIs using code-based

properties and a neural network combined with anomaly detection. This approach

is applicable to example-based UI search that identifies visually similar UI screens.

While these OCR, search-engine, and lexical-database approaches provide detailed
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information about the location and functionality of GUI elements, they cannot be

applied to find medical calculator apps’ GUI errors. Given our need to map GUI

information to specific medical score parameters and interval-based semantics, we

decided to build our own clustering and DroidBot-based approach; we are not aware

of related work that would subsume our approach (Section 4.2.3).

8.5 Automated GUI Testing

The purpose of AMC [149] is to automatically examine user interface designs of

vehicular applications and ensure they meet safety and consistency standards. This

tool conducts automated dynamic exploration of mobile applications similar to ours,

but it verifies apps based on UI properties such as the number of actions per task

(should be less than 10 per screen), text word count (not more than 100 words

per screen), text contrast (3:1 contrast ratio between foreground and background

recommended), and button size (must be greater than 80mm2) and spacing (at least

15mm). On the other hand, our focus is on extracting UI elements involving numeric

ranges or intervals, and verifying them for partition conditions. VanarSena [180] uses

a dynamic exploration approach to test different fault induction modules on the app,

including user input, network, and system state faults. They used “many randomized

concurrent monkeys” approach that generates input events to test the apps and a hit

testing mechanism to ensure that input events are sent to valid UI elements. The

hit testing mechanism is implemented as a tree search algorithm that searches for UI

elements at a given position, starting from the top-level UI element. They also used

fault injection modules to simulate various user scenarios and test the robustness of the

apps. The approach was effective in finding numerous crashes and bugs in apps that are

already in the marketplace. In contrast, our approach is targeted at finding incorrect

definitions of numeric ranges or intervals. PUMA [126] is a dynamic exploration tool

similar to DroidBot, designed for automated testing of mobile applications; it uses

164



Android Monkey-based testing techniques [84] and is programmable to explore the

application UI and report any issues or bugs found during the testing process. PUMA

requires the application to be instrumented before running the tests. PUMA scripts

and apps are input into the tool, and the interpreter instruments the apps to trigger

app-specific events. However, random dynamic exploration does not check for, and does

not detect, calculation errors as our analysis does. FlowCog[170] uses a combination of

static and dynamic analyses to detect information leaks that are caused by improper

handling of sensitive data. FlowCog first extracts a context-aware semantics from

the Android app’s source code and resource files, then uses this information to create

a precise model of app behavior, including how it handles sensitive data. Finally,

FlowCog performs dynamic analysis to observe the app’s actual behavior and compares

it against the expected behavior predicted by the model. If the runtime flow deviates

from the expected behavior based on the extracted semantics and view dependencies,

FlowCog reports it as a potential data leak. In contrast, we extract and verify the

GUI specification and report potential errors if the GUI or score result differ from the

correct reference specification.

For Android developers creating personal data-handling apps that require

accessing sets of interrelated personal data, the Epistenet [106] tool can assist

in addressing many of the associated challenges. The use of Epistenet involves

storing personal data in a knowledge graph with a semantic structure, exposing the

relationships between the data. As a result, developers only have to interact with a

single API. Without Epistenet, personal data is stored in silos, and developers must

manually interface with each data provider; in addition, the relationships between data

are not evident. Epistenet generates a knowledge graph of personal data, categorizing it

using ontologies to establish relationships. Each data piece is represented as an object

with attributes and meta-attributes linked to ontology classes. This enables developers

to retrieve interconnected personal data easily. In comparison, our clustering approach
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uses distance metrics to map GUI texts to reference entries, whereas Epistenet relies

on manual relationship mapping.

8.6 Android State Volatility Testing

LiveDroid [113] focuses on the issue of finding UI fields that might be lost during

runtime changes. LiveDroid’s static analysis employs a top-down approach from

program variables and UI input instances to the part of saving these inputs into the

Android Bundle (the default storage where Android apps can save instance state),

whereas we take a bottom-up approach to trace back to UI inputs from file write APIs.

However, file writes leading from user interactions are not considered as user data

losses in their analysis. LiveDroid has a patching component that injects state-saving

code into an app o fix state-saving issues; we do not offer an error repair component.

LiveDroid handles, and was run on, F-Droid apps only; in contrast, we successfully

analyzed thousands of Google Play apps in addition to F-Droid apps.

iFixDataloss [123] is similar to LiveDroid, detecting and fixing data losses due

to Android lifecycle events (e.g., orientation change, back button press). Unlike

LiveDroid, their approach is not limited to data losses in a singular instance of an app

run, as they also detect and fix data loss issues across multiple runs. Like our approach,

iFixDataloss has a reduced false positives rate as they combine static analysis with

dynamic testing. However, they do not consider data losses due to system-initiated

termination.

KREfinder [184] used program analysis to identify object fields that should

be saved during resume-and-restart cycles to avoid user data loss. However, their

technique is focused more on finding a path from a field write to an app exit without

an intervening save (e.g., in the Android Bundle) rather than finding lost file writes

due to system-initiated termination.
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The work of Hu et al. [132], Zaeem et al. [213], and Adamsen et al. [78] focused

on finding app state issues related to activity restart by generating test cases and

performing systematic execution of event sequences. Our goal (lost user file writes) is

different; in addition, our approach is based on static analysis whereas their approach

is based on testing.

SafeExit [137] is a study on ungraceful exits in desktop applications. They

propose cleanup operations on file writes that are interrupted by an ungraceful exit in

order to match the program behavior to that of normal execution. However, SafeExit

did not categorize file writes based on user interaction, and did not consider user data

loss.

8.7 SOM Reliability

We are not aware of any work that addresses SOM reliability. Nondeterminism

and inconsistency were studied before, but in the context of discrete clustering

algorithms [164, 212, 211] rather than neural networks. The literature discusses how

to use SOM effectively, e.g., in image classification [177] and choosing appropriate

weights and features correctly [185]. To better understand SOM functionality and

performance, a variety of SOM quality metrics have been proposed by Forest et al. [116]

Pölzlbauer [176], Lutz [125], yet there were no investigations based on variations of

SOM results. Overall, we have found no other investigation into quantifying SOM

disparities, either across runs or across toolkits.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

In this dissertation, we have explored several critical aspects of Android app

development, security, privacy, and reliability. Through comprehensive studies

and innovative approaches, we have gained valuable insights and provided practical

solutions to address the challenges faced in these areas.

First, we focused on the analysis of Android apps using static and dynamic

analysis techniques. By leveraging these approaches, we were able to uncover

vulnerabilities, identify privacy risks, and understand the behavior of apps at different

levels, such as component interactions and data flows. This knowledge contributes

to enhancing the overall security posture of Android apps and helps developers in

building more robust and trustworthy applications.

Next, we delved into the realm of Android app reliability. By studying the

effectiveness of random testing using tools like Monkey, we found that such approaches

can be remarkably efficient and effective in identifying app crashes. Additionally, we

investigated the impact of Monkey’s parameters on code coverage and compared the

coverage achieved through manual exploration. Our findings suggest that random

stress testing via Monkey is a viable option for reliability testing, with comparable

coverage results to manual exploration.

Furthermore, we examined the reliability of Android app components, partic-

ularly in terms of identifiers usage and abuse. By introducing algebraic-datatype taint

tracking and investigating user and device fingerprinting techniques, we gained insights

into potential vulnerabilities and privacy concerns associated with these identifiers.
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This research contributes to the understanding of identifier-based attacks and aids in

developing countermeasures to mitigate their impact.

Then, we evaluated the reliability of Android apps in diverse scenarios. By

diagnosing medical score calculator apps and investigating potential user-data save and

export losses due to app termination, we shed light on the reliability challenges faced

in critical domains. Lastly, our study quantified nondeterminism and inconsistency

in self-organizing map implementations, emphasizing the need for multiple runs and

toolkit comparisons in achieving reliable results.

In conclusion, this dissertation has made substantial contributions to the fields of

Android app development, security, privacy, and reliability. The insights and solutions

presented here can assist developers, researchers, and practitioners in building more

secure, privacy-aware, and reliable Android apps. As the Android ecosystem continues

to evolve, it is crucial to address these challenges and promote the growth of a trusted

and resilient mobile app environment.

9.2 Future Work

In this section, we discuss potential directions for further exploration and improvement

of our research results.

9.2.1 Improved leak signatures

While our proposed approach provides a more detailed and accurate representation of

leak signatures, there are several avenues for future research and enhancement.

Graph representation of leak signatures. The leak signatures presented in

Section 2.2 using AND and XOR cannot differentiate between the order of identifiers

when concatenated. The order of concatenation matters because the output of

concatenation is different for different orderings. It also does not provide sufficient

information on the leak path, i.e., it is unclear whether the leaks occur in the same
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data flow path or a different one. To address these issues, we plan to extend the leak

signature representation to a graph-based representation.

Policy validation. Our graph-based representation will enable us to impose

and validate different privacy policies. For example, we can determine whether

hardware and software Identifiers are leaked together or whether an identifier and its

corresponding hash are leaked together (thus enabling deanonymization).

9.2.2 Expanding to iOS and WebView-based calculators

While this research has focused solely on Android apps, we acknowledge that the iOS

versions of our examined apps may contain errors as well. Therefore, our future

research aims to extend the applicability of our toolchain to the iOS platform.

Additionally, we intend to streamline the analysis process for apps utilizing WebView

(apps where DroidBot encountered difficulties) by reducing the manual effort involved

and automating the analysis of such apps.

9.2.3 Addressing partition violations in GUIs

We have observed partition violations or incorrect score implementations in web-based

medical score calculators [68, 71], and partition violations non-medical Android apps,

e.g., IELTS score conversion [67]. The root cause of such issues is that current software

development tools – targeting mobile, desktop, or Web platforms – fail to perform

a partition check on GUI elements. These unchecked partition errors lead to user

confusion and ultimately incorrect outcome. The GUI partition checks could be made

mainstream and performed at app compile time, e.g., for mobile, in Android Studio

or Apple Xcode, for Web, in front-end frameworks, or for desktop, in desktop IDEs.
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9.2.4 Evolution of medical score errors

As shown in Table 4.1, the papers introducing the reference medical scores have been

cited substantially (from 157 to 21,863 times depending on the score) so their impact

is wide-reaching and long-lasting. To gain a comprehensive understanding of the

propagation of errors, we plan to conduct a study examining how reference scores

evolve from the original, flawed reference. This investigation will offer an evolutionary

perspective: how certain errors are corrected, which errors are still preserved, and

what kinds of new errors are introduced.

By addressing these future research directions, we can further advance the field

of leak detection and privacy protection in the context of taint tracking as well as

improve the apps’ reliability. The continuous evolution and increasing complexity of

mobile applications necessitate ongoing research efforts to enhance security, privacy,

and data protection in the digital landscape.
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implementation of performance metrics for self-organized maps, 2020.

[117] Jason Franklin, Damon Mccoy, Parisa Tabriz, Vicentiu Neagoe, Jamie Randwyk, and
Douglas Sicker. Passive data link layer 802.11 wireless device driver
fingerprinting. 01 2006.

[118] J Gardner-Thorpe, N Love, J Wrightson, S Walsh, and N Keeling. The value of
modified early warning score (mews) in surgical in-patients: A prospective
observational study. The Annals of The Royal College of Surgeons of England,
88(6):571–575, 2006.

[119] Michael Gordon, Kim deokhwan, Jeff Perkins, Limei Gilham, Nguyen Nguyen, and
Martin Rinard. Information-flow analysis of android applications in droidsafe.
01 2015.

[120] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. Checking app
behavior against app descriptions. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, page 1025–1035, New York,
NY, USA, 2014. Association for Computing Machinery.

[121] Neville Grech and Yannis Smaragdakis. P/taint: Unified points-to and taint analysis.
Proc. ACM Program. Lang., 1(OOPSLA), oct 2017.

[122] Tim A. Green, Stevan Whitt, Jeffery L. Belden, Sanda Erdelez, and Chi-Ren Shyu.
Medical calculators: Prevalence, and barriers to use. Computer Methods and
Programs in Biomedicine, 179:105002, 2019.

[123] Wunan Guo, Zhen Dong, Liwei Shen, Wei Tian, Ting Su, and Xin Peng. Detecting
and fixing data loss issues in android apps. In Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2022, page 605–616, New York, NY, USA, 2022. Association for Computing
Machinery.

[124] Faye Haffey, Richard R. Brady, and Simon Maxwell. A comparison of the reliability
of smartphone apps for opioid conversion. Drug Safety, 36(2):111–117, 2013.

[125] Lutz Hamel. Som quality measures: An efficient statistical approach. In Advances in
Self-Organizing Maps and Learning Vector Quantization, pages 49–59, 2016.

[126] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh Govindan.
Puma: Programmable ui-automation for large-scale dynamic analysis of
mobile apps. In Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’14, page 204–217, New
York, NY, USA, 2014. Association for Computing Machinery.

[127] Dick Hardt. The oauth 2.0 authorization framework. RFC, 6749:1–76, 2012.

181



[128] Tessa M. Hers, Jan Van Schaik, Niels Keekstra, Hein Putter, Jaap F. Hamming, and
Joost R. Van Der Vorst. Inaccurate risk assessment by the acs nsqip risk
calculator in aortic surgery. Journal of Clinical Medicine, 10(22):5426, 2021.

[129] Eveline Hitti, Dima Hadid, Jad Melki, Rima Kaddoura, and Mohamad Alameddine.
Mobile device use among emergency department healthcare professionals:
Prevalence, utilization and attitudes. Scientific Reports, 11(1), 2021.

[130] Mark Hornick. Oracle r technologies overview. https:
//www.oracle.com/assets/media/oraclertechnologies-2188877.pdf.
Accessed: 2022-11-11.

[131] William A Howard. The formulae-as-types notion of construction. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, 44:479–490, 1980.

[132] Gang Hu, Xinhao Yuan, Yang Tang, and Junfeng Yang. Efficiently, effectively
detecting mobile app bugs with appdoctor. In Proceedings of the Ninth
European Conference on Computer Systems, EuroSys ’14, New York, NY,
USA, 2014. Association for Computing Machinery.

[133] Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. Scalable and precise taint
analysis for android. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis, page 106–117, New York, NY, USA, 2015.
Association for Computing Machinery.

[134] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification,
2:193–218, 02 1985.

[135] Kit Huckvale, Samanta Adomaviciute, José Tomás Prieto, Melvin Khee-Shing Leow,
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