
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

LEARNING REPRESENTATIONS FOR EFFECTIVE AND
EXPLAINABLE SOFTWARE BUG DETECTION AND FIXING

by
Yi Li

Software has an integral role in modern life; hence software bugs, which

undermine software quality and reliability, have substantial societal and economic

implications. The advent of machine learning and deep learning in software

engineering has led to major advances in bug detection and fixing approaches, yet

they fall short of desired precision and recall. This shortfall arises from the absence

of a ‘bridge,’ known as learning code representations, that can transform information

from source code into a suitable representation for effective processing via machine

and deep learning.

This dissertation builds such a bridge. Specifically, it presents solutions for

effectively learning code representations using four distinct methods—context-based,

testing results-based, tree-based, and graph-based—thus improving bug detection

and fixing approaches, as well as providing developers insight into the foundational

reasoning. The experimental results demonstrate that using learning code represen-

tations can significantly enhance explainable bug detection and fixing, showcasing the

practicability and meaningfulness of the approaches formulated in this dissertation

toward improving software quality and reliability.
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CHAPTER 1

INTRODUCTION

Software quality and reliability are essential to software development. Software

quality reflects how well the software complies with or conforms to a given design,

while software reliability measures the level of risk and the likelihood of potential

application failures. Software bugs, which can arise during the development process

and potentially lead to serious problems, represent a significant threat to software

quality and reliability, capable of causing severe consequences and undermining the

overall robustness of the system. For example, several airports and/or airlines in the

last decade have been disrupted by software bugs affecting departure boards and the

check-in system. In these instances, thousands of passengers experience wasted time,

while airlines incur significant losses in terms of both business and finances. Software

bugs can lead to severe economic loss and, more distressingly, endanger lives. For

instance, Nissan had to recall over a million cars due to a software bug in their airbag

sensors. This bug interfered with the car’s ability to recognize an adult occupant in

the passenger seat, consequently disabling the airbag’s proper function, and has been

implicated in two reported accidents. Because of the serious influence of the software

bugs we mentioned above, fixing them as early as possible is desirable.

In software engineering, bugs, faults, and vulnerabilities are often mentioned in

different research topics for different software development stages. The fault is an

incorrect step, process, or data definition found in the testing stage by running the

test cases. The vulnerability is a weakness that can be exploited by a threat actor,

such as an attacker, to cross privilege boundaries within the software. Assuming a

broad definition of a bug as any error or flaw within software engineering, faults and
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vulnerabilities can also be classified as bugs. Hence, the term “bug” covers all such

issues in this dissertation.

In the software quality and reliability relevant research area, there are many

existing research solving software bugs-related problems [112, 67, 24, 21, 46] or

improving the existing techniques to help avoid software bugs to cause serious

issues [80, 82, 166, 115, 165]. Within these research studies, a broad scope

encompasses various software engineering research fields, including bug detection,

fault localization, program automated repair, and more. Given the immense

scale of these research topics, conducting studies necessitates highly effective and

high-performing approaches. Machine learning (ML) and deep learning (DL) are

excellent choices for researchers in these fields due to their capacity for handling large

datasets, identifying intricate patterns, learning from previous computations, and

delivering more precise results over time, thereby providing a robust framework to

tackle complex software issues effectively.

The swift evolution of ML and DL in software engineering has led to a surge of

research [137, 109, 140, 21, 24] leveraging these technologies in recent years. Among

these, data-driven studies that depend on ML and DL have attracted substantial

attention from academic and industry circles. However, a consistent linkage between

software engineering and ML/DL is not established during their development,

primarily because information carriers intrinsic to software engineering, such as source

code, are not directly applicable to ML and DL approaches. Bridging this divide,

learning representations play an integral role in converting software engineering data

into formats that ML and DL models can efficiently process. Therefore, it is virtually

impossible to overlook the relevance of learning representations in establishing ML or

DL-based methodologies within software engineering research.

Learning representations primarily consist of two components: representations

and learning models. Representations are methods of embodying software engineering
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data in various data structures, such as trees, graphs, or identifiers to represent source

code, code commits, etc. Learning models, in contrast, are tools that learn vector

representations from different data structures. Among these learning representations,

the learning code representations, a term we use to describe source code learning

representation, is a vital aspect of software engineering due to the intimate link

between source code and software engineering issues. In simple terms, learning code

representations model the code by converting the information within the source code

into vectors, facilitating their use by ML and DL methods. This dissertation focuses

primarily on the application and significance of learning code representations.

Despite many researchers recognizing the importance of learning code repre-

sentations and developing numerous code representation methods, choosing the right

approach for varying tasks remains challenging due to the vast array of options for

generating representation vectors. Upon reviewing existing literature in software

bug-related research areas, such as bug detection, fault localization, and automated

program repair, we noticed a significant gap: many studies lack comprehensive

research on learning code representations and the knowledge to choose the right

approach for different software engineering tasks. For instance, some approaches

treat code as the natural language for processing, thereby overlooking the inherent

structure and relationships within the source code—a scenario we describe as lacking

code representations. Others may choose inappropriate learning models, such as using

a sequence-based learning model to generate representation vectors for tree or graph

structures.

To address these issues, we first need to discern the crucial information

required for a specific task. Once this information is identified, choosing the code

representation becomes more straightforward. For example, in bug detection, the

code’s structure and context are important for identifying bugs. In such a case,

Abstract Syntax Trees (AST), encompassing both code context and structure, could
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be an excellent choice for code representation. When selecting the learning model,

both the downstream tasks and code representation are needed to consider. As

for the same example in bug detection, if we select AST as code representation,

a tree-based learning model is necessary. Furthermore, considering that the output

of bug detection is a label indicating whether the code is buggy, a tree-based learning

model that produces a single vector output to represent the code may be a better

choice in this scenario.

Given the challenges previously mentioned and our proposed strategy to address

them, we have come up with the following dissertation scope, problem description,

and dissertation objectives.

1.1 Dissertation Scope

This dissertation focuses on three main directions: bug detection, automated

program repair, and model agnostic explanation. Within the bug detection, we

will introduce how the learning code presentations help improve bug detection and

fault localization. As for automated program repair, this dissertation discusses

the specific usage of learning code representations in fixing single-statement and

multi-hunk/multi-statement bugs. And in the model agnostic explanation, this

dissertation focuses on applying learning code representations to generate explainable

results for vulnerability detection tasks. All detailed applications mentioned in this

dissertation are bug detection and fixing related software engineering tasks, and all

our approaches introduced are DL-based approaches.

1.2 Problem Description

As software bugs have such a huge influence on software quality and reliability, in

this dissertation, we mainly want to focus on the problem:

What are the suitable ways of learning code representation to improve

the existing approaches for different software engineering tasks?
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Specifically, the problems we want to focus on in this dissertation are as follows:

• Many existing bug detection approaches can detect bugs from source code. But
there are still many kinds of bugs that are hard to detect. How to use different
ways of learning code representation to improve the bug detection tasks could
be one of the problems we want to deal with. (Section 3.2)

• With so much information in the testing process, knowing how to combine
different information for source code, test case, test case running results, and
error message information to do the fault localization is important for fault
localization. (Section 3.3)

• Faults found during the testing process are sometimes caused by more than one
statement in more than one method. Using the source code representation to
catch the relationships between these statements to help locate these statements
at the same is an interesting challenge. (Section 3.4)

• Automatically fixing the bugs in the real-world project development process
could always be an interesting idea. But improving the speed and accuracy
of the automated program repair tools is difficult. Using deep learning with
suitable code representation is a way worth trying. (Section 4.2)

• Fixing the simple bugs in a single statement is not enough for automated
program repair tools. Determining how to find the correct position to fix and
how to select the buggy statements to fix is the key problem we need to solve.
(Section 4.3)

• Vulnerability detection helps reduce the vulnerability in the software. But all
existing models can only let developers know if the code is vulnerable without
any explanation to help developers understand why it is vulnerable. Providing
an extra explanation for these models, especially the graph-based model here,
is meaningful. (Section 5.2)

1.3 Dissertation Objectives

With the problems mentioned above, in this dissertation, we have the following

objectives:

• Select a suitable way of generating code representation and deep learning models
to deal with the bug detection task and improve the existing approaches.
The code representation should cover code content information, code structure
information, and code relationships. (Section 3.2)

• Devise an approach for fault localization tasks. The learning code representation
in this approach should be suitable and helpful for combining different features
from source code and test case running results. (Section 3.3)
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Figure 1.1 Overview of the scope and organization of this dissertation.

• Create a fault localization framework for the faults that involve more than one
statement in more than one method. The code representation should cover the
relationships between different statements and different methods. (Section 3.4)

• Identify required code representation structure and deep learning model to fix
single statement bugs automatically. During the fixing, the code representation
should contain the code content changes and code structure changes. (Section
4.2)

• Build a fault locating and buggy hunk selection model to improve the automated
problem repair technique on single statement bugs. The improved automated
problem repair model should be able to fix multi hunks multi statements bugs.
(Section 4.3)

• Generate explanation for graph-based vulnerability detection model. The
explanation should contain part of the source code to determine which part of
the code is important and also need to have some natural language description
to help explain the vulnerability detection results. (Section 5.2)

1.4 Dissertation Organization

The dissertation is organized as follows: Chapter 2 introduces some background

concepts for the whole dissertation. From Chapter 3, the dissertation starts to

introduce the details for four detailed software engineering tasks within each chapter.

Chapter 3 begins by analyzing the limitation of current bug detection approaches

and explaining the main ideas on using what way of learning code representation

to improve bug detection. This chapter also includes the other interesting task,
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fault localization, which is useful for pinpointing faults when developers are already

aware of potential issues within the software that need to be addressed in subsequent

processes. In this chapter, this dissertation introduces the current fault localization

approaches and how we would like to improve the existing ML and DL-based

approaches by using different ways of learning code representations on this task.

Also, a separate challenging idea about locating the faults that influence more than

one statement in more than one method is described in detail. Chapter 4 follows

Chapter 3, talking about how we can use ML and DL-based approaches with suitable

ways of learning code representation to automatically fix the bugs that have been

successfully found and located by tasks in the last chapter. Chapter 5 introduces how

to generate explanations for graph-based models on vulnerability detection problems.

Chapter 6 lists related work for each task in Chapters 3-5. Chapter 7 summarizes the

dissertation, discusses the research studies’ contributions, and discusses future work.
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CHAPTER 2

BACKGROUND

As we mentioned in the introduction chapter, we mainly focus on applying different

code representation learning to bug detection, fault localization, automated program

repair, and the explanation for graph-based vulnerability detection and bug detection.

In this Chapter, we first define some basic concepts.

Learning Code Representation. Learning code representation is learning

the representation vectors for the code. The common ways of learning code

representation include tree-based, graph-based, set-based, and sequential-based. The

tree-based learning code representation transfers the code into a tree structure, often

the AST, and then uses a tree-based model like tree-LSTM to generate representation

vectors. The graph-based learning code representation transfers the code into graphs,

including program dependency graph, control flow graph, data flow graph, call graph,

etc. Then it uses a graph-based learning model like GCN or GNN to generate

the representation vectors. As for the set-based and sequential-based learning code

representation, they often directly collect keywords like identifiers to build a set or

directly regard the tokens in source code as a sequence of words. And then apply

a token-based or sequential-based learning model to generate representation vectors.

Various strategies for choosing suitable ways of learning code representation exist

within different tasks and situations.

Bug Detection. Bug detection is the process of learning the information from

the source code to detect possible bugs in the software. Bug detection can be used in

most parts of the software development process, which is used to help developers keep

the software quality and reliability. Existing bug detection studies often contain three

kinds, including rule-based bug detection [48], mining-based bug detection [13, 55,
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117, 34, 29, 155, 80], and machine learning-based bug detection [166, 165, 164, 125].

All of these three kinds of approaches have their limitation. For example, rule-based

studies require manually defined new rules for the new bugs, while mining-based

studies cannot distinguish the cases of incorrect code versus infrequent/rare code.

Machine learning-based studies can overcome these limitations but often still have

a high false-positive rate based on using unsuitable code representation learning,

which often includes the sequence of tokens, identifiers, and so on. To overcome

the limitation of these, we built our approach based on the data collected from git

commits in GitHub and the bug reports collected from the Apache forum. We use

both the tree-based learning code representation and the graph-based learning code

representation to solve this problem. We will introduce our study in detail in Chapter

3.

Fault Localization. Fault localization is the task of working in the testing

process to locate the faults in the software. The fault localization is mainly based

on the test cases used in the testing process. Existing fault localization techniques

include three main types, spectrum-based approaches[58, 57, 1], mutation-based

approaches[103, 118, 119] and machine learning/deep learning-based approaches[72].

Spectrum-Based and mutation-based approaches often have the limitation of covering

limited information in some fields, while the existing machine learning/deep learning-

based approaches can combine them. However, within existing machine learning/deep

learning-based approaches, choosing the suitable code representation learning is still

important. In this dissertation, we use the code coverage matrix and sequential tokens

to learn the code representation to support our two new ideas on fault localization

introduced in Chapter 3.

Automated Program Repair. Automated program repair is the flow to

automatically fix the bugs detected and located by the previous three tasks in the

process mentioned in the above three tasks. Running the automated program repair
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in testing is slightly different from other processes. During the testing, automated

program repair can use test cases to help validate the fixing results, while in other

processes, it requires human manual verifying. The existing automated program

repair approaches contain six types. Each of them is based on mining and learning

fixing patterns[112, 67, 86, 60], fixing templates [67, 112, 86, 87], mining code

changes[167, 52, 64], machine learning[92, 90], information retrieval [134],and deep

learning [41, 168, 169, 169, 46, 158, 24]. These six types can be grouped into two

main concepts: pattern-based and machine learning/deep learning-based approaches.

The pattern-based approaches often have high accuracy and high time costs for

generating the fixing. Machine learning/deep learning-based approaches can do

the fixing quickly, but because the code fixings are different. It is hard for the

model to learn perfectly and automate fixes correctly. By analyzing the existing

machine learning/deep learning-based approaches, we would like to build our deep

learning-based automated program repair approach with tree-based learning code

representation. The two new ideas in this task are introduced in Chapter 4.

Vulnerability Detection. Vulnerability detection is the process of detecting

the vulnerability from the source code. This process has often been used in the

deployment and maintenance process. Existing vulnerability can be grouped into two

big groups, including rule/pattern-based vulnerability detection [38, 127, 161, 23, 49,

30] and machine learning-based vulnerability detection [137, 109, 140]. But both of

these kinds do not explain why it is vulnerable, which will cost developers more time

to find and understand the vulnerabilities. To generate interpretable vulnerability

detection, we proposed our ideas based on an existing collected vulnerability dataset

built by collecting from the vulnerability reports on the CWE website. In this task,

we use the graph-based learning code representation with the program dependency

graph. The idea, model design, and results can be seen in Chapter 5.
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Interpretable AI. Interpretable AI explains why deep learning-based models

generate certain results. The reason for generating this kind of explanation is that

most of the deep learning-based models are more like black boxes. Therefore, it

is hard for developers to understand the reason for getting the results from the

model. Existing interpretable AI approaches are mainly in three kinds. The first

type is creating simple proxy models [66, 131] or finding key features through feature

gradients [187, 150]. The second type is the post-hoc interpretability method [37, 4].

And the third type is analyzing the information within the model and generating

the interpretation [184]. The first two types cannot generate an explanation for

graphs, while the existing approaches in the third type that can deal with graphs

are still not solid and helpful enough. We proposed our ideas to build interpretable

AI models based on existing bug detection and fixing related task models. We use

the graph-based learning code representation to generate the explanation. The idea,

model design, and results can be seen in Chapter 5.
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CHAPTER 3

BUG DETECTION

3.1 Introduction

In this chapter, we introduce our work on three research topics related to bug

detection. We separate them into two directions: general bug detection, which

contains the first research topic, and fault localization, which includes the second and

third research topics. (1) The first direction focuses on learning code representation

with the deep learning model to improve the existing bug detection approaches.

(2) The second direction learns code representation to enhance the existing fault

localization approaches. The difference between these two directions is that the first

one is for the general bug detection approaches that only depend on the source code

information. In contrast, the second focuses on locating the bugs in the testing

process. The second direction is not only depending on the source code but also

using the test cases running results as key features to help locate the bug. Although

the second one is still doing bug detection-related tasks, the different inputs separate

them. Within the second direction, the difference between the second and third

research topics is that the second topic mainly focuses on single-statement fault

localization. In contrast, the third focuses on simultaneously locating the faulty

statements in different methods for the same test case running error. All of these

three research topics are published as conference papers. The roadmap of this chapter,

along with the specific code representations utilized for each research topic, is depicted

in Figure 3.1. We will separately introduce these three research topics in the following

sections.

12



Figure 3.1 Bug Detection: Roadmap for Chapter 3.

3.2 Bug Detection with Context-Based Code Representation Learning

3.2.1 Introduction

Bug detection plays an important role in software engineering, it helps developers

to detect bugs early by scanning the source code statically and determine if a given

source code is buggy [80, 82, 166, 115, 165, 164, 125]. Bug detection has been shown to

be effective in improving software quality and reliability [13, 55, 117, 34, 29, 155]. The

existing state-of-the-art bug detection approaches can be classified into the following:

• Rule-Based bug detection. In this type of approaches, several programming rules
are pre-defined to statically detect common programming flaws or defects. A
popular example of this type of approaches is FindBugs [48]. While this type of
approaches is very effective, new rules are needed to define to detect new types
of bugs.

• Mining-Based bug detection [13, 55, 117, 34, 29, 155, 80]. To overcome the
pre-defined rules, the mining-based approaches rely on mining from existing
source code. Typically, this type of approaches automatically extracts implicitly
programming rules from program source code using data mining approaches

13



(e.g., mining frequent itemsets or sub-graphs) and detects violations of the
extracted rules as potential bugs. These mining-based approaches still have a
key limitation in a very high false positive rate due to the fact that it cannot
distinguish the cases of incorrect code versus infrequent/rare code.

• Machine learning-based bug detection [166, 165, 164, 125]. With the advances of
machine learning (ML) and especially deep learning models, several approaches
have been proposed to learn from previously known and reported bugs and
fixes to detect bugs in the new code. While the ML-based bug detection
models [107] rely on feature selections, the deep learning-based ones [125, 165]
take advantages of the capability to learn the important features from the
training data for bug detection. Showing the advantages over the traditional
ML-based bug detection models, the deep learning-based approaches are
still limited to detect bugs in individual methods without investigating the
dependencies among different yet relevant methods. In practice, there exist
several cases that bugs occur across more than one method. That is, to decide
whether a given method is buggy or not, a model needs to consider other
methods that have data and/or control dependencies with the method under
investigation. Due to that, the existing deep learning-based approaches have
high false positive rates, making them less practical in the daily use of software
developers. For example, DeepBugs [125] is reported to have a high false positive
rate of 32%. That is, approximately one out of 3 reported bugs is not a true
bug, thus, wasting much developers’ efforts. Our study (Sub-Section 3.2.7.3.1)
also showed a false positive rate of 41% for DeepBugs on our dataset.

To overcome the aforementioned limitations of the state-of-the-art approaches

while still taking advantage of deep learning capability, we propose a combination

approach with the use of contexts and attention neural networks. In order to

detect whether given methods are involved in bugs that might involve individual

or multiple methods, we propose to use the Program Dependence Graph (PDG) [36]

and Data Flow Graph (DFG) [185] as the global context to connect the method under

investigation with other relevant methods that might contribute to identifying the

buggy code. The global context is complemented by the local context extracted from

the path on the AST built from the method’s body. The use of PDG and DFG enables

our model to reduce the false positive rate when matching the given code against the

buggy code in the past because two source code fragments are similar not only if their

ASTs are similar but also if the global contexts in the PDG and DFG are similar. With
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this strategy, our model would increase its precision in detecting the buggy methods.

However, to complement for the potential reduction in recall (i.e., our model might

miss buggy code due to its stricter conditions on code similarity when additionally

using the PDG/DFG), we make use of the attention neural network mechanism to

put more weights onto the buggy paths in source code. That is, the paths that are

similar to the buggy paths will be ranked higher, thus, improving recall.

Our approach works in three phases. In the first phase of building the

representation for local context for buggy and non-buggy code, our model constructs

the AST for a given method’s body and extracts the paths along the AST’s nodes

to capture the syntactic structure of the source code. Prior works [7, 111] have

shown that syntactic structure of source code can be approximately captured via

the paths along their nodes with certain lengths. Word2Vec [99] is used on the

AST nodes along the collected paths to convert them into vectors to capture the

surrounding nodes in the paths. After using Word2Vec, the generated AST node

vectors are fed into an attention-based Gated Recurrent Unit (GRU) layer [25] that

allows our model to encode and emphasize on the order of the nodes in a path, i.e.,

on the nested structures in the AST. Also, we convert the node vectors into matrices

and feed them to an attention Convolutional layer [183] that allows our model to

emphasize the local coherence patterns in matrices and put more weights on the

buggy paths. After that, we use Multi-Head Attention [160] to combine the results

from the attention GRU layer and attention Convolutional layer together as the path

local context representation modeling the content of a path.

In the second phase of integrating the global context modeling relations among

paths from methods , we build the PDG and DFG, and extract the subgraphs relevant

to a method. Unlike the learning of local context representations for paths within an

AST built from a method’s body using GRU and Convolutional layers, our model

uses Node2Vec [39] to encode the PDG and DFG into embedded vectors to capture
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relations between relevant paths. Node2Vec is a widely used network embedding

algorithm to convert large graphs (e.g., a PDG of a project) into low-dimensional

vectors without too much graph structural information loss for efficient processing.

After having both local context and global context representations for each path,

we can get the representation for each method by directly linking all merged path

vectors. In the last phase, we use a convolutional layer to classify the vectors into two

classes of buggy and non-buggy code. Based on the results vectors, we use SoftMax

to process and set up a threshold to pick the number of potential buggy methods to

report for the source code under investigation.

We have conducted several experiments to evaluate our approach on a very

large dataset with +4.973M methods in 92 different versions of 8 large, open-source

projects. We compare our approach with the state-of-the-art approaches in two

aspects. First, we compare our tool against the existing bug detection tools using rule-

based techniques including FindBugs [9], mining techniques including Bugram [164]

and NAR-miner [13], and deep learning techniques including DeepBugs [125]. The

results show that our tool can have a relative improvement up to 160% on F-score

when comparing with other baselines in the unseen project setting and a relative

improvement up to 92% on F-score in the unseen version setting. Our tool can detect

48 true bugs in the list of top 100 reported bugs, which is 24 more true bugs when

comparing with the baselines. Second, we compare our representation with local and

global contexts against the state-of-the-art code representations that are used for

deep learning models in code similarity including DeepSim [195], code2vec [7], Code

Vectors [47], Deep Learning Similarity [157], and Tree LSTM [151]. We used those

representations with our attention-based bug detection model and compared with the

results from our tool with our representation. We reported that our representation

can improve over the other representations up to 206% in F-score in the unseen project

setting and up to 104% on F-score in the unseen version setting. Our tool can detect
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48 true bugs in top 100 reported ones, which is 27 more true bugs when comparing

with the baselines. Furthermore, we conducted experiments to study the impact of

the components in our model on its accuracy. We found that while global context

in the PDG and DFG improves much in Precision, Multi-Head Attention mechanism

helps improve much in Recall to make up for the reduction in Recall caused by the

stricter condition in the PDG and DFG as the global context.

In this research topic, we make the following contributions:

• A new code representation specialized for bug detection. To the best
of our knowledge, our work is the first to learn code representation specializing
toward bug detection in three novel manners: 1) directly adding weights for
differentiating buggy and non-buggy paths into code representation learning;
2) combining the local context within an AST and global context (relations
among paths in the PDG and DFG) for bug detection; and 3) integrating inter-
procedural information using the PDG and DFG.

• A novel bug detection approach. We build a new attention-based
mechanism bug detection approach that learns to aggregate different AST
path-based code representations into a single vector of a code snippet and to
classify the code snippet into buggy or non-buggy.

• An extensive comparative evaluation and analysis. Through a series
of empirical studies, our results show that our approach outperforms the
state-of-the-art ones. We also compare our learned code representation with
other existing ones and the comparative empirical results show that our code
representation is more suitable for detecting bugs than others.

3.2.2 Motivation

3.2.2.1 Motivating example. In this sub-section, we will present a real-world

example and our observations to motivate our approach.

Figure 3.2 shows an example of a real-world defect in the project named

hive in GitHub. The bug involves three methods in which the method getSkewed-

ColumnNames (method 1) retrieves the column type information from the input alias

via the method getTableForAlias (method 3) and then compares it with the provided

column names via the method getStructFieldTypeInfo (method 2) in order to find the

suitable constant description for the current processing node. The bug occurred due

17



Method 1

1 public List <String > getSkewedColumnNames(String alias) {...

2 else {

3 TypeInfo typeInfo = TypeInfoUtils.getTypeInfoFromObjectInspector

4 (this.metaData.getTableForAlias(tabAlias ).

5 getDeserializer (). getObjectInspector ());

6 desc = new exprNodeConstantDesc(typeInfo.getStructFieldTypeInfo

7 (colName), null);

8 }...

9 }

Method 2

1 public TypeInfo getStructFieldTypeInfo(String field) {

2 String fieldLowerCase = field.toLowerCase ();

3 for(int i=0; i<allStructFieldNames.size (); i++) {

4 if (field.equals(allStructFieldNames.get(i))) {

5 return allStructFieldTypeInfos.get(i);

6 }

7 }

8 throw new RuntimeException("cannot␣find␣field␣" + field +

9 "(lowercase␣form:␣" + fieldLowerCase + ")␣in␣" +

10 allStructFieldNames );

11 }

Method 3

1 public Table getTableForAlias(String alias) {

2 - return this.aliasToTable.get(alias);

3 + return this.aliasToTable.get(alias.toLowerCase());

4 }

Figure 3.2 Bug Detection: A motivating example from the Project hive.
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to the inconsistency in handling the case-sensitivity of the names: the type field name

is in the lowercase (line 2, method 2) while the alias name is not. To fix this bug, the

developer added a method call to convert the alias name into lowercase (lines 2–3,

method 3).

From this example, we have drawn the following observations:

Observation 1 (O1). This bug involves multiple methods. For developers

to completely understand this bug or for a model to automatically detect this, it is

necessary to consider multiple methods and the dependencies among them. This

type of cross-method bugs could easily occur in practice. However, the existing

ML-based bug detection approaches [13, 125] examine the code within a method

individually, without considering the inter-procedural dependencies. As an example,

NAR-miner [13] derives non-association rules (e.g., if there is A, then there is no B),

and uses them to detect bugs occurring in each individual method. That approach

cannot detect this bug because it considers each method individually and this bug

does not involve a non-association rule on the appearances of any elements. As

another example, DeepBugs [125] uses deep learning on the names of the program

entities in each method to detect bugs.

DeepBugs cannot detect this bug either because it does not perform intrapro-

cedural analysis. Moreover, the fixed method getTableForAlias does not contain the

names similar to those of buggy methods. In fact, toLowerCase is a widely used API

and get is a popular method name. A model cannot determine the error-proneness

for this method by solely relying on those popular names.

Observation 2 (O2). When considering multiple methods to detect a bug,

there exist multiple paths on the representations that would be used to model the

methods and their interdependencies, e.g., the control flow graph (CFG), program

dependence graph (PDG), or the abstract syntax tree (AST). Due to the large sheer

amount of paths needed to be considered, a model should not put the same weights
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on all the paths. To learn from database of buggy code in the past, a model should

put more weights on the buggy paths than others.

However, existing approaches [7, 111] to represent code as graph-based embedding

vectors are either putting weights on frequently occurring paths or not weighting at

all. For example, code2vec [7] extracts the paths in the AST among program entities

with dependencies and gives more weights to frequent paths. Those paths are used

as input to a deep learning model to learn the graph-based embedding vectors for

source code. Frequent paths might not be the most error-prone ones in a program.

In contrast, the buggy paths might not be the frequent ones. For example, the lines

5–7 in the method 1 are in a buggy path, however, they are not one of the frequent

paths in our collected data for our experiment (which will be explained later). This

is reasonable because code2vec [7] was designed for measuring code similarity, rather

than for bug detection. On the other hand, Exas [111] represents source code with

a vector by encoding the paths with up to certain lengths in the PDG. While it is

successful in code similarity at the semantic level, it considers all the paths with the

same weights, thus, cannot be applied well to bug detection.

3.2.2.2 Key ideas. With the above observations, we have built our approach

with the following key ideas. First, to capture the source code containing defects, in

addition to represent the body of the given code, we also use as the global context

the Program Dependency Graph (PDG) [36] and Data Flow Graph (DFG) [185].

Such graphs enable us to consider the dependencies among program entities across

multiple methods, thus, enabling the representation of the buggy source code

involving multiple methods. In our example, it allows our model to capture the

relationships among the methods 1, 2, and 3 involving in the current bug. Specifically,

it allows the connections of the important nodes such as the connection between

the variable typeInfo at line 5 of the method getSkewedColumnNames (Method

1) and the parameter alias at line 2 of the method getTableForAlias (Method
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3), and the connection between the variable typeInfo at line 7 of the method

getSkewedColumnNames (Method 1) and the variable field at line 2 of the method

getStructFieldTypeInfo (Method 2). From the two connections, the relation between

the line 2 of the Method 2 and the line 2 of the Method 3 can be captured. Thus, if

our model has seen a similar relation that causes a bug in the training data, it could

catch this in the example.

Secondly, from Observation 2, we design an attention-based deep learning model

to emphasize to learn the buggy paths and use the PDGs and DFGs as the context to

capture the relations among the methods involving in a bug. The attention mechanism

also helps in improving the ranking of buggy candidates, thus improving the recall

that was potentially affected by the use of PDG and DFG in code matching. For

example, in the history, there exists a bug that are revealed by the above connection

between the line 2 of the Method 2 and the line 2 of the Method 3. By adding a weight

for buggy paths with the attention mechanism, we could make all buggy paths have a

higher weight than the normal paths. In our approach, we would like to only use long

paths because the short paths are covered by the longer ones. In our example, the

long paths can sufficiently cover the needed information between the three methods

to detect the bug.

3.2.3 Approach overview

Let us explain the overview of our approach. To determine whether source code in a

given method is buggy or not, our model relies on the following three main steps as

illustrated in Figure 3.3:

• Step 1: Attention-Based Local Context Representation Learning.
First, our model parses the given method to build an AST. It extracts the long
paths and then uses the attention GRU layer and the attention convolutional
layer to build the representation for the method’s body. Let us call it the local
context because the paths are extracted within the given method.

• Step 2: Network-Based Global Context Representation Learning.
Second, in addition to considering the given method’s body, we also encode
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Figure 3.3 Bug Detection: Overview of our approach.

the context of the method by building the Program Dependence Graph (PDG)
and the Data Flow Graph (DFG) relevant to the method. We call them the
global context because they provide the relations between the given method
and other relevant methods in the project. We use the Node2Vec [39] for the
encoding of the PDG and DFG.

• Step 3: Bug Detection. Finally, with the local and global contexts of the
given method, we use a softmax-based classifier to decide whether the method
is buggy or not.

In the step of building the local context, we choose the long paths over the AST

built from the method’s body. A long path is a path that starts from a leaf node and

ends at another leaf node and passes the root node of the AST. As shown in previous

works [7, 111], the AST structure can be captured and represented via the paths with

certain lengths across the AST nodes. The reason for a path to start and end at leaf

nodes is that the leaf nodes in an AST are terminal nodes with concrete lexemes. The

nodes in a path are encoded into a continuous vector via Word2Vec and the vectors

are fed into two layers: attention-based GRU layer [25] and attention Convolutional

layer [183]. The GRU layer allows our model to encode and emphasize on the order of

the nodes in a path, i.e., on the parent-child relationships of the AST nodes. In other

words, the nested structures in an AST are captured and represented with GRU layer.

Moreover, the attention-based Convolutional layer allows our model to emphasize and
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put more weights on the buggy paths. After that, we use Multi-Head Attention [160]

to combine the result from attention GRU layer and attention Convolutional layer

together as the path local context representation.

In the step of building the global context, we use the Node2Vec [39] to encode

the PDG and DFG into embedded vectors. These two vectors are combined by the

space vectors of all nodes in each path. We use matrix multiplication and convert

results together to get the path representation vector. Then, we can have method

representation by appending all paths’ vectors for each method. For the bug detection

step, with the method vectors we can do the bug detection with a softmax-based

classifier. We will explain all the steps in details next.

1 public BlockingInterface getProxy ()

2 throws IOException {

3 if (proxy == null) {

4 proxy = createProxy ();

5 }

6 return proxy;

7 }

(a) A method example. (b) The AST of the code in Figure 3.4a.

Figure 3.4 Bug Detection: Source code example and the AST from the project
hive.

3.2.4 Step 1: Attention-Based local context representation learning

Given a method, we use the following steps to learn a code representation using AST

paths within the method. We call it the local context as the paths used for code

representation learning are within the method. Figure 3.5 shows the overall steps of

learning local context code representation.

3.2.4.1 Path extraction. We extract paths from an AST built for a method,

instead of source code directly, because an AST helps capture better code structures.
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Figure 3.5 Bug Detection: The process of learning local context representation.

With the explicit representation of structures via ASTs, our model could make

distinction better between buggy and non-buggy code structures.

We use the well-known and widely-used Eclipse JDT package to build an AST

for a given Java method. As we do not want to lose important information of each

method for bug detection, we extract the minimum number of long paths that can

cover all nodes in an AST of a method in a greedy way. In Figure 3.4, for the method

in Figure 3.4a, we build an AST and extract four long paths as shown in different

colors in Figure 3.4b. As a long path passes from a leaf node to another via the root

node in an AST, there are overlapping nodes among different long paths.

3.2.4.2 Learning AST node representation. We use Word2vec [99], a

neural network that takes a text corpus as an input and generates a set of feature

vectors for words in the corpus, to learn a vector representation for each AST node.

This step takes all of the AST nodes of a method as the input, and generates a learned

vector representation for each given AST node.

Specifically, in the process of AST node encoding, we treat the node content of

an AST node as one word. For example, in Figure 3.4b, the node ”Block Stm” having

a real value ”{}” in AST is considered as one word, word = “{}”. Thus, we generate

a sequence of words for each path. For instance, we can generate the following ordered

set of words: {“Null”, “==”, “if()”, “{}”, “root”,“{}”, “Return”, “proxy”}, for the

red path in Figure 3.4b, where “if()” is the If Stmt, the first “{}” right after If Stmt

24



is the Block Stmt, the “root” is the Method Declaration, the second “{}” is also the

Block Stmt as the path passes through the root.

Given a version of a project, we extract long paths from an AST for each method

and generate ordered sets of words for each path.

We order the nodes in an AST path according to their appearance order in source

code. We generate embeddings for each node and preserve their order. Moreover, we

do not embed comments and do not differentiate specific strings and numbers during

embedding, as their values are normally too specific and do not contribute to model

training for bug detection.

Collectively, we obtain a large corpus of words for AST nodes from all source

code under study. Each node is mapped to a word. We run Word2Vec on a large

corpora to learn a vector NodeVi to represent an AST node ni in a path of nodes

P = n1, n2, ..., ni. All nodes in training are considered to maximize the log value of

the probability of neighboring nodes in the input dataset. We use Word2Vec to train

our own node representations by using all of the AST nodes from each project. The

loss function is defined as follows:

Lossi = min
i

1

i

i∑
j=1

∑
k∈NNSr

− logHS{NodeVk|NodeVj}

L = min
1

i

i∑
j=1

∑
k∈NNS

− logHS{NodeVk|NodeVj}

where L is the lose function for the nodes in P = n1, n2, ..., ni, NNS is the set

of the neighboring nodes of a node ni, and HS{NodeVk|NodeVj} is the hierarchical

softmax of node vectors NodeVk for the node nk and NodeVj for the node nj.

3.2.4.3 Learning local context representation from AST node

representations. After the previous step of learning AST node representation,
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each path, P , can be represented as an ordered set of AST node vectors, P =

{NodeVi, NodeVi, . . . , NodeVn}, where n is the total number of nodes of the path,

and 1 ≤ i ≤ n.

To incorporate the previous buggy information into the representation learning,

we add a weight to a path if the path passes an AST node that is in one or multiple

bug fixes. We use the addition of weights to differentiate buggy and non-buggy AST

paths. Specifically, if a node ni from a path was in a bug fix, we apply the same weight

w on all of the node vectors in the path, P = w ∗ {NodeVi, NodeVi, . . . , NodeVn},

and the paths without any nodes in previous bug fixes have no weight added. For

example, if there is a bug fix (e.g., removing the whole line) in the line 4, proxy =

createProxy(), of the code example in Figure 3.4a, all of the node vectors of the blue

path in Figure 3.4b are assigned with the same weight w.

To learn a unified vector representation from the node vectors for a path, we

use two different approaches to learn path vectors capturing different aspects of key

information.

[1] Attention-Based GRU approach. We apply an attention-based Gated

Recurrent Unit (GRU) layer [25], using an attention layer on top of the GRU layer as

the weights to apply the importance on each time step during the training, to learn a

path vector from a given set of node vectors. We use GRU to capture the sequential

patterns from ASTs. The GRU layer, using a gating mechanism reported in [25], is a

powerful and efficient model for learning a representation from a given set of vectors.

There are two key gate calculations at a time step t, the reset gate rt and the update

gate zt. The following calculation is for the j-th hidden unit at the time step t:

rjt = σ(Wrxt + Urht−1)
j (3.1)
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zjt = σ(Wzxt + Uzht−1)
j (3.2)

hj
t = (1− zjt )h

j
t−1 + zjt h̃

j
t (3.3)

h̃j
t = tanh(Wxt + U(rt ⊙ ht−1))

j (3.4)

where xt is the node vector for the AST nodek in pathi as an input of the t time

step, j denotes the j-th element of a vector, the hj
t , h

j
t−1 is the j-th element of the

output embedding vectors at the t and t− 1 time steps, the rjt is the j-th element of

the reset gate vector at the t time step, the zjt is the j-th element of the update gate

vector at the t time step, σ is the logistic sigmoid function, W,U are the parameter

matrices that can be learned during the training and the ⊙ is the Hadamard product.

Given a sequence of AST node vectors of a path, we pass one node vector to the

GRU layer at each time step and the GRU layer also generates an output vector at

each time step. At the final time step of the GRU, one path vector is generated. Over

the whole process, the GRU takes a set of node vectors as input vectors and produces

a set of intermediate output vectors (i.e., the last output vector is the final generated

vector). We store the set of input vectors and the set of intermediate output vectors

from the GRU layer for the next step.

[2] Convolutional-Based Approach. We use a Convolutional layer in the

Convolutional Neural Networks (CNN) [31], with an attention mechanism on top of

it, to learn a path vector from a given set of node vectors. In the CNN, sequences

of node vectors are modeled into matrices. We use the CNN to capture the local

coherence patterns from the matrices of ASTs. Different node embeddings can be

used to construct a matrix D, where it has a structure n × d of D with only one

channel (d is the size of node embedding).
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In a convolution operation, a filter can convolute a window of nodes (e.g., 3 or

4) to produce a new feature using the following equation: ci = σ(W · hℓ(x) + b),

where ci is the dot product of hℓ(x) and a filter weight W. hℓ(x) is a region matrix

for the region x at location ℓ. σ is non-saturating nonlinearity σ(x) = max(0, x) [65].

Then the filter can convolute each possible window of nodes and produce a feature

map: c = [c1, c2, ..., ci, ...]. The weight W and biases b are shared during the training

process for the same filter, which enables to learn meaningful features regardless of

the window and memorizing the location of useful information when appearing.

Given a sequence of AST node vectors of a path, we use all node vectors to

build a n ∗m matrix, where n is the number of node vectors and m is the length of

a node vector, and send the matrix to the Convolutional (Conv) layer. At each time

step, a sub-matrix is selected and used as an input for the Conv operation and the

Conv layer generates an output matrix. Over the whole process, a set of matrices

are built and used as inputs for the Conv layer that produces a set of intermediate

output matrices (i.e., the intermediate output matrix at the last time step is the

final matrix). In the Conv layer, a sequence of node vectors is transformed into a

set of matrices. To reduce an obtained matrix into one dimension vector, we apply

another layer: fully connected layer in the CNN [31]. We pass intermediate output

matrices generated at different time steps into the fully connected layer to generate

1-dimensional intermediate vectors. We store the set of input matrices and the set of

intermediate output 1-dimensional vectors from the Conv layer for the next step.

The attention-based mechanism enables our model to emphasize on the

important paths that have been observed to be buggy. That is the key advantage of

our model in comparison with the traditional or vanilla (standard backpropagation)

GRU and CNN. While attention mechanism allows a NLP model to focus on certain

important words in a sentence, it is expected to help our bug detection model to put

and update more weights on the observed buggy paths.
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Figure 3.6 Bug Detection: Multi-Head attention.

3.2.4.4 Learning path vectors with multi-head attention. In the previous

step, given a sequence of AST nodes, we use two approaches to learn vector

representations for a path and different vector representations capture different

aspects of information of a path. To learn the unified vector for a path, we still

need to find a way to combine the two path vectors into one code vector without too

much information loss.

To do so, we apply the Multi-Head Attention (MHA) model [160] to learn

a unified representation. The Multi-Head Attention model is effective in learning

representation form different other representations. We build the MHA on top of the

GRU and Convolutional (Conv) layers as shown in Figure 3.6. Due to the page limit,

we only introduce the basics of MHA. In our case, we build a two-head attention and

both heads have the exact same architecture, but they take different inputs. Both

GRU and Conv layers take input vectors at different time steps and generate the

corresponding output vectors at different time steps.

One head for the GRU layer, namely HG, takes the following inputs: a training

target vector (T ), all of the input vectors of the GRU layer at different time steps,

namely V I
G, and all of the intermediate output vectors from the GRU layer at different

time steps, namely V O
G . We define a target vector to have the same length as the

input vector. Also, we set all values in the T as 1 for buggy and 0 for non-buggy. V I
G

and V O
G are both obtained in the previous step in Sub-Section 3.2.4.3. Then the MHA

conducts a dot product between the T and the V I
G (i.e., AST node vectors), and scale

the product result by dividing it using the square root of the vector dimension of V I
G,
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denoted as d. After the scale process, we apply a softmax function on the result of the

scale process, denoted as softmax(
T · V I

G√
d
). Last, we apply the doc product operation

between the result of the softmax operation and all of the intermediate output vectors

from GRU, V O
G . The whole process can be expressed as V p

G = softmax(
V T · V I

G√
d

) · V O
G ,

where V p
G denotes a path vector learned from HG.

Another head for the Convolutional layer, namely HC , works the same way as

HG, except that HC takes the input vectors and the intermediate output vectors from

the Convolutional layer. We use V p
C to denote a path vector learned from HC .

The final step of MHA is to concatenate V p
G and V p

C to generate a unified one-

dimensional path vector that incorporates local context within a method.

3.2.5 Step 2: Network-Based global context representation learning

3.2.5.1 Overview. As shown in Sub-Section 4.3.2.1, a bug can involve multiple

methods, thus it is critical to model the relations among methods, even the paths

in different methods, into code representations for bug detection. To complement

the local context of buggy code, which is represented by buggy paths in the AST,

we capture the global context to integrate the relations among buggy methods into

our model via program and data flow dependencies. Figure 3.7 shows the general

overview of our process to model the global context. The first step is to extract the

Program Dependence Graph (PDG) and Data Flow Graph (DFG) from the source

code of a Java project. In the second step, the graphs are used as the input for a

process to vectorize the nodes. To achieve that, we use the Node2Vec [39] to capture

the data and control dependencies between relevant program statements. Then, at

the third step, the related statements in the long paths in the AST identified in

the previous step for the local context are used and encoded via the representation

vectors computed via the Node2Vec [39]. Finally, the representation vectors for the

PDGs and those for the DFGs are combined via matrix multiplication. The resulting

vectors are then integrated with the vectors for the local context computed earlier to
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produce the path representation vectors, namely global context representation. Let

us explain each step of this process in details.

Figure 3.7 Bug Detection: Learning global context representation and generating
long path representation vectors.

3.2.5.2 Generating graphs from Java projects. As we use path-based

code representation to model a method, we aim to represent the fine-grained

relations among methods, i.e., the relations among paths from different methods.

Specifically, we use the Program Dependence Graph (PDG) [36] and Data Flow Graph

(DFG) [185]. Given a version of a project, we generate the PDG and DFG for the

entire project at the statement level. We used the Eclipse plugin Soot [147] to produce

the PDG, and the plugin WALA [162] to produce the DFG.

For the PDG, we use the classes from soot.toolkits.graph.pdg in Soot to

implement a Program Dependence Graph as defined in [36]. Soot can handle

inter-procedural analysis for PDGs. As for the DFG, we use the classes from

com.ibm.wala.dataflow in WALA to generate a data flow graph [59]. In our problem,

we would like to generate a large data flow graph which contains all data flows in a

whole project. Given a project, the WALA can generate a set of data flow graphs for

the project and we connect them to build the entire DFG for the whole project.

Currently, for both PDG and DFG, we handle virtual method calls in

a conservative way using declared types for program entities. We support no
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pointer analysis, data flow through heap-allocated objects is approximately and

conservatively captured via explicitly declared objects.

3.2.5.3 Using lower dimension vectors to represent graphs. Once the

two graphs are generated for a project, we convert the large graphs (e.g., a PDG can

be very large with a high number of nodes and edges) to low-dimensional vectors

without much information loss for efficient processing. We apply the widely used

network embedding algorithm, the Node2Vec [39], to encode all of the nodes in our

PDGs and DFGs. During the learning of node embeddings, the Node2Vec can encode

a node with the information of the node’s surrounding structures.

Figure 3.8 Bug Detection: Using lower dimension vectors to representation graphs.

Technically, for each graph (i.e., the PDG or DFG), a bag of nodes is extracted

in which each node m represents a code statement and the neighboring nodes of

m represent the code statements with dependencies on m. A neural network in

the form of a skip-gram model [100] is trained with the input layer containing each

node m for a statement and the output layer containing the neighboring nodes of m

for the statements with dependencies on the current statement. The output of the

process is the feature matrix with the dimension of n×D, where n is the number of

nodes/statements in the input layer and D is the number of representation features

in the lower dimension vector space. In other words, each row is a feature vector

representing a code statement in the input graph. The representation vectors capture

the neighboring structures of the statements/nodes.
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As it is not designed for source code, the Node2Vec models the network data

that can flow two ways between two nodes. Our graphs, PDG and DFG, are one-

directional. Therefore, we adapt the Node2Vec in the following ways. Inspired from

NAR-miner [13], we set the weight weight = 1 to a directional edge from node A

to node B if these two nodes have a dependency in a program graph (i.e., the PDG

or DFG). We also assign another weight weight = −1 to the opposite directional

edge from node B to node A, meaning that there is no dependency from B to A

in a program graph. For example, in the example code in Figure 3.4a, there is a

relationship between if(proxy == null) and proxy = createProxy(). In the PDG,

the weight on the edge from if(proxy == null) to proxy = createProxy() is 1, and

the weight on the edge from proxy = createProxy() to if(proxy == null) is -1.

Then, we apply the Node2Vec on the PDG and DFG, separately to compute network

embedding, and obtain a vector for each node representing each code statement.

3.2.5.4 Learning global context representation vectors for long paths.

Once we obtain the vector representations for all of the nodes/statements in the PDG

and DFG, we use them to encode the long paths in the AST that were extracted in

the local context computation step. We denote a node in a PDG as NP , and a node

in a DFG as ND. Several long paths can go through the same statement and a

statement can have multiple AST nodes. For example, in Figure 3.4b, the statement,

if(proxy == null), includes four AST nodes: Proxy, ==, Null, and If Stmt. There are

three paths, the yellow, red, and blue paths, passing through these nodes. Therefore,

given a project, we can extract all of the mappings between the long paths and the

statements, where a path is mapped to a set of unique statements and each statement

is a node in the graph (i.e., a PDG/DFG). The vectors representing each of those

statements, i.e., the nodes in the PDG and DFG, were computed via the Node2Vec

in the previous step. Thus, we can use the vectors for those nodes NP and ND to

capture the global context and represent a long path in the AST. Specifically, a long
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path is represented by the average vector of the vectors for the corresponding PDG

nodes (namely V P
PDG) and the average vector of the vectors for the corresponding

DFG nodes (namely V P
DFG).

Figure 3.9 Bug Detection: Learning global context representation vectors for long
paths.

3.2.5.5 Learning path representation vectors for long paths. In the final

step for learning the representation vectors for long paths, we combine the local

context and the global context vector representations for the paths. Given a path

with a local context vector representation (in Sub-Section 3.2.4), denoted as V P
local,

we use the following steps to combine V P
PDG and V P

DFG with V P
local: First, we apply

Matrix Multiplication (denoted as ·) to V P
local and V P

PDG, and also V P
local and V P

DFG.

Then we can have the path representation vector by simply merging the above two

results: V P = V P
PDG · V P

local
T
, V P

DFG · V P
local

T
. Matrix multiplication can effectively

combine such vectors to make the combined vector more expressive. We tested

other aggregation mechanisms, e.g., vector concatenation, and matrix multiplication

produces better result.

Once we have all of the path representation vectors, a method M can

be represented as a set of path vectors with local and global contexts: M =

{V P
1 . . . V P

i . . . V P
n }, where V P

i is the unified path vector for the i-th path in M ,

1 ≤ i ≤ n, and n the total number of long paths for the method M . Within a

project, each method can have a different number of long paths. To make sure all

of the methods can be modeled with the same number of path vectors, we choose
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the method with the largest number of long paths among all methods, and use that

number as the default value for the number of paths to model a method. If a method

has fewer long paths than the default number, we perform zero padding for the vector

representations.

3.2.6 Step 3: Bug detection

After the above two steps, we obtain a representation for each method. We

build a classic CNN architecture to classify whether a method is buggy or not,

given a set of method representations. We build the following layers to process

method representations: First, a Convolutional layer is applied on the set of method

representations. Second, the Max pooling and fully connected layers are applied.

Third, we use a SoftMax layer to the classification.

3.2.7 Empirical evaluation

3.2.7.1 Research questions. We have conducted several experiments to

evaluate our model. Specifically, we seek to answer the following research questions:

RQ1. Bug Detection Comparative Study. How well our approach perform in

comparison with the existing state-of-the-art bug detection approaches?

RQ2. Code Representation Comparative Study. Is our code representation

with local and global contexts more suitable than existing code representations in

bug detection?

RQ3. Sensitivity Analysis. How do various factors affect the overall performance

of our approach?

3.2.7.2 Experimental methodology.

3.2.7.2.1 Data collecting and processing. We conduct our study on eight well-

known and large open-source Java projects with different versions of each project. In

total, we got 92 versions of these projects with +4.9 million Java methods (Table 3.1).

For each project, we collect source code and commits from the Github repository, and

35



Table 3.1 Bug Detection: Statistics on Dataset.

Project
Name

# of Versions # of Files # of
Methods

# of Buggy
Methods

pig 9 8k 95k 21k

avro 7 2k 30k 1k

lucene-solr 14 93k 1.032M 518k

hbase 9 14k 318k 258k

flink 14 49k 419k 173k

hive 18 53k 981K 411k

cloudstack 11 55k 766k 307k

camel 10 172k 1.332M 135k

Total 92 402K 4.973M 1.824M

bug reports from the issue tracking system of the project. Specifically, we use the

following steps to process the data of a project:

• First, we download all bug reports that are marked as resolved or closed and
bug from the JIRA issue tracking system. The details of a report has a field
named Fix Versions which indicates the bug fix locations. We extract the bug
id and the version numbers from a bug report.

• Second, for a version of a project, we download the commits from the Git
repository. We use the same approach as the ones used in [102, 130, 128] to
process each commit message and mark it as a bug-fix if the message contains
a bug id and at least one of the error related keywords: {error, bug, fix, issue,
mistake, incorrect, fault, defect, flaw and type}.

• Once we identify all of the bug-fixes in the previous steps, we download the
source code of the project version as a clean version and use the bug-fix commits
to recover the buggy version from the source code, as a code commit records all
of the additions and deletions. Specifically, we use the additions in commits to
locate the methods where code fixes occurred, and then roll the methods back
to the states before the fixes to obtain the buggy code.
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3.2.7.2.2 Experiment setup and procedure. To answer our research questions,

we use the following procedures and setups.

RQ1. (Bug Detection Comparative Study) Analysis Approach.

Comparable Baselines: We compare our approach with the following state-of-

the-art approaches:

• DeepBugs[125]: DeepBug is a bug detection approach with a deep learning
model on the name-based information in source code. We used the default
values of their model and tried different values for vocabulary size, and kept the
value giving the best result.

• Bugram[164]: Bugram uses n-gram to evaluate a given method and decides
its bugginess by picking the top-ranked possibilities for each n-gram. With our
dataset, we tried various values of n and sequence lengths, and kept the ones
giving best results.

• NAR-miner[13]: NAR-miner mines negative rules on the code (e.g., if A then
not B), and then use them to detect bugs. We used the default values for their
model.

• FindBugs[9]: FindBugs is an open-source static analysis tool that analyzes
Java class files to detect program defects. The analysis engine statically encodes
more than 300 different bug patterns using a variety of techniques. We used
the default values for FindBugs.

We conduct our experiments in two settings:

• Detecting bugs in unseen projects (Cross-Project). This setting is used
to test the ability of a model to detect bugs on unseen projects (i.e., on a project
that is not included in the training data). We train a model on all of the versions
of 7 randomly chosen projects in our dataset, and test the trained model on the
remaining project. We repeat 8 times for cross validation and calculate the
average.

• Detecting bugs in unseen versions of a project. This setting is used to
test the ability of a model trained on all of the existing versions of a project
and other projects to detect bugs on an unseen version of a project. We use all
of the versions of 7 randomly picked projects and all of the previous versions
of the 8th project as the training data and use the newest version of the 8th
project as the testing data.

Qualitative Analysis: In this experiment, for comparison, we make qualitative

analysis by comparing the top 100 results that each model reported on the same
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randomly chosen version of a project. We manually verified each reported bug. We

computed how many true bugs each model can detect in top 100 results, how many

true bugs detected by the baseline models were covered by our model, how many

bugs our model did not cover, and how many new bugs our model can find when

comparing with the baseline models.

Tuning our approach and the baseline models: We tuned approaches in the

cross-project setting. For simplicity, we use the same set of parameter settings

for approaches in both of the above mentioned experimental settings once the best

settings are identified.

We tuned our model with the following key hyper-parameters:

1. Epoch size (i.e., 100, 200, 300),

2. Batch size (i.e., 32, 64, 128, and 256),

3. Learning rate (i.e., 0.005, 0.010, 0.015),

4. Vector length of word representation and its output (i.e., 150, 200, 250, 300),

5. Convolutional core size (i.e., 1x1, 3x3, 5x5), and

6. The number of convolutional core (i.e., 1, 3, and 5).

We tuned the baseline models with some parameters to obtain the best results on

our dataset. We tuned the vocabulary size for the DeepBugs, the gram size, sequence

length range, minimum token occurrence, and reporting size for the Bugram, and

the threshold of frequent itemsets, the maximum support threshold of infrequent

itemsets, the minimum confidence threshold of interesting negative rules min conf for

NAR-miner. FindBugs is a rule-based tool and we directly used its default setting.

RQ2. (Code Representation Comparative Study) Analysis Approach.

In this work, for bug detection, we introduce a novel path-based code

representation with graph-based local and global contexts. We aim to compare

our representation with other baseline representations that are used for source code

similarity in the context of bug detection.
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Comparable Baselines: We compare our code representation with the following

state-of-the-art code representations on bug detection:

• DeepSim[195]: DeepSim represents source code for code similarity. It encodes
control flows and data flows into a semantic matrix in which each element is a
high dimensional sparse binary feature vector.

• code2vec[7]: code2vec uses most frequently paths on the AST from one leaf
node to another via going up in the tree.

• Code Vectors[47]:The approach uses abstractions of traces obtained from
symbolic execution of a program as a representation for learning word embedding.

• Deep Learning Similarity (DL Similarity) [157]: This approach applies deep
learning on 4 different types of representations, including Identifiers, AST,
Control Flow Graph, and Bytecode of a method, to learn a code representation.

• Tree-Structured LSTM (Tree-Based LSTM) [151]: Tree-Based LSTM gets
the representation of each method by training a tree-structured LSTM model
with the AST of the source code.

As those representations are not aimed for bug detection, to be fair, we compare

only the code representation part of our approach with those representations. To do

so, we build a baseline as follows: we use each of those code representations with our

model to detect bugs.

Similar to the analysis approach for RQ1, we also conduct our experiments

in the two settings cross-project and cross-version, and the top-ranked qualitative

analysis.

Tuning our model and the baselines: As in RQ1, we use the same set of

parameter settings of an approach for both experimental settings. For our approach,

we use the best parameter settings learned in RQ1 to run our approach in this

experiment. For the baselines, there are no key parameters in the code representation

learning of the baselines.

RQ3. Sensitivity Analysis Approach.

For sensitivity analysis, we would like to evaluate how various factors including

paths over AST, multi-head attention, Program Dependency Graph, and Data Flow
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Graph impact on our model’s accuracy in bug detection. To perform sensitivity

analysis, we add each element into the model one by one in each of the two settings

with different parameters.

3.2.7.2.3 Experiment metrics. We use the following metrics to measure the

effectiveness of a model:

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
, F score =

2 ∗Recall ∗ Precision

Recall + Precision

Where TP = True Positives; FP = False Positives; FN = False Negatives; TN =

True Negatives.

Recall measures how many of the labeled bugs can be correctly detected, while

Precision is used to measure how many of the detected bugs are indeed labeled as a

bug in the bug tracking system. Note that in the bug tracking system, there exist

cases in which the occurrences of the labels or bug-indicating words do not really

show bug fixes. Thus, to complement for that, in the comparative study, we picked

100 results and manually verified if they are truly bugs or not.

In our qualitative analysis, we also computed related Recall, Precision, and

F-score. We use the term “related” to refer that we only consider the top 100 results

from a model. For related Recall, we collect all true bugs found by a model in the top

100 results and regard them as the total true bugs. We calculate the related Recall

in the top 100 results with the total true bugs. For related Precision, we regard top

100 results as the total reported results and calculate the Precision with 100 results.

Thus, TP +FP is equal to 100. For related F-score, we use related Recall and related

Precision for the calculation in the same way as in F-score.

3.2.7.3 Experiment results.

3.2.7.3.1 Results of RQ1 (Comparative study on bug detection). As

seen in Table 3.2, our model outperforms the state-of-the-art bug detection

baselines in the cross-project setting. Specifically, our model improves over the
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baselines in every measurement metric, except the recall values in the rule-based

approaches NAR-miner and FindBugs. The Recall values of NAR-miner and

FindBugs are 6% and 12% higher than ours. However, NAR-miner and FindBugs

have a high false positives rate, i.e., 52% and 66%, that is approximately 1.5x and

2.1x higher than ours. False positives waste developers’ time in investigating incorrect

cases. Our model improves F-score over the baselines DeepBugs, Bugram,

NAR-miner, and FindBugs by 1.38x, 1.16x, 2.63x, and 3.57x, respectively.

Importantly, our model can generate fewer false positives than all of the baselines.

Table 3.2 Bug Detection: RQ1. Comparison with the Baselines in the Cross-
Project Setting.

Category Our Approach DeepBugs Bugram NAR-miner FindBugs

Recall 0.68 0.62 0.64 0.72 0.76

Precision 0.39 0.25 0.32 0.11 0.08

F-score 0.50 0.36 0.43 0.19 0.14

FP Rate 0.21 0.41 0.39 0.52 0.66

Notes: FP: False Positives.

Table 3.3 Bug Detection: RQ1. Comparison with the Baselines in Detecting Bugs
in Unseen Versions of a Project.

Category Our Approach DeepBugs Bugram NAR-miner FindBugs

Recall 0.74 0.63 0.67 0.68 0.73

Precision 0.56 0.27 0.41 0.22 0.15

F-score 0.64 0.38 0.51 0.33 0.25

FP Rate 0.29 0.37 0.38 0.35 0.43

Table 3.3 shows that our model outperforms four state-of-the-art bug

detection baselines in detecting bugs in the unseen versions of a project.
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Specifically, our model relatively improves DeepBugs, Bugram, NAR-miner, and

FindBugs by 107%, 37%, 155%, and 273% respectively, in terms of Precision, and by

69%, 25%, 92%, and 156% respectively, in terms of F-score.

Furthermore, consolidating the results in Table 3.2 and Table 3.3, we can see

that including previous versions of a project in the training can improve the overall

effectiveness of all approaches. This is reasonable because including previous versions

of the same project increases the knowledge to train the model. Our model obtains

a large gain in terms of F-score (i.e., increasing 0.13 from 0.51 to 0.64), which shows

that our model has a better learning ability in both settings. Although NAR-miner

also obtains a large gain in terms of F-score, its F-score is still very low, i.e., 0.33.

Qualitative Analysis of RQ1.

Table 3.4 and Figure 3.10 show the overlapping analysis on the 100 top-ranked

results from all of the models. As seen, our model discovers more true bugs than all

other baselines. Specifically, 69%, 74%, 71% and 69% of the true bugs detected by

DeepBugs, Bugram, NAR-miner, and FindBugs, respectively, can also be detected

by our model. Although DeepBugs, Bugram, NAR-miner, and FindBugs can detect

8, 9, 7, and 4 true bugs that our model cannot detect, our model detects 30, 23, 31,

and 39 more new true bugs than those baseline models, respectively. The key reason

for our model to detect more bugs than DeepBugs and Bugram is that it combines

both local and global contexts, along with program dependencies. On the other hand,

the rule-based approaches, i.e., NAR-miner and FindBugs, are less flexible than our

model because their rule-based detection engine is strict and cannot match the bugs

that are not encoded in their dataset of rules.

3.2.7.3.2 Results of RQ2 (Code representation comparative study). Table 3.5

shows that our code representation with local and global contexts is more

suitable than other existing code representations in bug detection in the

cross project setting.
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Table 3.4 Bug Detection: RQ1 Qualitative Analysis on the Top 100 Reported Bugs
of the Approaches.

Category Our Approach DeepBugs Bugram NAR-miner FindBugs

# of True Bugs 48 26 34 24 13

Related Recall 0.70 0.38 0.49 0.35 0.19

Related Precision 0.48 0.26 0.34 0.24 0.13

Related F-score 0.58 0.32 0.41 0.29 0.16

Figure 3.10 Bug Detection: Overlapping among results from our model and the
baselines in RQ1.

Specifically, our approach can outperform the five baselines using different code

representations in every measurement metric, except that Recall of Tree-Based LSTM

code representation is 21% higher than ours. However, Tree-Based LSTM has much

lower Precision (i.e., 9%) and higher false positives rate (i.e., 69%) that is 2.29X

higher than our false positives rate, thus, making Tree-Based LSTM impractical.

Our model using path-based code representation with local and global contexts

can improve relatively over all of the five baseline code representations: DeepSim,

DL-similarity, code2vec, Tree-based LSTM, and Code Vectors by 67%, 38%, 82%,

206%, and 101%, respectively, in terms of F-score. Importantly, our false positives

rate is lower than all of the baselines.
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Table 3.5 Bug Detection: RQ2. Comparison with the Baselines in the Cross-
Project Setting.

Category Our
Approach

DeepSim DL
Similarity

code2vec Tree-
Based
LSTM

Code
Vectors

Recall 0.68 0.67 0.71 0.69 0.82 0.70

Precision 0.39 0.19 0.24 0.17 0.09 0.15

F-score 0.50 0.30 0.36 0.27 0.16 0.25

FP Rate 0.21 0.35 0.36 0.43 0.69 0.45

Table 3.6 Bug Detection: RQ2. Comparison with the Baseline Code
Representations in Detecting Bugs in Unseen Versions.

Category Our
Approach

DeepSim DL
Similarity

code2vec Tree-
Based
LSTM

Code
Vectors

Recall 0.74 0.69 0.57 0.64 0.61 0.59

Precision 0.56 0.42 0.33 0.41 0.21 0.25

F-score 0.64 0.52 0.42 0.50 0.31 0.35

FP Rate 0.29 0.38 0.34 0.39 0.44 0.41

Table 3.6 shows that our code representation is also more suitable than

other existing code representations in detecting bugs in unseen versions

of a project by including other previous versions of the project in training

data. Our approach can outperform all of the baseline code representations in every

measurement metric. Overall, the effectiveness of all approaches on detecting bugs in

an unseen version of a project can be improved by adding more previous versions of

the project into training.
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Table 3.7 Bug Detection: RQ2. Qualitative Analysis on the Top 100 Reported
Bugs of Each Model.

Category Our
Approach

DeepSim DL
Similarity

code2vec Tree-
Based
LSTM

Code
Vectors

# of True Bugs 48 25 34 39 21 23

Related Recall 0.65 0.34 0.46 0.53 0.28 0.31

Related Precision 0.48 0.25 0.34 0.39 0.21 0.23

Related F-score 0.55 0.29 0.39 0.45 0.24 0.26

Figure 3.11 Bug Detection: Overlapping among results from our model and the
baselines in RQ2.

Qualitative Analysis of RQ2. We conduct the overlapping analysis on the results

from all of the models. Table 3.7 and Figure 3.11 show that our model detects

64%, 79%, 67%, 67%, and 65% of the bugs that DeepSim, Deep Learning Similarity,

code2vec, Tree-Based LSTM, and Code Vectors detect, respectively. Although the

five baselines can detect some true bugs that ours cannot detect, our approach can

detect 32, 21, 22, 34, and 33 new true bugs that the code representations DeepSim,

DL similarity, code2vec, Tree-Based LSTM, and Code Vectors cannot detect. Thus,

our representation is more suitable than the baselines in bug detection in the cross-

project setting.

3.2.7.3.3 Results of RQ3 (Sensitivity analysis). We conducted an experiment

to study how different factors including the Local Contexts, the Multi-Head Attention,

the Program Dependency Graph and Data Flow Graph (both graphs are global
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contexts) affect our model’s accuracy. Due to the page limit, we report the results in

the cross-project setting.

Table 3.8 Bug Detection: RQ3. Sensitive Analysis of the Impact of Different
Factors on Our Approach.

Models Precision Recall F-Score

LC 0.19 0.75 0.30

LC+Attention 0.2 0.75 0.32

LC+PDG 0.29 0.54 0.38

LC+PDG+Attention 0.28 0.71 0.40

LC+DFG 0.26 0.51 0.34

LC+DFG+Attention 0.26 0.66 0.37

LC+PDG+DFG 0.37 0.43 0.40

LC+PDG+DFG+Attention 0.36 0.62 0.46

Notes: LC: Local Context. PDG: Program Dependency Graph. DFG: Data Flow Graph.

Attention: Multi-Head Attention.

As shown in Table 3.8, we build 8 variants of our approach with different factors

and their combinations. We analyze our results in Table 3.8 as follows:

From LC in Table 3.8, we can see that by using only local contexts, i.e., context

in individual Abstract Syntax Tree, to model source code, our model can achieve a

high recall of 0.75.

To study the impact of the PDG, we compare the results obtained from two

variants: LC and LC+PDG. The results show that adding the PDG as a context can

increase Precision and F-score relatively by 52.6% and 26.7%, but decrease Recall

from 0.75 to 0.54 (i.e. 28%). This is because the PDG puts a stricter condition on

source code similarity.

To study the impact of DFG, we compare the results from two variants: LC and

LC+DFG. The results show that adding the contexts in DFG can increase Precision
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and F-score by 36.8% and 13.3%, but decrease Recall from 0.75 to 0.51 (i.e., 32.0%).

Overall, adding global contexts can improve Precision, but hurts Recall, which reduce

the false positives. However, the overall F-score is improved using either of the two

graphs. From the above results, we can see that the PDG can contribute more than

DFG. This is reasonable because the PDG contains richer information than DFG.

To study the impact of Multi-Head Attention, we compare the results from the

variants LC and LC+Attention. We can see that Multi-Head Attention cannot help

much if we consider only the paths within the method’s body because the attention

is aimed to put weights on the global context via the PDG and DFG. However, if we

compare LC+PDG and LC+PDG+Attention, we can see that Recall is improved

from 0.54 to 0.71. Similar trends can be observed when we compare LC+DFG

and LC+DFG+Attention, or LC+PDG+DFG and LC+PDG+DFG+Attention. This

implies that Multi-Head Attention contributes much in term of improving

Recall because it helps better ranking of the buggy methods in the resulting list.

To compare LC+PDG+DFG with LC+PDG and with LC+DFG, we can see

that both of the graphs in the global context contributes positively on our model’s

accuracy. When we put together local context in LC, global context in the PDG and

DFG, and attention, our model achieves the highest accuracy in all metrics.

Local context enables a high recall. Global context in the PDG and DFG

improves much in Precision and reduces false positive rates due to the stricter

similarity condition with the use of the PDG and DFG.

However, it hurts Recall. To make up for such reduction in Recall, Multi-Head

Attention mechanism emphasizes on the buggy paths, and helps collect more potential

buggy methods, and push the buggy methods to be ranked higher in the resulting

list. Thus, Multi-Head Attention mechanism helps our model make up for

the reduction of Recall. As a result, F-score of our model is improved.

47



3.2.8 Discussion and implications

3.2.8.1 In-Depth case studies. Let us present in-depth case studies to

understand why our attention neural network-based approach using local and

global contexts for learning code representations achieves better results than other

approaches. Let us illustrate via the following case studies.

Method 1.

1 -public void print(Doc doc , int copies, boolean sendToPrinter , String

2 mimeType , String jobName) throws PrintException {

3 +public void print(Doc doc , boolean sendToPrinter , String mimeType , String

4 jobName) throws PrintException {

5 ...

6 }

Method 2.

1 private void print(InputStream body , String jobName) throws PrintException {

2 if (printerOperations.getPrintService (). isDocFlavorSupported(

3 printerOperations.getFlavor ())) {

4 PrintDocument printDoc = new PrintDocument(body , printerOperations.

5 getFlavor ());

6 - printerOperations.print(printDoc , config.getCopies(), config.

7 isSendToPrinter (), config.getMimeType (), jobName );

8 + printerOperations.print(printDoc , config.isSendToPrinter (),

9 config.getMimeType (), jobName );

10 }

11 }

Figure 3.12 Bug Detection: Case study 1.
Notes: The code fixes are from Camel version 2.20.0 for the bug Camel − 12228. The errors are

marked in red. For simplicity purpose and page limitation, we only show the key lines of fixes.

Case Study 1. This case study shows a typical example of a bug involving

multiple interdependent methods. Figure 3.12 shows a bug-fix example involving
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two methods of the project Camel, for the bug with an id Camel − 12228. The

bug report states that Method 1 print( Doc doc, int copies, boolean sendToPrinter,

String mineType, String jobName) has a bug causing ”print command fails in case of

multiple copies”, as it requires to cancel the loop of print and reduce one parameter

int copies. The second method print(InputStream body, String jobName) has a call

(line 6) to Method 1. Therefore, to fix bug id Camel − 12228, it requires to fix

both methods. Both methods are identified as buggy by our model, but not by the

baselines, which consider only individual methods.

The capability to detect this type of popular bugs involving multiple methods

is due to the way we model the relations among paths in the ASTs of a project

into code representation. In the process of code representation learning, we use

the dependencies of the entities in the PDG and DFG to capture the relations among

paths from the ASTs of a project. In this way, when analyzing the contexts in the

AST paths and their relations of the above two methods, our model, trained with

existing bug knowledge, syntax, and dependencies from the program entities, can

learn to decide that both methods are buggy.

Other baselines, such as MAR-miner, Bugram, and DeepBugs, do not consider

the relationships among methods and paths from a perspective of a whole version of a

project. They often consider methods individually. In the above example, if a model

looks only at the second method print(InputStream body, String jobName) without

analyzing the dependencies among AST paths from both methods, it cannot detect

a bug in this method.

Case Study 2. Figure 3.13 shows an example of two real bug fixes on the same

method main() in two versions 0.2.0 and 0.8.0 of the project named pig. The method

main() in the version 0.2.0 was fixed before. However, the fix (line 3, Method 3 in

version 0.3.0) was marked as a bug in the version 0.8.0. By including the previous
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Method 3 in version 0.2.0

1 public static void main(String args [])

2 ...

3 - pigContext.getProperties().setProperty("pig.logfile", logFileName);

4 + if(logFileName != null) {

5 + log.info("Logging error messages to: " + logFileName);

6 + }

7 ...

8 }

Method 3 in version 0.8.0

1 public static void main(String args [])

2 ...

3 - if(logFileName != null) {

4 - log.info("Logging error messages to: " + logFileName);

5 - }

6 pigContext.getProperties (). setProperty("pig.logfile", (logFileName

7 == null?"": logFileName ));

8 configureLog4J(properties , pigContext );

9 + if(logFileName != null) {

10 + log.info("Logging error messages to: " + logFileName);

11 + }

12 ...

13 }

Figure 3.13 Bug Detection: Case study 2.
Notes: The code fixes are from project pig version 0.2.0 and version 0.8.0 for the bugs, PIG− 695

and PIG− 1407. The errors are marked in red and the fixes are highlighted in green. For simplicity

purpose and page limitation, we only show the key lines of fixes that affect both methods.
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fixes in the version 0.3.0, our approach is able to identify the main() in the version

0.8.0 as buggy, while the baselines cannot.

Extracting long paths and using attention model to add weights in

previous buggy paths into code representation. Our model adds weights to

previous buggy paths and extracts long AST paths to cover each node in the ASTs

to make sure that key information on the bug in the methods to be considered, which

makes our code representation more specialized for bug detection. In the case study

2, we can see that when the method main() was fixed in the version 0.2.0, the AST

paths covering the line 3 (i.e., the buggy line) will be given a weight and our model

automatically learns the value for the weight based on a large number of previous fixes.

Once the weight is learned, our model can learn to analyze the same or similar AST

paths as buggy with higher possibilities. Thus, our model can classify the method

in the version 0.8.0 as buggy based on the bug in the earlier version. In addition,

our model uses long paths to cover all contexts, such as nodes and their relations in

ASTs. In the above example, the long paths help our model cover the buggy line

(line 3 of the method in the version 0.2.0). However, the baselines consider only some

portion of AST contexts. For example, code2vec considers only the most-frequent

AST paths (i.e., no buggy information is considered in code2vec). In case study 2,

code2vec assigns a weight of 0.3 to the paths covering the buggy line (line-3). However,

code2vec does not consider the paths with a weight of 0.3 as a top ranked path, so

it misses the buggy path. Also, all other baselines, such as code2vec, Tree-Based

LSTM, Code Vectors, and DL Similarity, do not incorporate buggy information in

their code representation learning, which makes them miss important information in

bug detection.

Attention models help add weights to buggy paths in learning code

representation, thus improve the ranking, leading to improve Recall.

Attention GRU layer and Attention Convolutional layer extract different types of
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key information from the AST in a method. Second, we use a powerful multi-head

attention model [160] to combine the key information from different attention layers.

The baselines only concatenate different vectors into a unified vector without learning,

which may contain less information than our approach in code representations.

Learning to detect bugs, rather than memorization. We checked AST

path duplication in training and testing data and found that 26.1% of paths in testing

are in training. Our model achieves the precision of 39% (i.e., higher that 26.1%),

proving that our model is able to learn from data to detect bugs, rather than simply

memorization and retrieving from the stored data.

Table 3.9 Bug Detection: Time Consumption.

Time Ours DB BR NAR DS DLS c2v TL CV FB

Training/Mining
Time

654 238 6 2 497 428 125 219 246 N/A

Detection Time 4 2 2 1 2 3 2 2 2 5

Notes: Time Consumption in Minutes of Approaches in Training and Detecting Bugs from a

Project under the setting of detecting bugs in unseen versions of a project.DB: DeepBugs. BR:

Bugram. NAR: NAR-miner. DS: DeepSim. DLS: Deep Learning Similarity. c2v: code2vec. TL:

Tree LSTM. CV: Code Vectors. FB:FindBugs. N/A:not applicable.

3.2.8.2 Time complexity. Table 3.9 shows that all deep learning based

approaches take more time to train, which is well expected. The models can be

trained off-line, so the detection time is more important. On average, our approach

uses 4 minutes to finish detecting bugs in a project. Although our model costs more

time in detecting bugs in a project than other baselines except for the FindBugs, there

is only 1 or 2 minutes difference between our model and the baselines due to the time

complexity of handling graphs. However, our model performs much better than the

baselines on detecting bugs. Due to the page limit, we report only the running time

of the models in the setting of detecting bugs in unseen versions of a project. The
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time complexity evaluated in the cross-project setting is roughly similar as the ones

in Table 3.9.

3.2.8.3 Limitations of our approach. Through analysis on the bugs that

our model cannot detect, we identify the following limitations:

• Our approach does not work well on the bugs about parameters in loops. Our
approach examines all of the contexts in paths and their relations, but our AST
path-based modeling cannot accurately capture the relations among parameters
in a loop due to the limitations of our static analysis approach. Dynamic
analysis on execution paths could be useful to complement with our approach.

• Our approach does not work well on the bugs about the fixes in strings. Our
approach does not analyze the semantics of string literals and variables, so we
cannot detect the bugs that is relevant to changes in string literals. We found
that NAR-miner performs better on this kind of bugs by generating the negative
rules to pick out the buggy words in the strings.

3.2.8.4 Explanation ability. To improve the ability to explain the buggy code

in our solution, we could improve our solution in the following two directions in the

future:

• Statement-Level bug detection. Code statement-level bug detection is a natural
next step of method-level bug detection. In order to detect buggy code lines, on
the top of method information, we plan to utilize and incorporate the following
information related to a code statement, cs: (1) sequential information of
characters and tokens in cs; (2) cs’s relations with other code statements within
one code method; and (3) cs’s relations with other relevant code statements from
other code methods. Based on the above information, we plan to build code
representations for code statements and propose deep learning based approaches
to classify code statements.

• Fine-Grained bug classification. In this research topic, our focus is to determine
whether a method is buggy or non-buggy. In the future, we plan to show the
types of bugs associated with a detected code statement or method. To do so, we
first plan to study bugs collected in our big dataset and manually create a small
well-classified dataset of bugs. Next, we will explore to develop deep learning
and active learning based approaches to automatically label more bugs using
the small dataset of bugs as a seed. Last, we can develop and train machine
learning (including deep learning) models on the built large dataset containing
code and bug types to conduct more explainable bug detection.
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3.2.9 Threats to validity

We have identified the following threats to the validity:

Implementation of baselines. To compare with existing bug detection

approaches, we have re-implemented a learning-based approach, Bugram [164], since

the Bugram code has been removed from the public repository. The source code of

other baselines studied in our study is publicly available and we directly use their

code in our experiments.

The Bugram paper reported a slightly higher precision and F-score than what

we reported using our implementation of Bugram in this work. One possible reason

is that Bugram performs differently on different datasets and some implementation

details are not mentioned in their paper, which makes our version of Bugram slightly

different from the one in the original paper. However, we tried our best to build and

tune the Bugram parameters on our dataset and this is the best effort we can make

when the code is not publicly available. We tuned our approach and Bugram both

on our dataset, which would make it fair for both of our approach and Bugram.

Applying all baselines on our dataset. Some baselines reported better

results in their original papers than the ones we obtained in our work. The main

reason is that some baselines were not evaluated on Java code. Although we did not

compare our tool with the baselines on their datasets, we compare all approaches on

our collected dataset and tune them for the best results.

Collecting bug reports. During the bug report collection, we solely rely on

the bug metadata that is manually created by the developers. We only download

the bug reports with tags “bug” and “resolved or fixed”. However, sometimes, a

bug report marked as “bug” is not really a bug, but rather a code refactoring, which

is commonly well-known problem in bug management. Due to the large amount of

bug reports collected, we cannot verify all of them and make sure all of our data

is correctly marked, which is common in large-scale data analysis. However, when

54



evaluating our results, we also manually verify the top ranked 100 bugs to identify

the true bugs to try our best to minimize this potential bias in our study.

Verifying true bugs in our qualitative analysis. Following prior studies

[80, 89, 40, 164, 13], we manually check if the reported bugs in qualitative analysis

are true bugs. Although this part of work is common in studies for bug detection,

this process will bring bias to our results since the authors of this research work are

not the developers of these projects. Sometimes we may misunderstand the code and

come up with the wrong idea of a bug being a true bug.

Selection of programming languages. In this study, we only apply our

approach on Java code. Thus, we cannot claim that our approach is generic for

all programming languages. We choose Java code because Java is a widely used

programming languages with many mature projects. However, the key drivers of

our approach outperforming the baselines are general across programming languages:

AST paths, PDG, DFG, and attention mechanism. Our methodology is general, no

techniques/algorithms on the above extracted programming structures are tied to

any programming languages. However, the results might be different for different

languages.

3.3 Fault Localization with Code Coverage Representation Learning

3.3.1 Introduction

Finding and fixing software defects is an important process to ensure a high-quality

software product. Much time and effort from developers have been spent in that

process. To reduce such effort, several fault localization (FL) approaches [174] have

been proposed to help developers localize the source of a defect (also called a bug or

fault). In the FL problem, given the execution of test cases, an FL tool identifies the

set of suspicious lines of code with their associated suspiciousness scores [174]. The

key input of an FL tool is the code coverage matrix in which the rows and columns
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correspond to the source code statements and test cases, respectively. Each cell is

assigned with the value of 1 if the respective statement is executed in the respective

test case, and with the value of 0, otherwise. In recent FL, several researchers also

advocate for fault localization at method level [72]. Both kinds of FL are useful for

developers in locating and fixing bugs.

Spectrum-Based fault localization (SBFL) approaches [58, 57, 1] take the

recorded lines of code that were covered by each of the given test cases, and assigned

each line of code a suspiciousness score based on the code coverage matrix. Despite

using different formulas to compute that score, the idea is that a line covered more in

the failing test cases than in the passing ones is more suspicious than a line executed

more in the passing ones. A key drawback of those approaches is that the same score

is given to the lines that have been executed in both failing and passing test cases.

An example is the statements that are part of a block statement and executed at the

same nested level. Another example is the conditions of the condition statements,

e.g., if, while, do, and switch.

To improve SBFL, mutation-based fault localization (MBFL) approaches [103,

118, 119] enhance the code coverage information by modifying a statement with

mutation operators, and then collecting code coverages when executing the mutated

programs with the test cases. They apply suspiciousness score formulas in the same

manner as spectrum-based FL approaches on the code coverage matrix for each

original statement and its mutated ones. Despite the improvement, MBFL are not

effective for the bugs that require the fixes that are more complex than a mutation

(Sub-Section 4.3.2.1).

Machine learning (ML) and deep learning (DL) have been used in fault

localization. DeepFL [72] computes for each faulty method a vector with +200

scores in which each score is computed via a specific feature, e.g., a spectrum-based

or mutation-based formula, or a code complexity metric. Despite its success, the
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accuracy of DeepFL is still limited. A reason could be that it uses various calculated

scores from different formulas as a proxy to learn the suspiciousness of a faulty

element, instead of fully exploiting the code coverage. Some formulas, such as the

spectrum- and mutation-based formulas, inherently suffer from the issues as explained

earlier with the statements covered by both failing and passing tests.

We propose DeepRL4FL, a fault localization approach for buggy statements/methods

that exploits the image classification and pattern recognition capability of the

Convolution Neural Network (CNN) [65] to apply on the code coverage (CC) matrix.

Instead of summarizing each row in that matrix with a suspiciousness score, we use its

full details and enhance it to facilitate the application of the CNN model in recognizing

the key characteristics in the matrix to discriminate between faulty and non-faulty

statements/methods more easily. We order the columns (test cases) of the CC matrix

so that the test cases with the non-zero values on nearby statements are close together.

The next test case shares with the previous one as many executed statements as

possible. This puts the non-zero cells in the matrix close together. We expect that

the CNN model with its capability to learn the relationships among nearby cells via a

filter will recognize visual characteristic features to discriminate faulty and non-faulty

statements/methods.

Inspired by the method in crime scene investigation, we use three sources of

information for FL: 1) code coverage matrix with failed test cases (the crime scene

and victims), 2) similar buggy code in the history (usual suspects who have committed

a similar crime in the past), and 3) the statements with data dependencies (related

persons), First, the CC matrix for the occurrence of the fault is an analogy of the

evidences at the scene. Second, an investigator also makes a connection from the

crime scene to the usual suspects. This is analogous to the modeling of the code of

the faults that have been encountered in the training dataset. The idea is that if the

persons (analogous to the code) who have committed the crimes with similar modus
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operandi (M.O.) in the past are likely the suspects (code with high suspiciousness) in

the current investigation.

Third, in addition to the crime scene, the investigator also looks at the

relationships between the victim or the things happening at the scene and other

related persons. Thus, in addition to the statement itself, its suspiciousness is

viewed taking into account the data dependencies to other statements in execution

flows and data flows. The idea is that some statements, even far away from the

buggy line, could have impacts or exhibit the consequences of the buggy line when

they are data-dependent. Thus, for a test, we first identify the error-exhibiting

(EE) line (defined as the line where the program crashed or exhibited an incorrect

value(s)/behavior(s)). That is, if the program crashes, the error-exhibiting line is

listed. If no crash and an assertion fails, assertion statement is EE line. EE line is

usually specified in a test execution. To identify the related statements, from the EE

line, we consider the execution order. However, if the statements are in the same block

of code (i.e., being executed sequentially), we also consider the data dependencies

among them and with the EE line. Finally, all three sources of information are

encoded into vector/matrix representations, which are used as input to the CNN

model to act as a classifier to decide whether a statement/method as a faulty or not.

We conducted several experiments to evaluate DeepRL4FL on Defects4J

benchmark [32]. Our empirical results show that DeepRL4FL locates 245 faults and

71 faults at the method level and the statement level, respectively, using only top-1

candidate (i.e., the first ranked element is faulty). It can improve the top-1 results of

the state-of-the-art statement-level FL baselines by 317.7%, 273.7%, 173.1%, 195.8%,

and 491.7% when comparing with Ochiai [1], Dstar [173], Muse [103], Metallaxis [119],

and RBF-Neural-Network-Based FL (RBF) [172], respectively. DeepRL4FL also

improves the top-1 results of the existing method-level FL baselines, MULTRIC [180],

FLUCCS [146], TraPT [73], and DeepFL [72], by 206.3%, 53.1%, 57.1%, and 15.0%,
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respectively. Our results show that three sources of information in DeepRL4FL

positively contribute to its high accuracy.

We also evaluated DeepRL4FL on ManyBugs [69], a benchmark of C code with 9

projects. The results are consistent with the ones on Java code. DeepRL4FL localizes

27 faulty statements and 98 faulty methods using only top-1 results.

The contributions of this research are listed as follows:

1. Novel code coverage representation. Our representation enables fully

exploiting test coverage matrix and take advantage of the CNN model in image

recognition to localize faults.

2. DeepRL4FL: Novel DL-based fault localization approach. Test case

ordering and three sources of information allows treating FL as a pattern recognition.

Without ordering and statement dependencies, the CNN model will not work well.

3. Extensive evaluation. We evaluated DeepRL4FL against the most recent

FL models at the statement and method levels, in both within-project and cross-

project settings, and for both C and Java.

3.3.2 Motivation

3.3.2.1 Motivating example. Figure 3.14 shows a real-world example of a

bug in Defect4J [32]. The bug occurs at line 10 in which the length of the string

to be built via StringBuilder was not set correctly. The developers fixed the bug by

modifying lines 10–11 into line 12.

To localize the buggy line, there exist three categories of approaches. The first

one is spectrum-based fault localization (SBFL). The key idea in SBFL is that in a

test dataset, a line executed more in the failing test cases than in the passing ones

is considered as more suspicious than a line executed more in the passing ones. A

summary of the CC matrix for this bug is shown in Figure 3.15a. The lines 3, 6–7,

and 10–11 in Figure 3.14 are executed in both passing and failing test cases, and as a
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result, given the same suspiciousness scores. Thus, SBFL is ineffective to detect the

buggy line 10 and this buggy method.

1 public static String join(Object [] array , char separator , int startIndex ,

2 int endIndex) {

3 if (array == null) {

4 return null;

5 }

6 int noOfItems = (endIndex - startIndex );

7 if (noOfItems <= 0) {

8 return EMPTY;

9 }

10 - StringBuilder buf = new StringBuilder((array[startIndex]

11 == null ? 16 : array[startIndex].toString().length())+1);

12 + StringBuilder buf = new StringBuilder(noOfItems * 16);

13 for (int i = startIndex; i < endIndex; i++) {

14 if (i > startIndex) {

15 buf.append(separator );

16 }

17 if (array[i] != null) {

18 buf.append(array[i]);

19 }

20 }

21 return buf.toString ();

22 }

Figure 3.14 Bug Detection: Motivating example 1.

The second category is mutation-based fault localization (MBFL). A MBFL

approach (e.g., Metallaxis [119]) modifies a statement using mutation operators.

After collecting code coverage information for each statement regarding to multiple

mutations, it computes the suspiciousness score for each statement using a spectrum-

based formula (e.g., Ochiai [1]) on the CC matrix for each original statement and
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line-3 ◦ ...• ...• ...◦ ...• ...•

line-4 ◦ ...◦ ...◦ ...◦ ...◦ ...◦

line-6 ◦ ...• ...• ...◦ ...• ...•

line-7 ◦ ...• ...• ...◦ ...• ...•

line-8 ◦ ...◦ ...• ...◦ ...◦ ...•

line-(10-
11)

◦ ...◦ ...• ...◦ ...• ...•

line-13 ◦ ...• ...• ...◦ ...◦ ...•

line-14 ◦ ...• ...• ...◦ ...◦ ...•

line-15 ◦ ...• ...• ...◦ ...◦ ...•

line-17 ◦ ...• ...• ...◦ ...◦ ...•

line-18 ◦ ...• ...• ...◦ ...◦ ...•

line-21 ◦ ...• ...• ...◦ ...◦ ...•

(a)

t9 t33 ...

line-3 • • • • ◦ ... ◦

line-4 ◦ ◦ ◦ ◦ ◦ ... ◦

line-6 • • • • ◦ ... ◦

line-7 • • • • ◦ ... ◦

line-8 ◦ ◦ • • ◦ ... ◦

line-(10-
11)

• ⋆ • • ◦ ... ◦

line-13 ⋆ • • • ◦ ... ◦

line-14 • ◦ • • ◦ ... ◦

line-15 • ◦ • • ◦ ... ◦

line-17 • ◦ • • ◦ ... ◦

line-18 • ◦ • • ◦ ... ◦

line-21 • ◦ • • ◦ ... ◦

(b)

Figure 3.15 Bug Detection: Code coverage for Figure 3.14.
Notes: ◦, •, ⋆ for 0,1,-1

for its mutated ones. However, the fix for the buggy line 10 requires more complex

code transformations than a mutation. Thus, an MBFL approach cannot detect this

buggy line and buggy method.

The third category is deep learning and ML-based FL approaches [172, 72].

Specifically, Wong el al. [172] use a backpropagation neural network on code coverage

for each statement. Since the lines 3, 6–7, and 10–11 are executed in both passing

and failing test cases, the model cannot learn to distinguish them to detect the buggy

line 10. DeepFL [72], uses multilayer perceptron (MLP) on a matrix in which each row

corresponds to a statement, while each column is a suspiciousness score computed by a

formula, or a code complexity metric. In our experiment, DeepFL could not detect the

buggy line 10 in this method. Despite combining several scores, the aforementioned

lines are given the same suspiciousness scores by each spectrum-based formula.
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Observation 1. The state-of-the-art spectrum-based [93, 58], mutation-based [103,

118, 119], and deep learning-based [72] FL approaches do not consider the full details

of the CC matrix. Instead, they summarize each statement/row with a suspiciousness

score, limiting their capabilities.

To address that, we aim to exploit the full details of the CC matrix via the

use of the CNN model [65], which has been shown to be effective in image pattern

recognition. However, there is a challenge: if we do not enforce an order on the test

cases (columns), we might end up with a CC matrix with the dark cells (the values

of 1) that are far apart (Figure 3.15a). Note that the CNN model is effective to learn

the relationships among the nearby cells in a matrix with its small sliding window

(filter) [65]. Thus, we need to enforce an order on the test cases, i.e., the columns of

the CC matrix so that the values of 1 on the same or nearby rows get to be close to

one another. For example, if we enforce an order with the mentioned strategy (we

will explain the detailed algorithm later) for the running example, we will have the

matrix in Figure 3.15b. That is, the results for the test cases 1, 142, 190, and 235 in

the test dataset of Defect4J for this example are shown in the leftmost columns. We

expect that the CNN model with its sliding window is more effective in the resulting

matrix after the ordering due to the nearby dark cells on the left side. The empirical

study on the impact of such ordering will be explained in Sub-Section 3.3.8.

Let us consider another example in Figure 3.16. The bug occurs at line 5 and is

fixed in line 6. The program fails in two test cases: 1) x=5, y=0, z=1, and 2) x=7,

y=1, z=9. In this example, the lines 2, 3, 4, 5, 15, and 16 are all executed in both

passing and failing test cases. Thus, the spectrum-based, mutation-based approaches,

and DeepFL give them the same suspiciousness scores, and do not detect the buggy

line 5 and this buggy method. The line 16 returns the unexpected results for the

two failing test cases. In fact, the spectrum-based and mutation-based approaches

locate line 16 as the buggy line. However, the actual error occurs at line 5, steering
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1 public int Compute(int x, int y, int z){

2 int i = x + 1;

3 int j = x + y;

4 int m = 5;

5 - if (i < y + 4)

6 + if (i < y + 7)

7 if (j > 5 & z > j){

8 m = m + z;

9 } else {

10 m = m + j;

11 }

12 } else {

13 m = m + i;

14 }

15 i = m + 1;

16 return m;

17 }

Figure 3.16 Bug Detection: Motivating example 2.

the execution to the incorrect branch of the if statement. This implies that while the

source of the bug is at line 5, the error exhibits at line 16, which is far apart from line

5, yet has a dependency with it. However, the line 15, immediate preceding of line 16

does not contribute to the incorrect result at line 16.

Observation 2. We observe that the line that exhibits erroneous behavior (e.g., line

16) might not be the buggy line (line 5). However, the buggy line 5 has a dependency

with the line 16. Thus, identifying the key line exhibiting the erroneous behavior is

crucial for FL. We also observe that in fact, the lines with program dependencies with

one another are more valuable in helping localize the buggy line than the lines without

such dependencies. Thus, while considering the execution order of statements, an FL

approach should consider the statements with program dependencies as well.
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Figure 3.17 Bug Detection: DeepRL4FL’s architecture.

3.3.3 Approach overview

Inspired by the crime scene investigation method, we explore three aforementioned

sources of information. Correspondingly, DeepRL4FL has three representation

learning processes: code coverage representation learning (crime scene), statements

dependency representation learning (relations), and source code representation

learning (usual suspects) (Figure 3.17).

Step 1: Code Coverage Representation Learning

This learning is dedicated to the “crime scene” analysis of the bug. This process

has two parts. First, to help the CNN model recognize the patterns, we take the

given (un-ordered) set of test cases and perform an ordering algorithm to arrange the

columns of the CC matrix. The strategy of ordering is to enable the values of 1 to

be closer to form darker spots in the left side of the matrix, expecting that the CNN

model can work effectively to recognize nearby cells to distinguish the buggy and

non-buggy statements (see empirical results in our evaluation).

Second, we also perform the analysis on the output of tests cases to locate the

error-exhibiting (EE) lines (Observation 2). If the execution of a test crashes, the line
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information is always available. Even if there is no crash, the test fails, the program

often explicitly lists the lines of code that exhibit the incorrect results/behaviors. We

use such information to locate the EE line in the buggy source code corresponding to

each test case. The cells in the matrix corresponding to the EE lines of test cases will

be marked with -1 values (see the stars in Figure 3.15b). The columns with the values

of -1 indicate that the corresponding test cases are the failing ones, while the columns

with the values of 1 and 0 represent the passing ones. The values of 1 and 0 are for the

execution or non-execution. The resulting matrix is called the enhanced CC matrix

(ECC).

Step 2: Dependencies Representation Learning

The suspiciousness of a statement is seen taking into account the data

dependencies to other statements in the execution flows and data flows, in addition

to the statement itself (Observation 2). Specifically, we consider the execution order.

However, if the statements are executed sequentially in the same nested level as part

of a block statement, we also consider the data dependencies among those statements.

Additionally encoding the statements with such dependencies has the same effect

as putting together the rows corresponding to the dependent statements in the CC

matrix. In our example, in addition to the entire matrix in Figure 3.16, we also

encode the data dependencies among statements (i.e., in the same spirit with the

case of putting closer the rows 2, 3, 4, 5, 13, 15, and 16), and feed them into the CNN

model. In our tool, we collect execution paths and data flow graph for each test case.

Step 3: Source Code Representation Learning

For each buggy code in the training data, esent the code structure by the long

paths that are adapted from a prior work [7, 77]. A long path is a path that starts

from a leaf node, ends at another leaf node, and passes through the root node of the

AST. The AST structure can be captured and represented via the paths with certain

lengths across the AST nodes [7]. After this, we have the vectors for the buggy code.
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Finally, all the representation vectors are used as the inputs of the CNN model, which

is part of the FL module in Figure 3.17.

3.3.4 Step 1: Code coverage representation learning

3.3.4.1 Generating code coverage matrices. Following prior studies [1,

3, 83], we obtain a code coverage matrix for each method of a given project

and error messages of failing test cases using GZoltar [42], a tool for code

coverage analysis. We further modify GZolter to record the actual execution

path of statements within a method during the execution of a test case. For

example, for the method in Figure 3.14, the execution path of running the first

selected test case is line 3 ⇒ line 6 ⇒ line 7 ⇒ line (10 − 11) ⇒ line 13 ⇒

line 14 ⇒ line 15 ⇒ line 17 ⇒ line 18 ⇒ ...︸ ︷︷ ︸
Statements repeated in the for loop

⇒ line 21.

We also use mutation to generate more coverage information. First, we apply

the same mutators as in DeepFL [72] to mutate each statement within a method

using the mutation tool PIT-1.1.5 [124]. To generate a mutation-based matrix, we

apply one mutator to mutate a statement of a method using GZolter. Thus, given

n mutators that can be applicable to a statement, we generate n new versions of

a method. Given a method having m statements, we generate n ∗ m matrices for

the method. We refer the mutation-generated n ∗ m matrices as mutation-based

matrices and for clarification, we refer the non-mutator-generated matrix as the

spectrum-based matrix.

3.3.4.2 Identifying error-exhibiting lines. A cell in the CC matrix can have

three values: {1,0,-1}. While the values of 1 and 0 indicate passing, those of -1 indicate

failing. We obtain -1 for an error-exhibiting statement or crashed statement from the

error messages of failing test cases. An error message shows the names of classes,

methods, and line numbers exhibiting an error. We directly use the line numbers,

method and class names to assign -1s to the statements in the matrix. Figure 3.18
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Figure 3.18 Bug Detection: Error message example.

shows an example of the error message containing a stack trace produced by running

a test case on the project Chart with the bug Chart-24. Because the current method

under investigation is getPaint, our algorithm searches for that method in the stack

trace to derive the EE statement at the line 128 of the file GrayPaintScale.java (which

contains that method). Each failing test case has only one EE statement for the

current method under study.

3.3.4.3 Test case ordering algorithm. Our algorithm (Algorithm 1) takes

the set of test cases S and enforces an order on S. The strategy is to move the

values of 1 and -1 closer to one another in the left side. First, if there exist failing

test cases, i.e., test cases with -1s, we select the test case with the value of -1 at the

statement appearing latest in the code. We then find the test case that shares the

same statement having -1 with the last selected test case (line 9). That is, we group

together the test cases that go through the same statement and also fail. If we do not

have such test case, then we repeat the process of looking for another failing test case

(i.e., with -1). In Figure 3.15b, the test case 9 is selected as the first one with only

one -1 (marked with a star) at the line 13 (latest statement). We search for the next

test case that has a -1 at the latest. The test case 33 is chosen at the 2nd column.

If we do not have any failing test case left, we select the test case that has the

most 1s (line 13). Next, we select the next test case that shares the most number of

the same statements having the values of 1s with the last selected test case.
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Algorithm 1 Test Case Ordering Algorithm.

1: function OrderingTestCases(S : testSet)

2: List = []

3: while (S <> ∅) do

4: if HaveTestCasesWithMinusOne(S) then

5: selT = FindTestCaseWithMinusOneWithHighestIndex(S)

6: S.remove(selT )

7: List.append(selT )

8: while HaveTestCaseSameStmtWithMinusOne(selT, S) do

9: selT = FindTestCaseSameStmtWithMinusOne(selT, S)

10: S.remove(selT )

11: List.append(selT )

12: else

13: selT = FindTestCaseWithMostOne(S)

14: S.remove(selT )

15: List.append(selT )

16: while HaveTestCaseWithSameStmtsWithOne(selT, S) do

17: selT = FindTestCaseWithMostSameStmtsWithOne(selT, S)

18: S.remove(selT )

19: List.append(selT )

20: return List

This helps move the values of 1 closer. We repeat this step to select a new test

case compared with the previously selected one until all the test cases were ordered.

We stop this step if no test case has the same statements with 1s as the one in the

last selected column. If two test cases are tie, we select the one with the last value

of 1 at a statement appearing latter. The rationale is that such a test case covers

more statements than the other. If they are still tie, the selection of either of them
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will result similar visual effects locally at that row. In brief, in any cases of ties, the

visual effects around the statements are similar.

In addition to the spectrum-based matrices, we also apply the same enhancements,

identifying error-exhibiting lines and ordering text cases to mutation-based code

coverage matrices.

3.3.5 Step 2: Statements dependency representation

We aim to model the execution orders and data dependencies among statements of a

method under test.

3.3.5.1 Execution order representation. We obtain the execution path

(e-path) as each test case was executed. We only consider the relations among

statements within a method. Since an e-path is a sequence of statements, we apply

Word2Vec [100] on all execution paths of test cases to learn the vectors that encode the

relations among statements. Thus, each statement has a word2vec-generated vector.

3.3.5.2 Data dependencies representation. Using execution paths is not

sufficient due to the following. First, the statements in a loop may repeat multiple

times in an e-path, thus, they may dominate vector learning using Word2Vec and

weaken the relations between the statements inside and outside of a loop, which

is also crucial in FL. Second, interdependent statements might not be nearby in an

e-path, yet are useful in detecting the buggy line (Observation 2). To overcome those,

we also use a data-flow graph (DFG) for the statements in a method.

We use WALA [162] to generate DFGs where a node represents a statement and

an edge represents a data flow between two nodes. If A connects to B, we assign the

weight of 1. If there is no edge from B to A, we then create that edge but assign the

weight of -1. This makes node2vec [39], a widely used network embedding technique,

applicable to our graph. The value of -1 helps distinguish between the artificial edges
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and the real ones. After this step, some statements (nodes) with data dependencies

have node2vec-generated vectors.

3.3.5.3 Vectors for statements with dependencies. If a statement is not

in any block, we use its word2vec-generated vector as the final one, otherwise the

node2vec-generated vector is chosen for the statement. Finally, the output is a

statement-dependency vector for a statement, modeling the dependencies

and/or execution orders among statements.

3.3.5.4 Combining statement dependencies and ECC matrices. To

further enrich the ECC matrix (a spectrum-/mutation-based matrix), we incorporate

the dependencies among the statements in a method under study into that matrix. In

the enhanced matrix, we have the i-th statement (Si) of a method under test with the

test cases, T = {T1, . . . , Tj . . . , Tn}, where j indicates the j-th test case, 1 ≤ j ≤ n,

and n is the number of test cases. The statement Si under a test case Tj has a cell

value vij that can be either {1, 0, or -1}. Thus, the statement Si can be represented as

a vector S⃗i = {vi1, . . . , vij, . . . , vin}. Each statement (Si) has a statement-dependency

vector (S⃗sd
i ). We multiply each vij with S⃗sd

i , to obtain vij ∗ S⃗sd
i , for each cell of Si

and Tj in the enhanced matrix. Thus, the statement Si can be represented as a new

2-dimensional vector S⃗2d
i = < vi1 ∗ S⃗sd

i , . . . , vij ∗ S⃗sd
i , . . . , vin ∗ S⃗sd

i >. Any vector S⃗sd
i

multiplied by a vij = 0 results a vector with all 0s.

A method often has multiple statements {S1,. . . , Si, . . . Sm}, where i indicates

the i-th statement, 1 ≤ i ≤ m, and m is the number of statements. Thus, a method

is presented as a 3-D matrix, i.e., a list of 2-D statement vectors.

The same steps are used to enhance and combine statement dependencies into

a mutation-based matrix. A statement Si in a mutation-based matrix is represented

as a set of mutated statements and each mutated statement is represented as a 2-D

vector. Thus, in this case, the statement Si is represented as a 3-D vector. After
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enhancing the ECC matrix and combining statement-dependencies as explained, we

obtain the following:

• In a spectrum-based matrix, a statement is represented as a 2-D vector and a
method as a 3-D matrix;

• In mutation-based matrices, a statement is represented as a 3-D matrix and a
method as a 4-D matrix.

3.3.5.5 Encoding code coverage matrices with a CNN model. After

obtaining those representations for statements/methods, we apply the Convolution

Neural Network (CNN) [61] to learn features. We use a typical CNN with the following

layers: a convolutional layer, a pooling layer and a fully connected layer. We feed the

followings into the CNN model separately to detect buggy a statement/method:

(1) For spectrum-based matrices (SBM), we fed a 2-D vector representing for a

statement and a 3-D matrix for a method,

(2) For mutation-based matrices (MBM), we fed a 3-D matrix representing for a

statement and a 4-D matrix for a method.

We apply a fully connected layer before CNN on the method in a mutation-based

matrix (i.e., represented as a 4-D matrix) to reduce the 4-D into 3-D. The outputs

include

1) Vss, 1-D vector for a statement in SBM, 2) Vsm, 1-D vector for a method in

SBM, 3) Vms, 1-D vector for a statement in MBM, 4) Vmm, 1-D vector for a method

in MBM.

3.3.6 Step 3: Source code representation learning

Let us explain how we capture the usual suspicious source code via code representation

learning.

For a statement, we tokenize it and treat each token in the statement as a word

and the entire statement as a sentence. We use word2vec [100] on all the statements

of a project to compute a token vector for each token. After having the vectors for
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all the tokens, for a statement, we have a matrix [Token-Vector1, Token-Vector2, . . . ,

Token-Vectorm]. To obtain a unified vector to represent a statement instead of a

matrix, we apply a fully connected layer to reduce the matrix into 1-D vector. Thus,

we have one vector for each statement.

At the method level, we used two existing code representation learning

techniques code2vec [7] and ASTNN [188] for a method. In code2vec, we use long paths

over the AST. A long path is a path that starts from a leaf node, ends at another

leaf node, and passes through the root node of the AST. The AST structure can be

represented via the paths with certain lengths across the AST nodes. Specifically, we

regard a long path as a sequence and apply word2vec on all long paths of methods

to generate a vector representation for each AST node. Now, each path can be

represented as an ordered list of node vectors (the order is based on the appearance

order of the nodes in a path), and each method can be represented as a bag of paths,

i.e., ordered lists of node vectors. Essentially, a method is represented by a matrix.

We use a fully connected layer to transform the matrix into 1-D vector for a method.

At the method level, we also used tree-based representation ASTNN [188].

ASTNN splits the AST of a method into small subtrees at the statement level and

applies a Recursive Neural Network (RNN) [145] to learn vector representations for

statements. The ASTNN exploits the bidirectional Gated Recurrent Unit (GRU) [154]

to model the statements using the sequences of sub-tree vectors. After obtaining the

long-path-based vector and the tree-based vector for a method, we apply a fully

connected layer as the one in CNN [61] to combine these two vectors into one unified

vector for a method.

3.3.7 Step 4: Fault localization with CNN model

3.3.7.1 Statement-Level fault localization. After all the previous steps,

each statement has 3 vectors:

1) V⃗ss, a SBM-based statement vector (Sub-Section 3.3.5.5);
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2) V⃗ms, a MBM-based statement vector (Sub-Section 3.3.5.5); and

3) V⃗cs, a source code-based statement vector (Sub-Section 3.3.6).

The vectors are combined via Hadamard Product [43]:

Ms = [len(V⃗ss), 1, 1],Mm = [1, len(V⃗ms), 1],Mc = [1, 1, len(V⃗cs)]

Mcombined = broadcast(Ms) ◦ broadcast(Mm) ◦ broadcast(Mc)

M is the matrix which is expanded from v by keeping one dimension as v and

adding two more dimensions with the size of 1. broadcast() is the operation to copy a

dimension into multiple times to expand the matrix to the suitable size for Hadamard

product. The rationale is that all three vectors from three different aspects should

be fully integrated. The resulting matrix is of the size [len(V⃗ss), len(V⃗ms), len(V⃗cs)].

Next, we use the trained CNN model with a softmax on the matrix to classify a

statement into faulty or non-faulty. The output of the softmax is standardized to be

between 0 to 1. To train the model, the same combined matrix for a statement is

used at the input layer and the corresponding classification (faulty or not) is used at

the output layer of the CNN model.

3.3.7.2 Method-Level fault localization. Similar to statement-level FL,

each method has three vectors:

1) V⃗sm, a SBM-based method vector (Sub-Section 3.3.5.5);

2) V⃗mm, a MBM-based method vector (Sub-Section 3.3.5.5); and

3) V⃗cm, a source code-based method vector (Sub-Section 3.3.6).

Moreover, we also consider the similarity between the source code and the error

messages of the failing test cases as in DeepFL [72]. We first collect 3 types of

information from failed tests, including the name of the failed tests, the source code of

the failed tests and the complete failure message (including exception type, message,

and stacktrace). Second, we collect 5 types of information from source code, including

the full qualified name of the method, accessed classes, method invocations, used
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variables, and comments. For each combination, we calculate the similarity score

between each information from the failed tests and each from the source code using

the popular TF-IDF method [72]. We generate 15 similarity scores as 15 features for

a method. Thus, a method also has the fourth vector, V⃗ sim
m with 15 features.

For fault localization, we combine the above method vectors into a matrix by

using the Hadamard product as in Sub-Section 3.3.7.1, then use the trained CNN

model with a softmax to classify a method into faulty or non-faulty. We train the

model in the same manner as FL at the statement level.

3.3.8 Empirical evaluation

3.3.8.1 Research questions. We seek to answer the following research questions:

RQ1. Statement-Level FL Comparison. How well does our tool perform

compared with the state-of-the-art statement-level FL approaches?

RQ2. Method-Level FL Comparison. How well does our tool perform compared

with the state-of-the-art method-level FL approaches?

RQ3. Impact Analysis of Different Matrix Enhancing Techniques. How do

those techniques including test case ordering, and statements dependency affect the

accuracy?

RQ4. Impact Analysis of Different Representations Learning. How do

different types of information affect the accuracy?

RQ5. Cross-Project Analysis. How does DeepRL4FL perform in the cross-project

setting for FL?

RQ6. Performance on C Code. How does DeepRL4FL perform in C projects for

FL?

3.3.8.2 Experimental methodology.

3.3.8.2.1 Data set. We conduct our study on the well-known benchmark,

Defects4J [32]. We use all of the 6 projects in Defects4J V1.2.0 with 395 real bugs
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Table 3.10 Bug Detection: Defects4J Dataset.

Identifier Project name # of bugs

Chart JFreeChart 26

Closure Closure compiler 133

Lang Apache commons-lang 65

Math Apache commons-math 106

Mockito Mockito 38

Time Joda-Time 27

(Table 3.10). In the dataset, each bug contains a buggy version of the project that

includes a large number of training instances (i.e., method/statements). For example,

the project Math has 140,000+ training instances. To reduce the influence of the

overfitting problem, we applied L2 regularization and added dropout layers.

3.3.8.2.2 Experiment metrics. Following prior studies [72, 73], we use the

following metrics to evaluate an FL model:

Recall at Top-K: is the number of faults with at least one faulty statement

that is correctly predicted in the ranked list ofK statements. We report Top-1, Top-3,

and Top-5.

Mean Average Rank (MAR): We compute the average rank of all of the

faulty elements for each fault. MAR of each project is the mean of the average rank

of all of its faults.

Mean First Rank (MFR): For a fault with multiple faulty elements

(methods/statements), locating the first one is critical since the others may be located

after that. MFR of each project is the mean of the first faulty element’s rank for each

fault.
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3.3.8.2.3 Experiment setup and procedure.

RQ1: Statement-Level Fault Localization Comparison.

Baselines. We compare DeepRL4FL with the following statement-level FL

approaches:

• Two spectrum-based fault localization (SBFL) techniques: Ochiai [1] and
Dstar [173];

• Two recent mutation-based fault localization (MBFL) techniques: MUSE [103]
and Metallaxis [119];

• Two deep-learning based FL approaches: RBF Neural Network (RBF) [172]
and DeepFL [72]. DeepFL [72] works at the method level with several features.
For comparison, in this RQ1 for the statement level, we can only use DeepFL’s
spectrum- and mutation-based features applicable to detect faulty statements.

Following prior FL work [10, 73, 72] using Defects4J, we used the setting of

leave-one-out cross validation on the faults for each individual project (i.e., within-

project setting). Specifically, we use one bug (i.e., with one buggy statement or

method) as testing and the remaining bugs in a project for training. This setting

provides sufficient training data for the models because a project contains a large

number of buggy statements. We performed the cross-project setting in RQ4.

Tuning DeepRL4FL and the baselines. We tuned our model with the following

key hyper-parameters to obtain the best performance: (1) Epoch size (i.e., 100, 200,

300); (2) Batch size (i.e., 64, 128, 256); (3) Learning rate (i.e., 0.001, 0.003, 0.005,

0.010); (4) Vector length of word representation and its output (i.e., 150, 200, 250,

300); (5) Convolutional core size (i.e., 3x3, 5x5, 7x7, 9x9, 11x11); (6) The number of

convolutional core (i.e., 3, 5, 7, 9, 11).

As for word2vec, for a method, we consider all tokens in the source code order

as a sentence. We tune the following hyper-parameters for DeepFL (using only the

features relevant to statements): Epoch number (5, 10, 15, ..., 60), Loss Functions

(softmax, pairwise), and learning rate (0.001, 0.005, 0.010).

RQ2: Method-Level Fault Localization Comparison.
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Baselines: We also compare our approach with the following state-of-the-art

approaches that localize faulty methods.

MULTRIC [180] is a learning-based approach to combine different spectrum-

based ranking techniques using learning-to-rank for effective fault localization.

FLUCCS [146] is a learn-to-rank based technique using spectrum-based scores

and change metrics (e.g., code churn and complexity metrics) to rank program

elements.

TraPT [73] is a learn-to-rank technique to combine spectrum-based and

mutation-based fault localization.

DeepFL [72] is a DL-based model to learn the existing/latent features from

multiple aspects of test cases and programs. We used all the features of DeepFL in

this method-level study.

Tuning DeepRL4FL and the baselines. Similar to RQ1, we perform our

experiments using leave-one-out cross validation on the faults for each project.

We use the same settings in RQ1 to train our model. Note that in DeepFL

paper [72],DeepFL,MULTRIC, FLUCCS, andTraPT have been evaluated using

leave-one-out cross validation and other settings on the same data set of Defects4J

V1.2.0. DeepRL4FL is also evaluated on Defects4J V1.2.0 using the same settings

and procedure as DeepFL. Thus, we used the result on the numbers of detected bugs

reported in DeepFL [72] for those models.

RQ3: Impact Analysis of Different Matrix Enhancing Techniques.

We aim to evaluate the impact of our CC matrix enhancing techniques on

performance. We evaluate the following (1) test case ordering algorithm utilizing the

EE lines (Order); (2) adding statements’ dependencies (StatDep). We first built a

base model by using only the spectrum- and mutation-based matrices in DeepRL4FL

(without using the above techniques), then apply the above techniques on the matrices

to build two variants of DeepRL4FL: {Base + Order}, and {Base + Order + StatDep
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(DeepRL4FL)}. We train each variant using the same settings as in RQ1. Due to

space limit, we show only the analysis results obtained in the within-project setting

at method-level FL.

RQ4: Impact Analysis of Learning Representations.

We have the following representation learning schemes: learning on the new

enhanced spectrum-based CC matrix (NewSpecMatrix) and another learning

on the new enhanced mutation-based CC matrix (NewMutMatrix). We also

conducted source code representation learning (CodeRep) and textual similarity

learning between source code and error messages in failing tests (TextSim). To

test the impact of those representation learning schemes, we first built a base

model using only NewSpecMatrix, then another three variants: {NewSpecMatrix +

NewMutMatrix}, {NewSpecMatrix + NewMutMatrix + CodeRep}, and {NewSpecMatrix

+ NewMutMatrix + CodeRep+TextSim}. We trained each variant using the same

settings as in RQ1. Due to the space limit, we show only the results for the

within-project setting at method-level FL.

RQ5: Cross-Project Analysis.

We also setup the cross-project scenario: testing one bug in a project, but

training a model on all of the bugs of other projects. For a project, we test every

bug and sum up the total number of bugs in the project that can be localized in the

cross-project scenario.

RQ6: DeepRL4FL’s Fault Localization Performance on C Code.

We also evaluated DeepRL4FL on C projects from the benchmark dataset,

ManyBugs [69, 95], with 185 bugs from 9 projects. We used the same model in RQ1

for statement-level FL and the model in RQ2 for method-level FL.

3.3.8.3 Experimental results.
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Table 3.11 Bug Detection: RQ1. Results of Comparative Study at Statement-Level
Fault Localization.

Approach Top1 Top3 Top5 P% MFR MAR

Ochiai 17 88 115 4.3% 54.29 71.32

Dstar 19 92 115 4.8% 48.67 69.51

MUSE 26 47 63 6.6% 36.34 48.73

Metallaxis 24 81 108 6.1% 34.59 49.21

RBF 12 37 52 3.0% 22.54 57.47

DeepFL 39 114 129 9.9% 24.09 31.28

DeepRL4FL 71 128 142 18.0% 20.32 28.63

Notes: P% = |Top-1|/{395 Bugs}

3.3.8.3.1 RQ1-Results (Statement-Level fault localization comparison).

As seen in Table 3.11, DeepRL4FL improves over the state-of-the-art statement-level

FL baselines.

Specifically, DeepRL4FL improves Recall at Top-1 by 317.6%, 273.7%, 173.1%,

195.8%, 491.7%, and 82.1% in comparison with Ochiai, Dstar, Muse, Metallaxis,

RBF, and DeepFL.

We examined the results and report the following. The key reason for the

spectrum-based FL approaches fail to localize the buggy statements is that they give

the same suspiciousness score to the statements at the same nested level. For the

mutation-based FL approaches, the key reason for not being able to localize the

buggy statements/methods is that the fix requires a more sophisticated change than

a mutation.

3.3.8.3.2 RQ2-Results (Method-Level fault localization comparison). Table 3.12

shows that DeepRL4FL can outperform all baselines on the method level fault

localization.
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Table 3.12 Bug Detection: RQ2. Results of Comparative Study at Method-Level
Fault Localization.

Approach Top1 Top3 Top5 P% MFR MAR

MULTRIC 80 163 195 20.3% 37.71 43.68

FLUCCS 160 249 275 40.5% 16.53 21.53

TraPT 156 249 281 39.5% 9.94 12.70

DeepFL 213 282 305 53.9% 6.63 8.27

DeepRL4FL 245 294 311 62.0% 5.94 8.57

Notes: P% = |Top-1|/{395 Bugs}

DeepRL4FL can improve Recall at Top-1 results by 206.3%, 53.1%, 57.1%, and

15.0% in comparison with MULTRIC, FLUCCS, TraPT, and DeepFL, respectively.

DeepRL4FL’s MAR value is slightly higher (i.e., 3.6% higher) than DeepFL’s. On

average, DeepRL4FL ranks the correct elements higher than DeepFL, as its MFR

value is lower (i.e., 10.4% lower).

The spectrum-based and mutation-based FL approaches fall short of DeepFL

and DeepRL4FL. A key reason is that they consider only dynamic information in

test cases, while DeepFL and our model use both static and dynamic information.

In comparison with DeepFL, we further analyzed the bugs that our tool can locate,

but DeepFL missed. We found that the mean first rank of a buggy method in the

ranking lists of potential buggy methods returned by DeepFL is 7.08. Without the

ordering and statement dependency in our model, the mean first rank is 6.84. With

only ordering in our model, the mean first rank is 2.82. With the only dependency

in our model, the mean first rank is 4.45. With both ordering and dependency, our

model can locate the bugs that DeepFL missed.
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Table 3.13 Bug Detection: RQ3. Ordering (Order) and Adding Dependencies
(StatDep) in Method-Level FL.

Variants Top1 P% MFR MAR

Base (DeepRL4FL w/o Order,StatDep) 173 43.8% 8.23 10.27

Base + Order 226 57.2% 6.57 8.97

Base + Order + StatDep (DeepRL4FL) 245 62.0% 5.94 8.57

Notes: P% = |Top-1|/{395 Bugs}

3.3.8.3.3 RQ3-Results (Impact analysis of different matrix enhancing

techniques). Table 3.13 shows that our proposed matrix enhancing techniques

positively contribute to DeepRL4FL.

Specifically, comparing {Base} with {Base + Order}, ordering the test cases can

improve every metric. Order can help localize 53 more bugs (13.4%) using Top-1.

It helps improve MFR and MAR by 20.1% and 12.7%, respectively, showing that

ordering can help DeepRL4FL push the faulty methods higher in the ranked list.

Comparing {Base + Order} with {Base + Order+StatDep}, the results show

that modeling dependencies into matrices is useful to improve the performance of

DeepRL4FL. StatDep can improve 8.4%, 9.6%, and 4.5% on Top1, MFR, and MAR.

3.3.8.3.4 RQ4-Results (Impact analysis of learning representations). Table 3.14

shows that our representation learning has positive contributions on the results.

Comparing {Base} with {Base + NewMutMatrix}, we can see that the

representation learning on mutation-based matrices can help locate 23 more bugs

using Top-1 and improve MFR and MAR by 8.2% and 3.5%. By adding the source

code representation learning into the model, we improved DeepRL4FL to localize 9

more bugs and gain an increase on MFR and MAR by 7.9% and 4.0%, respectively.

Furthermore, TextSim also positively contributes to our model.
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Table 3.14 Bug Detection: RQ4. Results of Learning Representations in Method-
Level FL.

Variants Top1 P% MFR MAR

Base (NewSpecMatrix) 189 47.8% 8.09 9.91

Base + NewMutMatrix 212 53.7% 7.43 9.56

Base + NewMutMatrix + CodeRep 221 55.9% 6.84 9.18

Base + NewMutMatrix + CodeRep + TextSim
(DeepRL4FL)

245 62.0% 5.94 8.57

Notes: P% = |Top-1|/{395 Bugs}

3.3.8.3.5 RQ5-Results (Cross-Project analysis). As seen in Table 3.15,

DeepRL4FL achieves better results in the within-project setting than in the cross-

project one.

Table 3.15 Bug Detection: RQ5. Cross-Project Versus Within-Project.

Projects
Cross-Project Within-Project

Top1 P% MFR MAR Top1 P% MFR MAR

Chart 13 50.0% 3.15 5.62 15 57.7% 2.85 4.65

Time 13 48.1% 9.78 14.70 14 51.9% 8.41 13.33

Math 61 57.5% 3.81 4.88 64 60.4% 2.93 4.83

Closure 71 53.4% 11.70 15.23 73 54.9% 9.38 12.37

Mockito 12 31.6% 11.42 16.42 14 36.8% 9.39 15.11

Lang 47 72.3% 2.13 2.49 50 76.9% 1.97 2.31

As seen in Table 3.15, DeepRL4FL achieves better results in the within-project

setting than in the cross-project one. This is expected as the training and testing data

is from the same project in the within-project setting and a model may see similar

faults.
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In the cross-project setting, DeepRL4FL correctly detects 217 bugs at the

Top1 in comparison with the best result (207 bugs) from the baselines. In

the within-project scenario, DeepRL4FL correctly detects 230 bugs at the Top1

in comparison with 80/160/156/213 bugs (not shown) from the baseline models

MULTRIC/FLUCCS/TraPT/DeepFL, respectively.

Training time. On average, training time is 350-380 mins per project in the cross-

project scenario, and 120-130 mins per project in the within-project scenario. Once

the model is trained, the prediction time per fault is 2-7 seconds in both the cross

and within project scenarios.

3.3.8.3.6 RQ6-Results (Performance on C code). As seen in Table 3.16,

DeepRL4FL can localize 27 faulty statements and 98 faulty methods with only top-1

statements and methods.

The empirical results show that the performance of DeepRL4FL on the C

projects is consistent with the one on the Java projects.

Table 3.16 Bug Detection: RQ6. ManyBugs (C Projects) VS. Defects4J (Java
Projects).

Level
ManyBugs (C projects) Defects4J (Java projects)

Top1 P% MFR MAR Top1 P% MFR MAR

Statement 27 14.6% 25.74 31.33 71 18.0% 20.32 28.63

Method 98 53.0% 6.91 9.89 245 62.0% 5.94 8.57

Notes: P% = |Top-1|/{Total Bugs in Datasets}

Specifically, at the statement level, the percentages of the total C and Java bugs

that can be localized are similar, i.e., 14.6% vs. 18.0%, respectively. At the method

level, the percentages of the total C and Java bugs that can be localized are also

consistent, i.e., 53.0% vs. 62.0%, respectively.
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1 public void translate(CharSequence input , Writer out) throws IOException {

2 ...

3 int pos = 0;

4 int len = input.length ();

5 while (pos < len) {

6 int consumed = translate(input , pos , out);

7 if (consumed == 0) {

8 char[] c = Character.toChars(Character.codePointAt(input , pos));

9 out.write(c);

10 pos+= c.length;

11 continue;

12 }

13 for (int pt = 0; pt < consumed; pt++) {

14 - pos += Char.charCount(Char.codePointAt(input,pos));

15 + pos += Char.charCount(Char.codePointAt(input, pt));

16 }

17 }

18 }

Figure 3.19 Bug Detection: Case study 1.

3.3.9 Discussion and implications

3.3.9.1 In-Depth case studies. Case Study 1. In Figure 3.19, the fault

is caused by incorrect variable. To fix it, the variable was changed from pos to pt

at line 14. The state-of-art spectrum-based approaches cannot localize this fault

because line 6, line 7, line 13, and line 14 have the same score (They were executed

in both passing and failing test cases). For the mutation-based FL approaches, there

is none of mutation operators that changes the variable pos into pt in a method call

at the buggy line 14. Thus, they cannot observe the impact of mutations on the code

coverage. As a consequence, they cannot locate the buggy line 14.
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Figure 3.20 Bug Detection: A feature map produced by CNN for Figure 3.19.

To gain insights on DeepRL4FL, we perform a visualization of a feature map

for this case. This is a common technique in image processing with CNN. Note

that, during training, CNN learns the values for small sliding windows, called filters.

The feature maps of a CNN capture the result of applying the filters to an input

matrix. That is, at each layer, the feature map is the output of that layer. In

image processing, visualizing a feature map for an input helps gain understanding on

whether the model detects some part of our desired object and what features the CNN

observes. Figure 3.20 shows a feature map for the example in Figure 3.19. We can

see that around the lines 6–8 and 13–14, the feature map is visually dark. Without

ordering (i.e., a random order of test cases), the feature map does not exhibit such

visualization.

To further study the impacts of the ordering and data dependencies, we modified

DeepRL4FL in the following settings: 1) No ordering + No dependencies: the buggy

line 14 is ranked at 43th; 2) No ordering + dependencies: it is ranked at 29th; 3)

ordering + No dependencies: it is ranked at 7th; and 4) ordering + dependencies: it

is ranked at the top.
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Figure 3.21 Bug Detection: Case study 2.

Figure 3.22 Bug Detection: Case study 3.

Case Study 2. The case in Figure 3.21 is the fault that our model detected

but DeepFL missed. The (buggy) method flipIfWarranted together with the other

methods in the same project was fed into four variants of our model. As seen, with

the setting where removing both ordering and statement dependency, flipIfWarranted

is ranked 5th in the list of all methods. For the setting where only ordering is used,

it is ranked at 2nd. For the setting where only statement dependency is used, it is

ranked 3rd. With both, our model ranks the buggy method flipIfWarranted at the

1st position. This analysis shows that ordering test cases and statement dependencies

are the key drivers that help our model locate more bugs than DeepFL.

Case Study 3.To further study the impact of the ordering, we visualize the

feature maps for the 53 bugs that Order can detect and Base did not. Those are
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the cases where ordering helps the FL. Visualizing the feature maps for those inputs

allows us to understand what features the CNN detects in both cases of ordering or

not. That is, observing the feature maps allows us to see if ordering can help the CNN

model learns better the discriminative features in locating the buggy statements. To

do so, for each of those bugs, we used the CNN model as part of Base and Order to

produce two feature maps: one corresponds to Base (no ordering) and one to Order.

We then visualized and manually compared those two feature maps as gray-scale

images. The CNN model generates 9 feature maps as the output from 9 different

convolutional cores.

In all the bugs, we observed the same phenomenon. Let us use an real case as

example. Figure 3.22 shows two feature maps for one of those bugs. The ones on the

left and on the right are for Base (without ordering) and for Order (with ordering),

respectively. We zoomed out the leftmost columns in the right feature map. The row

corresponding to the buggy line is in the red rectangle. With ordering, one of those

9 feature maps has visually darker lines around the buggy statement. In contrast,

without ordering, all the feature maps are similar to the one on the left, i.e., do not

show any clear visual lines. That is, with ordering, the CNN, which focuses on the

relations of neighboring cells, can detect the features along the buggy statement.

3.3.9.2 Limitations. The quality of test cases is important for our approach.

If there are only a couple of passing test cases or the crash occurs far apart from the

faulty method, DeepRL4FL does not learn useful representation matrix to localize the

faults. It does not work well on locating the faults that require statement additions

to fix (all of the baselines in this research work do not either). Moreover, it does not

work well for short methods, as they provide less statement dependencies. It is also

hard for our model to localize the uncommon faults. Because it is DL-based, if there

is a very uncommon fault that may not been seen in the training dataset, it will not

work correctly.
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3.3.10 Threats to validity

We have identified the following threats to the validity:

Baseline implementation. To compare with existing approaches, we imple-

mented Ochiai, Dstar, MUSE, Metallaxis, and RBF-neural-network for statement-

level FL. We followed the same approach in [72] to implement MUSE and Metallaxis

using PIT-1.1.5. RBF-neural-network approach is built for artificial faults and our

real bug dataset cannot match the requirements.

Result generalization. Our comparisons with the baselines were only carried

out on the Defects4J dataset, which is a widely used benchmark for FL research.

Further validation of the evaluation processes on other datasets should be done in

the future.

3.4 Fault Localization to Detect Co-Change Fixing Locations

3.4.1 Introduction

To assist developers in the bug-detecting and fixing process, several approaches have

been proposed for Automated Program Repair (APR) [68]. A common usage of an

APR tool is that one needs to use a fault localization (FL) tool [174] to locate the

faulty statements that must be fixed, and then uses an APR tool to generate the fixing

changes for those detected statements. The input of an FL model is the execution of

a test suite, in which some of the test cases are passing or failing ones. Specifically,

the key input is the code coverage matrix in which the rows and columns correspond

to the statements and test cases, respectively. Each cell is assigned with the value

of 1 if the statement is executed in the respective test case, and with the value of

0, otherwise. An FL model uses such information to identify the list of suspicious

lines of code that are ranked based on their associated suspiciousness scores [174].

In recent advanced FL, several approaches also support fault localization at method

level to locate faulty methods [72, 75].
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The FL approaches can be broadly divided into the following categories:

spectrum-based fault localization (SBFL) [2, 57, 58], mutation-based fault localization

(MBFL) [103, 118, 119], and machine learning (ML) and deep learning (DL) fault

localization [72, 75]. For SBFL approaches, the key idea is that a line covered more in

the failing test cases than in the passing ones is more suspicious than a line executed

more in the passing ones. To improve SBFL, MBFL approaches [103, 118, 119]

enhance the code coverage matrix by modifying a statement with mutation operators,

and collecting code coverage when executing the mutated programs with the test

cases. The MBFL approaches apply suspiciousness score formulas in the same manner

as in SBFL approaches on the matrix for each original statement and its mutated code.

Finally, ML and DL-based FL approaches explore the code coverage matrix and apply

different neural network models for fault localization.

Despite their successes, the state-of-the-art FL approaches are still limited in

locating all dependent fixing locations that need to be repaired at the same time in

the same fix. In practice, there are many bugs that require dependent changes in the

same fix to multiple lines of code in one or multiple hunks of the same or different

methods for the program to pass the test cases. For those bugs, applying the fixing

change to individual statements once at a time will not make the program pass the

test case after the change to one statement. This capability to detect the fixing

locations of the co-changes in a fix for a bug (let us call them Co-Change (CC) Fixing

Locations) is crucial for an APR tool. Such capability will enable an APR tool to

make the correct and complete changes to fix a bug.

The state-of-the-art FL approaches do not satisfy that requirement. From the

ranked list of suspicious statements returned from an existing FL model, a naive

approach to detect CC fixing locations would be to take the top k statements in

that list and to consider them as to be fixed together. This solution might be

ineffective because the mechanisms used in the state-of-the-art FL approaches have
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never considered the co-change nature of those fixes. Our empirical evaluation also

confirmed that (Sub-Section 3.4.7.3.1).

Detecting all the CC fixing locations at multiple statements in potentially

multiple methods is challenging. A naive solution would be detecting the potential

methods that need to be fixed together and then detecting potential statements that

need to be changed together in each of those methods. However, doing so will create

a confounding effect from the inaccuracy of the detection of the co-fixed methods to

that of the co-fixed statements.

We propose FixLocator, a fault localization approach to derive the co-change

fixing locations in the same fix for a fault (i.e, multiple faulty statements in possible

multiple faulty methods). To avoid the confounding effect in that naive solution,

we treat this problem as dual-task learning with two dedicated models. First, the

method-level FL model (MethFL) learns the methods that need to be modified in

the same fix. Second, the statement-level FL model (StmtFL) learns the co-fixed

statements in the same or different methods. The intuition is that they are closely

related, which we refer to as duality. Correct learning for a model can benefit the

other and vice versa. If two statements in two methods are fixed together for a bug,

those methods are also co-fixed. If two methods are co-fixed, some of their statements

are also co-fixed. Exploring this duality can provide useful constraints to detect CC

fixing locations for a bug. Thus, instead of cascading the two models MethFL and

StmtFL, we train them simultaneously with the soft-sharing of the models’ parameters

to exploit this duality. Specifically, we leverage the cross-stitch units [101] to connect

MethFL and StmtFL. In a cross-stitch unit, the sharing of representations between

MethFL and StmtFL is modeled by learning a linear combination of the input features

from the two models. The cross-stitch units enable the propagation of the impact of

MethFL and StmtFL on each other.
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In addition to the new solution in dual-task learning, we utilize a novel feature

for this CC fixing location problem: co-changed statements, which have never been

exploited in FL. The rationale is that the co-changed statements in the past might

become the statements that will be fixed together in the future. Finally, since the co-

fixed statements are often interdependent, we use Graph-Based Convolution Network

(GCN) [81] to integrate different types of program dependencies among statements,

e.g., data and control dependencies, execution traces, stack traces, etc. We also

encode test coverage and co-changed/co-fixed statements in the graph. The GCN

model learns and predicts the bugginess of the statements.

We conducted several experiments to evaluate FixLocator on Defects4J-

v2.0 [32]. Our empirical results show that FixLocator improves the baselines,

CNN-FL [193], DeepFL [72], DeepRL4FL [75], and DEAR’s FL [76] by 16.6%, 16.9%,

9.9%, and 20.6% respectively, in terms of Hit-1 (i.e., the percentage of bugs in which

the predicted set overlaps with the oracle set for at least one faulty statement), and

by 33.6%, 40.3%, 26.5%, and 57.5% in terms of Hit-2 (i.e., the percentage of bugs in

which the number of overlapping statements between the predicted and oracle sets

is ≥2), 43.9%, 46.4%, 28.1%, and 51.9% in terms of Hit-3, respectively. FixLocator

also improves those baselines by 32.0%, 38.8%, 20.8%, and 46.1% in terms of Hit-All

(i.e., the predicted set exactly matches with the oracle set for a bug).

To evaluate its usefulness in APR, we combined it with the APR tools,

DEAR [76] and CURE [54]. We replaced DEAR’s FL module with FixLocator for

a variant, DEARFixL. Our result shows that DEARFixL and FixLocator+CURE

improve relatively DEAR and Ochiai+CURE by 10.5% and 42.9% in terms of numbers

of fixed bugs.

Through our ablation analysis on the impact of different features and modules

of FixLocator, we showed that all designed features/modules have contributed to its

high performance. Specifically, the proposed dual-task learning significantly improves
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the statement-level FL by up to 12.8% in terms of Hit-1. The designed feature of

co-change relations among methods and statements has also positively contributed to

FixLocator’s high accuracy level.

The contributions of this research topic are listed as follows:

1. FixLocator: Advancing DL-based Fault Localization to derive the co-
change fixing locations (multiple faulty statements) in the same fix for a bug.
We treat that problem as dual-task learning to propagate the impact
between the method-level and statement-level FL.

2. Novel graph-based representation learning with GCN and novel type
of features in co-changed statements for FL enable dual-task learning to
derive CC fixing locations.

3. Extensive empirical evaluation. We evaluated FixLocator against the
recent DL-based FL models to show its accuracy and usefulness in APR.

3.4.2 Motivating example

3.4.2.1 Example and observations. Let us start with a real-world example.

Figure 3.23 shows a bug fix in the Defects4J dataset that require multiple interde-

pendent changes to multiple statements in different methods. The bug occurred when

the method call to setTagAsStrict did not consider the first output in its arguments.

Therefore, for fixing, a developer adds a new argument in the method toSource at

line 18, and uses that argument in the method call setTagAsStrict (firstOutput,...)

at line 22. Because the method toSource at line 17 was changed, the two callers at

line 3 of the method toSource (line 1) and at line 13 of the method toSource (line 11)

need to be changed accordingly.

3.4.2.1.1 Observation 1 [Co-Change fixing locations]. In this example, the

changes to fix this bug involve multiple faulty statements that are dependent on one

another. Fixing only one of the faulty statements will not make the program pass the

failing test(s). Fixing individual statements once at a time in the ranked list returned

from an existing FL tool will also not make the program pass the tests. For an APR

model to work, an FL tool needs to point out all of those faulty statements to be
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changed in the same fix. For example, all four faulty statements at lines 17, 21, 3,

and 13 need to modified accordingly in the same fix to fix the bug in Figure 3.23.

1 public void toSource(final CodeBuilder cb, int inputSeqNum , Node root) {

2 ...

3 - String code = toSource(root, sourceMap);

4 + String code = toSource(root, sourceMap, inputSeqNum == 0);

5 if (!code.isEmpty ()) {

6 cb.append(code);

7 } ...

8 }

9 // --------------------------------------------------------------------------

10 @Override

11 String toSource(Node n) {

12 initCompilerOptionsIfTesting ();

13 - return toSource(n, null);

14 + return toSource(n, null, true);

15 }

16 // --------------------------------------------------------------------------

17 -private String toSource(Node n, SourceMap sourceMap)

18 +private String toSource(Node n, SourceMap sourceMap, boolean firstOutput)

19 ......

20 builder.setSourceMapDetailLevel(options.sourceMapDetailLevel );

21 - builder.setTagAsStrict(

22 + builder.setTagAsStrict(firstOutput &&

23 options.getLanguageOut(a) == LanguageMode.ECMASCRIPT5_STRICT );

24 builder.setLineLengthThreshold(options.lineLengthThreshold );

25 ......

26 }

Figure 3.23 Bug Detection: Co-Change fixing locations for a fault.

3.4.2.1.2 Observation 2 [Multiple faulty methods]. As seen, this bug

requires an APR tool to make changes to multiple statements in three different
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methods in the same fix: toSource(...) at lines 17 and 21, toSource(...) at line

3, and toSource (...) at line 13. Thus, it is important for an FL tool to connect and

identify these multiple faulty statements in potentially different methods.

Traditional FL approaches [192, 196] using program analysis (PA), e.g.,

execution flow analysis, are restricted to specific PA techniques, thus, not general

to locate all types of CC fixing locations. Spectrum-Based [56, 2], mutation-

based [103, 118, 119]), statistic-based [84], and machine learning (ML)-based FL

approaches [72, 75] could implicitly learn the program dependencies for FL purpose.

However, despite their successes, the non-PA FL approaches do not support the

detection of multiple locations that need to be changed in the same fix for a bug,

i.e., Co-Change (CC) Fixing Locations. The spectrum-based and ML-based FL

models return a ranked list of suspicious statements according to the corresponding

suspiciousness scores. In this example, the lines 13, 17, 21, and the other lines (e.g.,

12, 20 and 24) are executed in the same passing or failing test cases, thus assigned

with the same scores by spectrum- and mutation-based FL approaches. A user would

not be informed on what lines need to be fixed together. Those non-PA, especially

ML-based FL approaches, do not have a mechanism to detect CC fixing locations.

In this work, we aim to advance the level of deep learning (DL)-based FL

approaches to detect CC fixing statements. However, it is not trivial. A solution

of assuming the top-k suspicious statements from a FL tool as CC fixing locations

does not work because even being the most suspicious, those statements might not

need to be changed in the same fix. In this example, all of the above lines with the

same suspiciousness scores would confuse a fixer.

Moreover, another naive solution would be to use a method-level FL tool to

detect multiple faulty methods first and then use a statement-level FL tool to detect

the statements within each faulty method. As we will show in Sub-Section 3.4.7,
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the inaccuracy of the first phase of detecting faulty methods will have a confounding

effect on the overall performance in detecting CC fixing statements.

3.4.2.2 Key ideas. We propose FixLocator, an FL approach to locate all the

CC fixing locations (i.e., faulty statements) that need to be changed in the same fix

for a bug. In designing FixLocator, we have the following key ideas in both new

model and new features:

3.4.2.2.1 Key Idea 1 [Dual-Task learning for fault localization]. To avoid

the confounding effect in a naive solution of detecting faulty methods first and then

detecting faulty statements in those methods, we design an approach that treats this

FL problem of detecting dependent CC fixing locations as dual-task learning between

the method-level and statement-level FL. First, the method-level FL model (MethFL)

aims to learn the methods that need to be modified in the same fix. Second, the

statement-level FL model (StmtFL) aims to learn the co-fixing statements regardless

of whether they are in the same or different methods.

Intuitively, MethFL and StmtFL are related to each other, in which the results

of one model can help the other. We refer to this relation as duality, which can provide

some useful constraints for FixLocator to learn dependent CC fixing locations. We

conjecture that the joint training of the two models can improve the performance

of both models, when we leverage the constraints of this duality in term of shared

representations. For example, if two statements in two different methods m1 and m2

were observed to be changed in the same fix, then it should help the model learn that

m1 and m2 were also changed together to fix the bug. If two methods were observed

to be fixed together, then some of their statements were changed in the same fix as

well. In our model, we jointly train MethFL and StmtFL with the soft-sharing of the

models’ parameters to exploit their relation. Specifically, we use a mechanism, called

cross-stitch unit [101], to learn a linear combination of the input features from those

two models to enable the propagation of the impact of MethFL and StmtFL on each

95



other. We also add an attention mechanism in the two models to help emphasize on

the key features.

3.4.2.2.2 Key Idea 2 [Co-Change representation learning in fault

localization]. In detecting CC fixing locations, in addition to a new dual-task

learning model in key idea 1, we use a new feature: co-change information among

statements/methods, which has never explored in prior fault localization research.

The rationale is that the co-changed statements/methods in the past might become

the statements/methods that will be fixed together for a bug in the future. We also

encode the co-fixed statements/methods in the same fixes. The co-changed/co-fixed

statements/methods in the same commit are used to train the models.

3.4.2.2.3 Key Idea 3 [Graph modeling for dependencies among

statements/methods]. The statements/methods that need to be fixed together

are interdependent via several dependencies. Thus, we use Graph-Based Convolution

Network (GCN) [81] to model different types of dependencies among statements/methods,

e.g., data and control dependencies in a program dependence graph (PDG), execution

traces, stack traces, etc. We encode the co-change/co-fix relations into the graph

representations with different types of edges representing different relations. The

GCN model enables nodes’ and edges’ attributes and learns to classify the nodes as

buggy or not.

3.4.3 FixLocator: Approach overview

Figure 3.24 Bug Detection: FixLocator training process.
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3.4.3.1 Training process. Figure 3.24 summarizes the training process. The

input of training includes the passing and failing test cases, and the source code under

study. The output includes the trained method-level FL model (detecting co-fixed

methods) and the trained statement-level FL model (detecting co-fixed statements).

The training process has three main steps: 1) Feature Extraction, 2) Graph-Based

Feature Representation Learning, and 3) Dual-Task Learning Fault Localization.

3.4.3.1.1 Step 1. Feature extraction. (Sub-Section 3.4.4). We aim to extract

the important features for FL from the test coverage and source code including co-

changes. The features are extracted from two levels: statements and methods. At

each level, we extract the important attributes of statements/methods, as well as the

crucial relations among them. We use graphs to model those attributes and relations.

For a method m, we collect as its attributes 1) method content: the sequences

of the sub-tokens of its code tokens (excluding separators and special tokens), and 2)

method structure: the Abstract Syntax Tree (AST) of the method. For the relations

among methods, we extract the relations involving in the following:

1. Execution flow (the calling relation, i.e., m calls n),

2. Stack trace after a crash, i.e., the order relation among the methods in the stack
trace (the dynamic information in execution and stack traces have been showed
to be useful in FL [75, 72]),

3. Co-Change relation in the project history (two methods that were changed in
the same commit are considered to have the co-change relation),

4. Co-Fixing relation among the methods (two methods that were fixed for the
same bug are considered to have the co-fixing relation),

5. Similarity: we also extract the similar methods in the project that have been
buggy before in the project history. We keep only the most similar method for
each method.

For a statement s, we extract both static and dynamic information. First,

for static data, we extract the AST subtree that corresponds to s to represent its

structure. We also extract the list of variables in s together with their types, forming
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a sequence of names and types, e.g., “name String price int ...”. Second, for dynamic

data, we encode the test coverage matrix for s into the feature vectors.

At both method and statement levels, we use graphs to represent the methods

and statements, and their relations. Let us call them the method-level and statement-

level feature graphs.

3.4.3.1.2 Step 2. Graph-Based feature representation learning. This step

is aimed to learn the vector representations (i.e., embeddings) for the nodes in the

feature graphs from step 1. The input includes the method-level and statement-level

feature graphs. The output includes the embeddings for the nodes in the method-

/statement-level feature graphs. The graph structures for both feature graphs are

un-changed after this step.

For the content of a method or statement, we use the embedding techniques

accordingly to feature representations (Sub-Section 3.4.5). For the method’s content

and a list of variables in a statement, the representation is a sequence of sub-tokens.

We use GloVe [122] to produce the embeddings for all sub-tokens as we consider a

method or statement as a sentence in each case. We then use Gated Recurrent Unit

(GRU) [26] to produce the vector for the entire sequence.

For the structure of a method or statement, the representation is a (sub)tree

in the AST. For this, we first use GloVe [122] to produce the embeddings for all the

nodes in the sub-tree, considering the entire method or statement as a sentence in

each case. After obtaining the sub-tree where the nodes are replaced by their GloVe’s

vectors, we use TreeCaps [20], which captures well the tree structure, to produce the

embedding for the entire sub-tree.

For the code coverage representation, we directly use the two vectors for coverage

and passing/failing and concatenate them to produce the embedding. The embedding

for the most similar buggy method is computed in the same manner as explained with

GloVe and TreeCaps. Finally, the embeddings for the attributes of the nodes are used
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in the fully connected layers to produce the embedding for each node in the feature

graph at the method level. Similarly, we obtain the feature graph at the statement

level in which each node is the resulting vector of the fully connected layers.

3.4.3.1.3 Step 3. Dual-Task learning fault localization. After the feature

representation learning step, we obtain two feature graphs at the method and

statement levels, in which a node in either graph is a vector representation. The

two graphs are used as the input for dual-task learning. For dual-task learning, we

use two Graph-Based Convolution Network (GCN) models [62] for the method-level

FL model (MethFL) and the statement-level FL model (StmtFL) to learn the CC

fixing methods and CC fixing statements, respectively. During training, the two

feature graphs at the method and statement levels are used as the inputs of MethFL

and StmtFL. The two GCN models play the role of binary classifiers for the bugginess

for the nodes (i.e., methods/statements). We train the two models simultaneously

with soft-sharing of parameters. Details will be given in Sub-Section 3.4.6.

3.4.3.2 Predicting process. The input of the prediction process (Figure 3.25)

includes the test cases and the source code in the project. The steps 1–2 of the process

is the same as in training. In step 3, the feature graph gM at the statement level

built from the source code is used as the input of the trained StmtFL model, which

predicts the labels of the nodes in that graph. The labels indicate the bugginess

of the corresponding statements in the source code, which represent the CC fixing

statements. If one aims to predict the faulty methods, the trained MethFL model can

be used on the feature graph to produce the CC fixing methods.
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Figure 3.25 Bug Detection: FixLocator prediction process.

3.4.4 Feature extraction

3.4.4.1 Method-Level feature extraction GM . Figure 3.26 illustrates the

key attributes and relations that we collect. For each method M1, we extract the

following attributes:

1) The method’s content: we remove special characters and separators in the

method’s interface and body, and use naming convention to break each code token

into the sub-tokens. For example, in Figure 3.26, the node M1 represents the method

computeGeometricalProperties in Figure 3.27. For the content for M1, the extracted

sequence of sub-tokens is protected, void, compute, Geometrical, Properties, etc.

2) The method’s structure: the corresponding parser is used to build the AST

of the method (e.g., JDT [51] for Java code).

3) Most similar faulty method: we keep the most similar faulty method Mb with

M1. Note that we keep Mb as an attribute of M1, rather than representing Mb in the

feature graph. The rationale is that Mb might be in the past and might not be present

in the current version of the project. Two methods are similar when they have similar

sequences (measured by the cosine similarity) of the sub-tokens (represented by the

GloVe embeddings [122]). For Mb, we build its AST and keep it as an attribute for

M1.
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Figure 3.26 Bug Detection: Method-Level feature extraction GM for M1.

We encode as the edges three types of relations:

1) Calling relation in a stack trace: we encode into the feature graph the calling

relations in a stack trace of a failed test case as we ran it. In Figure 3.26, a blue

edge connects Mi to Mj for that relation. Since the stack trace can be long, from the

failing/crash point, we collect only part of the stack trace with n levels of depth from

that point. Following a prior work [177], in our experiment, n=10.

2) Calling relations in an execution trace: Similar to the stack trace, an

execution trace needs to be encoded in the feature graph. It can be very long from the

failing/crash point. Thus, we keep the methods with only m levels of length in calling

relations from that point. In our experiment, we use m=10. Figure 3.26 illustrates a

few calling relations (in green color) in execution traces.

3) Co-Change/co-fixing relation: Such a relation exists between two methods

that were changed/fixed in a commit. Such an edge is made into two one-directional

edges (e.g., M5 ⇆ M6 in Figure 3.26).

3.4.4.2 Statement-Level feature extraction gM . For each statement, we

extract the following attributes.
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Figure 3.27 Bug Detection: Stmt-Level feature extraction gM for M1 in
Figure 3.26.

1) Code coverage: we run the test cases and collect code coverage information.

For each statement s, we use a vector C = <c1, c2, ..., cK> (K is the number of test

cases) to encode code coverage in which ci = 1 if the test ti covers s, and ci = 0

otherwise. We use another vector R = <r1, r2, ..., rK> to encode the passing/failing

of a test case in which ri = 1 if the test case ti is a passing one and ri = 0 otherwise.

R is common for all the statements. We concatenate C and R for each statement

to obtain the code coverage feature vector VCov = <c1, c2, ..., cK , r1, r2, ..., rK>. We

used DeepRL4FL’s test ordering algorithm [75] as the ordering of test cases is useful

in FL. For the different numbers of test cases across files, we perform zero padding

to make the vectors have the same length.

2) AST structure: we extract the sub-tree in the AST that corresponds to the

current statement.

3) List of variables:. We break the names into sub-tokens. In Figure 3.27, the

sequence for the variable list is [tree, BSPTree, Euclidean2D,...].

We encode the following types of relations among statements:

1) Program dependence graph (PDG): as suggested in [75], the relations among

statements in an PDG are important in FL, thus, we integrate them into the feature

graph. In Figure 3.27, the blue edges represent the relations in the PDG for the given
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code. The statement at line 4 has a control/data dependency with the one at line 5,

which connects to the ones at lines 7–8, and to the ones at lines 10–11.

2) Execution flow in an execution trace: if two statements are executed

consecutively in an execution trace, we will connect them together. In Figure 3.27,

we have the execution flow S5 → S7, S7 → S8.

3) Co-Change/co-fixing relation: we maintain the co-change/co-fixing relations

among statements. In Figure 3.27, S4 and S5 have been changed in a commit, thus,

two co-change edges connect them.

3.4.5 Feature representation learning

The goal of this step is to learn to build the vector representations for the nodes in the

feature graphs at the method and statement levels. At either level, the input includes

the attributes of either a method or a statement as in Figures 3.26 and 3.27. The

output is each feature graph in which the nodes are replaced by their embeddings.

Figure 3.28 Bug Detection: Method-Level feature representation learning.

3.4.5.1 Method-Level representation learning. Figure 3.28 shows how we

build the vectors for a method’s attributes.

1) The method’s content: the method’s content is represented by the sequence

Seqc of the sub-tokens built from the code tokens in the interface and the body of the

method. To vectorize each sub-token in Seqc, we use a word embedding model, called

GloVe [122], and treat each method as a sentence. After this vectorization, for the
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method, we obtain the sequence <v1, v2, ..., vn> of the vectors of the sub-tokens in

Seqc. We then apply a sequential model on the sequence <v1, v2, ..., vn> to learn the

“summarized” vector VMC that represents the method’s content. Specifically, we use

Gated Recurrent Unit (GRU) [27], a type of RNN layer that is efficient in learning

and capturing the information in a sequence.

2) The method’s structure: we first treat the method as the sequence of tokens

and use GloVe to build the embeddings for all the tokens as in 1). We then replace

every node in the AST of the method with the GloVe’s vector of the corresponding

token of the node (Figure 3.28). From the tree of vectors, we use a tree-based model,

called TreeCaps [20], to capture its structure to produce the “summarized” vector

VAST representing the method’s structure.

3) Most similar faulty method: for a method, we process the most similar buggy

method Mb in the same way as the method’s structure via GloVe and TreeCaps to

learn the vector VMSBM for Mb.

Finally, for each method M1, we obtain VMC , VAST , and VMSBM .

3.4.5.2 Statement-Level representation learning. Figure 3.29 shows how

we build the vectors for a statement’s attributes.

1) Code Coverage: we directly use the vector VCov =<c1, c2, ..., cK , r1, r2, ..., rK>

computed in Sub-Section 3.4.4.2 for the next computation.

Figure 3.29 Bug Detection: Statement-Level feature representation learning.
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2) The statement’s structure: we process the AST subtree representing the

statement’s structure in the same manner (via GloVe and TreeCaps) as for the

method’s structure to produce Vsubtree.

3) List of variables: as with the method’s content, we run GloVe on the

sequence of sub-tokens to produce a sequence of vectors and use GRU to produce

the summarized vector Vvar for the list.

Finally, for each statement S, we obtain VCOV , Vsubtree, and Vvar.

3.4.5.3 Feature representation learning. After computing the three embeddings

for three attributes of each method, we use three fully connected layers to standardize

each vector’s length to a chosen value l. Similarly, we use three fully connected layers

for the three embeddings for each statement. Then, for a method or a statement, we

concatenate the three output vectors from the fully connected layer to produce the

vector VM for the method and the other three vectors for VS for the statement with

the length of (l × 3).

After all, for a method M , we have the method-level graph GM and the

statement-level graph gM with its statements. The nodes in GM (Figure 3.26) now

are the vectors computed for methods, and the nodes in gM are the vectors VS for

the statements in M (Figure 3.27).

3.4.6 Dual-Task learning for fault localization

Figures 3.30 and 3.31 illustrate our dual-task learning for fault localization. In

the training dataset, for each bug B, to ensure the matching of a method and its

corresponding statements, we build for each faulty method M the pairs (GM , gM):

1) GM , the method-level graph (Figure 3.26 with nodes replaced by vectors); and 2)

gM , the statement-level graph (Figure 3.27) containing all the statements belonging

to M . To ensure the co-fixing connections among the buggy methods for the same bug

B, we model the co-fixed methods of M via co-fixed relations in GM (Figure 3.26). At
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the output layer, we label those methods as faulty/co-fixing. The co-fixed statements

within gM for the bug B are also labeled as faulty/co-fixing. The non-buggy methods

or statements are labeled as non-faulty. The pairs (GM , gM) are used as the input

of this dual-task learning model (Figure 3.30). We process all the faulty methods M

for each bug B, and non-buggy methods.

Figure 3.30 Bug Detection: Dual-Task learning fault localization.

In prediction, for each method M∗ in the project, we build the pair (GM∗ , gM∗)

and feed it to the trained dual-task model. In the output graphs, each node (for a

method or a statement) will be classified as either faulty/co-fixing or non-faulty. The

nodes with faulty/co-fixing labels in gM∗ are the co-fixing statements for the bug. Let

us explain our dual-task learning in details.

3.4.6.1 Graph Convolutional Network (GCN) for FL. First, FixLocator

has two GCN models [62], each for FL at the method and statement levels. GCN

processes the attributes of the nodes (vectors) and their edges (relations) in feature

graphs. Each GCN model has n− 1 pairs of a graph convolution layer (Conv) and a

rectified linear unit (ReLU ). They are aimed to consume and learn the characteristic

features in the input feature graphs. The last pair of each GCN model is a pair

of a graph convolution layer (Conv) and a softmax layer (SoftMax ). The SoftMax
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layer plays the role of the classifier to determine whether a node for a method or a

statement is labeled as faulty/co-fixing or non-faulty.

3.4.6.2 Dual-Task learning with Cross-Stitch units. In a regular GCN

model, those above pairs of Conv and ReLU are connected to one another. However,

to achieve dual-task learning between method-level and statement-level FL (methFL

and stmtFL), we apply a cross-stitch unit [101] to connect the two GCN models.

The sharing of representations between methFL and stmtFL is modeled by learning a

linear combination of the input features in both feature graphs GM and gM . At each

of the ReLU layer of each GCN model (Figure 3.31), we aim to learn such a linear

combination of the output from the graph convolution layers (Conv) of methFL and

stmtFL.

The top sub-network in Figure 3.30 gets direct supervision from methFL and

indirect supervision (through cross-stitch units) from stmtFL. Cross-Stitch units

regularize methFL and stmtFL by learning and enforcing shared representations by

combining feature maps [101].

Formulation. For each pair of the GCN model, the outputs of the ReLU layer,

called the hidden states, are computed as follows:

Â = D′− 1
2A′D′−1

2
(3.5)

H i = ∆(ÂX iW i) (3.6)

Where A′ is the adjacency matrix of each feature graph; D′ is the degree matrix; W i

is the weight matrix for layer i; X i is the input for layer i; H i is the hidden state of

layer i and the output from the ReLU layer; and ∆ is the activation function ReLU.

In a regular GCN, H i is the input of the next layer of GCN (i.e., the input of Conv).
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Figure 3.31 Bug Detection: Dual-Task learning via cross-stitch unit.

In Figures 3.30 and 3.31, a cross-stitch unit is inserted between the ReLU layer

of the previous pair and the Conv layer of the next one. The input of the cross-stitch

unit includes the outputs of the two ReLU layers: H i
M and H i

S (i.e., the hidden states

of those layers in methFL and stmtFL). We aim to learn the linear combination of

both inputs of the cross-stitch unit, which is parameterized using the weights α. Thus,

the output of the cross-stitch unit is computed as:X i+1
M

X i+1
S

 =

αMM αMS

αSM αSS


H i

M

H i
S

 (3.7)

α is the trainable weight matrix; X i+1
M and X i+1

S are the inputs for the (i+1)th layers

of the GCNs at the method and statement levels.

X i+1
M and X i+1

S contain the information learned from both MethFL and StmtFL,

which helps achieve the main goal for dual-task learning to enhance the performance

of fault localization at both levels.

In general, αs can be set. If αMS and αSM are set to zeros, the layers are made

to be task-specific. The α values model linear combinations of feature maps. Their

initialization in the range [0,1] is important for stable learning, as it ensures that
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values in the output activation map (after cross-stitch unit) are of the same order of

magnitude as the input values before linear combination [101].

If the sizes of the H i
M and H i

S are different, we need to adjust the sizes of the

matrices. From Formula 3.7, we have:

X i+1
M = αMMH i

M + αMSH
i
S (3.8)

X i+1
S = αSMH i

M + αSSH
i
S (3.9)

We resize H i
s in Formula 3.8 and resize H i

m in Formula 3.9 if needed. We use the

bilinear interpolation technique [159] in image processing for resizing. We pad zeros

to the matrix to make the aspect ratio 1:1. If the size needs to be reduced, we do the

center crop on the matrix to match the required size.

FixLocator also has a trainable threshold for SoftMax to classify if a node

corresponding to a method or a statement is faulty or not.

3.4.7 Empirical evaluation

3.4.7.1 Research questions. For evaluation, we seek to answer the following

research questions:

RQ1. Comparison with State-of-the Art Deep Learning (DL)-Based

Approaches. How well does FixLocator perform compared with the state-of-the-art

DL-based fault localization approaches?

RQ2. Impact Analysis of Dual-Task Learning. How does the dual-task learning

scheme affect FixLocator’s performance?

RQ3. Sensitivity Analysis. How do various factors affect the overall performance

of FixLocator?

RQ4. Evaluation on Python Projects. How does FixLocator perform on Python

code?

109



RQ5. Extrinsic Evaluation on Usefulness. How much does FixLocator help an

APR tool improve its bug-fixing?

3.4.7.2 Experimental methodology.

3.4.7.2.1 Data set. We use a benchmark dataset Defects4J V2.0.0 [32] with 835

bugs from 17 Java projects. For each bug in a project P , Defects4J has the faulty and

fixed versions of the project. The faulty and fixed versions contain the corresponding

test suite relevant to the bug. With the Diff comparison between faulty and fixed

versions of a project, we can identify the faulty statements. Specifically, for a bug

in P , Defects4J has a separate copy of P but with only the corresponding test suite

revealing the bug. For example, P1, a version of P , passes a test suite T1. Later, a

bug B1 in P1 is identified. After debugging, P1 has an evolved test suite T2 detecting

the bug. In this case, Defects4J has a separate copy of the buggy P1 with a single

bug, together with the test suite T2. Similarly, for bug B2, Defects4J has a copy of

P2 together with T3 (evolving from T2), and so on. We do not use the whole T of all

test suites for training/testing. For within-project setting, we test one bug Bi with

test suite T(i+1) by training on all other bugs in P . We conducted all the experiments

on a server with 16 core CPU and a single Nvidia A100 GPU.

In Defects4J-v2.0, regarding the statistics on the number of buggy/fixed

statements for a bug, there are 199 bugs with one buggy/fixed statement, 142 bugs

with two, 90 bugs with three, 78 bugs with four, 43 bugs with five, and 283 bugs with

>5 buggy statements. Regarding the statistics on the number of buggy/fixed method-

s/hunks for a bug, there are 199 bugs with one-method/one-statement, 105 bugs with

one-method/multi-statements, 142 bugs with multi-methods/one-statement for each

method, 61 bugs with multi-methods/multi-statements for each method, and 357

bugs with multiple methods, each has one or multiple buggy statements. Thus, there

are 665 (out of 864 bugs) with CC fixing statements.
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3.4.7.2.2 Experiment setup and procedure.

RQ1. Comparison with DL-Based FL Approaches.

Baselines. Our tool aims to output a set of CC fixing statements for a bug.

However, the existing Deep Learning-Based FL approaches can produce only the

ranked lists of suspicious statements with scores. Thus, we chose as baselines the

most recent, state-of-the-art, DL-based, statement-level FL approaches: (1) CNN-

FL [193]; (2) DeepFL [72]; and (3) DeepRL4FL [75]; then, we use the predicted,

ranked list of statements as the output set. For the comparison in ranking with

those ranking baselines, we convert our tool’s result into a ranked list by ranking

the statements in the predicted set by the classification scores (i.e., before deriving

the final set). We also compare with the CC fixing-statement detection module in

DEAR [76], a multi-method/multi-statement APR tool.

Procedures. We use the leave-one-out setting as in prior work [72, 73] (i.e.,

testing on one bug and training on all other bugs). We also consider the order of

the bugs in the same project via the revision numbers. Specifically, for each buggy

version B of project P in Defects4J, all buggy versions from the other projects are

first included in the training data. Besides, we separate all the buggy versions of the

project P into two groups: 1) one buggy version as the test data for model prediction,

and 2) all the buggy versions of the same project P that have occurred before the

buggy version B are also included in the training data. If the latter group is empty,

only the buggy versions from the other projects are used for training to predict for

the current buggy version in P .

We tune all models using autoML [98] to find the best parameter setting. We

directly follow the baseline studies to select the parameters that need to be tuned

in the baselines. We tuned our model with the following key hyper-parameters to

obtain the best performance: (1) Epoch size (i.e., 100, 200, 300); (2) Batch size (i.e.,

64, 128, 256); (3) Learning rate (i.e., 0.001, 0.003, 0.005, 0.010); (4) Vector length of
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word representation and its output (i.e., 150, 200, 250, 300); (5) The output channels

of convolutional layer (16, 32, 64,128); (6) The number of convolutional layers (3, 5,

7, 9).

DeepFL was proposed for the method-level FL. For comparison, following a

prior study [75], we use only DeepFL’s spectrum-based and mutation-based features

applicable to detect faulty statements.

Evaluation Metrics. We use the following metrics for evaluation:

(1) Hit-N measures the number of bugs that the predicted set contains at least

N faulty statements (i.e., the predicted and oracle sets for a bug overlap at least

N statements regardless of the sizes of both sets). Both precision and recall can be

computed from Hit-N.

(2) Hit-All is the number of bugs in which the predicted set covers the correct

set in the oracle for a bug.

(3) Hit-N@Top-K is the number of bugs that the predicted list of the top-

K statements contains at least N faulty statements. This metric is used when we

compare the approaches in ranking.

RQ2. Impact Analysis of Dual-Task Learning Model.

Baselines. To study the impact of dual-task learning, we built two variants

of FixLocator: (1) Statement-Only model: the method-level FL model (methFL) is

removed from FixLocator and only statement-level FL (stmtFL) is kept for training.

(2) Cascading model: in this variant, dual-task learning is removed, and we cascade

the output of methFL directly to the input of stmtFL.

Procedures. The statement-only model has only the statement-level fault

localization. We ran it on all methods in the project to find the faulty statements.

We use the same training strategy and parameter tuning as in RQ1. We use Hit-N

for evaluation.
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RQ3. Sensitivity Analysis. We conduct ablation analysis to evaluate the impact

of different factors on the performance: every node feature, co-change relation, and the

depth limit on the stack trace and the execution trace. Specifically, we set FixLocator

as the complete model, and each time we built a variant by removing one key factor,

and compared the results. Except for the removed factor, we keep the same setting

as in other experiments.

RQ4. Evaluation on Python Projects.

To evaluate FixLocator on different programming languages, we ran it on the

Python benchmark BugsInPy [19, 171] with 441 bugs from 17 different projects.

RQ5. Extrinsic Evaluation. To evaluate usefulness, we replaced the original

CC fixing-location module in DEAR [76] with FixLocator to build a variant of

DEAR, namely DEARFixL. We also added FixLocator and Ochiai FL [1] to

CURE [54] to build two variants: CUREFixL (FixLocator + CURE) and CUREOchi

(Ochiai+CURE).

3.4.7.3 Empirical results.

3.4.7.3.1 RQ1. Comparison results with state-of-the-art DL-Based FL

approaches. Table 3.17 shows how well FixLocator’s coverage is on the actual

correct CC fixing statements (recall). The result is w.r.t. the bugs in the oracle with

different numbers K of CC fixing statements: K=#CC-Stmts = 1, 2, 3, 4, 5, and 5+.

For example, in the oracle, there are 90 bugs with 3 faulty statements. FixLocator’s

predicted set correctly contains all 3 buggy statements for 21 bugs (Hit-All), 2 of

them for 25 bugs, and 1 faulty statement for 51 bugs. As seen, regardless of N ,

FixLocator performs better in any Hit-N over the baselines for all Ks. Note that

Hit-All = Hit-N when N(#overlaps) = K(#CC-Stmts).

Table 3.18 shows the summary of the comparison results in which we sum all

the corresponding Hit-N values across different numbers K of CC fixing statements

in Table 3.17. As seen, FixLocator can improve CNN-FL, DeepFL, DeepRL4FL, and

113



DEAR by 16.6%, 16.9%, 9.9%, and 20.6%, respectively, in terms of Hit-1 (i.e., the

predicted set contains at least one faulty statement). It also improves over those

baselines by 33.6%, 40.3%, 26.5%, and 57.5% in terms of Hit-2, 43.9%, 46.4%, 28.1%,

and 51.9% in terms of Hit-3, 100%, 155.6%, 64.5%, and 142.1% in terms of Hit-4.

Note: Any Hit-N reflects the cases of multiple CC statements. For example, Hit-1

might include the bugs with more than one buggy/fixed statement.

Table 3.17 Bug Detection: RQ1. Detailed Comparison w.r.t. Faults with Different
# of CC Fixing Statements in an Oracle Set (Recall).

#CC-Stmts in
Oracle

Metrics CNN-
FL

DeepFL DeepRL4FL DEAR Fix-
Locator

1 (199 bugs) Hit-1 78 76 84 74 93

2 (142 bugs)
Hit-1 67 64 70 65 75

Hit-2 33 30 34 28 41

3 (90 bugs)

Hit-1 46 44 47 42 51

Hit-2 21 20 23 20 25

Hit-3 11 10 13 12 21

4 (78 bugs)

Hit-1 41 42 42 40 45

Hit-2 22 19 21 20 24

Hit-3 9 7 8 5 12

Hit-4 3 2 4 2 9

5 (43 bugs)

Hit-1 15 14 16 13 18

Hit-2 9 8 9 7 12

Hit-3 6 5 6 5 7

Hit-4 3 2 3 2 3

Hit-5 1 1 1 0 1

5+ (283 bugs)

Hit-1 85 91 93 87 105

Hit-2 40 42 45 41 65

Hit-3 31 34 37 32 42

Hit-4 17 14 21 15 34

Hit-5 4 3 5 2 8

Hit-5+ 1 2 3 1 3
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Table 3.18 Bug Detection: RQ1. Comparison Results with DL-based FL Models.

Metrics CNN-FL DeepFL DeepRL4FL DEAR FixLocator

Hit-1 332 331 352 321 387

Hit-2 125 119 132 106 167

Hit-3 57 56 64 54 82

Hit-4 23 18 28 19 46

Hit-5 5 4 6 2 9

Hit-5+ 1 2 3 1 3

Hit-All 127 121 139 115 168

Importantly, our tool produced the exact-match sets for 168/864 bugs (19.5%),

relatively improving over the baselines 32%, 38.8%, 20.8%, and 46.1% in Hit-All.

It performs well in Hit-All when the number of CC statements K=1-4. However,

producing the exact-matched sets for all statements when K ≥ 5 is still challenging

for all the models.

Table 3.19 shows the comparison on how precise the results are in a predicted

set. For example, when the number of the CC statements in a predicted set is K ′=3,

there are 23 bugs in which all of those 3 faulty statements are correct (there might be

other statements missing). There are 27 bugs in which two of the 3 predicted, faulty

statements are correct. There are 55 bugs in which only one of the 3 predicted, faulty

statements are correct. As seen, regardless of N , FixLocator is more precise than the

baselines for all K ′s.

Table 3.20 shows the comparison as ranking is considered (Hit-N@Top-K). As

seen, in the ranking setting, FixLocator locates more CC fixing statements than

any baseline. For example, FixLocator improves the best baseline DeepRL4RL by
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23.9% in Hit-2@Top-5, 22.6% in Hit-3@Top-5, 43.8% in Hit-4@Top-5, and 22.2% in

Hit-5@Top-5, respectively. The same trend is for Hit-N@Top-10.

Table 3.19 Bug Detection: RQ1. Detailed Comparison w.r.t. Faults with Different
# of CC Fixing Statements in a Predicted Set (Precision).

#Stmts in
Predicted Set

Metrics CNN-
FL

DeepFL DeepRL4FL DEAR Fix-
Locator

1 (203 bugs) Hit-1 83 79 87 75 (183) 99

2 (165 bugs)
Hit-1 75 72 78 71 (172) 83

Hit-2 36 34 39 34 (172) 45

3 (120 bugs)

Hit-1 52 46 48 41 (129) 55

Hit-2 24 22 26 19 (129) 27

Hit-3 12 11 14 10 (129) 23

4 (96 bugs)

Hit-1 47 49 46 33 (78) 51

Hit-2 24 21 22 14 (78) 26

Hit-3 11 9 10 5 (78) 14

Hit-4 5 3 6 1 (78) 11

5 (73 bugs)

Hit-1 17 16 17 12 (55) 19

Hit-2 10 10 11 7 (55) 14

Hit-3 8 6 7 4 (55) 9

Hit-4 3 3 4 1 (55) 5

Hit-5 2 1 2 0 (55) 2

5+ (178 bugs)

Hit-1 58 69 76 68(218) 80

Hit-2 31 32 34 32 (218) 55

Hit-3 26 30 33 24 (218) 36

Hit-4 15 12 18 16 (218) 30

Hit-5 3 3 4 5 (218) 7

Hit-5+ 1 2 3 2 (218) 3

We did not compare with the spectrum-/mutation-based FL models since

DeepRL4FL [75] was shown to outperform them.

We also performed the analysis on the overlapping between the results of

FixLocator and each baseline. As seen in Table 3.21, FixLocator can detect at least
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one correct faulty statement in 103 bugs that CNN-FL missed, while CNN-FL can

do so only in 48 bugs that FixLocator missed. Both FixLocator and CNN-FL can do

so in the same 284 bugs. In brief, FixLocator can detect at least one correct buggy

statement in more “unique” bugs than any baseline.

Table 3.20 Bug Detection: RQ1. Comparison with Baselines w.r.t. Ranking.

Hit-N@Top-5 Hit-N@Top-10

N= 1 2 3 4 5 1 2 3 4 5 5+

CNN-FL 533 311 133 33 4 578 386 166 42 10 81

DeepFL 525 298 131 35 6 563 364 156 42 10 83

DeepRL4FL 586 339 159 32 9 623 407 186 48 13 92

DEAR 501 274 119 25 3 544 341 142 36 7 71

FixLocator 633 420 195 46 11 690 470 217 51 13 94

Table 3.21 Bug Detection: Overlapping Analysis Results for Hit-1.

FixLocator

Unique-Baseline Overlap Unique-FixLocator

CNN-FL 48 284 103

DeepFL 54 277 110

DeepRL4FL 61 291 96

DEAR 35 286 101

3.4.7.3.2 RQ2. Impact analysis results on dual-task learning. Table 3.22

shows that FixLocator has better performance in detecting CC fixing statements

than the two variants (statement-only and cascading models). This result shows

that the dual-task learning helps improve FL over the cascading model
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(methFL → stmtFL). Moreover, without the impact of method-level FL (methFL),

the performance decreases significantly, indicating methFL’s contribution.

Table 3.22 Bug Detection: RQ2. Impact Analysis of Dual-Task Learning.

Variant Hit-1 Hit-2 Hit-3 Hit-4 Hit-5 Hit-5+

Stmt-only 304 111 51 11 3 2

Cascading 343 125 61 19 3 3

FixLocator 387 167 82 46 9 3

3.4.7.3.3 RQ3. Sensitivity analysis results.

Impact of the Method-Level (ML) Features and ML Co-Change Relation

Among all the method-level features/attributes of FixLocator, the feature of

co-change relations among methods has the largest impact. Specifically, without the

co-change feature among methods, Hit-1 is decreased by 8.3%. Moreover, the method

structure feature, represented as AST, has the second largest impact. Without the

method structure feature, Hit-1 is decreased by 7.8%.

Among the last two method-level features with least impact, the method content

feature has less impact than the similar-buggy-method feature. This shows that the

bugginess nature of a method and similar ones has more impact than the tokens of

the method itself.

Impact of the Statement-Level (SL) Features and SL Co-Change

Relation Among all the statement-level features, Code Coverage has the largest

impact. Without Code Coverage feature, Hit-1 is decreased by 10.1%. The

co-change relations among statements have the second largest impact among all SL

features/attributes. Specifically, without the co-change relations among statements,

Hit-1 is decreased by 9.3%.

Impact of the Depth Level of Stack Trace As seen in Table 3.24,

FixLocator can achieve the best performance when depth=10. The cases with depth=
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5 or 15 can bring into analysis too few or too many irrelevant methods, causing more

noises to the model. Thus, we chose depth=10 for our experiments.

Table 3.23 Bug Detection: RQ3. Sensitivity Analysis of Method- and Statement-
Level Features.

Model Variant
Hit-N

1 2 3 4 5 5+

ML

w/o Method Content 366 158 78 39 9 3

w/o Method Structure 357 155 80 40 8 3

w/o Similar Buggy Method 361 157 79 44 9 3

w/o ML Co-Change Rel. 355 152 77 40 8 3

SL

w/o Code Coverage 348 151 75 38 7 2

w/o AST Subtree 354 153 77 41 8 3

w/o Variables 373 162 78 42 9 3

w/o SL Co-Change Relation 351 150 76 39 7 2

FixLocator 387 167 82 46 9 3

Notes: ML: Method-Level; SL: Statement-Level.

Table 3.24 Bug Detection: RQ3. Sensitivity Analysis (Depth of Traces).

Depth
Hit-N

1 2 3 4 5 5+

5 371 162 74 42 8 3

10 387 167 82 46 9 3

15 368 158 71 39 7 3

Illustrating Example Table 3.25 displays the ranking from the models for

Figure 3.32. FixLocator correctly produces all 4 CC fixing statements in its predicted
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1 public UnivariateRealPointValuePair optimize(final FUNC f, GoalType goal ,

2 double min , double max) throws FunctionEvaluationException {

3 - return optimize(f, goal, min, max, 0);

4 + return optimize(f, goal, min, max, min + 0.5 * (max - min));

5 }

6 public UnivariateRealPointValuePair optimize(final FUNC f, GoalType goal ,

7 double min , double max , double startValue) throws Func ... Exception {

8 ...

9 try {

10 - final double bound1 = (i == 0) ? min : min + generator.nextDouble()...;

11 - final double bound2 = (i == 0) ? max : min + generator.nextDouble()...;

12 - optima[i] = optimizer.optimize(f, goal, FastMath.min(bound1, bound2),...;

13 + final double s = (i == 0) ? startValue : min + generator.nextDouble()...;

14 + optima[i] = optimizer.optimize(f, goal, min, max, s); ...

15 }

16 }

Figure 3.32 Bug Detection: An illustrating example.

set (lines 2,8,9, and 10 in two methods). The statement-only model detects only line

2 as faulty. It completely missed lines 8–10 of the optimize method. In contrast, the

cascading model detects lines 8–10, however, its MethFL considers the first method

(optimize(...) at line 1) as non-faulty, thus, it did not detect the buggy line 2 due to

its cascading.

Table 3.25 Bug Detection: Ranking of CC Fixing Locations for Figure 3.32.

LOC CNN-FL DeepFL DeepRL4FL DEAR FixLocator

Line 2 1 22 2 27 ⋆ (no rank)

Line 8 24 3 6 12 ⋆ (no rank)

Line 9 25 4 7 13 ⋆ (no rank)

Line 10 50+ 13 16 39 ⋆ (no rank)
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The baselines CNN-FL, DeepFL, DeepRL4FL, and DEAR detect only 1, 2, 1,

and 0 faulty statements (bold cells) in their top-4 resulting lists, respectively. In brief,

the baselines are not designed to detect CC fixing locations, thus, their top-K lists

are not correct.

3.4.7.3.4 RQ4. Evaluation on python projects. As seen in Table 3.26,

FixLocator can localize 193 faulty statements with Hit-1. This shows that the

performance on the Python projects is consistent with that on the Java projects.

Specifically, at the statement level, the percentages of the total Python and Java

bugs that can be localized are similar, e.g., 43.8% vs. 46.3% with Hit-1.

Table 3.26 Bug Detection: RQ4. BugsInPy (Python Projects) VS. Defects4J (Java
Projects). P% = |Located Bugs|/|Total Bugs in Datasets|

Metrics
BugsInPy (Python projects) Defects4J (Java projects)

P% Cases P% Cases

Hit-1 43.8% 193 46.3% 387

Hit-2 16.3% 72 20.0% 167

Hit-3 10.2% 45 9.8% 82

Hit-4 3.4% 15 5.5% 46

Hit-5 0.7% 3 1.1% 9

Hit-5+ 0% 0 0.4% 3

3.4.8 Further analysis

3.4.8.1 Running time. As seen in Table 3.27, except for DeepFL (using a

basic neural network), the other approaches have similar training and prediction

time. Importantly, prediction time is just a few seconds, making FixLocator suitable

for interactive use.
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Table 3.27 Bug Detection: Running Time.

Models CNN-FL DeepFL DeepRL4FL DEAR FixLocator

Training Time 4 hours 5 mins 7 hours 21 hours 6 hours

Prediction Time 2 seconds 1 second 4 seconds 9 seconds 2 seconds

3.4.8.2 Limitations. First, our tool does not detect well the sets with +5 CC

fixing statements since it does not learn well those large co-changes. Second, it does

not work in locating a fault that require only adding statements to fix (neither do all

baselines). Third, if the faulty statements/methods occur far from the crash method

in the execution traces, it is not effective. Finally, it does not have any mechanism to

integrate program analysis in expanding the faulty statements having dependencies

with the detected faulty ones.

3.4.9 Threats to validity

(1) We evaluated FixLocator on Java and Python. Our modules are general for any

languages. (2) We compared the models only on two datasets that have test cases.

(3) For comparison, we use only DeepFL’s features applicable to statement-level FL

although it works at the method level. Other baselines work directly at the statement

level. (4) In 501 bugs in BugsInPy, the third-party tool cannot process 60 of them.

(5) We focus on CC fixing statements, instead of methods, due to bug fixing purpose.

3.5 Conclusion

In this chapter, we designed our approach with suitable learning code representations

on three research topics: bug detection, single-statement fault localization, and multi-

statement/multi-method fault localization.

As for bug detection, we propose a new deep learning-based bug detection to

improve the existing state-of-the-art detection approaches. The key ideas that enable
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our approach are (1) modeling and analyzing the relations among paths of ASTs

from different methods using the Program Dependency Graph (PDG) and Data Flow

Graph (DFG) and (2) using weights and attention mechanisms to emphasize previous

buggy paths and differentiate them from non-buggy ones.

We propose a deep learning-based fault localization (FL) approach, DeepRL4FL,

to improve existing FL approaches for single-statement fault localization. The key

ideas include (1) treating the FL problem as the image recognition; (2) enhancing code

coverage matrix by modeling the relations among statements and failing test cases;

(3) combining code coverage representation learning with statement dependencies,

and the code representation learning for usual suspicious code.

And for multi-statement/multi-method fault localization, we present FixLocator,

a novel DL-based FL approach that aims to locate co-change fixing locations within

one or multiple methods. The key ideas of FixLocator include (1) a new dual-task

learning model of method- and statement-level fault localization to detect CC fixing

locations; (2) a novel graph-based representation learning with co-change relations

among methods and statements; (3) a novel feature in co-change methods/statements.

All the empirical results show that our approaches can outperform all the

studied state-of-the-art approaches for each research topic. It proves that our idea of

applying suitable learning code representations to help increase the performance of

bug detection-related tasks is efficacious. In the testing stage, the next step is to fix

those located bugs in the software after we have the location for the bugs by using

fault localization. We will introduce how we use learning code representations to help

fix those bugs automatically in Chapter 4.
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CHAPTER 4

AUTOMATED PROGRAM REPAIR

4.1 Introduction

This chapter introduces two of our works related to automated program repair. (1)

The first one focuses on using code representation learning with the deep learning

model to improve the existing deep learning-based studies. (2) The second one is

the improvement of the first one after we found that most of the existing approaches,

including the first idea we have, can only fix the bugs that happen in one line. During

our study of the real bugs, many were caused by multiple statements or methods. To

deal with it, in the second idea, we would like to find a new way to fix more types of

bugs, including the bugs involved in multiple hunks and multiple lines. Both of these

two research topics are published as conference papers. The layout of this chapter,

along with the associated code representations utilized for each research topic, can be

visualized in Figure 4.1. We will separately introduce these two ideas in the following

sections.

Figure 4.1 Automated Program Repair: Roadmap for Chapter 4.
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4.2 Automated Program Repair for Single Statement Single Hunk Bugs

4.2.1 Introduction

Program repair is a vital activity aiming to fix defects during software development

to ensure software quality. It requires much effort, time, and budgets for a

software development team. Recognizing the importance of program repairing, several

automated techniques/tools have been proposed to help developers in automatically

identifying and fixing software defects in programs.

Recently, some approaches aim to mine and learn fixing patterns from prior

bug fixes [112, 67, 86, 60]. The fixing patterns, also called fixing templates, could be

automatically or semi-automatically mined [67, 112, 86, 87]. Some approaches are

integrated with static and dynamic analysis, and constraint solving to synthesize a

patch [112, 86]. Instead of mining buggy and fixed code, other approaches focus on

mining code changes to generate a similar patch (e.g., CapGen [167], SimFix [52],

FixMiner [64]). Machine learning has been used to implicitly mine the fixing

patterns and/or further rank the candidate fixes based on existing patches (e.g.,

Prophet [92], Genesis [90]). Other approaches [134] explore information retrieval for

better selecting/ranking candidate fixes.

With recent advances in deep learning (DL), several researchers have applied

DL to automated program repair (APR). The first group of approaches (e.g.,

DeepFix [41], DeepRepair [168, 169]) leverages the capability of DL models in

learning similar source code for similar fixes. For example, DeepRepair explores

learned code similarities, captured with recursive auto-encoders [169], to select the

repair ingredients from code fragments similar to the buggy code. The second

group of approaches treats APR as a statistical machine translation that translates

the buggy code to the fixed code. Rachet [46] and Tufano et al. [158] use

sequence-to-sequence translation. They use neural network machine translation
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(NMT) with attention-based Encoder-Decoder, and different code abstractions to

generate patches, while SequenceR [24] uses sequence-to-sequence NMT with a copy

mechanism [138]. CODIT [21] learns code edits with encoding code structures in

an NMT model to generate fixes. Tufano et al. [156] learn code changes using

sequence-to-sequence NMT with code abstractions and keyword replacing.

Despite their successes, the above neural network machine translation (NMT)-

based models still have the following three key limitations in applying to APR. The

first issue is that those approaches completely treat APR as a machine translation

from buggy to fixed code. Specifically, during training, the knowledge on what parts

of the buggy code have changed and what have not for fixing a defect is not encoded

in those NMT-based models for APR. Instead, those NMT-based models are trained

with a parallel corpus of the pairs of the source code of a buggy method and that

of the corresponding fixed one. Without such knowledge, the models must learn to

implicitly align the source code before and after the fix, and at the same time, to

statistically derive the fixing patterns. The learned alignment might be imprecise,

making those NMT-based models incorrectly identify the fixing locations in the new

buggy code.

The second issue of NMT-based APR models is with the sequence-based

representation for source code. Source code has well-defined syntax and semantics.

The sequence representations and sequence-based DL models are not suitable for

capturing code structures. Thus, the process of learning the mappings between the

program elements/tokens in the buggy and fixed code must implicitly recover the code

structure and map two structures to learn the code transformations corresponding to

the bug fix. This could lead to imprecise mappings and eventually incorrect fixes.

The third issue of NMT-based APR models is with how they handle the context

of the code surrounding the fixing locations where the fixes occur. In general, the fix

at a specific location depends on the surrounding code. For example, assuming that
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a bug fix of adding an operation of closing a file with FileOutputStream.close occurs

in the context of the file object being already open and written to. A file closing

operation is needed after that. An addition of FileOutputStream.open cannot be a

candidate fix because the file was already open. The state-of-the-art approaches [41,

158, 156] using NMT to translate buggy to good code currently have limitations in

considering such context. Specifically, they often take the entire methods before and

after the fixes as the pairs to train a sequence-to-sequence NMT model. The issue

is that the context of entire method contains too much noise that makes the model

difficult to correctly align the changed and unchanged code between the buggy and

the fixed code. At the meantime, other approaches [24, 21, 46] limit the scope of the

input code only to the buggy statement and the corresponding fixed one. With this,

the models avoid the noise caused by too much context, however, facing the opposite

issue that they lack the contexts to derive the correct fix. Thus, they often pick and

rank higher the popular yet incorrect fixes in the corpus, with limited consideration

of surrounding code.

To address those challenges, we introduce DLFix, a two-layer tree-based deep

learning model to learn code transformations from prior bug fixes to apply to fix a

given buggy code. We treat the APR problem as code transformation learning (rather

than a machine translation problem), in which transformations corresponding to bug

fixes including (un)-changed parts are encoded as the input for model training. This

helps DLFix to avoid the mapping task. Instead of using sequence-to-sequence NMT,

we use a tree-based RNN in which the source code of the method is represented by

the corresponding abstract syntax tree (AST), where the changed and un-changed

sub-trees are encoded and fed to the model. To address the issue on context, we

separate the learning of the context of surrounding code of bug fixes from the learning

of the code transformations for bug fixes with two layers in our model. The buggy

sub-tree in the AST of a buggy method is identified and replaced with a summarized
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node, which encodes the detailed structures of the buggy sub-tree. The non-buggy

AST sub-trees together with the summarized node constitute the context and are

learned with the RNN model at the context learning layer. The output of the context

learning layer is a vector representing the surrounding context.

For the code transformation learning, the changed sub-tree before and after the

fix is used for training another tree-based RNN model to learn the bug-fixing code

transformations. The context of the transformation computed as the vector in the

context learning layer is used as anadditional input in this step.

The separation of context learning and transformation learning, and using the

result from context learning in the latter process helps DLFix sufficiently consider the

surrounding code. This strategy also enables DLFix to learn the context better due

to the relative position of the summarized node (the changed sub-tree for a fix) with

the other nodes (un-changed sub-trees) of the AST. Moreover, during training, the

separation between two learning phases helps DLFix avoid the incorrect alignments

between changed code and surrounding context code. Only the changed sub-trees

before and after fixing are aligned and DLFix learns the transformations.

We conducted several experiments to evaluate DLFix in two standard bug

datasets Defects4J, and Bugs.jar, and in a newly built bug datasets with a total

of +20K real-world bugs in 8 large Java projects. We have compared against a total

of 13 state-of-the-art pattern-based APR tools. Our results show that DLFix can

auto-fix more bugs than eleven of them, and is comparable and complementary to

the top two pattern-based APR tools. However, we can fix 7 and 11 new unique bugs

compared with the above top two APR tools. Importantly, DLFix is fully automated

and data-driven, and does not require hard-coding of bug-fixing patterns as in those

tools. We also compared DLFix against four state-of-the-art deep learning (DL)-based

APR models. DLFix is able to detect 2.5 times and 19.8 times more bugs than the
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best and worst performing baselines, respectively. In this chapter, we contribute the

following:

A. DL for APR: DLFix is the first DL APR that generates comparable and

complementary results with powerful pattern-based tools, as recently published DL-

based APR can only fix very few bugs on Defects4J. DLFix helps confirm that further

research on building advanced DL to improve APR is promising and valuable.

B. Model: A novel DL-based APR approach with a novel two-layer tree-based

model, effective program analysis techniques, and CNN-based re-ranking approach to

better identify correct patches.

C. Empirical Results:

1) Comparable and Complementary to Pattern-Based APR. We show

DLFix can auto-fix more bugs than 11/13 state-of-the-art pattern-based APR tools,

and its result is comparable and complementary to the ones from the two best pattern-

based tools. DLFix do not require hard-coding of bug-fixing patterns as in those tools.

DLFix is fully automatic and data-driven.

2) Improving over all the DL-Based APR. DLFix is able to detect 2.5

times more bugs than the best performing baseline. DLFix can fix 253 new bugs (out

of 1158 in Bugs.jar) than all the other DL-based APR techniques combined.

4.2.2 Motivation

4.2.2.1 Motivating example. In this sub-section, we present a real-world

example and our observations to motivate our approach.

Figure 4.2 shows an example of a real-world bug fix in the project PIG in the

Bugs.jar dataset [133]. In the method deleteDir, as part of the task of deleting a

directory, the string for the command is first built (lines 5–8). A bug occurs when

the API call runCommand needs to have the third argument as false (an option to

indicate no connection to a socket), and it does not need to return an object Process.
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1 private void deleteDir(String server , String dir) {

2 if (server.equals(LOCAL )){ ...

3 }else {

4 String [] cmdarray = new String [3];

5 cmdarray [0] = "rm";

6 cmdarray [1] = "-rf";

7 cmdarray [2] = dir;

8 try {

9 - Process p = runCommand(server , cmdarray );

10 + runCommand(server , cmdarray , false);

11 } catch(Exception e){

12 log.warn("Failed␣to␣remove␣..." + dir);

13 }

14 }

15 ...

16 }

Figure 4.2 Automated Program Repair: A bug-fixing example from project PIG
in Bugs.jar.

The fix is shown at line 11 where the variable p of Process was deleted and the new

argument false was added.

From this example, we have drawn the following observations:

Observation 1 (Code Structure). The change to fix a bug could range from a

simple change to a program entity, to a complex transformation of the code structure

in the buggy code. For example, in Figure 4.2, the fix involves the removal of the

variable p and the declaration type Process, and the addition of the third argument

false. In other words, the structure of the code statement was changed. In other

cases, the changes might be more complex. Generally, a bug-fixing change can be

viewed as a code transformation applying to the buggy code to transform it to the

correct code.
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Observation 2 (Context). A bug fix often depends on the context of its

surrounding code. That is, bug fixes might vary for different contexts of surrounding

code. For example, the fix in Figure 4.2 makes sense in the context of the surrounding

code when the string command was built (lines 5-8), and the API runCommand was

called (line 10), and an exception catching occurs afterward at lines 12–14. The fix

might not be the same in a different usage of those objects. Generally, the decision to

choose a specific bug-fixing change needs to consider the context of surrounding code

where the fix occurs.

Table 4.1 Automated Program Repair: Results from Different NMT-Based
Approaches on Figure 4.2.

Models Fixed Results

NMT M [156, 158] log.warn(”Failed to remove...”); (line13)

NMT S [46, 21] Process cmdarray=runCommand(server, dir);

Notes: NMT: Neural Machine Translation. NMT M: NMT at method-level. NMT S: NMT at

statement-level.

The state-of-the-art approaches for automated program repair, particularly the

ones that rely on statistical machine translation (SMT) have dealt with code structure

and bug-fixing context in different ways with different results. NMT M [156, 158] uses

a neural network-based machine translation model (NMT) that considers an entire

method as a sentence consisting of words and learns to translate buggy code into

correct code.

While using the entire method body as the context, NMT and generally, SMT-

based APR approaches [156, 158] have an important limitation in the way that they

treat automated bug fixing as a machine translation problem: during training, a NMT-

based model needs to implicit learn the alignments of code elements in a pair of buggy

code and its fixed code in order to learn the fixing changes to apply to a new buggy

code. During training, the bug-fixing changes between the buggy and fixed code are
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known. Instead of equipping a model with the knowledge on such transformations,

SMT-based APR approaches [156, 158] do not use the knowledge on the changes

and let a model learn the alignments between the buggy and fixed code. Thus,

the model might incorrectly align the similar code in different positions in the same

method to one another. For example, the lines containing the variable cmdarray

could be incorrectly aligned to one another in the two versions before and after the

fix. Incorrect alignment could lead to incorrectly identifying the fixing locations. As

seen in Table 4.1, NMT M fixes the statement at line 13.

Another issue is that SMT-based model treats source code as sequences of

words for translation. Source code has well-defined structure and semantics. Bug

fixes involve the transformations in code structure, which are disregarded during

learning the alignments between the buggy and fixed code in the existing SMT-based

approaches. Such mappings between the code structures of buggy and fixed code

might not be correctly learned by such models, leading to imprecise alignments and

inaccuracy in translation.

To address the issue of incorrect fixing locations, the state-of-the-art NMT-based

APR approach [46, 21] restricts the fixing scope to a statement. For example, a fault

localization method [2] could be applied first to localize the fix to the statement at

line 10. Then, an NMT model is used to translate the buggy statement into a fixed

one. However, by limiting the fixing scope, the model cannot leverage the context of

the surrounding code of the bug fixes, often leading to incorrect fixes. Despite code

abstractions, those models cannot compensate for the lack of context of a bug fix.

For example, for the example, as seen in Table 4.1, keyword NMT S model made an

incorrect fix as in Process cmdarray=runCommand(server, dir);.

4.2.2.2 Key ideas. From the observations, we draw the following key ideas for

DLFix:
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[Transformation Learning] First, we aim to develop DLFix, a novel deep

learning model to learn the code transformations from the previous bug-fixing

changes, and apply to fix a given buggy code. The key departure point from the

state-of-the-art neural network machine translation (NMT)-based models is that we

consider the buggy and fixed code in the same space and during training, we equip our

model with the knowledge on code transformations corresponding to prior bug fixes,

rather than letting a sequence-to-sequence NMT-based model learn the mappings

between the buggy and fixed code. That eliminates the incorrect alignments that

could lead to imprecise fixing locations. For example, in Figure 4.2, for training

our model, we encode the transformations from the abstract syntax tree (AST) of

the fragment Process p = runCommand(server, cmdarray); to that of the fragment

runCommand(server, cmdarray, false);.

[Explicit Context Learning] Second, the context of the code surrounding a

fix remains the same after bug fixing. We encode such code structures surrounding

the changes into DLFix as contextual information. For example, the code structures

surrounding the fix at line 10 are encoded as the context, and such context is treated

separately and used as a weight in emphasizing the code transformations from buggy

to fixed code. That is our second departure point from existing models that helps

DLFix avoid the issues with context. As an NMT M-based model [156, 158] uses the

source code of an entire method as the context for training a translation model, the

incorrect alignments could occur. In contrast, an NMT S model [46, 21] uses only

the fixing statement for training faces the issue of lacking the context to correctly

learn bug fixes. In comparison with the existing code change learning approach [156],

in DLFix, we explicitly represent the context as a vector capturing the surrounding

code, while the changes and the contexts are mixed as the input of their model.

[Patch Re-ranking] Third, ideally, a correct patch for a bug should be pushed

onto the top-1 position (i.e., top-1 recall) in a list of candidate patches, so that it
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Figure 4.3 Automated Program Repair: Overview of our approach.

can be the first to be picked up in the patch validation phrase. Therefore, during the

training of a ranking model, the training target should be the top-1 recall, instead

of the relatively ranked positions of a correct patch in a list. Our third departure

point from existing approaches is that during the training, given a list of candidate

patches containing the ground-truth patch for a bug, we build a CNN-based binary

classification approach and train it using the ground-truth patch as one positive

example and the rest candidate patches as negative ones. Given a new list of patches,

we aim to push the correct patch onto the top of the list. In this motivation example,

our first two key ideas can help get a group of possible candidates for auto-fix. Our

patch re-ranking helps make the right answer at line 11 be the top-1 patch.

4.2.3 Approach overview

For training, DLFix consists of the following key steps (Figure 4.3).

Step 1: Pre-Processing

To prepare to train DLFix, we take the following steps: first, DLFix performs

alpha-renaming on the names of variables within a method of a project. This helps

it learn from a method to fix in another method since different methods might use

different variables’ names despite they have similar structures or functionality. Given

a method pair (Mb, Mf ), Mb is a buggy method and Mf is Mb’s fixed version,

DLFix uses Word2Vec [99] on the sequence of code tokens to obtain their vector
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representations for each unique code token in Mb and Mf . DLFix identifies the buggy

sub-tree (namely T sub
b ) within the AST of Mb, and T sub

b ’s corresponding changed

sub-tree (namely T sub
f ) within the AST of Mf . The root of the changed sub-tree is

defined as the common ancestor node of all changed and added nodes in the buggy

AST and all changed and inserted nodes in the fixed AST. The final task of this step

is to obtain a vector for T sub
f , and another vector for T sub

b . We adopted a DL-based

code summarization model [163] to summarize a tree into a vector for a node (called

a summarized node). The obtained individual vectors for T sub
b and T sub

f are used in

the next step of our process.

Step 2: Context Learning

We designed a two-layer learning model that learns the code transformations for

bug fixes and the context of the code surrounding the fixes. The first one is dedicated

for local Context Learning Layer (CLL). To train our model at this layer, we replace

the changed sub-tree with a summarized node obtained in the previous step. All other

AST nodes that were not changed by the fix are kept the same to provide the context

of the code surrounding the fix. The vector for the summarized node is obtained as

explained earlier and used in this step. Given pre-processed pairs of methods, we

develop a tree-based encoder-decoder model using tree-based LSTMs [152] for this

local context learning. We compute the vector for the AST of a method with the

summarized node in a pair of methods (Mb, Mf ). The obtained vectors are used as

weights representing context in the next step, which learns the code transformations

for bug fixes.

Step 3: Code Transformation Learning

The second layer is dedicated to code Transformation Learning Layer (TLL)

for bug-fixing changes. In this TTL, the changed sub-tree before and after the fix is

used for training to learn the bug-fixing code transformations. Moreover, the context

of the transformation computed as the vector in the context learning layer is used an
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additional input in this step. Specifically, we use the same tree-based encoder-decoder

model in the first layer, CLL, to encode both structural and token changes.

Step 4: Program Analysis Filtering

Next, we setup program analysis filters, including the filter to check the existence

of variables, methods, and class names, the filter to convert the keywords back to the

right names, and the filter to check the syntax of final result. With these filters,

DLFix derives the possible candidate fixes.

Step 5: Patch Re-Ranking

Finally, we use a Convolutional Neural Network (CNN) [61] based binary

classification model to re-rank the generated candidate patches. This module

performs more analysis on the detailed code contexts for the buggy statement and

aims to push the correct patch onto the top of a list. In this step, we re-rank the list

of possible patches based on the detailed contextual information, which helps better

selecting the results.

For fixing, as in other DL-based models, a new buggy method Mb and a specific

fixing location are the inputs. Our trained model processes Mb with the same steps

to produce the candidate fixes.

4.2.4 Step 1: Pre-Processing

The goal of pre-processing (Figure 4.4) is to compute the vector representations for

the code that has been changed for bug-fixing as well as the code in the context

surrounding the fixing changes. Given method pairs and each method pair containing,

Mb (i.e., a buggy method) and Mf (Mb’s fixed version), to pre-process them for

training, DLFix works in four main steps: renaming, AST generation, token vectors

learning, and sub-tree summarization.

4.2.4.1 Renaming. The goal of this step is to alpha-rename the variables in

a method in order to increase the chance for the model to learn the fix in one place
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Figure 4.4 Automated Program Repair: Key steps of pre-processing.

to apply to another in the similar/same scenarios because different methods in the

same or different projects might use different variable names. In addition, we also

keep the type of a variable in the new name to avoid the accidental clashing names.

For example, the variable a of the type A in the method M1 calls the method m (of

A) as in a.m(). The variable b of the type B in the method M2 calls the method

m (of B) as in b.m(). If we do not keep the types A and B of a and b during

alpha-renaming, a.m() and b.m(), which mean two different operations m in two

classes, might get accidentally renamed to the same one, e.g., v.m(). In this case,

a.m() becomes v[A].m(), and b.m() becomes v[B].m(). We maintain a data structure

of the variables and associated information similar to an entity table in a compiler to

recover the actual names.

4.2.4.2 AST generation. Next, DLFix generates the ASTs for a method pair,

Mb and Mf (i.e., Mb is a buggy method and Mf is Mb’s fixed version). Given the

fault location information of a method, DLFix detects the root of the changed sub-tree

(i.e., the buggy sub-tree) in the AST. It then marks all the nodes under that root.

Therefore, for a given method pair, we generate four ASTs: an AST for Mb (namely

Tb), an AST for Mf (namely Tf ), a buggy sub-tree of Tb (namely T Sub
b ), and a changed

sub-tree of Tf (namely T Sub
f ).
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4.2.4.3 Token vectors learning. Next, we aim to compute the vector

representations for all of the code tokens within the method pairs in a project. In this

step, we use the source code after alpha-renaming. We consider each statement S in

the block of statements within a method as a sentence. We collect all the sentences

in all the projects in the training corpus. Then, we use Word2Vec [99] on all the

sentences in the corpus to obtain the vectors for all the code tokens.

4.2.4.4 Sub-Tree summarization. The goal of this step is to represent the

changed/buggy sub-tree as a single vector representation, which will be used in the

local context learning layer. The rationale of representing the entire changed sub-tree

as a single node is that in the context learning layer, we focus on the context of

surrounding code of the fixing changes. If we include all the nodes in the changed

sub-tree for learning the context, those nodes become noises for such learning. At the

same time, we do not want to replace that changed/buggy sub-tree with a dummy

node because the changes are important as well. Therefore, we decide to encode the

buggy sub-tree (T Sub
b ) with a vector as well as the changed sub-tree (T Sub

f ). We will

use them as additional inputs in the process of learning the transformations from the

buggy sub-tree to the fixed one.

To achieve that, we adopted an existing model in [163]. The model is capable of

representing a sub-tree with a vector by combining the encoding of the tree structure

and that of the sequence of tokens belonging to the sub-tree. The authors use a tree-

based RNN model to combine with a regular RNN model with a deep reinforcement

learning mechanism. Using that combined model, we obtain the vector called a

summarized vector Vsum to represent a sub-tree.

4.2.5 Step 2: Local context learning

The goal of the Context Learning Layer, CLL, is to learn local context of the code

surrounding the bug-fixing changes (i.e., the unchanged code surrounding the changed
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one). Specifically, given a pair of ASTs (Tb and Tf for buggy and fixed methods),

DLFix first builds changed Tb and Tf in which the buggy and changed sub-trees

(T Sub
b and T Sub

f ) are replaced by the summarized nodes. Each summarized node is

represented by a vector generated in the Step 1.4 (Sub-Section 4.2.4.4). The learned

summarized node vector in CLL is computed as the output of the decoder in the

auto-fix phase. In training, the summarized nodes for T Sub
b and T Sub

f are given to

train the model parameters. For all other nodes in a changed Tb (or Tf ) except the

summarized node, each node is represented as a vector generated by using Word2Vec

in the Step 1.3 (Sub-Section 4.2.4.3). As the buggy and changed sub-trees (T Sub
b and

T Sub
f ) have different structures and AST nodes, the summarized node vector of T Sub

b

should be different from the one of T Sub
f . During the generation of vector embeddings,

we set each Word2Vec vector and a summarized node vector to have the same length.

Figure 4.5 Automated Program Repair: Tree-Based LSTM.
Notes: ′ means the encoded vector for the node and will be used for further training, X2, X3, and

X4 include hidden result vector hj and cell state vector cj

The changed Tb and Tf represents the context of the bug fix for a buggy method.

To learn such context, we use the pair of changed Tb and Tf as an input for training

an encoder-decoder model with a tree-based RNN model [152] as an encoder and

another same tree-based RNN as a decoder. We keep all hidden results from the
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encoder-decoder model and use them as the context of a fix. The hidden results will

be passed down to the Code Transformation Learning Layer (TLL).

The tree-based RNN model [152] is designed to work with tree-structured data.

Unlike the regular RNN model that loops for each time-step, the tree-based RNN

loops for each sub structure. In DLFix, we use a tree-based LSTM, especially the

Child-Sum Tree-LSTM [152] because of the different numbers of child nodes. It is

reasonable to directly use Tree-LSTM to model the code for preserving both code

structures and sequential syntax, instead of applying normal RNN just on sequences

of code tokens. Figure 4.5 illustrates how the Child-Sum Tree-LSTM models an AST.

As seen in Figure 4.5, Child-Sum Tree-LSTM model considers a parent node and its

children nodes each time. As for this, we have

hj
sum =

∑
k∈Child(j)

hk (4.1)

ij = σ(Wixj + Uih
j
sum + bi) (4.2)

fjk = σ(Wfxj + Ufhk + bf ) (4.3)

oj = σ(Woxj + Uoh
j
sum + bo) (4.4)

uj = tanh(Wuxj + Uuh
j
sum + bu) (4.5)

cj = ij ◦ uj +
∑

k∈Child(j)

fjk ◦ ck (4.6)

hj = oj ◦ tanh(cj) (4.7)

Where Child(j) is set of the children nodes of the parent node j; hj
sum is the sum of

all hidden results from children nodes; ij is the input/update gate’s activation vector;

oj is the output gate’s activation vector; fjk is the forget gate’s activation vector; cj
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is the cell state vector; W,U are weight matrices; b are bias vector parameters; σ is

sigmoid function; and ◦ denotes the Hadamard product. For example, in Figure 4.5,

the node A has no child nodes, the node A becomes the input X1 and the A′ becomes

the output Y1 after going through the model. Another example is the node F that

has children nodes, the node F becomes the input X1, the E
′ node becomes the input

X2, the D′ become the input X3, and F ′ become the output Y1 to go through the

model. In the example of Figure 4.5, the model first process the nodes A,B, and C

in the same level, then goes up to process the nodes E and D in the same level, and

lastly, processes the node F . All the nodes go through the model.

4.2.6 Step 3: Code transformation learning

The goal of the Code Transformation Learning layer (TLL) is to learn the code

transformations of the bug fix with the additional input information of the context

computed by the Context Learning Layer (CLL). We employ a child-sum tree-based

LSTM encoder-decoder model that has the same architecture as the one in CLL

(Sub-Section 4.2.5) to learn code transformations. To train such a model, we feed the

pairs of sub-trees (i.e., a pair contains a buggy sub-tree, T Sub
b , and its corresponding

changed sub-tree, T Sub
f ) along with their learned context vectors (Wlc) into the tree-

based encoder-decoder.

Specifically, to integrate the context vectorWlc as a weight, we use cross-product

multiplication to combine the weight vector with the vector of each AST node in a

sub-tree. Cross-Product is better than concatenation of vectors, because the local

context and detailed node information contains different kinds of information, and

cross-product multiplication is more expressive and effective in combining different

kinds of information. Next, after performing cross-product, the results are fed

into the child-sum tree-based LSTM encoder-decoder model. Once the tree-based

LSTM encoder-decoder model is trained, given a buggy sub-tree, this layer TLL

automatically generates the fixed sub-tree for the buggy sub-tree.
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Both CLL and TLL use the same loss function as defined in seq2seq [16]. Even

though we used tree-based RNN, the output of each timestep is in the same vector

format as seq2seq [16].

4.2.7 Step 4: Program analysis filtering

The goal of the filtering step has two folds. First, DLFix aims to recover the candidate

fixes in the source code form, and second, it aims to filter the candidate fixes that

violate certain pre-defined program analysis rules. For the first task, DLFix takes

the ASTfix of a candidate result, and the AST of the entire method as the input,

and produces the fixed code. To do that, DLFix first builds the complete AST for

the method ASTMethFix after the fix by replacing the buggy sub-tree ASTsub with

the fixed sub-tree ASTfix. It then uses the Word2Vec vectors computed in the token

vectors learning step (Sub-Section 4.2.4.3) to find the most likely candidates for each

token in the ASTMethFix. Next, DLFix uses the data structure similar to the entity

table that it maintains to reverse the alpha-renaming process. Finally, it obtains the

list of candidate tokens of the entire method after the fix.

For the second task, we use a set of filters to verify program semantics. First,

the syntax checking filter is used. If there is a syntax error, we will go back to change

the buggy token to the next possible token and check it again. The second filter is to

validate the names of the variables, methods, and classes in the project. If a name is

not valid, DLFix goes back to use the next most likely token in the candidate list at

the position and the process is repeated until the newly code passes this filter. The

third filter aims to verify if a particular name is correctly referred to. We use our

entity table for this task. It repeats the same process as before until finding the right

candidate. Finally, as a result, DLFix has a list of fix candidates, which will be used

as the input for the re-ranking process.
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4.2.8 Step 5: Patch re-ranking

The output of the previous step is a list of possible patches. Each patch is an

automatically generated code statement for the bug. The goal of this re-ranking

step aims to push the correct patch onto the top of the list. To do so, we propose a

Convolutional Neural Network (CNN) based binary classification model. Specifically,

given a list of patches, we first process each candidate patch into characters. Next, we

use Word2Vec to train vectors for each character. A candidate patch is represented

as a set of character vectors. Then, we apply CNN [61] containing one Convolutional

layer [31], pooling and fully connected layers, and a softmax function, on the character

vectors of a candidate patch to classify the candidate patch into correct or incorrect.

Last, we re-rank the given list of patches based on their possibilities of being a correct

patch. During the training, given lists of patches with ground-truth correct patches,

for each list of patches, we classify the ground-truth patch into one group as a positive

example and the rest goes into another group as negative examples. The training

target is to achieve the highest number of times a correct patch is placed onto the

top-1 position in a list. We apply the CNN on the characters of a patch instead of

tokens, as to classify a patch, the character-level contexts of a patch can carry more

information than the tokens for classification. Empirically, we also tested the CNN

on tokens of patches, and the CNN on characters outperforms the CNN on tokens for

classifying patches

4.2.9 Empirical evaluation

We conducted several experiments to evaluate DLFix against the state-of-the-art APR

approaches. All experiments were conducted on a desktop with a 4-core Intel CPU

and a single GTX Titan GPU.

4.2.9.1 Research questions. To evaluate DLFix, we seek to answer the

following questions:
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RQ1. Pattern-Based Automated Program Repair (APR) Comparative

Study. How well does DLFix perform in comparison with the state-of-the-art

pattern-based APR approaches?

RQ2. Deep Learning-Based APR Comparative Study. How well does DLFix

perform in comparison with the state-of-the-art deep learning-based APR approaches?

RQ3. Sensitivity Analysis. How do various factors affect the overall performance

of DLFix in APR?

4.2.9.2 Experimental methodology.

4.2.9.2.1 Datasets. In this research, we evaluate approaches on three different

datasets: Defects4J [32], Bugs.jar [133], and BigFix (our newly built dataset). BigFix

is built from a public dataset [77] for bug detection. The bug detection dataset

contains +4.9 million Java methods, and among them, +1.8 million Java methods

are buggy. The bug detection dataset contains corresponding bug fixes for the buggy

methods. As in the previous studies [134, 52], we evaluate the approaches on fixing

one-line bugs. We use the following steps to process the bug detection dataset to

build BigFix. We setup several filters to select the appropriate bugs (one-statement

bugs) from all the bug reports of a project. The filters include 1) method check filter,

which is used to check if the bug is inside of a method, 2) comment check filter, which

is to check if the bug is in code statement instead of in comments, 3) one-hunk bug

filter which is to check if the buggy position is only one hunk of code and after fixing,

if the fixed code is also only one. If the bug passes all these three filters, we mark it

as a bug fix and include into the dataset. In total, we collected +20K method pairs

with single-hunk bugs. A method pair contains a buggy method and its fixed version.

4.2.9.2.2 Analysis approaches for RQs. To answer our research questions, we

use the following settings.

RQ1. Pattern-Based APR Comparative Study

144



Comparative Study with Baseline Models. We compare DLFix with 13 pattern-

based state-of-the-art APR approaches as listed in Table 4.2. We ran DLFix on the

well-known benchmark dataset Defect4J. Specifically, we trained it on the real bug

fixes in BigFix and tested it on Defect4J. We ran it on 101 one-statement bugs in

Defect4J as same as the ones in Tbar [87]. Note that, each of those bugs can be

fixed by at least one previous approaches. As in the previous studies [135, 167, 87],

we simply take the results reported in the respective papers, since all of the above

approaches have already been well evaluated on Defect4J.

For this RQ, we compare DLFix with the pattern-based APR approaches only

on Defect4J due to the following main reason. Generally, search-based baseline models

take the Generate-and-Validate approach. Therefore, they often require test cases to

conduct validation on candidate patches one-by-one. However, BigFix has no test

cases and the test cases in Bugs.jar are not consistent among projects. Due to the

inconsistency of test cases in Bugs.jar and quite often no published code for the above

studied pattern-based approaches, it is hard to apply all approaches on Bugs.jar.

Moreover, because those pattern-based APR approaches have two following

additional steps, in this experiment only, we added them into DLFix for comparison:

(1) Fault localization (FL): Conceptually, DLFix can employ any fault local-

ization techniques to produce an ordered list of suspicious statements that require

fixes. We chose Ochiai algorithm [2, 121], which has been widely used in APR [52,

179, 64, 178, 167, 88]. After Ochiai localizes a buggy line, all of the AST nodes

including intermediate ones that are labeled by the parser with that buggy line are

collected into an AST’s subtree as a replaced subtree.

(2) Patch Validation: Once DLFix generates a ranked list of candidate patches,

we use a validation technique [134, 52] to validate each candidate. Once a candidate

patch pases all available test cases, DLFix stops and reports the candidate patch for

manual investigation. We report the patches that are exactly matched or semantically
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equivalent to the ground-truth fixes in Defect4J. Finally, we performed overlapping

analysis among the results from the models.

Tuning DLFix. We turned DLFix with the following key hyper-parameters

using beam-search, such as the vector length of word2vec (100, 150, 200), learning

rate (0.001, 0.005, 0.01), and Epoch size (100, 200, 300). We set a 5-hour running-time

limit for DLFix to generate candidate patches and validate them as in SimFix [52].

RQ2. Deep Learning-Based APR Comparative Study

Comparative Study with Baseline Models. We compare DLFix with the following

state-of-the-art DL-based APR approaches:

1. Ratchet. [46] using sequence-to-sequence NMT model;

2. Tufano et al. (2018) [158] using encoder-decoder NMT model;

3. CODIT [21] using sequence-to-sequence NMT model with some abstractions
on tree structures;

4. Tufano et al. (2019) [156] using a code change learning approach adopting
NMT with some code abstractions and program analysis filtering.

We used all three datasets Defects4J, Bugs.jar, and BigFix for comparison. Deep

learning (DL)-based APR approaches do not contain fault localization and patch

validation steps. To have a fair comparison and avoid the bias that fault localization

can introduce with its false positives [85], we did not run fault localization and patch

validation steps for all DL-based APR approaches. We directly provided correct

localization information to all DL-based APR approaches and compared the results

using the ground-truth fixes from developers. We recorded the results of the models

without fault localization and patch validation.

For a comparison on Defect4J and Bugs.jar, we trained all DL-based APR

models using BigFix, and tested them on Defect4J (101 bugs) and Bugs.jar,

separately. To compare the models on BigFix, we split BigFix at random into 90%

for training and 10% for testing.

146



Qualitative Analysis. For comparison, we also performed qualitative analysis

by comparing results from the models on all three datasets. We verified each patch

at top-1 position automatically against the ground-truth patch. We computed how

many bugs each model can fix among all one-line bugs, how many bugs that can be

fixed by other baseline models were covered by our model, how many bugs our model

did not cover, and how many new bugs our model can fix when comparing with other

baseline models.

Tuning and evaluation metrics. We performed the same tuning process as in

RQ1. As in previous APR works, we use the following metrics for evaluation: Top

K is the number of times that a correct patch is in the ranked list of top K candidate

patches.

RQ3. Sensitivity Analysis of DLFix

We evaluate the impacts of the following three main factors on DLFix’s

performance: (1) two-layer Tree-Based Encoder-Decoder model, (2) program analysis

techniques, and (3) the re-ranking of candidate patches. To do so, we added each

element into the model one by one. We conducted our sensitivity analysis on BigFix

and use Top1 metric.

4.2.9.3 Experimental results.

4.2.9.3.1 Results of RQ1 (Pattern-Based APR comparative study). Table 4.2

shows that DLFix can correctly fix 30 bugs and outperform the most recent

pattern-based APR approaches on Defect4J, except for SimFix and TBar.

Comparing with SimFix, our fully automatic DLFix without human-crafted

fix patterns can generate comparable and complementary results. TBar collects

all possible fix patterns from the recent APR tools and applies them to fix bugs.

Naturally, TBar can be considered as a collection of tools and it is reasonable that

DLFix fixes fewer bugs than Tbar on Defect4J. However, DLFix is data-driven and

no hand-crafted pattern is needed.
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Table 4.2 Automated Program Repair: RQ1. Comparison with the Pattern-Based
APR Baselines on Defect4J.

Project Chart Closure Lang Math Mochito Time Total P(%)

jGenProg 0/7 0/0 0/0 5/18 0/0 0/2 5/27 18.5

HDRepair 0/2 0/7 2/6 4/7 0/0 0/1 6/23 26.1

Nopol 1/6 0/0 3/7 1/21 0/0 0/1 5/35 14.3

ACS 2/2 0/0 3/4 12/16 0/0 1/1 18/23 78.3

ELIXIR 4/7 0/0 8/12 12/19 0/0 2/3 26/41 63.4

ssFix 3/7 2/11 5/12 10/26 0/0 0/4 20/60 33.3

CapGen 4/4 0/0 5/5 12/16 0/0 0/0 21/25 84.0

SketchFix 6/8 3/5 3/4 7/8 0/0 0/1 19/26 73.1

FixMiner 5/8 5/5 2/3 12/14 0/0 1/1 25/31 80.6

LSRepair 3/8 0/0 8/14 7/14 1/1 0/0 19/37 51.4

AVATAR 5/12 8/12 5/11 6/13 2/2 2/3 28/53 50.9

SimFix 4/8 6/8 9/13 14/26 0/0 1/1 34/56 60.7

TBar 9/14 8/12 5/14 19/36 1/2 1/3 43/81 53.1

DLFix 5/12 6/10 5/12 12/28 1/1 1/2 30/65 46.2

Notes: P is the probability of the generated plausible patches to be correct.

In the cells, x/y: x means the number of correct fixes and y means the number of candidate

patches that can pass all test cases. For example, for DLFix, 65 candidate patches can pass all test

cases. However, 30 out of 65 are the correct fixes compared with the fixes in the ground truth.

Qualitative Analysis of RQ1. Figure 4.6 shows the overlapping analysis of the

approaches on Defect4J. Due to the page limitation, we only compare with the best

APR approaches including Elixir, Avatar, SimFix, and Tbar. As seen, DLFix can fix

12, 17, 11, and 7 unique bugs when comparing with Elixir, Avatar, SimFix, and Tbar,

respectively (i.e., they did not detect those bugs). Specifically, our approach can fix

one more new bug, CL-10, that cannot be fixed by Elixir, Avatar, SimFix, and Tbar.
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Figure 4.6 Automated Program Repair: Overlapping analysis for RQ1.
Notes: Project names: C:Chart, CL:Closure, L:Lang, M:Math, Moc:Mockito, T:time.

In brief, in comparison with pattern-based approaches, DLFix can obtain

comparable results in addition to complementing with them. Furthermore, DLFix

is fully automatic and data-driven, and it does not require any human-crafted

patterns/templates.

4.2.9.3.2 Results of RQ2 (Deep learning-based APR comparative study).

Table 4.3 shows that DLFix outperforms the state-of-the-art DL-based APR baselines

on all three datasets. Our model improves the baselines by 150.6% and up to

1,980.0% in terms of Top1. Specifically, in 39.6% of cases on Defect4J, 34.2% of

cases on Bugs.jar, and 29.4% of cases on BigFix, the top-1 ranked candidate patch

from DLFix is the ground-true patch, meaning that DLFix can directly generate the

correct patches for 40 bugs in Defect4J, 396 bugs in Bugs.jar, and 639 bugs in a

testing dataset of BigFix. DLFix outperforms the other DL-based models in every

metric. For instance, on BigFix, within 10 best guesses, DLFix can achieve 33.4%,

and improve the baselines: Ratchet, Tufano et al.(’18), CODIT, and Tufano et al.(’19)

by 384.1%, 176.0%, 82.5%, and 56.1%, respectively.

Qualitative Analysis of RQ2. Figure 4.7 shows the results of overlapping analysis

on three datasets using the Top1 metric. DLFix can fix more new bugs than any other
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baselines. Specifically, it can fix 27, 253, and 291 more new bugs than all of the other

four models combined (i.e., the results from Ratchet + Tufano et al.(’18) + CODIT

+ Tufano et al.(’19)) on Defects4J, Bugs.jar, and BigFix, respectively. Also, there

are 13, 145, and 349 bugs that can be fixed by DLFix and can also be fixed by at

least one baseline.

Table 4.3 Automated Program Repair: RQ2. Accuracy Comparison with DL-
based APR approaches on three Datasets.

Approach

Defect4J (101

Bugs in Testing)

Bugs.jar (1,158

Bugs in Testing)

BigFix (2,176

Bugs in Testing)

Top1 Top5 Top10 Top1 Top5 Top10 Top1 Top5 Top10

Ratchet 2.0% 4.0% 6.9% 2.4% 4.4% 6.8% 3.0% 4.1% 6.9%

Tufano et
al.(’18)

6.9% 9.9% 11.9% 8.4% 11.1% 12.9% 7.9% 10.6% 12.1%

CODIT 8.9% 13.9% 15.8% 7.0% 11.8% 14.8% 6.9% 13.7% 18.3%

Tufano et
al.(’19)

15.8% 20.8% 23.8% 13.5% 18.7% 23.1% 15.4% 17.3% 21.4%

DLFix 39.6% 43.6% 48.5% 34.2% 36.4% 37.9% 29.4% 31.1% 33.4%

4.2.9.3.3 Results of RQ3 (Sensitivity analysis). Table 4.4 shows that we

build three variants of DLFix with different factors and their combinations. We

analyze our results as follows:

(1) Impact of Two-Layer-EDM. Our Two-Layer-EDM can improve the one-

layer sequence-to-sequence model by 550% and using only seq2seq cannot get good

results. Two-Layer-EDM is designed to learn the local context of a bug fix and code

transformations.

(2) Impact of PAT. Using program analysis (PA) techniques, PAT, including

alpha-renaming and PA-filtering, is effective to improve Two-Layer-EDM by 109%.

The alpha-renaming process can help improve DLFix for better training and the PA-
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filtering process can help elminate more irrelevant patches. Adding program analysis

to the basic seq2seq model can improve it by 256%. However, the Two-Layer-EDM

can improve seq2seq by 550%. So the Two-Layer-EDM has more impact than PAT.

(a) Defects4J (b) Bugs.jar (c) BigFix

Figure 4.7 Automated Program Repair: RQ2. Qualitative analysis results from
DL-based APR approaches on three datasets.

(3) Impact of Re-Ranking. The results of Two-Layer-EDM + PAT + Re-

Ranking show that having re-ranking can increase accuracy relatively by 20.5%. The

reason is that the re-ranking process, which uses a Convolutional Layer to distinguish

the best result from the others, can help increase DLFix’s accuracy by pushing the

right results to the top of the list of the candidate fixes.

Table 4.4 Automated Program Repair: Sensitive Analysis – Impact of Different
Factors on DLFix’s Accuracy in terms of Top1 on BigFix Dataset.

Models Top1 Improvement

Seq2Seq 1.8%

Seq2Seq + PAT 6.4% 256%

Two-Layer-EDM 11.7% 550%

Two-Layer-EDM + PAT 24.4% 109%

Two-Layer-EDM + PAT + Re-Ranking 29.4% 20.5%

Notes: Seq2seq: a simple sequence-to-sequence model; Two-Layer-EDM: Two-Layer tree-based

LSTM encoder-decoder model; PAT: program analysis (PA) Techniques including Renaming and

PA Filters.
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4.2.10 Discussion and implications

4.2.10.1 In-Depth case studies. Let us present in-depth case studies to show

why DLFix can work.

Case Study 1. This case study shows a typical example of a bug using incorrect

method call in the code. In Figure 4.8, the incorrect method call allResultsMatch()

was changed into anyResultsMatch(). DLFix is data-driven and automatically

learns a large amount of code transformation patterns from previous fixes. In this

way, DLFix can detect to use anyResultsMatch() to replace allResultsMatch().

However, the most advanced pattern-based APR approaches, including Elixir, Avatar,

SimFix, and Tbar, cannot correctly fix this bug, as they rely on human-crafted

rules/patterns/templates. If the defined rules/patterns/templates of a tool cannot

cover the scenarios of a bug such as the one in this case study, the tool will not be

able to automatically fix the bug. In this case, such replacement of a method call

requires a pattern-based model to hand-craft the change. For example, TBar is so far

the best performing APR tool that collects all of the existing patterns in the APR

literature, and it still cannot fix this bug. Instead, it attempted to fix the parameters

n and MAY BE STRING PREDICATE for the method call allResultsMatch.

For Tbar to be able to fix this bug, one needs to encode in Tbar the rule for the code

transformation from allResultsMatch() to anyResultsMatch().

We believe that combining the well-defined crafted patterns into deep learning-

based APR tools is a promising direction, as the crafted patterns can be used as a

seed to automatically learn new, high-quality patterns using DL, which can lead to

fixing more bugs.

Case Study 2. Figure 4.9 shows a bug-fix example in which the missing parameter f

was added into the method. Because this bug fix requires changes to the structure of

the statement, to fix the bug, we need to know which part of the statement structure

need to be changed and how to change it. DLFix can fix this bug, because it can
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1 static boolean mayBeString(Node n, boolean recurse) {

2 if (recurse) {

3 - return allResultsMatch(n, MAY_BE_STRING_PREDICATE );

4 + return anyResultsMatch(n, MAY_BE_STRING_PREDICATE );

5 } else {

6 ...

7 }

8 }

Figure 4.8 Automated Program Repair: Case study 1.
Notes: The Bug-Fix Example from Project Closure with the Bug ID Closure-10 in Defects4J.

1 public double solve(final UnivariateRealFunction f, double min ,

2 double max , double initial) throws

3 MaxIterationsExceededException , FunctionEvaluationException {

4 - return solve(min , max);

5 + return solve(f, min , max);

6 }

Figure 4.9 Automated Program Repair: Case study 2.
Notes: The Bug-Fix Example from Project Math with the Bug ID Math-70 in Defects4J.

learn both the surrounding local context (i.e., unchanged code) of a fix and code

transformations of the fix. Importantly, we use Tree-Based RNN to model code and

learn local contexts and code transformations from tree structures, so that DLFix can

identify that the method call solve() needs an additional parameter.

Some recent deep learning baselines, including Ratchet [46], Tufano et al.(’18) [158],

and Tufano et al.(’19) [156], use sequence-to-sequence translation model (seq2seq) to

deal with the bug fixing problem. seq2seq takes the statement as a sequence, and

learns the relationships between tokens. Therefore, seq2seq cannot learn the structure

changes during the training, even though several algorithms have been applied to

transform the code. Due to the lack of their ability in learning structural changes, the
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1 public Paint getPaint(double value) {

2 double v = Math.max(value , this.lowerBound );

3 v = Math.min(v, this.upperBound );

4 - int g = (int) ((value - this.lowerBound) / (this.upperBound

5 + int g = (int) ((v - this.lowerBound) / (this.upperBound

6 - this.lowerBound) * 255.0);

7 return new Color(g, g, g);

8 }

Figure 4.10 Automated Program Repair: Case study 3.
Notes: The Bug-Fix Example from Project Chart with the Bug ID Chart-24 in Defects4J.

existing models cannot fix this bug because they cannot learn the missing parameter

of the method call solve().

Another DL-based APR approach, CODIT [21], uses the tree structure to learn

code transformations. However, it does not directly model code using tree-based

DL model. Instead, it learns rules from ASTs and then applies seq2seq to learn code

changes. CODIT still suffers the lack of ability in learning structural changes. CODIT

cannot get the right number of parameters for the method call solve. That is the

reason that CODIT cannot fix this bug.

Case Study 3. Figure 4.10 shows a bug-fix example from Defect4J. There are two

changes in this fix: 1) the variable value was changed to v, and 2) the expression in

the denominator was modified. We can see that the alpha-renaming and PA-filtering

process is useful in this example because PA-filtering enables DLFix to consider

the valid variable options at that fixing location and alpha-renaming helps with the

renaming the variable into the correct one. Importantly, our tree-based LSTM model

helps with the recognition of the code structure and helps the modification of the

expression in the denominator of the right-hand side of the assignment.

For this example, the sequence-to-sequence translation models could easily

produce a syntactically incorrect fix because they do not consider the code structure.

154



Moreover, they might not be able to rename the variable value because they do not

have the program analysis component in their solution.

4.2.10.2 Limitations of our approach. Through the manual analysis of the

results from DLFix, especially the bugs that it cannot fix, we identify the following

limitations:

1. DLFix does not work well on very unique bugs. DLFix is the deep learning-based
approach that needs a large amount of data for training. But even we have a
very large dataset, very unique bugs can still exist. Therefore, if there is not
sufficiently similar data in the training, DLFix cannot fix the unique bug well.

2. DLFix does not work well on multiple bugs in one method. Our approach can
only deal with one bug at a time.

3. DLFix only works on one statement bugs and the bug and fix locations have to
be the same.

4.2.11 Threats to validity

Programming language (PL). Our approach has been tested on Java program

repair. However, the techniques used in DLFix are not tied to Java. In principle, our

approach can applied to other PLs.

Generalization of the results. Our comparisons with pattern-based APR

approaches were only carried out on the Defects4J dataset, which is a widely

used benchmark for APR research. Further validation of the comparisons with

pattern-based APR baselines on other datasets should necessarily be done in future.

Implementation of the deep learning-based baseline models. We re-

implemented CODIT as its code and data is not publicly available. We tried our best

to follow steps in CODIT. However, some implementation details are not mentioned

in their paper, which makes that our version of CODIT could be slightly different

from the one in the original paper. However, we tried our best to build and tune the

CODIT on our dataset and this is the best effort we can make when the code is not
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publicly available. We tuned DLFix and CODIT both on our dataset. Therefore, the

comparison in our study is fair for both.

4.3 Automated Program Repair for Multi Statement Multi Hunk Bugs

4.3.1 Introduction

Researchers have proposed several approaches to help developers in automatically

identifying and fixing the defects in software. Such approaches are referred to as

automated program repair (APR). The APR approaches have been leveraging various

techniques in the areas of search-based software engineering, software mining, machine

learning (ML), and deep learning (DL).

For search-based approaches [68, 70, 96, 126], a search strategy is performed in

the space of potential solutions produced by mutating the buggy code via operators.

Other approaches use software mining to mine and learn fixing patterns from prior

bug fixes [60, 67, 86, 87, 112] or similar code [114, 129]. Fixing patterns are at the

source code level [86, 87] or at the change level [167, 53, 64]. Machine learning has

been used to mine fixing patterns and the candidate fixes are ranked according to

their likelihoods [92, 90, 134]. While some DL-based APR approaches learn similar

fixes [41, 168, 169], other ones use machine translation or neural network models with

various code abstractions to generate patches [21, 24, 46, 158, 138, 156, 74].

Despite their successes, the state-of-the-art DL-based APR approaches are still

limited in fixing the general defects, which involve the fixing changes to multiple

statements in the same or different parts of a file or different files (which are referred

to as hunks). None of existing DL-based approaches can automatically fix the

bug(s) with dependent changes to multiple statements in multiple hunks at once.

They supports fixing only individual statements. If we use such a tool on the

current statement, the tool treats that statement as incorrect and treats the other

statements as correct. This does not hold since to fix the current statement, the
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remaining unfixed statements must not be treated as correct code. Thus, it might

be inaccurate when using existing DL-based APR tools to fix individual statements

for multi-hunk/multi-statement bugs. While DL provides benefits for fix learning,

this limitation makes the DL-based APR approaches less capable than the other

directions (search-based and pattern-based APR), which support multiple-statement

fixes.

In this research topic, we aim to advance deep learning-based APR by intro-

ducing DEAR, a DL-based model that supports fixing for the general bugs with

dependent changes at once to one or multiple buggy statements belonging to one

or multiple buggy hunks of code. To do that, we make the following key technical

contributions.

First, we develop a fault localization (FL) technique for multi-hunk, multi-

statement bugs that combines traditional spectrum-based FL (SBFL) with DL and

data-flow analysis. DEAR uses a SBFL method to identify the ranked list of

suspicious buggy statements. Then, it uses that list of buggy statements to derive

the buggy hunks that need to be fixed together by fine-tuning the pre-trained BERT

model [33], to learn the fixing-together relationships among statements. We also

design an expansion algorithm that takes a buggy statement s in a hunk as a seed,

and expands to include other suspicious consecutive statements around s. To achieve

that, we use an RNN model to classify the statements as buggy or not, and use

data-flow analysis for adjustment and then form the buggy hunks.

Second, after the expansion step, we have identified all the buggy hunk(s)

with buggy statement(s). We develop a compositional approach to learning and

then generating multi-hunk, multi-statement fixes. In our approach, from the buggy

statements, we use a divide-and-conquer strategy to learn each subtree transformation

in Abstract Syntax Tree (AST). Specifically, we use an AST-based differencing

technique to derive the fine-grained, AST-based changes and the mappings between
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buggy and fixed code in the training data. Those fine-grained subtree mappings help

our model avoid incorrect alignments of buggy and fixed code, thus, is more accurate

in learning multiple AST subtree transformations of a fix.

Third, we have enhanced and orchestrated a tree-based, two-layer Long Short-

Term Memory (LSTM) model [74] with an attention layer and a cycle training to help

DEAR to learn the proper code fixing changes in the suitable context of surrounding

code. For each buggy AST subtree identified by our fault localization, we encode it as

a vector representation and apply that LSTM model to derive the fixed code. In the

first layer, it learns the fixing context, i.e., the code structures surrounding a buggy

AST subtree. In the second layer, it learns the code transformations to fix that buggy

subtree using the context as an additional weight.

Finally, there might be likely multiple buggy subtrees. To build the surrounding

context for each buggy subtree B, in training, we include the AST subtrees after the

fixes of the other buggy subtrees (rather than those buggy subtrees themselves). The

rationale is that the subtrees after fixes actually represent the correct surrounding

code for B. (Note: in training, the fixed subtrees are known).

We conducted experiments to evaluate DEAR on three datasets: Defects4J [32]

(395 bugs), BigFix [74] (+26k bugs), and CPatMiner dataset [110] (+44k bugs). The

baseline DL-based approaches include DLFix [74], CoCoNuT [94], SequenceR [24],

Tufano19 [156], CODIT [21], and CURE [54]. DEAR fixes 31% (i.e., +11), 5.6% (i.e.,

+41), and 9.3% (i.e., +31) more bugs than the best-performing baseline CURE on

all three datasets, respectively, using only Top-1 patches and with seven times fewer

training parameters on average. On Defects4J, it outperforms those baselines from

42%–683% in terms of the number of fixed bugs. On BigFix, it fixes 31–145 more

bugs than those baselines with the top-1 patches. On CPatMiner, among 667 fixed

bugs from DEAR, there are 169 (25.3%) multi-hunk/multi-statement ones. DEAR

fixes 71, 164, and 41 more bugs, including 52, 61, and 40 more multi-hunk/multi-
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statement bugs, than existing DL-based APR tools CoCoNuT, DLFix, and CURE.

We also compared DEAR against 8 state-of-the-art pattern-based APR tools. Our

results show that DEAR generates comparable and complementary results to the top

pattern-based APR tools. On Defects4J, DEAR fixes 12 bugs (out of 47) including 7

multi-hunk/multi-statement bugs that the top pattern-based APR tool could not fix.

In brief, our contributions in the work include

A. Advancing DL-based APR for general bugs with multi-hunk/multi-

statement fixes: DEAR advances DL-based APR for general bugs. We show that

DL-based APR can achieve the comparable and complementary results as other APR

directions.

B. Advanced DL-Based APR Techniques:

1) A novel FL technique for multi-hunk, multi-statement fixes that combines

spectrum-based FL with DL and data-flow analysis;

2) A compositional approach with a divide-and-conquer strategy to learn and

generate multi-hunk, multi-statement fixes; and

3) The design and orchestration of the two-layer LSTM model with the

enhancements via the attention layer and cycle training.

C. Extensive Empirical Evaluation: 1) DEAR outperforms the existing

DL-based APR tools; 2) DEAR is the first DL-based APR model performing at the

same level in terms of the number of fixed bugs as the state-of-the-art, pattern-based

tools and generate complementary results.

4.3.2 Motivation

4.3.2.1 Motivating example. Let us present a bug-fixing example and our

observations for motivation. Figure 4.11 shows an example of a bug in verifyUserInfo,

which verifies the given user ID, password and Social Security Number against users’

records in the database. This bug manifests in three folds. First, the developer forgot

to handle the case when UID is null. Thus, for fixing, (s)he added an else branch at
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1 public boolean verifyUserInfo(String UID , String password , String SSN) {

2 String retrieved_password = "";

3 String retrieved_SSN = "";

4 if (UID != null) {

5 - retrieved_password = getPassword(UID);

6 + retrieved password = getPassword(toUpperCase(UID));

7 + } else {

8 + return false;

9 + }

10 - boolean password_check= compare(password ,retrieved_password );

11 + boolean password check= compare(passwordHash(password),retrieved password);

12 if (password_check) {

13 retrieved_SSN = getSSN(UID);

14 boolean SSN_check = compare(SSN , retrieved_SSN );

15 if (SSN_check) {

16 return true;

17 }

18 }

19 return false;

20 }

Figure 4.11 Automated Program Repair: A general fix with multiple dependent
changes.

the lines 7–9. Second, the developer forgot to perform the uppercase conversion for

the UID, causing an error because the records for user IDs in the database all have

capital letters. The corresponding bug-fixing change is the addition of the call to

toUpperCase() on UID at line 6. Third, because the passwords stored in the database

are encoded via hashing, the input password from a user needs to be hashed before it

is compared against the one in the database. Thus, the developer added the call to

passwordHash() on password before calling the method compare() at line 11. From

this example, we have the following observations:
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Observation 1 [A Fix with Dependent Changes to Multiple Statements]:

This bug requires the dependent fixing changes to multiple statements at once in the

same fix: 1) adding the else branch with the return statement (lines 7–9), 2) adding

toUpperCase at line 6, and 3) adding passwordHash at line 11. Making changes

to the individual statements one at a time would not fix the bug since both the

given arguments UID and password need to be properly processed. UID needs to

be null checked and capitalized, and password needs to be hashed. Those dependent

changes to multiple statements must occur at once in the same fix for the program to

pass the test cases.

The state-of-the-art DL-based APR approaches [24, 74] fix one individual

statement at a time. In Figure 4.11, the fault localization tool returns two buggy

lines: line 5 and line 10. Assume that such a DL-based APR tool is used to fix the

statement at line 5. It will make the fixing change to the statement at line 5 (e.g.,

modify line 5 and add lines 7–9), however, with the assumption that the statement

at line 10 and other lines are correct. With this incorrect assumption, such a fix

will not make the code pass the test cases since both changes must be made. Thus,

the individual-statement, DL-based APR tools cannot fix this bug by fixing one buggy

statement at a time. In general, a bug might require dependent changes to multiple

statements (in possibly multiple hunks) in the same fix.

Moreover, the pattern-based APR tools might not be able to fix this defect

because the code in this example is project-specific and might not match with any

bug-fixing patterns.

Observation 2 [Many-to-Many AST Subtree Transformations]: A fix

can involve the changes to multiple subtrees. For example, the if statement has a new

else branch. The argument of the call to getPassword() was modified into the call to

toUpperCase(). This fix also involves many-to-many subtree transformations. In this

example, a fix transforms the two buggy statements (line 5 and line 10), into four
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statements (the if statement having new else branch, the return statement at line

8, the modified statement with toUpperCase at line 6, and the modified statement

with passwordHash at line 11). Thus, a fix can be broken into multiple subtree

transformations, and if using a composition approach with a divide-and-conquer

strategy, we can learn the individual transformations.

Observation 3 [Correct Fixing Context]: A bug fix often depends on the

context of surrounding code. For example, to get the password from a given UID, one

needs to capitalize the ID, thus, in correct code, the method call to toUpperCase is

likely to appear when the method call to getPassword is made. Therefore, building

correct fixing context is important. In Figure 4.11, a model needs to learn the fix

(line 5 → line 6) w.r.t. surrounding code, which needs to include the fixed code at

line 11 (rather line 10 because line 10 is buggy). To fix line 5, the correct context

must include passwordHash at line 11. Thus, the correct context for a fix to a buggy

statement must include the fixed code of another buggy statement s’, rather than s’

itself.

4.3.3 Key ideas

From the observations, we draw the following key ideas:

Key Idea 1. A Fault Localization Method for Multi-Hunk, Multi-State-

ment Patches: From Observation 1, we design a novel FL method that combines

traditional spectrum-based FL (SBFL) with DL and data-flow analysis. We use

a SBFL to obtain a ranked list of candidate statements to be fixed with their

suspiciousness scores. We extend the result from SBFL in two tasks. First, we

design a hunk-detection algorithm to use DL to detect the hunks that need to

be dependently changed together in the same patch, because SBFL tool returns the

suspicious candidates for the fault, but not necessarily to be fixed together. Second,

we design an expansion algorithm that takes each of those detected fixing-together

hunks and expands it to include consecutive suspicious statements in the hunk. In
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Figure 4.11, the SBFL tool returns line 5 as suspicious. After hunk detection, DEAR

uses data dependencies via variable retrieve password to include the statement at line

10 as to be fixed as well.

Key Idea 2. A Compositional Approach to Learning and Generating

Multi-Hunk, Multi-Statement Fixes:

Divide-and-Conquer Strategy in Learning Multi-Hunk/Multi-Stmt Fixes. To auto-

fix a bug with multiple statements, a tool needs to make m-to-n statement changes,

i.e., m statements might generally become n statements after the fix. A naive

approach would let a model learn the code structure changes and make the alignment

between the code before and after the fix. Because a fix involves multiple subtree

transformations (Observation 2), during training, a model might incorrectly align

the code before and after the fix, thus, leading to incorrect learning of the fix.

For example, without this step, the model might map retrieved password at line

10 to the same variable at line 6 (the correct map is line 11). Thus, to facilitate

learning bug-fixing code transformations, during training, we use a divide-and-conquer

strategy. We integrate into DEAR a fine-grained AST-based change detection model

to map the ASTs before and after the fix. Such mappings enable DEAR to learn

the more local fixing changes to subtrees. For example, the fine-grained AST change

detection can derive that the statements at lines 4–5, and 7 become the statements

at lines 4, and 6–9; and the statement at line 10 becomes the one at line 11. We

can break them into two groups and align the respective AST subtrees for DEAR

to learn.

Compositional Approach in Fixing Multiple Subtrees. We support the fixes

having multiple statements in one or multiple hunks by enhancing the design and

orchestration of a tree-based LSTM model [74] to add an attention layer and cycle

training (Sub-Section 4.3.5.3). While that model fixes one subtree at a time, we need

to enhance it to fix multiple AST subtrees at once.
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Specifically, we modify its operations in the two-layers to consider multiple

buggy subtrees at once. For example, during training, we mark each of the AST

subtrees of the statements at line 5 and line 10 before the fix as buggy. At the first

layer, for each subtree for a buggy statement, we replace it with a pseudo-node, and

consider the new AST with its (pseudo-)nodes as the fixing context for the buggy

statement. The pseudo-node is computed via an embedding technique to capture the

structure of the buggy statement (Sub-Section 4.3.5.2). At the second layer, DEAR

learns the transformation from the subtree for the statement at line 5 into the subtree

for the fixed statements at the lines 6–9. The vector for the fixing context learned

from the first layer is used as a weight in the code transformation learning in the

second layer. We repeat the same process for every buggy statement. For fixing,

we perform the composition of the fixing transformations for all buggy statements at

once.

Key Idea 3. Transformation Learning with Correct Surrounding Fixing

Context: To learn the correct context for a fix to a statement, we need to train

the model with the fixed versions of the other buggy statements (Observation 3). For

example, for training, to learn the fix to the statement at line 5 with toUpperCase,

a model needs to integrate the fixed version of the other buggy line, i.e., the code

at line 11 with passwordHash as the fixing context (instead of the buggy line 10). If

the surrounding code before the fix is used (i.e., line 10), the model will learn the

incorrect context to fix the line 5.

4.3.4 Approach overview

4.3.4.1 Training process. The input for training includes the source code

before and after a fix (Figure 4.12), which is parsed into ASTs. The output includes

the two trained models for context learning and for tree transformation learning

(fixing). The context learning model (CTL) aims to learn the weights (representing

the impact of the context) to make an adjustment to the tree transformation
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learning result. The tree transformation learning model (TTL) aims to learn code

transformation for the fix to a buggy AST subtree.

Figure 4.12 Automated Program Repair: Training process overview.

Context Learning (Sub-Sections 4.3.5.2–4.3.5.3). The first step is to build the

before-/after-fixing contexts for training. With divide-and-conquer strategy, we use

CPatMiner [110] to derive the changed, inserted, and removed subtrees (key idea 2).

As a result, the AST subtrees for the buggy statements are mapped to the respective

fixed subtrees. For each buggy subtree and respective fixed subtree, we build two

ASTs of the entire method as contexts, one before and one after the fix, and use both

of them for training at the input layer and the output layer of the tree-based LSTM

context learning model (Sub-Section 4.3.5.3). To build the correct context for each

buggy subtree, we leverage key idea 3: we train our model with the fixed versions of

the other buggy subtrees. Finally, the vectors computed from this learning are used

as the weights in tree transformation learning.

Tree Transformation Learning (Sub-Section 4.3.5.4). We first use CPatMiner [110]

to derive the subtree mappings. To learn bug-fixing tree transformations, each buggy

subtree T itself and its fixed subtree T ′ after the fix are used at the input layer and

the output layer of the second tree-based LSTM for training. Moreover, the weight

representing the context computed as the vector in the context learning model is used

an additional input in this step.

4.3.4.2 Fixing process. Figure 4.13 illustrates the fixing process. The input

includes the buggy source code and the set of test cases.
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Fault Localization and Buggy-Hunk Detection (Sub-Section 4.3.6.1).

From key idea 1, we first use a SBFL tool to locate buggy statements with

suspiciousness scores. Hunk detection algorithm uses those statements to derive the

buggy hunks that need to be fixed together.

Multi-Statement Expansion (Sub-Section 4.3.6.2). Because SBFL might

return one statement for a hunk, we aim to expand to potentially include more

consecutive buggy statements. To do so, we combine RNN [25] and data-flow analysis

to detect more buggy statements.

Tree-Based Code Repair (Sub-Section 4.3.6.2.6). For the detected buggy

statements from multi-statement expansion, we use key idea 2 to derive fixes to

multiple buggy subtrees at once. For a buggy subtree T , we build the AST of the

method as the context, and use it as the input of the trained context learning model

(CTL) to produce the weight representing the impact of the context. The buggy

subtree T is used as the input of the trained tree transformation model (TTL) to

produce the context-free fixed subtree T ′. Finally, that weight is used to adjust

T ′ into the fixed subtree T ′′ for a candidate patch. We apply grammatical rules and

program analysis on the current candidate code to produce the fixed code. We re-rank

and validate the fixed code using test cases in the same manner as in DLFix [74].

Figure 4.13 Automated Program Repair: Fixing process overview.

4.3.5 Training process

4.3.5.1 Pairing buggy and fixed subtrees. The training data contains the

pairs of the source code of the methods before and after the fixes. Note that a fix
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might involve multiple methods. Instead of pairing the entire buggy method with the

fixed one, we use a divide-and-conquer strategy to help the model to better learn the

fixing transformations in the proper contexts. First, we use the CPatMiner tool [110]

to derive the fixing changes.

If a subtree corresponds to a statement, we call it statement subtree. From the

result of CPatMiner, we use the following rules to pair the buggy subtrees with the

corresponding fixed subtrees:

1. A buggy subtree (S-subtree) is a subtree with update or delete.

2. If a S-subtree is deleted, we pair it with an empty tree.

3. If a buggy S-subtree is marked as update, (i.e, it is updated or its children

node(s) could be inserted, deleted or updated), we paired this buggy S-subtree with

its corresponding fixed S-subtree.

4. If a S-subtree is inserted and its parent node is another S-subtree, we pair it

with that parent S-subtree. If the parent node is not an S-subtree, we pair an empty

tree to the corresponding inserted S-subtree.

4.3.5.2 Context building. Figure 4.14 illustrates our context building process.

For each pair of the buggy AST I1 and fixed AST O1 (Sub-Section 4.3.5.1), we perform

alpha-renaming on the variables. In Step 1, we encode each AST node with the vector

using the word embedding model GloVe [122] (which captures well code structure)

by considering a statement node as a sentence and each code token as a word. We

use those vectors to label the AST nodes in I1 and O1. The ASTs after this step are

the vectorized ASTs I2 and O2, before and after the fix.

In Step 2, we process each pair of the buggy S-subtree Tb in I2 and the

corresponding fixed S-subtree Tf in O2. First, we perform node summarization on

Tb and Tf by using TreeCaps [50] to capture the tree structures of Tb and Tf into Vs

and V ′
s , respectively. Second, for each of the other buggy S-subtrees, e.g., T ′

b, and

their corresponding fixed S-subtrees, e.g., T ′
f , we process as follows. Because T

′
f is the
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fixed version of T ′
b, we replace T ′

b with T ′
f in the building of the resulting context I3

before fixing (key idea 3). That is, we replace each of the other buggy subtrees with

its fixed version. However, to build the resulting context O3 after fixing, we keep T ′
f

because it is the fixed subtree, thus, providing the correct context.

The resulting AST, I3, is used as the before-the-fix context for the buggy S-

subtree Tb and used at the input layer of the encoder in the context learning model

(CTL). The resulting AST, O3, is used as the after-the-fix context for Tf and used at

the output layer of the decoder in CTL (Figure 4.14). Finally, the vectors Vs and V ′
s

will be used as the weighting inputs for tree transformation learning later.

For context learning and tree transformation learning, we enhance the two-layer,

tree-based, LSTM models in DLFix [74] with attention layer and cycle training. We

have added an attention layer into that model, which now has 3 layers: encoder

layer, decoder layer and attention layer (Figure 4.15). For the encoder and decoder,

to learn the fixing context expressed in ASTs, we use Child-Sum Tree-Based LSTM

[151]. Unlike the regular LSTM that loops for each time step, this model loops for

each subtree to capture structures.

Figure 4.14 Automated Program Repair: Context building to train context
learning model.

4.3.5.3 Context learning via tree-based LSTM with attention layer and

cycle training. We also use cycle training [199] for further improvement. Cycle

training aims to help a model learn better the mapping between the input and output

168



by continuing to train and re-train to emphasize on the mapping between them. This

is helpful in the situations in which a buggy code can be fixed in multiple ways

into different fixed code, or multiple buggy code can be fixed into one fixed code.

This makes the regular tree-based LSTM less accurate. With cycle training, the pair

of an input and the most likely output is emphasized to reduce the noise of such

one-to-many or many-to-one relations.

Figure 4.15 Automated Program Repair: Cycle training in attention-based tree-
based LSTM.

Cycle training occurs between encoder and decoder. We use the forward

mapping M : A → B to denote the process of encoder → attention → decoder,

and the backward mapping N : B → A to denote the process of decoder →

attention → encoder (Figure 4.15). We apply the adversarial losses for both M

and N to get the two loss functions Lrun(M,DB, A,B) and Lrun(N, DA, B,A). The

difference between N(M(A)) and A, and that between M(N(B)) and B are used

to generate cycle-consistency loss Lcyc(M,N) for M and N to ensure the learned

mapping functions are cycle-consistent. Mathematically, we have two loss functions

Lrun(M,DB, A,B) and Lrun(N, DA, B,A). With the incentive cycle consistency loss

Lcyc(M, N), the overall loss function is computed as follows:

Lcyc(M,N) = Eb∼pdata(b)[||N(M(a))− a||1]

+ Ea∼pdata(a)[||M(N(b))− b||1]
(4.8)
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L(M,N,Da, Db) = Lrun(M,DB, A,B) + Lrun(N,DA, B,A)

+αLcyc(M,N)

(4.9)

Where L(M,N,Da, Db) is the loss function for the entire cycle training; M and N are

the mapping functions to map A to B and B to A; DA is aimed to distinguish between

the predicted result N(M(A)) and the real result A; DB is aimed to distinguish

between the predicted result M(N(B)) and the real result B; Lrun is the cycle

consistency loss function for the running function M,N ; Lcyc is the incentivized cycle

consistency loss; and α is the parameter to control the relative importance of the two

objectives.

4.3.5.4 Tree transformation learning. Figure 4.16 illustrates the tree trans-

formation learning process. We use the same tree-based LSTM model with attention

layer and cycle training as in Sub-Section 4.3.5.3 to learn the code transformation for

each buggy S-subtree Tb. In Step 1, we build the word embeddings for all the code

tokens as in Sub-Section 4.3.5.2. Each AST node in the buggy S-subtree (Tb) and the

fixed one (Tf ) is labeled with its vector representation (Figure 4.16). Next, we use the

summarized vectors Vs and V ′
s computed from context learning in Figure 4.14 as the

weights and perform cross-product for each vector of the node in the buggy S-subtree

Tb and for each one in the fixed S-subtree Tf , respectively. The two resulting subtrees

after cross-product are used at the input and output layers of the tree-based LSTM

model for tree transformation learning. We use cross-product because we aim to have

a vector as the label for a node and use it as a weight representing the context to

learn code transformations for bug fixes.
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Figure 4.16 Automated Program Repair: Tree transformation learning (VS, V
′
S in

Figure 4.14).

4.3.6 Fixing process

4.3.6.1 Fixing-Together hunk detection algorithm. The first step of fixing

multi-hunk, multi-statement bugs is for our FL method to detect buggy hunk(s) that

are fixed together in the same patch. To do that, we fine-tune Google’s pre-trained

BERT model [33] to learn the fixing-together relationships among statements using

BERT’s sentence-pair classification task. Then, we use the fine-tuned BERT model

in an algorithm to detect fixing-together hunks. Let us explain our hunk detection

algorithm in details.

4.3.6.1.1 Fine-Tuning BERT to learn fixing-together relationships among

statements. We first fine-tune BERT to learn if two statements are needed to be

fixed together or not. Let H be a set of the hunks that are fixed together for a bug.

The input for the training process is all the sets Hs for all the bugs in the training

set.

Step 1 For a pair of hunks Hi and Hj in H, we take every pair of statements Sk

and Sl, one from each hunk, and build the vectors with BERT. We consider the pair

of statements (Sk, Sl) as being fixed-together in the same patch to fine-tune BERT.

Step 2 Step 1 is repeated for all the pairs of the statements (Sk, Sl)s in all the

pairs Hi and Hj in H. We also repeat Step 1 for all Hs. We use them to fine-tune the

BERT model to learn the fixing-together relationships among any two statements in

all pairs of hunks.
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4.3.6.1.2 Using fine-tuned BERT for hunk detection. After obtaining the

fine-tuned BERT, we use it in determining whether the hunks of code need to be

fixed together or not. The input of of this procedure is the fine-tuned BERT model,

buggy code P , and test cases. The output is the groups of hunks that need to be

fixed together. The process is conducted in the following steps.

Step 1We use a spectrum-based FL tool (in our experiment, we used Ochiai [2])

to run on the given source code and test cases. It returns the list of buggy statements

and suspiciousness scores.

Step 2 The consecutive statements within a method returned by the FL tool

are grouped together to form the hunks H1, H2, ..., Hm.

Step 3 To decide if a pair of hunks (Hi,Hj) needs to be fixed together, we

use the BERT model that was fine-tuned. Specifically, for every pair of statements

(Sk,Sl), one from each hunk (Hi,Hj), we use the fine-tuned BERT to measure the

fixing-together relationship score for (Sk,Sl). The fixing-together score between Hi

and Hj is the average of the scores of all the pairs of statements within Hi and Hj,

respectively. If the average score for all the statement pairs is higher than a threshold,

we consider (Hi,Hj) as needed to be fixed together. From the pairs of the detected

hunks, we build the groups of the fixing-together hunks. The group of hunks that

has any statement with the highest Ochiai’s suspiciousness score will be ranked and

fixed first. The rationale is that such a group contains the most suspicious statement,

thus, should be fixed first.

4.3.6.2 Multiple-Statement expansion algorithm. A detected buggy hunk

from the algorithm in Sub-Section 4.3.6.1 might contain only one statement since each

of those suspicious statements is originally derived by a SBFL tool, which does not

focus on detecting consecutive buggy statements in a hunk. Thus, in this step, we take

the result from the hunk detection algorithm, and expand it to include potentially

more statements in a hunk.
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4.3.6.2.1 Key idea. Our idea is to combine deep learning with data flow

analysis. We first train an RNN model with GRU cells [25] (will be explained in

Sub-Section 4.3.6.2.3) to learn to decide whether a statement is buggy or not. We

collect the training data for that model from the real buggy statements. We then

use data-flow analysis to adjust the result. Specifically, if a statement is labeled as

buggy by the RNN model, no adjustment is needed. However, even when the RNN

model decides a given statement s as non-buggy, and if s has a data dependency with

a buggy statement, we still mark s as buggy.

4.3.6.2.2 Expansion algorithm. The input of Multi-Statement Expansion algorithm

is the buggy statement buggyS, i.e., the seed statement of a hunk. The output is a

buggy hunk of consecutive statements.

First, it produces a candidate list of buggy statements by including N

statements before and N statements after buggyS (Expand2NCandidatesList at line

2). In the current implementation, N=5. Then, it uses the RNN model to act as

a classifier to predict whether each statement (except buggyS ) in the candidate list

is buggy or not (RNNClassifier at line 3). To train that RNN model, we use the

buggy statements in the buggy hunks in the training data (see Sub-Section 4.3.6.2.3).

TreeCaps [50] is used to encode the statements.

In DataDepAnalysis (line 4), to adjust the results from the RNN model,

we obtain buggyHunk surrounding the buggy statement buggyS, consisting of the

statements before and after buggyS, that were predicted as buggy by the RNN model

(line 7). We then examine statement-by-statement in the upward direction from

the center buggy statement in the candidate list (line 8, via TopHalf) and in the

downward direction (line 9, via BotHalf). In DDExpandHunk, we continue to expand

(upward or downward) the current buggy hunk buggyHunk to include a statement that

is deemed as buggy by the RNN model or has a data dependency with the center

buggy statement buggyS (lines 13–14). We stop the process (upward or downward),
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if we encounter a non-buggy statement without data dependency with buggyS or we

exhaust the list (line 15). Finally, the buggy hunk containing consecutive buggy

statements is returned.

Algorithm 2 Multiple-Statement Expansion Algorithm

1: function MultiStatementsExpansion(buggyS)

2: candStmts = Expand2NCandidatesList(buggyS)

3: predResult = RNNClassifier(candStmts)

4: expandResult = DataDepAnalysis(candStmts, predResult)

5: return expandResult

6: function DataDepAnalysis(buggyS,candStmts, predResult)

7: buggyHunk = GetCenterBuggyHunk(predResult)

8: DDExpandHunk(buggyS, buggyHunk, TopHalf(candStmts))

9: DDExpandHunk(buggyS, buggyHunk,BotHalf(candStmts))

10: return buggyBlock

11: function DDExpandHunk(buggyS, buggyHunk, candStmts)

12: for each (stmt ∈ candStmts) & (stmt /∈ buggyHunk) do

13: if HasDataDep(stmt, buggyS) then

14: buggyHunk = buggyHunk ∪ stmt

15: else break

16: return buggyHunk

Figure 4.17 Automated Program Repair: Multiple-Statement expansion example.
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In Figure 4.17, the SBFL tool returns the buggy statement at line 4. All

statements are encoded into the sets of vectors via GloVe [122] and classified by

the RNN model. We expand from the statement at line 4 upward to include line

3 (even though the RNN model predicted it as non-buggy), since line 3 has a data

dependency with the buggy statement at line 4 via the variable c. We include line

5 because the RNN model predicts the line 5 as buggy. At this time, we stop the

upward and downward directions because we encounter the non-buggy statements at

lines 2 and 6 that do not have data dependency with line 4. That is, lines 1–2 and 6–7

are excluded. The final result includes the statements at lines 3–5 as the buggy hunk.

4.3.6.2.3 Buggy statement prediction with RNN. We present how to use

an GRU-based RNN model [25] to predict a buggy statement.

4.3.6.2.4 Training. To train the RNN model, we use the buggy/non-buggy

statements in all the hunks in the training dataset. We use GloVe [122] to encode each

token in a statement so that a statement is represented by a sequence of token vectors.

We use the neural architecture of the GRU-based RNN model [25] to consume the

GloVe vectors of statements associated with the buggy/non-buggy labels.

The RNN model operates in the time steps. At the time step k (k¿=1), at the

input layer, GRU consumes the GloVe vectors of the kth statement Sk. At the output

layer, Sk is labeled as 1 if it is a buggy statement and as 0 otherwise. In addition to

the input at the time step k + 1, we feed the output of the time step k to the GRU.

4.3.6.2.5 Prediction. The trained GRU-based RNN model is used in Expansion

Algorithm at line 3 to predict if a statement in the hunk is buggy or not. The model

takes a statement in the form of GloVe token vectors. It takes the vectors of all the

statements in a hunk and labels them as buggy or non-buggy in multiple-time-step

manner.

4.3.6.2.6 Tree-Based code repair. Figure 4.18 illustrates this process. After

deriving the buggy hunk(s) in the method(s), DEAR performs code repairing for all
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buggy statements in all the hunks at once using the trained LSTM models. The

tree-based code repair is conducted in the following steps:

Step 1. Identifying buggy S-subtrees For each hunk, we parse the code

into ABT, and identify the buggy S-subtrees corresponding to the derived buggy

statements. In Figure 4.18, the S-subtrees T1 and T2 are identified as buggy. If a

buggy S-subtree is part of another larger buggy S-subtree, we just need to perform

fixing on the larger S-subtree since that fix also fixes the smaller S-subtree.

Step 2. Embedding and Summarization We perform word embedding

using GloVe [122] and tree summarization using TreeCaps [50] on all the buggy

subtrees to obtain the contexts. For example, in Figure 4.18, T1 and T2 are

summarized into two vectors V1 and V2.

Step 3. Predict Context We use the trained context learning model (CTL)

to run on the context with the AST nodes including also the summarized nodes to

predict the context. In the resulting AST, the structure is the same as the AST

for the input context, except that the summarized nodes become the new ones. For

example, V1 and V2 in the context becomes V ′
1 and V ′

2 after Step 3.

Step 4. Adding Weights The weights V1 and V2 from Step 2 are used in a

product with the vectors in the buggy subtrees T1 and T2. Each node in T1 and T2

is represented by a multiplication vector between the original vector of the node and

the weight vector V ′
1 or V ′

2 .

Step 5. Predict Transformations We use the trained tree transformation

learning model to predict the subtrees T ′
1 and T ′

2 of the fix.

Step 6. Removing Weights We remove the weight from Step 4 to obtain

the candidate fixed subtree for a buggy one. For example, we remove V ′
1 and V ′

2

to obtain the candidate fixed subtrees T1f and T2f . However, because we know the

cross product and a vector, we can get the unlimited number of solutions. Thus, to

produce a single solution T1f and T2f , for each node in T ′
1 and T ′

2, we assume that V ′
1
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Figure 4.18 Automated Program Repair: Tree-Based code repair.

and V ′
2 are vertical with the node vector Vn1 in T ′

1 and Vn2 in T ′
2. Then, we can get

the unweighted node vector V ′
n1 in T1f as follows:

V ′
n1 =

V ′
1 × Vn1

V ′
1 V̇

′
1

(4.10)

After having the vector for each node in a fixed S-subtree T1f , we generated candidate

patches based on word embedding. For each node, we calculated the cosine similarity

score between its vector V ′
n1 and each vector in the vector list for all tokens. To

generate candidate patches, we select the token t in the list. Token t has its similarity

score Scoret for one node in the fixed S-subtree. By adding all Scoret for all the

tokens, we have the total score, Scoresum, for a candidate. We select the top-5

candidates for each node to generate the candidates and sort them based on Scoresum.

4.3.6.3 Post-Processing. A naive approach would face combinatorial explosion

in forming the candidate fix(es) because for each node in the sub-tree, we maintain

top-5 candidates. However, when we combine the candidates for all the nodes in the

fixed sub-tree, many candidates are not valid for the current method in the project.

Therefore, when we form a candidate by combining all the candidates for the nodes,

we apply a set of filters to verify the program semantics in the same manner as in

DLFix [74]. This allows us to eliminate invalid candidates immediately. Specifically,

we use the alpha-renaming filter to change the names back to the normal Java code
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using a dictionary containing all the valid names in the scope, the syntax-checking

filter to remove the candidates with syntax errors, and the name validation filter

to check the validity of the variables, methods, and classes. Moreover, for further

improvement, we use beam search to maintain only the top-ranked candidate fixes.

Thus, we do not exhaust all compositions in forming the statements. This helps

maintain a manageable number of candidates.

After applying all the filters, we also used DLFix [74]’s re-ranking scheme on

the candidate patches. We then used test cases to conduct patch validation on those

candidates. We verify each patch from the top to the bottom until a correct patch is

identified and the patch validation ends. If all candidates for fixing a location cannot

pass all the test cases, we select the next location to repeat the process.

4.3.7 Empirical evaluation

4.3.7.1 Research questions. To evaluate DEAR, we seek to answer the

following questions:

RQ1. Comparative Study with Deep Learning-Based APR Models on

Defects4J Benchmark. How well does DEAR perform in comparison with existing

DL-based APR models on Defects4J?

RQ2. Comparative Study with Deep Learning-Based APR Models on

Large Bug Datasets. How well does DEAR perform in comparison with DL-based

APR models on large-scale bug datasets?

RQ3. Comparative Study with Pattern-Based APR Approaches on

Defects4J. How well does DEAR perform in comparison with the state-of-the-art,

pattern-based APR approaches?

RQ4. Sensitivity Analysis of DEAR. How do various factors affect the overall

performance of DEAR in APR?

RQ5. Time Complexity and Model’s Training Parameters. What is time

complexity and the numbers of training parameters?
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4.3.7.2 Data collection. We have conducted our empirical evaluation on three

datasets:

1) Defects4J v1.2.0 [32] with 395 bugs with test cases;

2) BigFix [74] with +26k bugs in +1.8 million buggy methods;

3) CPatMiner [110] with +44k bugs from 5,832 Java projects.

All experiments were conducted on a workstation with a 8-core Intel CPU and

a single GTX Titan GPU.

4.3.7.3 Experimental methodology.

4.3.7.3.1 RQ1. Comparison with DL-Based APR on Defects4J.

Comparative Baselines. We compare DEAR with five state-of-the-art DL-based

APR models: DLFix [74], CoCoNuT [94], SequenceR [24], Tufano19 [156],

CODIT [21], and CURE [54].

Procedure and Settings. We replicated all DL-based APRs except CURE, which

is unavailable. We re-implemented CURE following the details in their paper. We

trained all DL approaches on the bugs and fixes in CPatMiner dataset and tested

them on all 395 bugs in Defects4J (no overlap between the two datasets). All DL

approaches were applied with the same fault localization tool, Ochiai [2], and patch

validation with the test cases in Defects4J. Following prior experiments [53, 74], we

set a 5-hour running-time limit for a tool for patch generation and validation.

We tuned DEAR with the following key hyper-parameters using the beam-

search: (1) BERT for hunk detection: epoch size (e-size) (2, 3, 4, 5), batch size (b-size)

(8, 16, 32, 64), and learning rate (l-rate) (3e−4, 1e−4, 5e−5, 3e−5, 1e−5); (2) LSTM

for Multi-Statement Expansion and code repair: e-size (100, 150, 200, 250), b-size

(32, 64, 128, 256), and l-rate (0.0001, 0.0005, 0.001, 0.003, 0.005); (3) GloVe for repre-

sentation vectors: vector size (v-size) (100, 150, 200, 250), l-rate (0.001, 0.003, 0.005, 0.01),

b-size (32, 64, 128, 256), and e-size (100, 150, 200, 250). The other default parameters

were used.
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The best setting for DEAR is (1) e-size=4, b-size=32, l-rate=1e−4 for BERT;

(2) e-size=200, l-rate=0.003, b-size=128 for LSTM; (3) v-size=200, l-rate=0.001,

b-size=64, e-size=200 for GloVe. For other models, we tuned with the parameters

in their papers, e.g., the vector length of word2vec, learning rate, and epoch size

to find the best parameters for each dataset. We tuned all approaches with the

aforementioned parameters on the same CPatMiner dataset to obtain the best

performance. Once we obtained the best parameters for each model, we used them

for later experiments.

Quantitative Analysis. We report the numbers of bugs that a model can auto-fix

for the following bug-location types:

Type-1. One-Hunk, One-Statement: A bug with the fix involving only one

hunk with one single statement.

Type-2. One-Hunk, Multi-Statements: A bug with the fix involving only

one hunk with multiple statements.

Type-3. Multi-Hunks, One-Statement: A bug with the fix involving

multiple hunks; each hunk with one fixed statement.

Type-4. Multi-Hunks, Multi-Statements: A bug with the fix involving

multi-hunks; each hunk has multiple statements.

Type-5. Multi-Hunks, Mix-Statements: A bug with the fix involving

multiple hunks, and some hunks have one statement and other hunks have multiple

statements.

Evaluation Metrics. We report the number of bugs that can be correctly fixed

and the number of plausible patches (i.e., passing all test cases, but not the actual

fixes) using the top candidate patches.

4.3.7.3.2 RQ2. Comparison with DL-Based APR on large datasets.

Comparative Baselines. We compare DEAR with the same baselines as in RQ1 on

two large datasets: BigFix and CPatMiner.
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Procedure and Settings. First, we evaluated all DL-based APR models on BigFix

and CPatMiner. Following DLFix and Sequencer, we randomly split data into

80%/10%/10% for training, tuning, and testing. Second, we have cross-dataset

evaluation: training DL-based approaches on CPatMiner and testing on BigFix, and

vice versa. Unlike Defects4J, BigFix and CPatMiner datasets do not have test cases.

Without test cases, we cannot use fault localization and patch validation for all DL

approaches. Thus, we fed the actual bug locations into the DL models, including

locations on buggy hunks and statements. The DL-based baselines do not distinguish

hunks, instead process each buggy statement at a time. We use developers’ actual

fixes as the ground truth to evaluate the DL-based approaches.

Evaluation Metrics. We use the top-K metric, defined as the ratio between the

number of times that a correct patch is in a ranked list of the top K candidates over

the total number of bugs.

4.3.7.3.3 RQ3. Comparison with pattern-based APR on Defects4J.

Comparative Baselines. We compare DEAR with the state-of-the-art, pattern-based

APR tools on Defects4J: Elixir [134], ssFix [178], CapGen [167], FixMiner [64],

Avatar [86], Hercules [136], SimFix [53], and Tbar [87]. We were able to replicate

the following pattern-based baselines: Elixir, ssFix, FixMiner, SimFix, TBar

under the same computing environments. We set the time limit to 5 hours for the

tools. For the other baselines, due to unavailable code, we use the results reported

in their papers as they were run on the same dataset. We used the same setting and

evaluation metric.

4.3.7.3.4 RQ4. Sensitivity analysis. We evaluate the impacts of different

factors on DEAR’s performance. We consider the following: (1) hunk detection

(Hunk); (2) multi-statement expansion (Expansion); (3) multi-statement tree model

and cycle training; and (4) data splitting scheme. We use the left-one-out strategy
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for each factor. We evaluate the first three factors on Defects4J and the last one on

CPatMiner since we need a larger dataset for various splitting.

4.3.7.3.5 Time complexity and numbers of parameters in model training.

We measure the training and fixing time for a model and its number of parameters

for model training on the datasets.

4.3.8 Empirical results

4.3.8.1 RQ1. Comparison results with DL-Based APR models on

Defects4J.

4.3.8.1.1 With fault localization. We first evaluate the APR models when

using with the fault localization tool Ochiai [2]. Tables 4.5 and 4.6 show the

comparison results among DEAR and the baseline models.

As seen in Table 4.5, DEAR can auto-fix the most number of bugs (47) and

generate the most number of plausible patches (91) that pass all test cases on

Defects4J. Particularly, DEAR can auto-fix 32, 41, 33, 17, 14, and 11 more bugs

than Sequencer, CODIT, Tufano19, DLFix, CoCoNuT, and CURE, respectively (i.e.,

213%, 683%, 236%, 57%, 42%, and 31% relative improvements). Compared with

those tools in that order on Defects4J, DEAR can auto-fix 35, 34, 41, 18, 31, and 18

bugs that those tools missed, respectively. Via the overlapping analysis between the

result of DEAR and those of the baselines combined, DEAR can fix 18 unique bugs

that they missed.

Table 4.6 shows the comparison between DEAR and the top DL-based baselines

(DLFix, CoCoNuT, CURE) w.r.t. different bug types.

For single-hunk bugs (Types 1-2), DEAR fixes 33 bugs including 4 unique single

hunk bugs that the other tools missed.
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Table 4.5 Automated Program Repair: RQ1. Comparison with DL-Based APR
Models on Defects4J with Fault Localization.

Projects Chart Closure Lang Math Mockito Time Total

Sequencer 3/3 4/5 2/2 6/9 0/0 0/0 15/19

CODIT 1/2 2/5 0/0 3/5 0/0 0/0 6/12

Tufano19 3/4 3/5 1/1 6/8 0/0 0/0 14/18

DLFix 5/12 6/10 5/12 12/18 1/1 1/2 30/55

CoCoNuT 6/11 6/9 5/13 13/21 2/2 1/1 33/57

CURE 6/13 6/10 5/14 16/23 2/2 1/2 36/71

DEAR 8/16 7/11 8/15 20/33 1/2 3/6 47/91

Notes: X/Y: are the numbers of correct and plausible patches, respectively.

Table 4.6 Automated Program Repair: RQ1. Detailed Comparison with DL-Based
APR Models on Defects4J with Fault Localization.

Bug Types DLFix CoCoNuT CURE DEAR

Type 1. One-Hunk One-Stmt 30 33 36 29

Type 2. One-Hunk Multi-Stmts 0 0 0 4

Type 3. Multi-Hunks One-Stmt 0 0 0 11

Type 4. Multi-Hunks Multi-Stmts 0 0 0 1

Type 5. Multi-Hunks Mix-Stmts 0 0 0 2

Total 30 33 36 47

For multi-hunk bugs (Types 3–5), DEAR can fix 14 bugs that cannot be fixed

by DLFix, CoCoNuT, and CURE. Existing DL-based APR models cannot fix those

bugs since the mechanism of fixing one statement at a time does not work on the

bugs that require the fixes with dependent changes to multiple statements at once.

Thus, they do not produce correct patches for those cases.
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For multi-hunk or multi-statement bugs (Types 2–5), DEAR fixes 18 of them

(out of 47 fixed bugs, i.e., 38.3% of total fixed bugs).

4.3.8.1.2 Without fault localization. We also compared DEAR with other

tools in the fixing capabilities without the impact of a third-party FL tool. All

the tools under comparison (Table 4.7) were pointed to the correct fixing locations

and performed the fixes. As seen, if the fixing locations are known, DEAR’s fixing

capability is also higher than those baselines (53 bugs versus 44, 40, and 48).

Importantly, it can fix 20 multi-hunk/multi-statement bugs (37.7% of a total of 53

fixed bugs), while CoCoNuT, DLFix, and CURE can fix only 7, 5, and 10 such bugs.

Table 4.7 Automated Program Repair: RQ1. Comparison with DL-Based APR
Models on Defects4J without Fault Localization (i.e., Correct Location)

Bug Types DLFix CoCoNuT CURE DEAR

Type 1. One-Hunk One-Stmt 35 37 38 33

Type 2. One-Hunk Multi-Stmts 1 3 3 4

Type 3. Multi-Hunks One-Stmt 4 3 6 13

Type 4. Multi-Hunks Multi-Stmts 0 0 0 1

Type 5. Multi-Hunks Mix-Stmts 0 1 1 2

Total 40 44 48 53

DEAR is more general than existing DL-based models because it can support

dependent fixes with multi-hunks or multi-statements. Importantly, it significantly

improves these DL-based models and raises the DL direction to the same level as

the other APR directions (search-based and pattern-based), which can handle multi-

statement bugs. Moreover, DEAR is fully data-driven and does not require the defined

fixing patterns as in the pattern-based APR models.
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4.3.8.2 RQ2. Comparison results with DL-Based APR models on large

datasets. Table 4.8 shows that DEAR can fix more bugs than any DL-based

APR baselines on the two large datasets. Using the top-1 patches, DEAR can fix

15.1% of the total 4,415 bugs in CPatMiner. It fixes 40–322 more bugs than the

baselines with top-1 patches. On BigFix, it can fix 14.1% of the total 2,594 bugs with

the top-1 patches. It can fix 31–145 more bugs than those baselines with the top-1

patches.

Table 4.9 shows that DEAR also outperformed the baselines in the cross-dataset

setting in which we trained the models on CPatMiner and tested them on BigFix and

vice versa.

Table 4.8 Automated Program Repair: RQ2. Comparison with DL APRs on Large
Datasets.

CPatMiner
(4,415 tested bugs)

BigFix
(2,594 tested bugs)

Tool/Dataset Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Sequencer 7.8% 8.9% 10.3% 8.5% 9.1% 10.8%

CODIT 4.5% 7.4% 9.2% 3.9% 6.3% 9.1%

Tufano19 8.6% 9.3% 11.2% 7.7% 8.8% 9.6%

DLFix 11.4% 12.3% 13.1% 11.2% 11.9% 12.5%

CoCoNuT 13.5% 14.7% 15.3% 12.2% 13.6% 14.3%

CURE 14.2% 15.1% 15.5% 12.9% 14.2% 14.1%

DEAR 15.1% 15.6% 16.8% 14.1% 15.4% 16.3%

Table 4.10 shows the detailed comparative results on CPatMiner w.r.t. different

bug types. As seen, DEAR can auto-fix more bugs on every type of bug locations on

the two large datasets. Among 667 fixed bugs, DEAR has fixed 169 multi-hunk or

multi-stmt bugs of Types 2–5 (i.e., 25.33% of the total fixed bugs). DEAR fixes more

185



bugs (71, 164, and 41 more), and fixes more bugs in each bug type than the baselines

CoCoNuT, DLFix, and CURE, respectively.

Table 4.9 Automated Program Repair: RQ2. Comparison with DL APRs on Cross-
Datasets.

Tool/Dataset
CPatMiner(Train)/BigFix BigFix(Train)/CPatMiner

Top-1 Top-3 Top-5 Top-1 Top-3 Top-5

Sequencer 5.4% 5.8% 6.2% 5.3% 6.1% 7.2%

CODIT 2.5% 4.0% 4.4% 3.2% 5.2% 6.4%

Tufano19 4.5% 5.4% 5.7% 5.9% 6.3% 7.6%

DLFix 6.3% 6.9% 7.3% 8.2% 8.7% 9.2%

CoCoNuT 6.7% 7.4% 8.1% 8.3% 9.6% 10.7%

CURE 7.1% 7.7% 8.2% 8.7% 9.9% 10.9%

DEAR 7.5% 8.1% 8.6% 9.6% 10.2% 11.3%

Table 4.10 Automated Program Repair: RQ2. Detailed Analysis: Top-1 Result
Comparison with DL-Based APR Models on CPatMiner Dataset.

Types (#bugs)
CoCoNuT CURE DLFix DEAR

#Fixed #Fixed #Fixed #Fixed

Type-1 (1,668) 28.7% (479) 29.8%(497) 23.7% (395) 29.9% (499)

Type-2 (530) 1.3% (7) 2.1% (11) 0.6% (3) 4.2% (22)

Type-3 (879) 12.4% (109) 13.2% (116) 11.8% (104) 13.7% (120)

Type-4 (1,089) 0% (0) 0% (0) 0% (0) 2.0% (22)

Type-5 (249) 0.4% (1) 0.8% (2) 0.4% (1) 2.0% (5)

Total (4,415) 13.5% (596) 14.2% (626) 11.4% (503) 15.1% (667)
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DEAR fixes 52, 61, and 40 more multi-hunk/multi-stmt bugs, and 20, 104,

and 2 more one-hunk/one-stmt bugs than CoCoNuT, DLFix, and CURE. For the

multi-statement bugs (Types 2 and 5) that the other tools fixed, the fixed statements

are independent. This result shows that fixing each individual statement at a time

does not work.

4.3.8.3 RQ3. Comparison results with Pattern-Based APR models.

As seen in Table 4.11, DEAR performs at the same level in terms of the number

of bugs as the top pattern-based tools Hercules and Tbar.

Table 4.11 Automated Program Repair: RQ3. Comparison with Pattern-Based
APR Models.

Projects Chart Closure Lang Math Mockito Time Total

ssFix 3/7 2/11 5/12 10/26 0/0 0/4 20/60

CapGen 4/4 0/0 5/5 12/16 0/0 0/0 21/25

FixMiner 5/8 5/5 2/3 12/14 0/0 1/1 25/31

ELIXIR 4/7 0/0 8/12 12/19 0/0 2/3 26/41

AVATAR 5/12 8/12 5/11 6/13 2/2 1/3 27/53

SimFix 4/8 6/8 9/13 14/26 0/0 1/1 34/56

Tbar 9/14 8/12 5/13 19/36 1/2 1/3 43/81

Hercules 8/10 8/13 10/15 20/29 0/0 3/5 49/72

DEAR 8/16 7/11 8/15 20/41 1/2 3/6 47/91

Notes: X/Y: are the numbers of correct and plausible patches; Dataset: Defects4J

Table 4.12 displays the details of the comparison w.r.t. different bug types. As

seen, DEAR fixes 7 Multi/Mix-Statement bugs (Types 2, 4–5) that Hercules missed.

Investigating further, we found that Hercules is designed to fix replicated bugs, i.e., the

hunks must have similar statements. Those 7 bugs are non-replicated, i.e., the buggy

hunks have different buggy statements or a buggy hunk has multiple non-similar
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buggy statements. For Types 1 and 3, DEAR fixes 9 less one-statement bugs than

Hercules due to its incorrect fixes. In total, DEAR fixes 12 bugs that Hercules misses:

Chart-7,16,20,24; Time-7; Closure-6,10,40; Lang-10; Math-41,50,91.

Compared to Tbar, DEAR fixes 15 more multi-hunk/multi-stmt bugs. Tbar is

not designed to fix multi-statements at once as DEAR. Instead, it fixes one statement

at a time, thus, does not work well when those 15 bugs require dependent fixes to

multiple statements. The 3 bugs of Type 2 that Tbar can fix are the ones that the

fixes to individual statements are independent. The same reason is applied to SimFix.

Tbar fixes 11 more correct one-hunk/one-statement bugs.

Table 4.12 Automated Program Repair: RQ3. Detailed Comparison with Pattern-
Based APRs.

Bug Types SimFix Tbar Hercules DEAR

Type 1. One-Hunk One-Stmt 30 40 34 29

Type 2. One-Hunk Multi-Stmts 1 3 0 4

Type 3. Multi-Hunks One-Stmt 3 0 15 11

Type 4. Multi-Hunks Multi-Stmts 0 0 0 1

Type 5. Multi-Hunks Mix-Stmts 0 0 0 2

Total 34 43 49 47

In brief, we raise DEAR, a DL-based model, to the comparable and comple-

mentary level with those pattern-based APR models.

4.3.8.4 RQ4. Sensitivity analysis.

4.3.8.4.1 Impact of fixing-together hunk detection. As seen in Table 4.13,

without hunk detection, DEAR can auto-fix 35 bugs. With hunk detection, DEAR

can fix 14 more multi-hunk bugs (Types 3-5). It fixes two less Type-1 bugs due
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to the incorrect hunk detection. In brief, hunk detection is useful since the multi-

hunk/multi-statement bugs require dependent fixes to multiple hunks at once.

Table 4.13 Automated Program Repair: RQ4. Sensitivity Analysis on Defects4J.

Variant Without
Hunk-Det

Without
Expansion

Without
Attention-Cycle

DEAR

Type-1 31 30 26 29

Type-2 4 0 2 4

Type-3 0 13 9 11

Type-4 0 0 1 1

Type-5 0 0 2 2

Total 35 43 40 47

4.3.8.4.2 Impact of multi-statement expansion. As seen in Table 4.13,

without expansion, DEAR fixes 43 bugs in Defects4J. With expansion, it fixes 7 more

multi-stmt bugs in Types 2,4,5 while it fixes two less Type-3 bugs and one less Type-1

bug. The reason of fixing less bugs in these two types is that the multi-statement

expansion may expand the buggy hunk incorrectly by regarding a single-statement

bug as a multi-statement bug. Even so, DEAR still can fix more bugs, showing the

usefulness of the multi-statement expansion.

To compare the impact of Hunk Detection and Multi-Statement Expansion, let

us note that the variant of DEAR without Hunk-Detection missed all 14 multi-hunk

bugs (Types 3,4,5). The variant without Expansion missed all 7 multi-statement

bugs (Types 2,4,5). However, let us consider how challenging it is to fix them.

Among 14 multi-hunk bugs fixed with Hunk-Detection, 11 bugs are of Type-3

(multi-hunk/one-statement), in which some approaches (e.g., Hercules) can handle

by fixing one statement at a time. Only 3 bugs are of Types 4–5. In contrast, all
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Table 4.14 Automated Program Repair: Impact of the Size of Training Data.

Splitting Scheme on CPatMiner dataset 90%/10% 80%/20% 70%/30%

% Total Bugs at Top-1 15.1% 13.8% 11.7%

7 bugs fixed with Expansion are multi-statement bugs (Types 2,4,5), which cannot

be fixed by existing DL-based APR approaches. Thus, Expansion contributes to

handling more challenging bugs than Hunk-Detection.

4.3.8.4.3 Impact of Tree-Based LSTM model with attention and cycle

training. (Attention-Cycle) To measure the impact of Attention and Cycle Training,

we removed those two mechanisms from DEAR to produce a baseline. Our results

show that in Defects4J, DEAR fixes 7 more bugs on all bug types than the baseline

(17.5% increase). This result indicates the usefulness of the two mechanisms.

4.3.8.4.4 Impact of training data’s size. Table 4.14 shows that the size of

training data has impact on DEAR’s performance. As seen in Table 4.14, the more

training data, the higher the DEAR’s accuracy. This is expected as DEAR is a

data-driven approach. But even with less training data (70%/30%), DEAR achieves

11.7% for top-1 result, which is still higher than DLFix (11.4% in top-1) and Sequencer

(7.7% in top-1); both are with more training data (90%/10% splitting).

4.3.8.5 RQ5. Time complexity and parameters. Training time of DEAR

on CPatMiner was +22 hours and predicting on CPatMiner took 2.4-3.1 seconds for

each candidate patch. Training of DEAR on BigFix took 18-19 hours and predicting

on BigFix took 3.6-4.2 seconds for each candidate. Predicting on Defects4J took only

2.1 seconds for a candidate due to a much smaller dataset. Test execution time was

+1 second per test case. Test validation took 2–20 minutes for all the test cases for

a bug fix.
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The best baseline, CURE [54], fixes fewer bugs than DEAR (RQ1 and RQ2),

and requires 7 and 7.3 times more training parameters than DEAR on CPatMiner and

BigFix, respectively. Specifically, DEAR and CURE require 0.39M and 3.1M training

parameters on CPatMiner, and 0.42M and 3.5M parameters on BigFix. Thus, DEAR

is less complex than CURE, while achieving better results.

4.3.9 Illustrative example

1 pub l i c void excludeRoot ( S t r ing path ) {

2 − St r ing u r l = toUrl ( path ) ;

3 − f indOrCreateContentRoot ( u r l ) . addExcludeFolder ( u r l ) ;

4 + Url url = toUrl(path);

5 + findOrCreateContentRoot(url).addExcludeFolder(url.getUrl());

6 }

7 pub l i c void useModuleOutput ( S t r ing production , S t r ing t e s t ) {

8 modif iableRootModel . inher itCompilerOutputPath ( f a l s e ) ;

9 − modif iableRootModel . setCompilerOutputPath ( toUrl ( product ion ) ) ;

10 − modif iableRootModel . setCompilerOutputPathForTests ( toUr l ( t e s t ) ) ;

11 + modifiableRootModel.setCompilerOutputPath(toUrl(production).getUrl());

12 + modifiableRootModel.setCompilerOutputPathForTests(toUrl(test).getUrl());

13 }

Figure 4.19 Automated Program Repair: A multi-hunk/multi-statement fixing in
CPatMiner.

Figure 4.19 shows a correct fix from DEAR. It correctly detects two buggy

hunks; each with multiple statements. DEAR leverages the variable names existing

in the same method (modifiableRootModel at line 8) in composing the fixed code at

lines 11–12. The DL-based baselines, Sequencer [24] and CoCoNuT [94], treat code

as sequences, and does not derive well the structural changes for this fix. DLFix fixes

one statement at a time, thus, does not work (the fixes at line 2 and line 3 depend
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on each other). For pattern-based APRs [136, 53], there is no fixing template for this

bug.

4.3.9.1 Limitations. DEAR has the following limitations. First, as with

ML approaches, fixes with rare or out-of-vocabulary names are challenging. With

more training data, DEAR has higher chance to encounter the ingredients to

generate a new name. Second, we focus only on the bugs that cause failing tests.

Security, vulnerabilities, and non-failing-test bugs are still its limitations. Third, we

cannot generate fixes with several new statements added or arbitrarily large sizes

of dependent fixed statements. Fourth, the expansion algorithm produces incorrect

hunks to be fixed, leading to fixing incorrect statements. Finally, we currently focus on

Java, however, the basic representations used in DEAR, e.g., token, AST, dependency,

are universal to any program language. Only third-party FL and post-processing with

semantic checkers are language-dependent.

4.3.10 Threats to validity

We tested on Java code. The key modules in DEAR are language-independent, except

for the third-party FL and post-processing with program analysis. Pattern-based

APR tools require a dataset with test cases, thus, we compared them on Defects4J

only. We tried our best to re-implement the pattern-based APR baselines and CURE

for a fair comparison.

4.4 Conclusion

In this chapter, we designed our approaches with suitable learning code represen-

tations on two research works on automated program repair. One is for single-line

bug fixing, while the other is dealing with multi-hunk/multi-statement bugs.

For single-line bug auto repair, we propose a new deep learning (DL) based

automated program repair (APR) approach, namely DLFix, to improve and complement

the existing state-of-the-art APR approaches. The key ideas that enable our
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approach are (1) using tree-based RNN to directly model code and learning tree-based

structural code transformations from previous bug fixes; (2) learning the context of

the code surrounding a fix, namely local context learning. In DLFix, we propose a

two-layer tree-based RNN encoder-decoder model to learn local contexts and code

transformations from previous fixes. In addition, we build a CNN-based classification

approach to re-rank possible patches.

For multi-hunk/multi-statement bug auto repair, we make three key contri-

butions: (1) a novel FL technique for multi-hunk, multi-statement fixes combining

traditional SBFL with deep learning and data-flow analysis; (2) a compositional

approach to generate multi-hunk, multi-statement fixes with a divide-and-conquer

strategy; and (3) enhancements and orchestration of a two-layer LSTM model with

the attention layer and cycle training.

All the empirical results show that our approaches can outperform all the

studied state-of-the-art deep learning-based automated program repair approaches

and have complementary results against pattern-based APR approaches. Our

notion’s effectiveness in utilizing appropriate code representations for enhancing the

performance of automated program repair tasks is substantiated. Once the software

has undergone testing, it can be released to the market, marking the transition

to the crucial maintenance stage that requires developers’ attention. Detecting

vulnerabilities during this stage holds significant importance. In Chapter 5, we will

go deeper into the topic of selecting appropriate code representations for effectively

addressing vulnerabilities, providing a comprehensive explanation.
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CHAPTER 5

MODEL AGNOSTIC EXPLANATION

5.1 Introduction

In this chapter, we present our research focusing on a specific aspect of model-agnostic

explanation: providing explanations for graph-based deep learning models in the

context of vulnerability detection tasks. The structure of this chapter, along with the

corresponding code representations used for each research topic, can be visualized in

Figure 5.1. Our work on this research topic has already been published as a conference

paper, which will be discussed in detail in the subsequent sections.

Figure 5.1 Model Agnostic Explanation: Roadmap for Chapter 5.

5.2 Model Agnostic Explanation for Graph-Based Vulnerability

Detection and Bug Detection

5.2.1 Introduction

Software vulnerabilities have caused substantial damage to our society’s software

infrastructures. To address the problem, several automated vulnerability detection

(VD) approaches have been proposed. They can be broadly classified into two

categories: program analysis (PA)-based [38, 127, 161, 23, 49, 30] and machine

learning (ML)-based [137, 109, 140]. The PA-based VD techniques have often
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focused on solving the specific types of vulnerabilities such as BufferOverflow [18],

SQL Injection [149], Cross-Site Scripting [142], Authentication Bypass [148], etc. In

addition to those types, the more general software vulnerabilities, e.g., the software

vulnerabilities occurring in API usages of libraries/frameworks, have manifested in

various forms. To detect them, machine learning (ML) and deep learning (DL) have

been leveraged to implicitly learn the patterns of vulnerabilities from prior vulnerable

code [79, 198, 45].

Despite several advantages, the ML/DL-based VD approaches are still limited

to providing only coarse-grained detection results on whether an entire given method

is vulnerable or not. In comparison with the PA-based approaches, they fall short in

the ability to elaborate on the fine-grained details of the lines of code with specific

statements that might be involved in the detected vulnerability. One could use fault

localization (FL) techniques [58] to locate the vulnerable statements, however they

require large, effective test suites. Due to such feedback at the coarse granularity from

the existing ML/DL-based VD tools, developers would not know where and what to

look for and to fix the vulnerability in their code. This hinders them in investigating

the potential vulnerabilities.

To raise the level of ML/DL-based VD, we present IVDetect, an interpretable

VD with the philosophy of using Artificial Intelligence to detect coarse-grained

vulnerability, while leveraging Intelligence Assistant via interpretable ML to provide

fine-grained interpretations in term of vulnerable statements relevant to the vulnera-

bility.

For coarse-grained vulnerability detection, our novelty is the context-aware repre-

sentation learning of the vulnerable code. During training, the existing ML/DL-based

VD approaches [79, 198] take the entire vulnerable code in a method as the input

without distinguishing the vulnerable statements from the surrounding contextual

code. Such distinction from vulnerable code and the contexts during training enables
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IVDetect to better learn to discriminate the vulnerable code and benign ones.

We represent source code via program dependence graph (PDG) and we treat the

vulnerability detection problem as graph-based classification via Graph Convolution

Network (GCN) [63] with feature-attention (FA), namely FA-GCN. The vulnerable

statements, along with surrounding code, are encoded during the code representation

learning.

For fine-grained interpretation, as the given method is deemed as vulnerable

by IVDetect, our novelty is to leverage interpretable ML [184] to provide the

interpretation in term of the vulnerable statements as part of the PDG that are

involved to the detected vulnerability. The rationale for choosing PDG sub-graph as an

interpretation is that a vulnerability often involves the data and control dependencies

among the statements [123].

To derive the vulnerable statements as the interpretation, we leverage the

interpretable ML model, GNNExplainer [184], that “explains” on why a model

has arrived at its decision. Specifically, after vulnerability detection, to produce

interpretation, IVDetect takes as input the FA-GCN model along with its decision

(vulnerable or not), and the input PDG GM of the given method M . The goal is

to find the interpretation subgraph, which is defined as a minimal sub-graph G in

the PDG of M that minimizes the prediction scores between using the entire GM and

using G. To that end, we leverage GNNExplainer [184] in which the searching for

G is formulated as the learning of the edge-mask set EM . The idea is that if an

edge belongs to EM (i.e., if it is removed from GM), and the decision of the model

is affected, then the edge is crucial and must be included in the interpretation for the

detection result. Thus, the minimal sub-graph G in PDG contains the nodes and edges,

i.e., the crucial statements and program dependencies, that are most decisive/relevant

to the detected vulnerability when the decision is vulnerable.
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Using IVDetect’s results, a practitioner could 1) examine the ranked list of

potentially vulnerable methods, and 2) use the interpretation to further investigate

what statements in the code that cause the model to predict that vulnerability.

We conducted several experiments to evaluate IVDetect in both vulnerability

detection at the method level and interpretation in term of vulnerable statements.

We use three large C/C++ vulnerability datasets: Fan [35], Reveal [22] and

FFMPeg+Qemu [198]. For the method-level VD, our results show that IVDetect

outperforms the existing ML/DL-based approaches [79, 198, 78, 132, 22] by 43%–84%

and 105%–255% at the top-10 list for two ranking scores nDCG and MAP,

respectively. For the statement-level interpretation, IVDetect correctly points out the

vulnerable statements relevant to the vulnerability in 67% of the cases with a top-5

ranked list. It improves over the baseline ATT [184] and GRAD [184] interpretation

models by 12.3%–400% and 9%–400% in accuracy, respectively.

The contributions of this research topic include:

A. Interpretable VD with Fine-Grained Interpretations

a. Vulnerability Detection with Fine-Grained Interpretations: IVDetect

is the first approach to leverage interpretable ML to enhance VD with fine-grained

details on PDG sub-graphs, statements, and dependencies relevant to the detected

vulnerability.

b. Context-Aware Representation Learning of vulnerable code: The

novelty of our representation learning of vulnerable code is the consideration of the

contextual code surrounding the vulnerable statements and fixes to better train the

VD model.

B. Empirical Evaluation. Our results show IVDetect’s high accuracy in both

detection and interpretation.
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5.2.2 Motivation

5.2.2.1 Motivating example. Figure 5.2 shows the method ec device ioctl xcmd

in Linux 4.6, which constructs the I/O control command for the CromeOS devices.

This is listed as a vulnerable code within Common Vulnerabilities and Exposures

(CVE-2016-6156) in the National Vulnerability Database. The commit log of the

corresponding fix stated that

“At line 6 and line 13, the driver fetches user space data by pointer arg via

copy from user(). The first fetched value (stored in u cmd) (line 6) is used to get

the in size and out size elements and allocation a buffer (s cmd) at line 10 so as to

copy the whole message to driver later at line 13, which means the copy size of the

whole message (s cmd) is based on the old value (u cmd.outsize) from the first fetch.

Besides, the whole message copied at the second fetch also contains the elements of

in size and out size, which are the new values. The new values from the second fetch

might be changed by another user thread under race condition, which will result in a

double-fetch bug when the inconsistent values are used.”

Thus, to fix this bug, a developer added the code at lines 17–21 to make sure

that u cmd.outsize and u cmd.insize have not changed due to race condition between

the two fetching calls. Moreover, memory access might be also beyond the array

boundary, causing a buffer overflow within the method call cros ec cmd xfer(...), when

the command is transferred to the ChromeOS device at line 23. Another issue is at

line 27 with copy to user. The method call cros ec cmd xfer(...) can set s cmd-

>insize to a lower value. Thus, the new smaller value must be used to avoid copying

too much data to the user: u cmd.insize at line 27 is changed into s cmd->insize.

This vulnerable code could potentially cause the damages such as denial of

service, buffer overflow, program crash, etc. Deep learning (DL) advances enable

several approaches [198, 79] to implicitly learn from the history the patterns of

vulnerable code, and to detect more general vulnerabilities.
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1 static long ec_device_ioctl_xcmd(struct cros_ec_dev *ec, void __user *arg)

2 {

3 long ret;

4 struct cros_ec_command u_cmd;

5 struct cros_ec_command *s_cmd;

6 if (copy_from_user (&u_cmd , arg , sizeof(u_cmd )))

7 return -EFAULT;

8 if ((u_cmd.outsize > EC_MAX_MSG_BYTES) || (u_cmd.insize > EC_MAX_ ...))

9 return -EINVAL;

10 s_cmd = kmalloc(sizeof (* s_cmd) + max(u_cmd.outsize , u_cmd.insize ),.);

11 if (!s_cmd)

12 return -ENOMEM;

13 if (copy_from_user(s_cmd , arg , sizeof (*s_cmd) + u_cmd.outsize )) {

14 ret = -EFAULT;

15 goto exit;

16 }

17 + if (u_cmd.outsize != s_cmd ->outsize ||

18 + u_cmd.insize != s_cmd ->insize) {

19 + ret = -EINVAL;

20 + goto exit;

21 + }

22 s_cmd ->command += ec->cmd_offset;

23 ret = cros_ec_cmd_xfer(ec->ec_dev , s_cmd );

24 /* Only copy data to userland if data was received. */

25 if (ret < 0)

26 goto exit;

27 - if (copy_to_user(arg , s_cmd , sizeof (*s_cmd) + u_cmd.insize ))

28 + if (copy_to_user(arg , s_cmd , sizeof (*s_cmd) + s_cmd ->insize ))

29 ret = -EFAULT;

30 exit:

31 kfree(s_cmd );

32 return ret;

33 }

Figure 5.2 Model Agnostic Explanation: CVE-2016-6156 vulnerability in Linux
4.6.
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However, they are still limited in comparison with program analysis-based

approaches in the ability to provide any detail on the fine-grained level of the

vulnerable statements, and on why the model has decided on the vulnerability. For

example, the PA-based approaches, e.g., a race detection technique, could potentially

detect the involvement of the two fetching statements at line 6 and line 13. The

method in Figure 5.2 might be deemed as vulnerable by a DL-based model. But

without any fine-grained details, a developer would not know where and what to

investigate next. This would make the output of a DL model less constructive in VD.

Moreover, a fault localization technique [58], which locates buggy statements, does

not solve the problem because it would need a large and effective test suite.

Regarding detection, the existing DL-based approaches [198, 79] do not fully

exploit all the available information on the vulnerable code during training. For

example, during training, we know that lines 23 and 27 are vulnerable/buggy,

and other relevant statements via data/control dependencies provide contextual

information for the vulnerable ones. However, the existing approaches [198, 79] do

not consider the vulnerable statements and do not use the contextual code to help

a model discriminate the vulnerable and non-vulnerable ones. The entire method

would be fed to a DL model.

5.2.2.2 Approach overview and key ideas. We introduce IVDetect, an DL-

based, interpretable vulnerability detection approach that goes beyond the decision of

vulnerability by providing the fine-grained interpretation in term of the vulnerable

statements. Specifically, as the method is deemed as vulnerable by IVDetect, it

will provide a list of important statements as part of the program dependence graph

(PDG) that are relevant to the detected vulnerability. For example, it provides the

partial sub-graph of the PDG including the statements at the lines 13–15, 22–23, and

25–27 in Figure 5.3 for the vulnerable code at line 23 and line 27. We use the PDG

sub-graph including important statements for fine-grained VD since they will give
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a developer the hints on the program dependencies relevant to the vulnerability for

further investigation. Moreover, if our model determines the code as non-vulnerable,

it can also produce the key sub-graph of the PDG with the key statements that are

deemed to be safe.

Figure 5.3 Model Agnostic Explanation: Interpretation sub-graph for Figure 5.2.

Figure 5.4 Model Agnostic Explanation: Overview of IVDetect.

IVDetect has two main modules (Figure 5.4): graph-based vulnerability

detection model, and graph-based interpretation model. The input is the source

code of all methods in a project. The output is the ranked list of methods with the
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detection result/score and the interpretation (PDG sub-graph). Let us explain our

key ideas.

Figure 5.5 Model Agnostic Explanation: Context-Aware vulnerable code repre-
sentation learning for statement S27 in graph-based vulnerability detection.

5.2.2.2.1 Graph-Based vulnerability detection model (Sub-Section 5.2.3).

As seen in Sub-Section 5.2.2.1, a vulnerability is usually exhibited as multiple

statements being exploited, thus, it is natural to capture the vulnerable code as a

sub-graph in the PDG with the data and control flows. This also helps developers

further investigate the detected vulnerability with those flows. Toward that goal, we

model the vulnerability detection via the Graph Convolutional Network (GCN) [63]

as follows. The PDG of a method M is represented as a graph GN = (V,E) in which

V is a set of nodes representing the statements, and E is a set of edges representing

the data/control dependencies. A feature description xV is for every node v, which

represents a property of a node, e.g., variable name, etc. Features are summarized

in a N ×D feature matrix XM (N : number of nodes and D is the number of input

features). Let f be a label function on the statements and methods f : V → {1, ..., C}

that maps a node in V and an entire method to one of the C classes. In IVDetect,

C=2 for vulnerable (V) and non-vulnerable (NV).

For training on (non-)vulnerable code in the training set, GCN performs similar

operations as CNN where it learns the features with a small filter/window sliding
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over PDG sub-structure. Differing from image data with CNN, the neighbors of

a node in GCN are unordered and variable in size. To predict if a method M is

vulnerable, its PDG GM with the associated feature set XM = {xj|vj ∈ GM} are

built. GCN learns a conditional distribution P (Y |GM , XM), where Y is a random

variable representing the labels {1, ..., C}. That distribution indicates the probability

of the graph GM belonging to each of the classes {1, ..., C}, i.e., M is vulnerable or

not (Sub-Section 5.2.3).

5.2.2.2.2 Distinction between vulnerable statements and surrounding

contexts. During training, for each vulnerable statement s in a method in the

training dataset, we distinguish s and the surrounding contextual statements for s.

A context consists of the statements with data and/or control dependencies with s.

This is expected to help our model recognize better the vulnerable code appearing

in specific surrounding contexts, and discriminate better the vulnerable code from

the benign one. For example, the existing approaches feed the entire PDG of the

method in Figure 5.3 into a model. IVDetect distinguishes and learns the vector

representation for the vulnerable statement at line 27 while considering as contexts

the statements with data/control dependencies with line 27: the data-dependency

context (lines 31, 22, 13, 10, and 6), and the control-dependency context (lines 29,

25, 23, and 13).

5.2.2.2.3 Graph-Based interpretation model for vulnerability detection

(Sub-Section 5.2.4). After prediction, IVDetect performs fine-grained interpre-

tation. It uses both the PDG GM of the method M and the GCN model as the

input to obtain the interpretation. To that end, we leverage the interpretable ML

technique GNNExplainer [184]. Its goal is to take the GCN and a specific input

graph GM , and produce the crucial sub-graph structures and features in GM that

affect the decision of the model. GNNExplainer’s idea is that if removing or altering

a node/feature does affect the prediction outcome, the node/feature is considered as
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essential and thus must be included in the crucial set (let us call it the interpretation

set). GNNExplainer searches for a sub-graph GM in GM that minimizes the difference

in the prediction scores between using the whole graph GM and using the minimal

graph GM (Sub-Section 5.2.4). Because without that subgraph GM in the input PDG

GM , GCN model would not decide GM as vulnerable, GM is considered as crucial

PDG sub-graph consisting of crucial statements and data/control dependencies

relevant to the detected vulnerability (if the outcome is V). If the outcome is

non-vulnerability, GM can be considered as the safe statements in PDG for the model

to decide the input method M as benign code.

5.2.3 Graph-Based vulnerability detection model

This sub-section describes our graph-based vulnerability detection model. We

first explain how we build the context-aware representation learning for vulnerable

code, and then how we use such learned vectors for vulnerability detection using

FA-GCN [139].

5.2.3.1 Context-Aware representation learning. Let us present how we

build the vector representations for code features. For a statement, we extract the

following types of features:

Figure 5.6 Model Agnostic Explanation: Vulnerability detection with FA-GCN.

5.2.3.1.1 Sequence of sub-tokens of a statement. At the lexical level, we

capture the content of a statement in term of the sequence of sub-tokens. We choose
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the sub-token granularity because the sub-tokens are more likely to be repeated than

the entire lexical tokens in source code [113].

We tokenize each statement and keep only the variables, method and class

names. The names are broken into sub-tokens using CamelCase or Hungarian

convention. We remove the sub-tokens with one character to avoid the influence

of noises. For example, in Figure 5.5, the tokens of S27 are collected and broken down

into the sequence: copy, to, user, arg, etc. Then, we use GloVe [122], to build the

vectors for tokens, together with Gate Recurrent Unit (GRU) [28] to build the feature

vector for the sequence of sub-tokens for S27. GloVe is known to capture well semantic

similarity among tokens. GRU is chosen to summarize the sequence of vectors into

one feature vector for the next step.

5.2.3.1.2 Code structure of a statement. We capture code structure via the

AST sub-tree. In Figure 5.5, the AST sub-tree for S27 is extracted and fed to Tree-

LSTM [152] to capture the structure into a vector F2.

5.2.3.1.3 Variables and types. For each node (i.e., a statement), we collect

the names of the variables and their static types at their locations, break them

into the sub-tokens. For example, we collect the variable s cmd and its static type

cross ec command. We use the same vector building techniques as for the sub-token

sequences as in the feature 1, including GloVe and GRU, to apply on the sequences

of the sub-tokens built from the variables’ names (e.g., s cmd) and those from the

variables’ types (e.g., cross ec command).

5.2.3.1.4 Surrounding contexts. During training, for a statement s, we also

encode the statements surrounding s, which we refer to as context. We have two

contexts. Data- and control-dependency contexts contain the statements having such

dependencies with the current statement. For example, the data-dependency context

for S27 includes the statements at the lines 31, 22, 13, 10, and 6. If the control

dependencies are considered, the statements with control dependencies with S27 at
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the lines 29, 25, 23, and 13 are included. The vectors for the statements in the

context are calculated via GloVe and GRU as described earlier. Because the number

of dependencies could be different, the lengths of the GRU model inputs could be

different. Thus, we apply zero padding with a masking layer, allowing the model

to skip the zeros at the end of the sequence of sub-tokens. Those zeros will not be

included in training.

5.2.3.1.5 Attention-Based Bidirectional GRU. After having all vectors for

the features F1, F2, ..., we use a bi-directional GRU and an attention layer to learn

the weight vector Wi for each feature Fi, based on the hidden states from that model.

Then, we compute the weighted vector for each feature by multiplying the original

vector for the feature by the weight, that is, we have F ′
i = Wi.Fi.

Finally, we need to consider the impacts from the dependent statements to the

current statement in the PDG. The rationale is that those neighboring statements in

the PDGmust have the influence on the current statement if one of them is vulnerable.

For example, the neighboring statements for S27 in the PDG include the statements

at lines 6, 22, 25, and 29. Thus, we combine and summarize them into the final

feature vector FS27 for the statement S27 as follows:

FS27 =
∑
i

WiConcat(h(F ′
i , j)) (5.1)

Wi is the trainable weight for combination; Concat is the concatenate layer to link

all values into one vector; h is the hidden layer to summarize vector into a value; i

= S6, S22, S25, S27, S29; j is feature index. F27 is used in the next step with GCN

model for detection.

5.2.3.2 Vulnerability detection with FA-GCN. Figure 5.6 presents how

we use Feature-Attention GCN model (FA-GCN) [139] for detection. The rationale

is that FA-GCN can deal well with the graphs with sparse features (not all the

statements share the same properties), and potentially noisy features in a PDG. First,
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we parse the method M into PDG. Similar to CNN using the filter on an image, FA-

GCN performs sliding a small window along all the nodes (statements) of the PDG.

For example, in Figure 5.6, the window marked with A○ for the node S27 consists of

itself and the neighboring statements/nodes S6, S22, S25, and S29. Another window

(marked with B○) is for the node S23, including itself and the neighboring nodes: S22

and S25. For each window, FA-GCN generates the feature representation matrix for

the statement at the center. For example, for the window centered at S27, it generates

the feature vector FS27 for S27, using the process explained in Figure 5.5. From the

representation vectors for all statements, FA-GCN uses a join layer to link all these

vectors into the Feature Matrix Fm for method M . A row in Fm corresponds to a

window in PDG.

Next, FA-GCN performs the convolution operation by first calculating the

symmetric normalized Laplacian matrix Ã [63], and then calculating the convolution

to generate the representation matrix Mm for the method m. After that, we use

the traditional steps as in a CNN model: using a spatial pyramid pooling layer (to

normalize the method representation matrix into a uniform size, and reduce its total

size), and connecting its output to a fully connected layer to transform the matrix

into a vector Vm to represent m. With Vm, we perform classification by using two

hidden layers (controlling the length of vectors and output) and a softmax function

to produce a prediction score for m. We use those scores as vulnerability scores to

rank the methods in a project. The decision for m as V or NV is done via a trainable

threshold on the prediction score [79, 77].

5.2.4 Graph-Based interpretation model

Let us explain how we use GNNExplainer [184] to build our graph-based interpre-

tation. The input includes the trained FA-GCN model, the PDG (GM) of the method

M , and the detection result V or NV , and prediction score. Figure 5.7 illustrates our

process for the case of V (Vulnerable) (the case of NV is done similarly).
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To derive the interpretations, the key goal is to find a sub-graph GM in the

PDG GM of the method M that minimizes the difference in the prediction scores

between using the entire graph GM and using the minimal graph GM . To do so, we

use GNNExplainer with the masking technique [184], which treats the searching for

the minimal graph GM as a learning problem of the edge-mask set EM of the edges.

The idea is that learning EM helps IVDetect derive the interpretation sub-graph GM

by masking-out the edges in EM from GM (“masked-out” is denoted by
⊙

):

GM = GM

⊙
EM (5.2)

Figure 5.7 illustrates GNNExplainer’s principle. As an edge-mask set is applied,

GNNEXplainer checks if the FA-GCN model produces the same result (in this case

the result is V). If yes, the edge in the edge-mask is not important and is not included

in GM . Otherwise, the edge is important and included in GM . Because the numbers

of possible sub-graphs and the edge-mask sets are untractable, GNNExplainer uses a

learning approach for the edge-mask EM .

Figure 5.7 Model Agnostic Explanation: Masking to derive interpretation sub-
graphs.

Let us formally explain how GNNEXplainer [184] works. It formulates the

problem by maximizing the mutual information (MI) between the minimal graph GM

and the input PDG GM :

max
GM

MI(Y,GM) = H(Y )−H(Y |G = GM) (5.3)
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Y is the outcome decision by the FA-GCN model. Thus, the entropy term H(Y )

is constant for the trained FA-GCN model. Maximizing the MI value for all GM is

equivalent to minimizing conditional entropy H(Y |G = GM), which by definition of

conditional entropy can be expressed as

−EY |GM
[logPFA−GCN(Y |G = GM ] (5.4)

The meaning of this conditional entropy formula is a measure of how much uncertainty

remains about the outcome Y when we know G = GM . GNNEXplainer also limits the

size of GM byKM , i.e., takingKM edges that give the highest mutual information with

the prediction outcome Y . Direct optimization of the formula 5.4 is not tractable,

thus, GNNExplainer treats GM as a random graph variable G. The objective in

Equation 5.4 becomes:

min
G

EGM∼G H(Y |G = GM) (5.5)

min
G

H(Y |G = EG[GM ]) (5.6)

From Equation 5.5, we obtain Equation 5.6 with Jensen’s inequality. The conditional

entropy in Equation 5.6 can be optimized by replacing EG[GM ] to be optimized by

masking with EM on the input graph GM . Now, we can reduce the problem to

learning the mask EM . Details on training can be found in [184]. The resulting

sub-graph GM is directly used as an interpretation. We can similarly produce the

interpretations for the cases of non-vulnerability result.

5.2.5 Empirical evaluation

5.2.5.1 Research questions. To evaluate IVDetect, we seek to answer the

following questions:
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RQ1. Comparison on Method-Level Vulnerability Detection (VD). How

well does IVDetect perform in comparison with the state-of-the-art method-level Deep

Learning VD approaches?

RQ2. Comparison with other Interpretation Models for Fine-Grained

VD Interpretation. How well does IVDetect perform in comparison with the

state-of-the-art interpretation models for fine-grained VD interpretation to point out

vulnerable statements?

RQ3. Vulnerable Code Patterns and Fixing Patterns. Is IVDetect useful in

detecting vulnerable code patterns and fixes?

RQ4. Sensitivity Analysis for Internal Features. How do internal features

affect the overall performance of IVDetect?

RQ5. Sensitivity Analysis on Training Data. How do different data splitting

schemes affect IVDetect’s performance?

RQ6. Time Complexity. What is time complexity of IVDetect?

5.2.5.2 Datasets. To empirically evaluate IVDetect, we have conducted several

experiments on three public vulnerability datasets including Fan et al.’s [35],

Reveal [22], and FFMPeg+Qemu [198] (Table 5.1). Fan et al. [35] dataset covers

the CWEs from 2002 to 2019 with 21 features for each vulnerability. At the method

level, the dataset contains +10K vulnerable methods and fixed code. The Reveal

dataset [22] contains +18K methods with 9.16% of them being vulnerable ones. The

FFMPeg+Qemu dataset has been used in Devign study [198] with +22K methods,

and 45.0% of the entries are vulnerable.

Table 5.1 Model Agnostic Explanation: Experimental Datasets.

Dataset Fan Reveal Devign

Vulnerabilities 10,547 1,664 10,067

Non-Vulnerabilities 168752 16505 12,294

Ratio (Vul:Non-Vul) 1:16 1:9.9 1:1.2
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5.2.5.3 Experimental methodology.

5.2.5.3.1 RQ1. Comparison on method-level DL-Based VD approaches.

Baselines. We compare IVDetect with the state-of-the-art DL-based vulnera-

bility detection approaches: 1) VulDeePecker [79]: a DL-based approach using

Bidirectional LSTM on the statements and their data/control dependencies. 2)

Devign [198]: an DL-based approach that uses GGCN model with Gated Graph

Recurrent Layers on the AST, CFG, DFG, and code sequences for graph classification.

3) SySeVR [78]: in addition to statements and program dependencies, this approach

also uses program slicing and leverages several DL models (LR, MLP, DBN, CNN,

LSTM, etc.). 4) Russell et al. [132]: this DL approach encodes source code as

matrices of code tokens and leverages convolution model with random forest (RF)

via ensemble classifier. 5) Reveal [22]: this approach uses GGNN, MLP, and with

Triplet Loss on graph representations of source code.

Procedure. A dataset contains a number of vulnerable and non-vulnerable

methods. We randomly split all of its vulnerable methods into 80%, 10%, and 10% to

be used for training, tuning, and testing, respectively. For training, we added to that

80% part the same number of non-vulnerable methods as the vulnerable ones to obtain

a balanced training data. For tuning and testing, we also added the non-vulnerable

methods but we used the real ratio between vulnerable and non-vulnerable methods

in the original dataset to build the tuning/testing data. We used AutoML [98] on all

models to automatically tune hyper-parameters on the tuning dataset.

We also performed the evaluation across the datasets. We first trained our model

on the combination of two datasets Reveal and FFMPeg+Qemu, which has a balanced

number of vulnerable methods and non-vulnerable ones. We then tested the model

on Fan dataset, which has a more realistic ratio of vulnerable and non-vulnerable

methods. To ensure the model suitable for cross-data evaluation, we also used 20%
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of Fan dataset for tuning the parameters and performed prediction on the remaining

80%.

Evaluation Metrics. We use the following evaluation metrics.

Mean Average Precision MAP =
∑Q

q=1 AvgP (q)

Q
, with Average Precision

AvgP =
∑n

k=1 P (k)rel(k), where n is the total number of results, k is the current rank

in the list, rel(k) is an indicator function equaling to 1 if the item at rank k is actually

vulnerable, and to zero otherwise. Q is the total number of classification types. It

is 1 because we only have two types including vulnerable and non-vulnerable classes,

however, we rank all the methods based on their scores (1 indicates vulnerable, and

0 otherwise).

Normalized DCG at k: nDCGk = DCGk

IDCGk
, with Discounted Cumulative Gain

at rank k,DCGk =
∑k

i=1
ri

log2(i+1)
; and Ideal DCG at k IDCGk =

∑|Rk|
i=1

2ri−1
log2(i+1)

; where

ri is the score of the result at position i, and Rk the rank of the actual vulnerable

methods (ordered by their scores) in the resulting list up to the position k.

First Ranking (FR) is the rank of the first correctly predicted vulnerable

method. Average ranking (AR) is the average rank of the correctly predicted

vulnerable methods in the top-ranked list.

Accuracy under curve (AUC) is defined as AUC = P (d(m1) > d(m2)) in

which P is the probability, d is the detection model (can be regarded as a binary

classifier), m1 is a randomly chosen positive instance, and m2 is a randomly chosen

negative instance.

Precision (P) is the ratio of relevant instances among the retrieved ones. It is

calculated as Precision = TP
TP+FP

where TP is the number of true positives and the

FP is the number of false positives.

Recall (R) is the ratio of relevant instances that were retrieved. It is calculated

as Recall = TP
TP+FN

where TP is the number of true positives and the FN is the

number of false negatives.
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F-score (F) is the harmonic mean of precision and recall. It is calculated as

Fscore = 2 Precision∗Recall
Precision+Recall

.

5.2.5.3.2 RQ2. Comparison with other interpretation models for fine–

grained interpretation.

Baselines. We compare IVDetect with the following interpretation models: 1)

ATT [184]: this model is a graph attention network that uses the attention

mechanism to evaluate the weights (importance degrees) of the edges in the input

graph; 2) GRAD [184]: this approach uses a gradient-based method that computes

the gradient of the GNN’s loss function w.r.t. the adjacency matrix.

Procedure. Our goal here is to evaluate how well IVDetect produces the

fine-grained interpretations pointing to vulnerable statements. Thus, to train/test

the interpretation model, we need to use the Fan dataset because it contains the

vulnerable statements and respective fixes. The other two datasets contain only the

vulnerabilities at the method level and no fixes. Therefore, in this RQ2, for the

vulnerability prediction part, we used the FA-GCN model that was trained on Reveal

and FFMPeg+Qemu and predicted on the Fan dataset. For the methods that are

vulnerable, but predicted as non-vulnerable, we considered those cases as incorrect

because the resulting interpretations do not make sense for incorrect detection. For

the methods that are actually non-vulnerable (regardless of the prediction results of

vulnerable or non-vulnerable), we could not use them because the non-vulnerable

methods do not have the fixed statements as the ground truth for measuring the

correctness of interpretations. Thus, we use the set of methods that are vulnerable

and correctly detected as vulnerable for the evaluation of the interpretation model.

Let us use D to denote this set.

For the interpretation, we randomly split D into 80%, 10%, and 10% for

training, tuning, and testing. For training, we used the fixed statements as the labels

for interpretation because those fixed statements were vulnerable. For testing, we
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compared the relevant statements from the interpretation model against the actual

fixed statements. Each method in the testing set and the trained FA-GCN model are

the input of the interpretation model in this RQ2.

Evaluation Metrics. Given an interpretation sub-graph GM generated from the

graph-based interpretation model, we evaluate the accuracy of the interpretation

for a model as follows. For a method, if GM has an overlap with any statement

in the code changes that fix the vulnerability, GM is considered as a correct

interpretation, i.e., relevant to that detected vulnerability. We then calculate

Accuracy as the ratio between the number of correct interpretations over the total

number of interpretations. Because code changes could include addition, deletion,

and modification, we further define such overlap as follows.

If one of the statements S in the vulnerable version was deleted or modified for

fixing, and if GM ∋ S, then we consider the interpretation sub-graph GM as correct,

otherwise as incorrect. If one of the statements S ′ was added to the vulnerable version

for fixing, we check on the fixed version whether GM contains any statement with

data or control dependencies with S ′. If yes, we consider it as correct, otherwise,

as incorrect. In Figure 5.3, GM contains the statement S23 having the data/control

dependencies with one of the added lines from 17–21. Thus, GM is correct. The

rationale is that if the interpretation sub-graph GM contains some statement relevant

to the added statement to fix the vulnerability, that interpretation is useful in pointing

out the code relevant to the vulnerability.

We also use Mean First Ranking (MFR), i.e., the mean of the rankings for

the first statement that needs to be fixed in the interpretation statements, and Mean

Average Ranking (MAR), i.e., the mean of the rankings for all statements to be

fixed in the interpretation statements. If a statement to be fixed has not been selected

as interpretation, we do not consider it when calculating MFR/MAR.
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5.2.5.3.3 RQ3. Vulnerable code patterns and fixing patterns.

Procedure. We use a mining algorithm on the set of interpretation sub-graphs to mine

patterns of vulnerable code. We also mine fixing patterns for those vulnerabilities.

See details in Sub-Section 5.2.6.3.

Evaluation Metrics. We counted the identified patterns.

5.2.5.3.4 RQ4. Sensitivity analysis for features.

Procedure. We first built a base model with only the feature that represents the code

as the sequence of tokens. We then built other variants of our model by gradually

adding one more feature in Sub-Section 5.2.3.1 to the base model including the

sequence of sub-tokens, AST subtree, variable names, data dependencies, and control

dependencies. We measured the accuracy for each variant. We used the Fan dataset

and the same experiment setting as in RQ1.

Evaluation Metrics. We use the same metrics as in RQ1.

5.2.5.3.5 RQ5. Sensitivity analysis on training data. We used different

ratios in data splitting for training, tuning, and testing: (80%, 10%, 10%), (70%,

15%, 15%), (60%, 20%, 20%), and (50%, 25%, 25%). We used the Fan dataset and

the same setting as in RQ1.

Evaluation Metrics. We use the same metrics as in RQ1.

5.2.5.3.6 RQ6. Time complexity analysis. We measure the actual training

and predicting time.

5.2.6 Experimental results

5.2.6.1 RQ1. Comparison on method-level VD. In Table 5.2, among the

top 10 prediction results, IVDetect has the most correct predictions (6 vulnerable

methods). The vulnerable methods correctly detected by IVDetect are also pushed

higher in the top-10 ranked list with 4 correct results out of top-5 results. All other

baselines have only 0–1 correct detection in the top-5 list. Importantly, the first rank

215



for IVDetect (i.e., the rank of the first correctly detected vulnerable methods) is 1st,

while those of the baselines are 4th, 5th, 5th, 6th, and 7th (the bold values in Table 5.2).

Moreover, IVDetect can detect 14, 35, and 64 vulnerabilities among top-20, top-50,

and top-100 prediction results.

Table 5.2 Model Agnostic Explanation: RQ1. Top-10 Vulnerability Detection
Results on FFMPeg+Qemu Dataset.

Top-10 Rank 1 2 3 4 5 6 7 8 9 10 Total

VulDeePecker 0 0 0 0 0 0 1 0 1 1 3

SySeVR 0 0 0 0 0 1 1 1 0 1 4

Russell et al. 0 0 0 0 1 0 1 0 1 1 4

Devign 0 0 0 0 1 0 1 1 1 0 4

Reveal 0 0 0 1 0 1 0 1 1 1 5

IVDetect 1 0 1 1 1 0 1 1 0 0 6

Notes: 0: incorrect, 1: correct.

Tables 5.3, 5.4, and 5.5 show the comparison among the approaches on three

datasets. IVDetect consistently performs better in all the metrics (Table 5.3). For

nDCG@{1,3}, all the baselines get zeros because they did not have correct detections

in top-3 results. IVDetect can improve nDCG@10 from 43%–84% and nDCG@20

from 37%–71% as compared to the baselines. Higher nDCG indicates that IVDetect

achieves the ranking closer to the perfect ranking and the correct vulnerable methods

appear higher in the top list.

For MAP scores, IVDetect relatively improves over the baselines from 105%–

255% for top-10 and from 53%–116% for top-20 accuracy. With higher MAP,

IVDetect has higher precision on average for all the top-ranked positions in the

top list. That is, the top-ranked result is highly precise in detecting the vulnerable

methods.
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Table 5.3 Model Agnostic Explanation: RQ1. Method-Level VD on FFMPeg +
Qemu Dataset.

VulDee-
-Pecker

SySeVR Russell
et al.

Devign Reveal IVDetect

nDCG@1 0 0 0 0 0 1

nDCG@3 0 0 0 0 0 0.63

nDCG@5 0 0 0.43 0.45 0.5 0.65

nDCG@10 0.37 0.44 0.45 0.46 0.5 0.68

nDCG@15 0.45 0.48 0.49 0.52 0.55 0.75

nDCG@20 0.48 0.51 0.54 0.56 0.6 0.82

MAP@1 0 0 0 0 0 1

MAP@3 0 0 0 0 0 0.83

MAP@5 0 0 0.20 0.20 0.25 0.80

MAP@10 0.22 0.31 0.30 0.32 0.38 0.78

MAP@15 0.29 0.33 0.34 0.37 0.41 0.72

MAP@20 0.32 0.35 0.37 0.42 0.45 0.69

FR@1 n/a n/a n/a n/a n/a 1

FR@3 n/a n/a n/a n/a n/a 1

FR@5 7 6 5 5 4 1

FR@10 7 6 5 5 4 1

FR@15 7 6 5 5 4 1

FR@20 7 6 5 5 4 1

AR@1 n/a n/a n/a n/a n/a 1

AR@3 n/a n/a n/a n/a n/a 2

AR@5 n/a n/a 5 5 4 3.3

AR@10 8.7 7.8 7.8 7.4 7.4 4.7

AR@15 11.2 10 9.5 10 9.1 7.6

AR@20 13.3 12.1 12.6 12.1 12.4 10.3

AUC 0.68 0.72 0.79 0.77 0.79 0.84
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Table 5.4 Model Agnostic Explanation: RQ1. Method-Level VD on Fan Dataset.

VulDee-
-Pecker

SySeVR Russell
et al.

Devign Reveal IVDetect

nDCG@1 0 0 0 0 0 0

nDCG@5 0 0 0 0 0 0.5

nDCG@10 0 0 0.30 0.33 0.34 0.43

nDCG@15 0 0 0.28 0.30 0.37 0.45

nDCG@20 0.08 0.23 0.31 0.32 0.38 0.46

MAP@1 0 0 0 0 0 0

MAP@5 0 0 0 0 0 0.25

MAP@10 0 0 0.1 0.13 0.18 0.27

MAP@15 0 0 0.12 0.14 0.21 0.28

MAP@20 0.08 0.24 0.14 0.15 0.20 0.28

FR@1 n/a n/a n/a n/a n/a n/a

FR@5 n/a n/a n/a n/a n/a 4

FR@10 n/a n/a 10 8 6 4

FR@15 n/a n/a 10 8 6 4

FR@20 19 16 10 8 6 4

AR@1 n/a n/a n/a n/a n/a n/a

AR@5 n/a n/a n/a n/a n/a 4

AR@10 n/a n/a 10 8 8 7.3

AR@15 n/a n/a 12 10.5 9.3 8.5

AR@20 19.5 18 13.3 13.3 12 10.4

AUC 0.72 0.81 0.82 0.75 0.82 0.9
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Table 5.5 Model Agnostic Explanation: RQ1. Method-Level VD on Reveal
Dataset.

VulDee-
-Pecker

SySeVR Russell
et al.

Devign Reveal IVDetect

nDCG@1 0 0 0 0 0 0

nDCG@3 0 0 0 0 0 0.63

nDCG@5 0 0 0 0 0.43 0.53

nDCG@10 0 0.30 0.32 0.34 0.39 0.52

nDCG@15 0.26 0.28 0.32 0.39 0.42 0.55

nDCG@20 0.27 0.33 0.35 0.43 0.48 0.57

MAP@1 0 0 0 0 0 0

MAP@3 0 0 0 0 0 0.33

MAP@5 0 0 0 0 0.2 0.37

MAP@10 0 0.11 0.11 0.18 0.24 0.34

MAP@15 0.07 0.12 0.16 0.23 0.25 0.36

MAP@20 0.11 0.15 0.18 0.36 0.29 0.37

FR@1 n/a n/a n/a n/a n/a n/a

FR@3 n/a n/a n/a n/a n/a 3

FR@5 n/a n/a n/a n/a 5 3

FR@10 n/a 10 9 7 5 3

FR@15 15 10 9 7 5 3

FR@20 15 10 9 7 5 3

AR@1 n/a n/a n/a n/a n/a n/a

AR@3 n/a n/a n/a n/a n/a 3

AR@5 n/a n/a n/a n/a 5 4

AR@10 n/a 10 9 8 6 6

AR@15 15 12.5 12 10.5 9.8 9.5

AR@20 18 15.5 13.3 12.7 13 11.8

AUC 0.65 0.76 0.75 0.72 0.74 0.81
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IVDetect also achieves better first ranking (FR) and average ranking (AR).

While its best FR is 1, that of next best performer is 4. For AR@10, a correct

vulnerable method is on average ranked by IVDetect 2.7–4.0 positions higher in the

ranked list than by the baselines. Our tool also has relatively higher AUC from

6%–24%.

The comparative results on Fan and Reveal datasets are similar (Tables 5.4

and 5.5). In Fan dataset, IVDetect can improve the nDCG and MAP scores over

the baselines by 26%–43%, 50%–170% for top-10, and 21%–475%, 40%–250% for

top-20. IVDetect’s FRs and ARs are better from 2–6 positions and 0.7–2.7 positions

for top 10, and 2–13 positions and 1.6–9.1 positions for top 20. In Reveal dataset, the

improvements in nDCG, MAP, FR, and AR are 33%–73%, 42%–209%, 2–7 positions,

and 0–4 positions for top 10, and 19%–111%, 28%–236%, 2–12 positions, and 1.2–6.2

positions for top 20.

Table 5.6 Model Agnostic Explanation: RQ1. Precision and Recall Results of
Method-Level VD on Three Datasets.

FFMPeg+Qemu Fan Reveal

P R F P R F P R F

VulDeePecker 0.49 0.27 0.35 0.12 0.49 0.19 0.19 0.14 0.17

SySeVR 0.50 0.66 0.56 0.15 0.74 0.27 0.24 0.42 0.31

Russell et al. 0.55 0.41 0.45 0.16 0.48 0.24 0.26 0.12 0.16

Devign 0.52 0.63 0.57 0.18 0.52 0.26 0.33 0.32 0.32

Reveal 0.55 0.73 0.62 0.19 0.74 0.30 0.31 0.58 0.40

IVDetect 0.60 0.72 0.65 0.23 0.72 0.35 0.39 0.52 0.45

Notes: P: Precision; R: Recall; F: F score.

The results on three datasets are different due to the ratio between the

vulnerable and non-vulnerable methods. That ratio is 1:16 and 1:9.9 in Fan and
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Reveal datasets. That number is 1:1.2 in FFMPeg+Qemu dataset, thus, there are

more vulnerable methods, and the results are consistently higher across all the models.

Table 5.6 shows the Precision and Recall results of IVDetect and the baselines.

Specifically, IVDetect has higher precision than all the baselines across all three

datasets. It can improve Precision by 2.6%-105%. For Recall, it is marginally worse

than Reveal on Fan and FFMPeg+Qemu datasets (1.4% and 2.7%), and worse than

SySeVR on Fan dataset (2.7%). On the Reveal Dataset, IVDetect outperforms Reveal

by 25.8% in terms of Precision, but has lower Recall by 10.3%. However, in terms of

F-score, IVDetect can outperform the best performing baseline, Reveal, by 4.8% on

FFMPeg+Qemu dataset, 16.7% on Fan dataset, and 12.5% on Reveal Dataset.

Figure 5.8 shows that IVDetect consistently has better MAP and nDCG scores

when considering top-1 to top-100 ranked lists.

For cross-dataset validation, as seen in Figure 5.9, the results for MAP and

nDCG in the within-dataset setting are better than those in the cross-dataset setting.

This is expected because the model might see similar vulnerable code before in the

same projects in the same dataset. The FR and AR values for the cross-dataset

setting are one rank higher than those of the within-dataset setting.

(a) MAP Scores. (b) nDCG Scores.

Figure 5.8 Model Agnostic Explanation: Scores from top 1 to top 100 on Fan
dataset.
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(a) nDCG & MAP Scores. (b) FR and AR.

Figure 5.9 Model Agnostic Explanation: RQ1. Cross-Dataset validation: training
on Reveal and FFMPeg+Qemu datasets, testing on Fan dataset.

Figure 5.10 shows our analysis on the overlapping results between IVDetect and

the baselines on Fan dataset for top-100. As seen, IVDetect can detect 17, 13, 13, 11,

and 10 vulnerable methods that VulDeePecker, SySeVR, Russell, Devign, and Reveal

missed, respectively, while they can detect only 2,3, 4, 5, and 5 vulnerable methods

that IVDetect missed. In summary, IVDetect can detect 15, 10, 9, 6, and 5 more

vulnerable methods than the baselines.

Figure 5.10 Model Agnostic Explanation: Overlapping analysis.

5.2.6.2 RQ2. Comparison with interpretation models for fine-grained VD

interpretation. Table 5.7 shows the accuracy of different interpretation models.

As seen, using GNNExplainer improves over ATT and GRAD from 12.3%–400% and

9.0%–400% in accuracy, respectively, as we vary the size of interpretation sub-graphs

(i.e., the number of statements) from 1–10. Higher accuracy indicates that IVDetect

can provide better fine-grained vulnerability detection interpretation at the statement

level. That is, in more cases, if IVDetect detects correctly vulnerable methods, it can

point out more precisely the vulnerable statements relevant to the vulnerabilities. For

222



ranking vulnerable statements, using GNNExplainer improves MFR by 0.7 and 1.3

ranks, and improves MAR by 0.6 and 1.3 ranks over ATT and GRAD.

Table 5.7 Model Agnostic Explanation: RQ2. Fine-Grained VD Interpretation
Comparison.

Interp. Accuracy
MFR MAR

Model N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

ATT 0.01 0.16 0.41 0.54 0.59 0.60 0.62 0.63 0.64 0.65 4.8 6.3

GRAD 0.01 0.19 0.43 0.54 0.59 0.62 0.63 0.65 0.66 0.67 4.2 5.6

GE 0.05 0.30 0.54 0.63 0.67 0.68 0.70 0.72 0.72 0.73 3.5 5.0

Notes: GE: GNNExplainer; Nx: x is the number of nodes in the interpretation.

ATT uses the edge attention in the Graph Attention Network to assign the

weights for the edges, while GNNExplainer directly gives a score for the subgraph

after masking. Thus, for the case in which there are more than one path from a

node to another, the weight for an edge is the average weight of the weights through

multiple paths, i.e., ATT might be less precise than GNNExplainer. GRAD computes

the gradient of the loss function with respect to the input for computing the weight of

an edge. However, such gradient-based approach may not perform well with respect

to the discrete inputs (an input graph is represented as an adjacency matrix).

As the number of nodes in GM increases, the number of statements covered also

increases, accuracy is higher. However, the computation time is higher and developers

need to investigate more statements. As seen, when the number of statements is

higher than 5, accuracy increases more slowly. Thus, we chose 5 as a default.

5.2.6.3 RQ3. Vulnerable code pattern analysis. This sub-section describes

another experiment that we exploit IVDetect’s capability of providing the interpre-

tation sub-graphs to mine the patterns of vulnerable code and fixes. A vulnerable

code pattern is a fragment of vulnerable code that repeats frequently, i.e., more than
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a certain threshold. The detected vulnerability patterns and corresponding fixes are

the good resources for developers to learn about the vulnerable code that others have

frequently made, and learn to fix the vulnerable code in the same patterns.

From the results in RQ2, we first collected into a set G the interpretation sub-

graphs GMs with the correctly detected statements as relevant to the vulnerability in

the methods. In total, we obtain +700 GMs. Note that GM is a sub-graph of PDG. For

each GM , we abstract out the variables’ names with a keyword VAR, and the literals

with their data types. We then ran the sub-graph pattern mining algorithm [116] on

G with different thresholds of frequencies and collected different sizes of the sub-graph

patterns. The outputs are the frequent isomorphic sub-graphs within GMs, which are

considered as vulnerable code patterns because we chose GM that contains correct

interpretation statements relevant to the correctly detected vulnerabilities. After

manual verification, we obtain a number of correct patterns (Table 5.8). As seen,

as the frequency threshold or the size of pattern is larger, the number of patterns

decreases as expected. When they are both larger than 5, we found no pattern. Let

us explain a few examples.

Table 5.8 Model Agnostic Explanation: RQ3. Numbers of Vulnerable Code
Patterns.

thresh=2 thresh=3 thresh=4 thresh=5

size=2 47 36 22 7

size=3 25 27 19 6

size=4 23 22 16 5

size=5 22 21 11 2

Total 117 102 68 21
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1 // ======================= PATTERN 1 ===============================

2 if (is link(STRINGLITERAL)) {

3 fprintf(stderr , "Error:␣invalid␣/etc/skel/.zshrc␣file\n"); ///∈ patt

4 exit(INTLITERAL);

5 }

6 if (copy file(STRINGLITERAL, VAR) == INTLITERAL) { ...

7 // ====================== PATTERN 2 ================================

8 VAR = udf get filename(VAR, VAR, VAR, VAR);

9 if (VAR && ...) goto LABEL;

Figure 5.11 Model Agnostic Explanation: Vulnerable code patterns.

Figure 5.11 shows two examples of vulnerable code patterns. The first pattern

(lines 2,4, and 6) shows an API misuse in the project firejail involving is link(...),

exit, and copy file(...). The usage is to check the validity of a link, and if yes to copy

the file, or otherwise to stop the execution. This pattern appeared three times with

different string literals and was fixed by developers to replace the statements. An

interesting observation is that IVDetect is able to eliminate the fprintf statement

at line 2 from the interpretation sub-graph, thus, eliminating it from the pattern,

even though the fprintf statement appears with the other statements three times

in the project. This shows a benefit of IVDetect because if a tool does not have

statement-level VD interpretation and it mines pattern from the entire methods, it

will incorrectly include fprintf in the pattern. The second pattern (lines 8–9) shows

a pattern involving a vulnerable method call udf get filename, and the checking on

its return value. The method was later fixed to add the 5th parameter.
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1 // ===================== FIXING PATTERN 1 =========================

2 - VAR = fl6 update dst(VAR, VAR, VAR);

3 + rcu read lock();

4 + final p = fl6 update dst(VAR, rcu dereference(VAR), VAR);

5 + rcu read unlock();

6 // ===================== FIXING PATTERN 2 =========================

7 - char VAR = malloc (VAR);

8 + char VAR;

9 + if (VAR < 0 || VAR > LITCONST) {

10 + error line (STRINGLITERAL, VAR);

11 + return LITCONST;

12 + }

13 + VAR = malloc (VAR);

Figure 5.12 Model Agnostic Explanation: Fixing patterns.
Notes: -: removal, +: addition.

Another interesting finding is that IVDetect enables the discovery of not only

vulnerable code patterns but also the fixing patterns for them. Figure 5.12 shows

two fixing patterns for vulnerable code. The first vulnerability (from Linux kernel),

lines 2–5, is about the method f16 update dst(...). According to the commit log, to

avoid another thread changing a data record concurrently, developers need to provide

mutual exclusion access and deferencing. This fixing pattern was repeated 3 times

in the methods dccp v6 send response, inet6 csk route req, and net6 csk route socket.

This fixing pattern would be useful for a developer to learn the fix from one

method and apply to the other two methods. The second pattern (lines 7–13)

shows a fixing pattern to a vulnerability on buffer overflow with the malloc call

in ParseDsdiffHeaderConfig method of WavPack 5.0. According to CVE-2018-7253,

this problem “allows a remote attacker to cause a denial-of-service (heap-based buffer

over-read) or possibly overwrite the heap via a maliciously crafted DSDIFF file”. This

fixing pattern occurred three times in the same project.
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5.2.6.4 RQ4. Sensitivity analysis for features. Table 5.9 shows the

changes to the metrics as we incrementally added each internal feature into our

model in Figure 5.5. Generally, each internal feature contributes positively to the

better performance of IVDetect, as both the score metrics (nDCG, MAP, and AUC)

and the ranking metrics (FR and AR) are improved.

When IVDetect considers only the sequence of tokens (ST) in the code,

the first correct detection (FR) is at the position 14, thus, nDCG@{1,5,10}=0

and MAP@{1,5,10}=0 (not shown). When considering the code as the sequence

of sub-tokens (SST), IVDetect deals with the unique tokens better because the

sub-tokens appear more frequently than the tokens [113]. At top-20, FR improves

2 positions, AR improves 4.5 positions, and nDCG and MAP relatively improve

3.8% and 22.2%. When AST is additionally considered, the model can distinguish

vulnerable code structures and statements. At top-20, FR and AR improve 1 and

1.5 positions, and nDCG and MAP improve 7.4% and 18.1%. However, FR is still

11 and nDCG@{1,5,10}=0 and MAP@{1,5,10}=0 (not shown), because tokens and

AST do not help much discriminate the vulnerable statements.

The feature on variables also helps improve FR and AR from 11 to 7 and 13.5 to

12.5, and nDCG and MAP relatively improve 27.6% and 46.2% at top 20. nDCG@10

and MAP@10 improve from 0 to 0.33 and to 0.18, respectively (not shown). This

feature allows the model to detect similar incorrect variable usages. By additionally

integrating control dependencies (CD), FR and AR improve from 7 down to 5 and 12.5

down to 11.2, and nDCG and MAP relatively improve 18.9% and 36.8%. By adding

data dependencies (DD), FR and AR improve from 5 to 4 and 11.2 to 10.4. nDCG

and MAP improve 4.5% and 7.7% for top 20. This result confirms that vulnerable

code often involves the statements with control and/or data dependencies [198, 22].
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Table 5.9 Model Agnostic Explanation: RQ4. Evaluation for the Impact of Internal
Features.

ST
(A)

(A)+SST
(B)

(B)+AST
(C)

(C)+Var
(D)

(D)+CD
(E)

(E)+DD
(F)

nDCG@15 0.25 0.27 0.29 0.35 0.42 0.45

nDCG@20 0.26 0.27 0.29 0.37 0.44 0.46

MAP@15 0.07 0.11 0.12 0.19 0.26 0.28

MAP@20 0.09 0.11 0.13 0.19 0.26 0.28

FR@15 14 12 11 7 5 4

FR@20 14 12 11 7 5 4

AR@15 14 13.5 11 10.3 9 8.5

AR@20 19.5 15 13.5 12.5 11.2 10.4

AUC 0.75 0.76 0.77 0.83 0.85 0.9

Notes: ST: sequence of tokens; SST: sequence of sub-tokens; AST: sub-AST; Var: variables;

CD: control dependencies; DD: data dependencies; F = IVDetect.

Figure 5.13 shows a detected vulnerable method: validate event(...) was

vulnerable and replaced with a new version with an additional parameter. We used

the models (A)–(F) for detection, and observed that the rank for validate event(...)

in the candidate list improves from 140 (A), to 121 (B), 99 (C), 71 (D), 48 (E),

and 19 (F). While the features on tokens, sub-tokens, and AST are contributing,

they do not help much because the model did not see them in vulnerable methods

before. However, the variable/method names, especially control/data dependencies

between the surrounding statements and validate event(...) help discriminate this

vulnerability, and push it to the top-20 list. Control dependencies (e.g., between

validate event(...) and return -EINVAL) help improve 29 ranks. Generally, the

improvement in ranking shows the positive contributions of all the features.
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1 static int validate_group(struct perf_event *event)

2 { ...

3 - if (! validate_event (&fake_pmu , leader ))

4 + if (! validate_event(event ->pmu , &fake_pmu , leader ))

5 return -EINVAL;

6

7 list_for_each_entry(sibling , &leader ->sibling_list , group_entry) {

8 - if (! validate_event (&fake_pmu , sibling ))

9 + if (! validate_event(event ->pmu , &fake_pmu , sibling ))

10 return -EINVAL;

11 }

12

13 - if (! validate_event (&fake_pmu , event))

14 + if (! validate_event(event ->pmu , &fake_pmu , event ))

15 return -EINVAL; ...

16 }

Figure 5.13 Model Agnostic Explanation: A detected vulnerable method in
android kernel.

This example also shows a fixing pattern appearing three times with different

variables leader, sibling, and event.

5.2.6.5 RQ5. Sensitivity analysis on training data. As seen in Table 5.10,

with more training data, the performance is better as expected. Even with

60%/20%/20%, IVDetect still achieves nCDG of 0.43 and MAP of 0.25, which are

still higher than those of the other baselines for top 20 (highest nDCG and MAP of

the baselines are 0.38 and 0.20). With 20% less training data (60% vs 80%), IVDetect

drops AUC only by 5.5%.
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Table 5.10 Model Agnostic Explanation: RQ5. Sensitivity Analysis on Training
Data.

Train/Tune/Test nDCG@20 MAP@20 FR@20 AR@20 AUC

40%/30%/30% 0.26 0.09 12 15.5 0.69

50%/25%/25% 0.33 0.16 8 12.3 0.74

60%/20%/20% 0.43 0.25 5 11.6 0.85

70%/15%/15% 0.44 0.26 5 11.2 0.87

80%/10%/10% 0.46 0.28 4 10.4 0.9

5.2.6.6 RQ6. Time complexity. To generate the interpretation sub-graphs

for all methods, it takes about 9 days, 2 days, and 3 days to finish on Fan, Reveal,

and FFMPeg+Qemu datasets, respectively. It took 23, 7, 10 hours to train IVDetect

on Fan, Reveal, and FFMPeg+Qemu datasets. For VD prediction, it takes only 1-2s

per method.

5.2.7 Threats to validity

We only tested on the vulnerabilities in C and C++ code. In principle, IVDetect can

apply to other programming languages. We tried our best to tune the baselines on

same dataset for fair comparisons. We focus only on DL-based VD models.

5.3 Conclusion

In this chapter, we analyze how to use suitable learning code representation to

do vulnerability detection and provide a reasonable explanation. To achieve it,

We present IVDetect, a novel DL-based approach to provide sub-graphs in PDG,

which explains the prediction results of graph-based vulnerability detection. The

key ideas that enable our approach are (1) modeling and analyzing the source code

using graphs to do the vulnerability detection; (2) analyzing the distinction between
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vulnerable statements and surrounding contexts; (3) using sub-graphs to explain the

vulnerability detection results.

Through our empirical evaluation on vulnerability databases, we have demon-

strated that IVDetect surpasses existing DL-based approaches, providing evidence for

the effectiveness of our concept of utilizing appropriate learning code representations

in vulnerability detection, accompanied by reasonable explanations.
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CHAPTER 6

RELATED WORK

6.1 Bug Detection

Bug Detection Approaches. Many techniques have been developed for rule-based and

mining-based bug detection. Some existing rule-based bug detection approaches, such

as [13, 55, 117, 34, 29, 155], are unsupervised and very efficient. However, new rules

are needed to define to detect new types of bugs, for example, in FindBugs [48].

The mining-based approach in NAR-miner [13] extracts negative rules to detect

bugs and outperforms rule-based approaches that are based on mining positive code

rules. Our experiment results show that it only costs NAR-miner 1 minute to detect

bugs on a project. However, the mining-based approaches mainly suffer from the

problem of high false positive (FP) rates, such as the NAR-miner has a high FP

rate, i.e., 52% in the cross-project setting, which makes them impractical for daily

use. When comparing our approach in the bug detection chapter with the existing

state-of-the-art rule-based and mining approaches, the main differences are as follows.

First, we consider the relations among paths from different methods for detecting

cross-method bugs, while the state-of-the-art approaches normally work on individual

methods and cannot work well on cross-method bugs. Second, our approach covers

path information in an AST in order to detect very detailed bugs in each method,

while rule-based and mining-based approaches often consider the important rules and

may miss some information outside of their rules.

There exist machine learning-based bug detection approaches, including the

deep learning techniques [125] and traditional machine learning techniques [34, 80,

166, 165, 164, 82]. For example, the Bugram [164] uses n-gram models to rank the

methods and then picks the top-ranked methods as buggy methods. DeepBugs [125]
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uses deep learning techniques to propose a name-based bug detection approach. In

the bug detection chapter, our approach also uses deep learning techniques to train

the models and classify methods into buggy or non-buggy. Our approach is different

from the existing learning-based approaches in the following ways. First, like the rule-

based approaches, the existing learning-based approaches do not consider the relations

among paths across multiple methods. In our code representation learning step, we

model the relations among paths from different methods using the dependencies of

entities in the PDG and DFG, in addition to the AST nodes of a path. Second, our

approach uses long paths of an AST to cover all of the AST nodes for representing

local context. In contrast, other approaches often use part of method information to

detect bugs, such as name-based identifier representation and frequent n-grams. Our

results show that our approach can outperform all of the studied baselines.

Learning Code Representation in Bug Detection. The recent success in machine

learning has led to strong interest in applying machine learning techniques, especially

deep learning, to program language (PL) analysis and software engineering (SE) tasks,

such as automated correction for syntax errors [12], fuzz testing with probabilistic,

generative models [120], program synthesis [8], code clones [170, 144, 71], program

classification and summarization [5, 104], and so on.

All approaches learn code representations using different program properties

in the above PL and SE tasks. Although the learned code representations are not

proposed for detecting bugs, they are still very relevant to our study, as one important

step of our approach is to learn bug detection specialized code representation.

Different from the existing code representation learning approaches, in our bug

detection chapter, we learn code representation using the AST, Program Dependency

Graph and Data Flow Graph, and different attention-based neural networks. More

importantly, using an attention mechanism, we incorporate the previous bug fixes

into our code representation. Our results show that our code representation is more
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suitable for detecting bugs than the studied baselines, such as the baseline code

representations using tokens and identifiers.

Fault Localization Approaches. The Spectrum-Based Fault Localization (SBFL),

e.g., [189, 3, 56, 1, 106, 176, 83, 93, 58], has been intensively studied in the literature,

e.g., Tarantula [57], SBI [83], Ochiai [1] and Jaccard [3], they share the same basic

insight, i.e., code elements mainly executed by failed tests are more suspicious. The

Mutation-Based Fault Localization (MBFL), e.g., [103, 191, 17, 190, 105], aims to

additionally consider impact information for fault localization since code elements

covered by failed/passed tests may not have an impact on the corresponding test

outcomes. The examples of MBFL are Metallaxis [118, 119] and MUSE [103].

Learning-to-Rank (LtR) has been used to improve fault localization [10, 180, 73, 146].

MULTRIC [180] combines different suspiciousness values from SBFL. Some work

combines SBFL suspiciousness values with other information, e.g., program invariant

[10] and source code complexity information [146], for more effective LtR fault

localization. TraPT [73] combines suspiciousness values from both SBFL and MBFL.

Neural networks have been applied to fault localization [197, 15, 194, 175]. However,

they mainly work on the test coverage summarization scores, which have clear

limitations (e.g., it cannot distinguish elements covered by failing and passing test

cases) [73], and are usually studied on artificial faults or small programs. Recently

DeepFL [72] was proposed to improve method-level FL, and it improves the most

state-of-the-art LtR FL approach, TraPT [73], by 36.54% in terms of Recall at Top-1.

Learning Code Representation in Fault Localization. The recent success in

machine learning has led to much interest in applying machine learning, especially

deep learning, to program language (PL) analysis and software engineering (SE) tasks,

such as automated correction for syntax errors [12], spreadsheet errors detection [141,

11] fuzz testing [120], program synthesis [8], code clones [170, 144, 71], program

summarization [5, 104], code similarity [195, 7], probabilistic model for code [14], and
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path-based code representation, e.g., Code2Vec [7] and Code2Seq [6]. All approaches

learn code representations using different program properties. However, none of

the existing fault localization techniques have performed direct code modeling and

learning on code coverage information of the test cases for the FL purpose, as in

DeepRL4FL, which is our approach mentioned in the fault localization chapter.

Moreover, all the existing fault localization techniques cannot simultaneously locate

the relevant faulty statements based on their relationship. But our co-change fault

localization technique Fixlocator in the fault localization chapter somehow solved this

problem.

6.2 Automated Program Repair

In the earlier stage, the APR approaches aimed to automatically derive the fixes for

similar code cloned from one place to another [114], or similar code due to porting or

branching [129]. Ray and Kim [129] automatically detect similar fixes for similar code

that are ported or branched out. The code in different branches is almost similar.

Thus, the fix can be reused. FixWizard [114] automatically derives the fixes for

similar code that were cloned from one place to another. It can also work for the code

peers, which are the code having similar internal and external usages.

A large group of APR approaches has explored search-based software engineering

to tackle more general types of bugs [70, 126, 68, 96]. First, a search strategy is

performed in the space of potential solutions produced by several operators that

mutate the buggy code. Then, the test cases and/or program verification are

applied to select the better candidate fixes [143]. GenProg [70] uses genetic search

on repair mutations and works at the statement level by inserting, removing, or

replacing a statement taken from other parts of the same program. RSRepair [126]

fixes buggy programs with random search to guide the patch generation process.

MutRepair [96] attempts to generate patches by applying mutation operators on

suspicious if-condition statements. Smith et al. [143] showed that these approaches
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tend to overfit test cases by generating incorrect patches that pass the test cases,

mostly by deleting functionalities.

PAR [60] is an APR approach that is based on fixing templates that were

manually extracted from 60,000 human-written patches. Later studies (e.g., Le et

al. [67]) have shown that the six templates used by PAR could fix only a few bugs

in Defects4J. Therefore, anti-patterns were integrated within existing search-based

APR tools [153] (namely, GenProg [70] and SPR [91]) to help alleviate the problem

of incorrect or incomplete fixes. However, a key limitation of those search-based

approaches is their reliance on the quality of mutation operations and the fixing

patterns.

In contrast to the search-based approaches, other approaches have aimed to

mine and learn fixing patterns from prior bug fixes [112, 67, 86, 60]. The fixing

patterns, also called fixing templates, could be automatically or semi-automatically

mined [67, 112, 86, 87]. SemFix [112] instead uses symbolic execution and

constraint solving to synthesize a patch by replacing only the right-hand side of

assignments or branch predicates. Long and Rinard proposed Prophet [92], which

learns code correctness models from a set of successful human patches. Prophet

learns a patch ranking model using a machine-learning algorithm based on existing

patches. Genesis [90] can automatically infer patch generation transformed from

developers’ submitted patches for automated program repair. HDRepair [67] was

proposed to repair bugs by mining closed frequent bug fix patterns from graph-based

representations of real bug fixes. ELIXIR [134] uses method call-related templates

from PAR with local variables, fields, or constants, to construct more expressive

repair expressions that go into synthesizing patches. CapGen [167], SimFix [52],

FixMiner [64] is based on the frequently occurring code change operations (e.g.,

Insert If- Statement) that are extracted from the patches in code change histories.

Avatar [86] exploits fixed patterns of static analysis violations as ingredients for patch
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generation. Tbar [87] is a template-based APR tool with the collected fix patterns.

Angelix [97] catches semantic information to repair methods. ARJA [186] generates

lower-granularity patch representation that enables more efficient searching.

Deep Learning-Based APR approaches. Recently, deep learning (DL) has been

applied to APR for directly generating patches. The first group of DL-based APR

approaches to leverage the capability of DL models in learning similar source code for

similar fixes. DeepRepair leverages learned code similarities, captured with recursive

auto-encoders [169], to select the repair ingredients from code fragments that are

similar to the buggy code. DeepFix [41] learns the syntax rules and is evaluated on

syntax errors.

The second group of approaches treats APR as a statistical machine translation

that translates the buggy code to the fixed code. Ratchet [46] and Tufano et al. [158]

use sequence-to-sequence translation. They use neural network machine translation

(NMT) with attention-based Encoder-Decoder, and different code abstractions to

generate patches, while SequenceR [24] uses sequence-to-sequence NMT with a copy

mechanism [138]. CODIT [21] learns code edits with encoding code structures in

an NMT model to recommend fixes. A comparison with these NMT-based APR

approaches is provided in the introduction. Recently, Tufano et al. [156] learn code

changes using sequence-to-sequence NMT with simple code abstractions and keyword

replacing. Despite treating the APR as a code transformation learning problem, their

approach takes the entire method as the context for a bug. Thus, compared with our

work in the automated program repair chapter, it has too much noise, leading to lower

effectiveness than DLFix. In other words, the treatment of context from DLFix helps

improve their model. Moreover, compared with our second idea about fixing multi

hunks multi statements bugs from DEAR, the existing DL-based APRs fix individual

statements at a time, thus, cannot work on the bugs with dependent fixes to multiple

statements.
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6.3 Model Agnostic Explanation

Interpretable AI. Many interpretable models just create simple proxy models for full

neural networks. This kind of proxy model can often be generated by learning local

faithful approximation. Lakkaraju et al. [66] represents sufficient conditions to get

the local faithful approximation, while Ribeiro et al. [131] uses the linear model to

do so. Some models try to find out the key features during the computation. Some

researchers find key features through feature gradients, such as the research from

Zeiler et al. [187]. And some others focus on the backpropagation of neurons’ like the

research work from Sundararajan et al. [150]. All of these approaches cannot handle

the graph structure when dealing with the problem, while our explanation model, like

IVDetect, can do.

Also, the post-hoc interpretability method is the other kind of common

approach. This kind of approach regards the model as a black box and interprets them

based on the influence of relevant information. Fisher et al. [37] analyzes the relevant

information from variables and model class reliance to generate the interpretation.

Adadi et al. [4] generates the interpretation for the model by using a survey. But all

of these approaches have a similar problem as the previous type. None of them can

deal with the tasks based on graphs.

Finally, there are some interpretation models that found the problems we

mentioned and tried to use a new way to analyze the information within the model and

generate the interpretation. Ying et al. [184] builds an explainer for the GNN-related

models by generating the sub-graph from the whole graph to point out which part of

the graph is important. We have also used this approach in interpretable vulnerability

detection and bug detection, and we build better ways of learning code representations

that make the model more suitable for specific tasks.

Vulnerability Detection Approaches. Various techniques have been developed to

detect vulnerabilities. The rule-based approaches were developed to leverage known

238



vulnerability patterns to discover possible vulnerable code, such as FlawFinder [38],

RATS [127], ITS4 [161], Checkmarx [23], Fortify [49] and Coverity [30]. Typically, the

patterns are manually defined by human experts. The state-of-the-art vulnerability

detection tools using static analysis provide the corresponding rules for each

vulnerability type.

Another type is machine learning (ML) based or metric-based. Typically,

these approaches require the human-crafted or summarized metrics as features to

characterize vulnerabilities and train machine learning models on the defined features

to predict whether a given code is vulnerable or not. For example, various ML-based

approaches have been built on top of distinct metrics, such as terms and their

occurrence frequencies [137], imports and function calls [109], complexity, code

churn, and developer activity [140], dependency relation [108], API symbols and

subtrees [182, 181]. Therefore, these approaches rely on human experts to define

features manually and cannot pin down the precise locations of vulnerabilities because

programs are represented in some coarse-grained granularities.

Recently, deep learning has been applied to detect vulnerabilities. For example,

some DL approaches train a deep learning model on different code representations

to detect vulnerabilities, such as the lexed representations of functions in a synthetic

codebase [44], code snippets related to library/API function calls to detect two types

of vulnerabilities [79], syntax-based, semantics-based, and vector representations [78],

graph-based representations [198].

Nevertheless, none of the above approaches are designed to explain the detection

results. Our IVDetect idea in the interpretable vulnerability detection chapter is

different from all of the above approaches. The main goal of IVDetect is to add more

intelligence assistance (IA) using a small graph of code statements, key variables, and

CWE description to explain why a detection model reaches a prediction.
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CHAPTER 7

CONCLUSION

As a summary of this dissertation, it highlights the importance of code representation

learning for software quality control downstream tasks. The exploration of intelligent

and explainable software quality control has shown significant potential, particularly

in bug detection and vulnerability detection. The inclusion of explainability is crucial

for enhancing the effectiveness of these tasks.

The research conducted in this dissertation focused on utilizing various learning

code representation solutions to improve bug detection, automated program repair,

and model agnostic explanation. Bug detection benefited from code context, code

relationship, and code coverage matrix representations, while automated program

repair employed a tree-based structure to analyze the surrounding context of buggy

code and facilitate code transformation for fixing. Additionally, the program

dependency graph was used for model agnostic explanation, generating explanations

for graph-based deep learning models.

The results obtained through these efforts demonstrated that employing diverse

approaches to learning code representation can enhance existing work in software

quality control. It signifies that selecting an appropriate method for learning

code representation contributes to the development of effective and explainable bug

detection and fixing, which is the principal objective of this dissertation.

In the future, exploring innovative methods in code representation learning

that can effectively meet the diverse needs of various research tasks and harness

the advancements in cutting-edge techniques would be intriguing. An interesting

avenue for future work lies in integrating robust deep learning models like ChatGPT

into the realm of software quality control, offering significant potential. Furthermore,
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an exciting research direction would involve the development of more sophisticated

and nuanced explainable models that aid developers in comprehending the underlying

rationale behind software quality control issues.

241



REFERENCES

[1] Rui Abreu, Peter Zoeteweij, and Arjan J.C. Van Gemund. An evaluation of similarity
coefficients for software fault localization. In 12th Pacific Rim International
Symposium on Dependable Computing (PRDC), pages 39–46, 2006.

[2] Rui Abreu, Peter Zoeteweij, and Arjan J.C. Van Gemund. An evaluation of similarity
coefficients for software fault localization. In Proceedings of the 12th Pacific
Rim International Symposium on Dependable Computing (PRDC), number 12,
pages 39–46, 2006.

[3] Rui Abreu, Peter Zoeteweij, and Arjan J.C. Van Gemund. On the accuracy
of spectrum-based fault localization. In Testing: Academic and Industrial
Conference Practice and Research Techniques-MUTATION (TAICPART-
MUTATION), pages 89–98, 2007.

[4] Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on
explainable artificial intelligence (xai). IEEE Access, 6:52138–52160, 2018.

[5] Miltiadis Allamanis, Hao Peng, and Charles A. Sutton. A convolutional attention
network for extreme summarization of source code. In International
Conference on Machine Learning (PMLR), pages 2091–2100, 2016.

[6] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating
sequences from structured representations of code. arXiv preprint
arXiv:1808.01400, 2018.

[7] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning
distributed representations of code. Proceedings of the ACM on Programming
Languages, 3(POPL):1–29, 2019.

[8] Matthew Amodio, Swarat Chaudhuri, and Thomas W Reps. Neural attribute
machines for program generation. arXiv preprint arXiv:1705.09231, 2017.

[9] Nathaniel Ayewah, William Pugh, J David Morgenthaler, John Penix, and
YuQian Zhou. Evaluating static analysis defect warnings on production
software. In Proceedings of the 7th ACM Special Interest Group on
Programming Languages-Special Interest Group on Software Engineering
(SIGPLAN-SIGSOFT) Workshop on Program Analysis for Software Tools and
Engineering (PASTE), pages 1–8, 2007.

[10] Tien-Duy B Le, David Lo, Claire Le Goues, and Lars Grunske. A learning-to-rank
based fault localization approach using likely invariants. In Proceedings of
the 25th International Symposium on Software Testing and Analysis (ISSTA),
pages 177–188, 2016.

242



[11] Daniel W Barowy, Emery D Berger, and Benjamin Zorn. Excelint: Automatically
finding spreadsheet formula errors. Proceedings of the ACM on Programming
Languages, 2(OOPSLA):1–26, 2018.

[12] Sahil Bhatia and Rishabh Singh. Automated correction for syntax errors in
programming assignments using recurrent neural networks. arXiv preprint
arXiv:1603.06129, 2016.

[13] Pan Bian, Bin Liang, Wenchang Shi, Jianjun Huang, and Yan Cai. Nar-miner:
Discovering negative association rules from code for bug detection. In
Proceedings of the 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 411–422, 2018.

[14] Pavol Bielik, Veselin Raychev, and Martin Vechev. Phog: Probabilistic model for
code. In Proceedings of the 33rd International Conference on Machine Learning
(PMLR), volume 48, pages 2933–2942, 2016.

[15] Lionel C Briand, Yvan Labiche, and Xuetao Liu. Using machine learning to support
debugging with tarantula. In The 18th IEEE International Symposium on
Software Reliability (ISSRE), pages 137–146, 2007.

[16] Denny Britz, Anna Goldie, Minh-Thang Luong, and Quoc Le. Massive exploration
of neural machine translation architectures. arXiv preprint arXiv:1703.03906,
2017.

[17] Timothy Alan Budd. Mutation analysis of program test data. Yale University, 1980.

[18] BufferOverFlow. Cwe-120: Buffer overflow. https://cwe.mitre.org/data/definitions/120.html.
Accessed 2022.

[19] BugsInPy. The BugsInPy data set. https://github.com/soarsmu/BugsInPy. Accessed
2020.

[20] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. Treecaps: Tree-based capsule
networks for source code processing. In Proceedings of the Association for
the Advancement of Artificial Intelligence Conference on Artificial Intelligence
(AAAI), volume 35, pages 30–38, 2021.

[21] Saikat Chakraborty, Miltiadis Allamanis, and Baishakhi Ray. Codit: Code editing
with tree-based neural machine translation. arXiv preprint arXiv:1810.00314,
2018.

[22] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. Deep
learning based vulnerability detection: Are we there yet? arXiv preprint
arXiv:2009.07235, 2020.

[23] Checkmarx. Checkmarx. https://www.checkmarx.com/. Accessed 2022.

243



[24] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys
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Yves Le Traon. You cannot fix what you cannot find! an investigation of fault
localization bias in benchmarking automated program repair systems. In 12th
IEEE Conference on Software Testing, Validation and Verification (ICST),
pages 102–113, 2019.

[86] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. Avatar: Fixing
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