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ABSTRACT

ADVANCED TRAFFIC VIDEO ANALYTICS
FOR ROBUST TRAFFIC ACCIDENT DETECTION

by
Hadi Ghahremannezhad

Automatic traffic accident detection is an important task in traffic video analysis due to

its key applications in developing intelligent transportation systems. Reducing the time

delay between the occurrence of an accident and the dispatch of the first responders to the

scene may help lower the mortality rate and save lives. Since 1980, many approaches have

been presented for the automatic detection of incidents in traffic videos. In this dissertation,

some challenging problems for accident detection in traffic videos are discussed and a new

framework is presented in order to automatically detect single-vehicle and intersection traffic

accidents in real-time.

First, a new foreground detection method is applied in order to detect the moving

vehicles and subtract the ever-changing background in the traffic video frames captured by

static or non-stationary cameras. For the traffic videos captured during day-time, the cast

shadows degrade the performance of the foreground detection and road segmentation. A

novel cast shadow detection method is therefore presented to detect and remove the shadows

cast by moving vehicles and also the shadows cast by static objects on the road.

Second, a new method is presented to detect the region of interest (ROI), which

applies the location of the moving vehicles and the initial road samples and extracts the

discriminating features to segment the road region. After detecting the ROI, the moving

direction of the traffic is estimated based on the rationale that the crashed vehicles often make

rapid change of direction. Lastly, single-vehicle traffic accidents and trajectory conflicts are

detected using the first-order logic decision-making system.



The experimental results using publicly available videos and a dataset provided by

the New Jersey Department of Transportation (NJDOT) demonstrate the feasibility of the

proposed methods. Additionally, the main challenges and future directions are discussed

regarding (i) improving the performance of the foreground segmentation, (ii) reducing the

computational complexity, and (iii) detecting other types of traffic accidents.
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CHAPTER 1

INTRODUCTION

The ever-escalating demand for land transportation, along with the continuous growth in the

number of motor vehicles and other road users, has given rise to several traffic-related issues,

including congestion, safety, commuting delays, increased energy consumption, and negative

environmental impacts. There is an inevitable need to monitor road traffic and develop

strategies for enabling safer roadways, limiting environmental impacts and enhancing

the mobility of transport networks. Due to the ineluctable requirement for smart traffic

management along with the accelerated advancements in the fields of electronics, sensors,

communication, information, and computers, has led to the development of intelligent

transportation systems (ITSs).

The functioning capacity of intelligent transportation systems is heavily affected by

the competence of traffic data collection via sensors and the performance of the algorithms

designed for automatic data processing. This is why traffic surveillance cameras have

become one of the most popular sensors used in ITS applications [61]. Traffic cameras

are, on one hand, one of the most cost-effective sensor technologies due to their simple

installation, provision of a rich source of visual data, and a vast area of coverage. On the

other hand, the revolutionary breakthroughs that have emerged in the world of artificial

intelligence (AI), especially in the field of computer vision, have enabled modern traffic

management systems to effectively process the footage obtained from traffic cameras

automatically. The data provided by the traffic surveillance cameras is used for a wide variety

of applications, including vehicle counting, road-user classification, anomaly detection,

traffic flow estimation, speed estimation, and incident detection.

The architecture of traffic video analytics systems involves several hierarchical steps

that are taken to process the raw data and generate useful information. The main steps
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in the process of analyzing traffic surveillance videos are camera calibration; locating

objects of interest; object tracking; region-of-interest (ROI) determination; and incident

detection. Figure 1.1 illustrates the general architecture of intelligent traffic monitoring

systems. As seen in the figure, among the core components of intelligent traffic video

analytics, locating the objects is the most important step, as it serves as the basis for most of

the other steps [167].

One of the most important applications in traffic management systems is traffic

accident detection. Despite all the improvements in road and vehicle safety, car accidents

have been one of the leading causes of fatalities in the world. Automatic detection and

notification of traffic collisions can help reduce the accident response time and, consequently,

decrease the number of fatalities. Since videos captured by camera sensors provide a large

amount of information at a relatively low cost, they have been the focus of many vision-based

traffic accident detection methods throughout the previous years [46].

As mentioned before, there are several integral components to traffic video analysis,

including background subtraction, moving vehicle detection, vehicle tracking, and object

classification. Statistical methods are more applicable in real-time systems due to their

computational efficiency and generalizability. Background subtraction and object tracking

are the core components of statistical video analysis methods. In order to detect the moving

vehicles in traffic videos, most approaches tend to segment the moving foreground from

the stationary background. Each video frame is compared with the background model,

and the pixels with significantly different values are classified as foreground. Background

subtraction is a prerequisite of many video analysis applications and has been studied

intensely over the past decades [47, 53, 125, 128, 132, 172]. Among the foreground

segmentation techniques, statistical approaches based on Gaussian mixture models (GMM)

are widely used for their good performance and low computational cost. Specifically,

in real-time traffic video analysis, GMM has proven to be one of the best methods for

subtracting the background and detecting moving vehicles. Here, we have applied a new
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Figure 1.1 The general architecture of intelligent traffic monitoring systems. Locating
objects of interest is a core component in the pipeline of these systems and the performance
of the further steps is heavily reliant on this task.

foreground detection method, which is based on GMM. This approach is robust in dealing

with moving cameras, stopped objects, and low-quality videos, which are common issues in

the case of traffic video analysis.

Another challenge in traffic videos captured during daytime is the shadows cast by the

static and moving objects [45,48]. The shadows cast by moving vehicles are often classified

as foreground due to their similar motion patterns to their corresponding objects. Moving

cast shadows deteriorate the performance of the following video analysis tasks by linking

different objects together or increasing the location estimation error. Also, the shadows

cast by static objects on the scene cause the performance of image segmentation to reduce

significantly, which in turn causes issues for the region of interest (ROI) determination. Thus,

the shadows should be detected and removed from the foreground prior to taking further

steps.

In terms of object tracking, there have been a large number of studies over the

past years [90]. Generally, for the purpose of traffic video analysis, several vehicles are

present in each frame, and all the vehicles should be tracked simultaneously. Therefore,

multiple object tracking methods are preferred to process traffic videos. Tracking multiple

objects in videos at the same time involves the detection of objects in each video frame

and the association of the detected objects across multiple consecutive frames. With

the improvements in object detection methods in recent years, tracking by detection has

been the most studied approach in multi-target tracking. Some methods depend on the
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information from previous and future frames at the same time to deal with detection errors

and improve the tracking performance [134]. Nevertheless, multiple object tracking (MOT)

methods based on batch-wise strategies cannot be applied in real-world applications with

no information about the future frames of videos. Another way to approach the tracking

problem is to use only the information gained up to the current frame. The so-called online

tracking strategies associate the detected objects in the frame and estimate the trajectories

based on current and previous frames and can be utilized in real-world applications. There

have been many attempts to improve the performance of the MOT methods both from the

aspect of object detection and object association [11]. Some studies have targeted the MOT

problem by improving the performance of the object detection step [67]. For the sake of

computational efficiency, we have applied the simple blob-tracking method [18] that tracks

each vehicle based on the distance between its centroid and the blob centroids in the previous

frame.

The focus of this study is to develop an accident detection framework in traffic videos

by automatically determining the region of interest and monitoring the motion behavior

of vehicles in order to detect single-vehicle and intersection accidents. Specifically, an

innovative real-time foreground detection method is presented that models the foreground

and the background simultaneously and works for both moving and stationary cameras.

In particular, first, each input video frame is partitioned into a number of blocks. Then,

assuming the background takes the majority of each video frame, the iterative pyramidal

implementation of the Lucas-Kanade optical flow approach is applied to the centers

of the background blocks in order to estimate the global motion and compensate for

the camera movements. Subsequently, each block in the background is modeled by a

mixture of Gaussian distributions, and a separate Gaussian mixture model is constructed

for the foreground in order to enhance the classification. However, the errors in motion

compensation can contaminate the foreground model with background values. The novel

idea of the proposed method is to match a set of background samples to their corresponding
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blocks for the most recent frames in order to avoid contaminating the foreground model

with background samples. The input values that do not fit into either the statistical or

the sample-based background models are used to update the foreground model. Finally,

the foreground is detected by applying the Bayes classification technique to the major

components in the background and foreground models, which removes the false positives

caused by the hysteresis effect.

After background subtraction, the cast shadows are detected and removed from the

foreground by a novel shadow removal method. The potential shadow pixels are identified

by considering the physical properties of reflection and comparing the changes in luminance

values in the corresponding background and foreground locations. The integrated features

extracted from the RGB and HSV color spaces for each pixel are modeled by a mixture

of Gaussian distributions to classify the foreground pixels into shadows and objects. The

classified shadow and object pixels are clustered to detect the shadow regions and improve

the results of the classification.

Furthermore, a new adaptive road detection method for determining the region of

interest is presented. The initial road samples are obtained from the subtracted background

model in the location of the moving vehicles. The integrated features extracted from both

the grayscale and the RGB and HSV color spaces are further applied to construct several

probability maps, which are then combined in order to estimate a more accurate road region

map. The robust road mask is derived by integrating the initially estimated road region and

the regions located by the flood-fill algorithm. Lastly, the moving direction of the traffic

is estimated and traffic accidents are detected using the first-order logic decision-making

system. Experimental results using real traffic video data show the feasibility of the proposed

method. In particular, traffic accidents are detected in real time in the traffic videos without

any false alarms.

This study is organized in the following manner: Chapter 2 outlines the previous

related work that has approached the problem from various angles of view and compares
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the differences to our proposed method. Chapter 3 presents the main steps of the proposed

foreground detection framework. Chapter 4 describes the new cast shadow detection and

removal method, which is applied in order to remove cast shadows in the object detection

step and to enhance the performance of the further steps. Chapter 5 contains details on

initial road recognition and refining the extracted road region by using temporal and color

features. Chapters 6 and 7 demonstrate the steps of the proposed method for traffic accident

detection along with experimental results. Chapter 8 concludes and summarizes the work

and outlines some future research directions.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Foreground Detection Methods

The main advantage of video data over images is the additional motion information provided

by the temporal features that allow incorporating many signal processing techniques in

the procedures of video analytics. In the case of surveillance applications, as an instance,

exploiting the temporal features can be very useful due to the significant motion associated

with the usual objects of interest compared to the stationary background. Therefore,

identifying the pixel locations that are associated with considerable motion has been

the focus of some of the closely related tasks in computer vision, such as background

subtraction, foreground segmentation, change detection, and motion segmentation. As

opposed to videos captured by in-vehicle cameras where the camera is mounted on a moving

platform, traffic surveillance videos are usually captured by stationary camera sensors, and

the objects of interest, which are usually moving vehicles, can be distinguished from the

background solely based on the motion information. In addition to that, the input video

data for traffic surveillance applications in intelligent transportation systems is live feeds

from mostly low-quality camera sensors overlooking roads, highways, intersections, and

other urban traffic environments with wide fields of view and few visual details of the

target objects are available. Hence, motion segmentation techniques have proven to be

more practical in real-time applications than image-based object detection methods due

to their generalization and computational efficiency. Also, motion segmentation can be

applied to generate hypotheses about object locations, followed by a feature extraction and

classification step to improve the detection performance [66].

Most motion segmentation techniques applied in traffic video analytics consider the

camera to be static and the target objects to have significant motion. There is large variety
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of mathematical [125], machine learning [35], signal processing [32], and classification

[109] techniques proposed for background subtraction [40]. In spite of recent advances

in this field, most real-world systems tend to apply relatively older techniques, such as

MoG [131], AGMM [171], Codebook [71], Multi-Cue [107], PAWCS [130], PBAS [55],

and ViBe [8] due to the limitations in computational capacity and the lack of collaboration

between researchers and the industry [151]. Nonetheless, among various approaches for

motion segmentation in the case of static cameras that are applied to traffic videos, frame

differencing, optical flow, and statistical background modeling have been applied to traffic

videos the most.

Frame differencing is the simplest motion estimation method in which the locations

of the moving objects are estimated by calculating the absolute value of intensity difference

between adjacent frames and applying a threshold to the results. Several studies have

applied frame differencing to detect moving traffic objects such as vehicles [70]. Although

this method is simple and fast, it is prone to errors and its performance suffers in many

challenging scenarios, such as changes in illumination. One of the main drawbacks of this

approach is the blank holes that appear in the foreground mask of objects due to the slow

movement or relatively large parts of the object with uniform intensities. A number of

studies have attempted to solve these issues by using three [75] or five [65] consecutive

video frames.

Another approach for estimating the location of moving objects is to use the correlation

between adjacent frames and find corresponding points so as to calculate the optical flow

vector of the moving object, which describes the instantaneous velocity of a certain point

in the image. The optical flow algorithm has been applied in the applications of traffic

video analytics for various purposes, including motion-based object localization [21]. In

the study conducted by Chen and Wu [21], the pyramid model of the Luas-Kanade optical

flow algorithm is applied to a set of feature points that are extracted from the edges of the

image. The feature points are clustered using the weighted Kmeans method in order to detect
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moving vehicles. The methods that are based on optical flow are not computationally as

efficient as statistical modeling or temporal differencing; therefore, limiting the calculations

to a lower frequency or a smaller reference region will help with achieving real-time

performance.

In the applications of traffic video surveillance where the data is captured by static

cameras, background modeling is by far the most popular approach for locating moving

objects due to its compromise between efficiency and performance [40]. These methods

benefit from the higher frequency in the intensity values corresponding to the stationary

objects in the temporal domain compared to the moving objects in order to construct a

background model. Each video frame is compared with the established background model

and the spatial locations of the video frame with considerably different values from the

current background model are classified as foreground, which represents the location of

moving objects. In general, there are five groups of background subtraction methods, namely,

basic, non-parametric, fuzzy, neural networks, and statistical methods [108]. The variations

in the video quality and hardware capacity among video surveillance systems bring about an

important requirement for background subtraction methods to be concurrently generalizable,

robust, and efficient. This requirement has resulted in the methods based on statistical

modeling being the most popular among background subtraction methods in real-time

surveillance applications.

Most statistical background subtraction methods have attempted to establish the

background model by the use of frame averaging [70], single Gaussian [106, 152], or a

mixture of Gaussian distributions [173] with the majority tending to use Gaussian models. In

the earlier studies each pixel was modeled with a single Gaussian distribution [152] and

later the Gaussian Mixture Model (GMM) was proposed to model each pixel with a mixture

of K Gaussian distributions in order to better deal with the effects of noise, camera jitter,

and background texture [131]. Further improvements upon the GMM method were achieved

by efficient parameter updating in adaptive GMM (AGMM) [171, 173] and other innovative
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techniques [125]. There are other representative background modeling methods, such as

Vibe [8], PBAS [55], and Codebook [71] that have been applied in surveillance applications.

Background subtraction methods have been applied to traffic videos in a large number

of studies [40,122]. Shi and Liu [125] construct twelve-dimensional feature vectors from the

values in the RGB, YIQ, and YCbCr color-spaces, the horizontal and vertical Haar wavelets,

and the temporal difference, and establish a global foreground model along with the local

background model in order to improve the discrimination and classification performance

of the MoG method for vehicle detection. In the study done by Chetouane et al. [29],

Gaussian Mixture Model (GMM), GMM-Kalman filter, Optical Flow, and Aggregate

Channel Features (ACF) [34] methods are applied in order to detect vehicles in urban and

highway traffic videos.

2.1.1 Challenging scenarios faced by motion-based methods

Despite all the benefits in terms of generalization and computational efficiency, locating

objects based on motion information comes with its own set of challenging problems, such

as illumination changes, camera jitter, multi-modal backgrounds, detection of small objects,

cast shadows, low frame-rate, and dynamic backgrounds [40]. Figure 2.1 demonstrates

sample video frames and the corresponding foreground masks extracted by popular motion

segmentation methods in challenging situations.

Moving cast shadows Cast shadows are specifically a problem for traffic surveillance

videos due to the abundance of their occurrence during the daytime and the consecutive

effects they have on further tasks, such as vehicle tracking and classification. Cast shadows

are mostly classified as foreground because of the similarities in the motion patterns

among the moving objects and their shadows. Therefore, in order to avoid deteriorating the

performance of video analytics, many studies have attempted to suppress the cast shadows

in motion segmentation algorithms [60, 113, 120]. Statistical methods [58, 95, 103, 149],

DCNN-based approaches [170], or various features such as color [3, 33], texture [51, 141],
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or other information such as shape, size, and direction [20, 56] have been utilized in order to

detect cast shadows [118].

In the case of traffic surveillance applications, due to a strict requirement for real-time

performance the computational complexity of shadow removal algorithms should be as

light as possible. A few considerations are worth noting for cast shadow detection in

traffic-related videos. One observation is that the sun is the single major environmental

light source in outdoor scenes, which brings along the possibility of applying heuristics

based on light direction and assuming a contiguous region for the shadow cast by each

object. Another observation is the uniformity of the road region in terms os texture and color

which results in the pixels corresponding to shadowed regions, which are mostly on the road,

exhibiting homogeneous features. These observations and other physics-based properties of

shadows have been the basis of many algorithms developed for shadow removal in traffic

videos. Hang and Liu [126] developed a hierarchical cast shadow detection framework by

integrating a set of chromatic criteria in the HSV color-space, a region-based clustering

technique, and a statistical global shadow modeling method in order to detect and remove

moving cast shadows in traffic surveillance videos. Russell et al. [117] scan each video

frame in horizontal lines in the opposite direction to the illumination direction and utilize

intensity measurements in the neighboring pixels to classify foreground pixels into objects

and shadows. Phan et al. [112], employ gradient features to discriminate between vehicles

and their shadows for a real-time shadow removal method in traffic surveillance videos.

Non-stationary cameras In addition to the case of videos captured by stationary cameras,

there are many studies addressing the problem of motion segmentation in dynamic cameras.

In many modern surveillance systems, remote control pan-tilt-zoom (PTZ) cameras are

utilized in order to give the operators the ability to move the cameras remotely and direct

attention to a specific event or survey a different area. Since the assumption of a static camera

does not hold, motion segmentation methods applied for applications of static cameras cannot
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Figure 2.1 The qualitative performance of popular motion segmentation methods in
challenging scenarios tested on ATON [120] and CDnet [150] datasets. From top to
bottom the rows represent a challenging situation with cast shadows, low frame-rate,
camera jitter, night time, continuous pan, and adverse weather conditions, respectively.
From left to right the columns show a sample video frame and the results of different
methods: (a) original frame, (b) ground truth, (c) AGMM [171], (d) Codebook [71],
(e) Multi-Cue [107], (f) PAWCS [130], (g) PBAS [55], (h) ViBe [8].

be directly used in the case of dynamic cameras. Therefore, motion segmentation studies

are generally grouped into two categories based on their application and use of static or

dynamic cameras.

A dynamic camera can refer to a freely moving camera, such as a handheld, drone,

smartphone, or dashcam, which can have unrestricted movements, or a constrained moving

camera, such as pan-tilt-zoom (PTZ) cameras, which can have a restricted type of motion.

When it comes to the applications of traffic video analytics, both types of dynamic cameras

are typically used with in-vehicle cameras, such as dashcams, being considered as freely

moving and in-road cameras, such as PTZ, being considered as constrained moving cameras.
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Motion segmentation methods in the case of stationary cameras rely heavily on the

assumption that the static objects of the scene are captured at a spatially stable location in

the video frame. This strong assumption is due to the fixed viewing angle and distance of

the stationary cameras, and even if there are variations in the background intensity values,

they are associated with changes in illumination, shadows, small motions, or camera jitter.

However, this assumption does not hold in the case of dynamic cameras, where the static

objects also appear to have a so-called ego-motion, and therefore, the same methods cannot

be directly applied for segmenting the foreground.

There are several studies, especially in recent years, that address motion segmentation

in the case of a moving camera [19,162]. In the case of in-vehicle cameras, most studies tend

to apply object detection or image segmentation algorithms rather than motion segmentation.

However, most in-road surveillance cameras are stationary with PTZ capabilities that

capture videos with lower resolution, so motion segmentation methods are more practical.

Nevertheless, it is worth considering motion segmentation methods in the case of dynamic

cameras for the applications of traffic analytics.

In general, studies concerning motion segmentation in videos captured by dynamic

cameras can be categorized into two groups. One group of studies focus on statistically

modeling and subtracting the dynamic background and reporting the values that do not fit

into the model as the segmented foreground. These methods vary mainly based on the

approach to background representation. The other group of studies tend to distinguish the

moving objects from the background based on the differences in the motion patterns. This

group of methods is more computationally expensive than the first group as they require

more detailed steps and a greater number of calculations.

Most of the motion segmentation methods in the first group are based on ideas that are

inspired by the algorithms used in the case of static cameras. Several techniques have been

utilized in these studies in order to adapt to a dynamic scene and distinguish the motion of

the objects from the motion of the camera. To name a few of these techniques, we can refer
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to panoramic background subtraction, superpixel segmentation, motion compensation, low

rank matrix decomposition, and block-based splitting of the video frames.

Motion compensation is the simplest and most efficient approach used in motion

segmentation methods in videos captured by dynamic cameras. As in the case of stationary

cameras, one of the most common approaches for subtracting the background in videos

captured by dynamic cameras is to benefit from the high frequency of data points in the

temporal domain in order to model the background. In these methods, a set of beginning

frames is first used to initialize a parametric or non-parametric model for each local

representation of the background image. Since the entire scene seems to be moving in

the eyes of the dynamic camera, the camera motion should be compensated for for the

background modeling to function.

To estimate the motion of the camera, a set of feature points or uniformly distributed

points are selected and the corresponding points in the new video frame are found in order

to calculate a homography matrix and warp all the pixels in the new frame to corresponding

pixels in the previous frame through an inverse perspective transformation. This is assumed

to be the movement of the background compensated after applying the two-dimensional

parametric transformation. After motion compensation, the background model is registered

with the current video frame and can be updated and used for foreground segmentation.

Since the set of selected points includes the feature points of the foreground objects, there

are some registration errors after the transformation estimation which often results in false

positives in the foreground segmentation step. Therefore, the registration is usually followed

by a refinement step. Some methods repeat this process a number of times until a condition

is reached which results in extracting multiple planes where each plane corresponds to a

dynamically homogeneous group of pixels [5]. One of the popular techniques is dividing

each video frame into a number of blocks with a pre-defined size or using superpixel

segmentation in order to simultaneously reduce the computational complexity and improve
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the performance by taking spatial relations into account. Motion compensation can be

applied to the entire image or separately to each block.

Another common approach is the use of low rank and sparse decomposition for the

task of motion segmentation. An optimization process is carried out to form an observation

matrix using a set of video frames and Principal Component Pursuit (PCP) [15] is applied

in order to construct low-rank and sparse representations. Similar to the background

modeling techniques, a global motion compensation technique is first applied to obtain a

transformation matrix and align the background before matrix decomposition. The static

objects are coherent in terms of relative motion to the camera, but the moving objects exhibit

different dynamic behavior. Therefore, the low-rank matrix is assumed to represent the

background while the sparse matrix contains the outliers and is considered to represent

the moving objects. In spite of the effectiveness of this group of algorithms in motion

segmentation, the requirement for collecting a pre-defined number of frames before being

able to apply them imposes limitations on their applicability in real-time systems.

Some studies attempt to stitch the images captured by the moving camera together in

order to construct a panorama or mosaic, which is a bigger image that represents the entire

background. This panorama is constructed by frame to frame, frame to mosaic, or mosaic to

frame alignment, depending on the desire to use a fixed coordinate system. The background

is modeled based on the constructed panorama, and moving objects are detected by applying

one of the background subtraction methods used in the case of fixed cameras.

The second group of studies has taken a different approach by attempting to track

the trajectories of the feature points or uniformly distributed points that represent the

displacements in a sequence of adjacent frames and applying clustering techniques to classify

the trajectories and extract the foreground from the dynamic background. Modeling the

background values is not required as the motion segmentation only relies on the differences

between the trajectories of the moving and static objects in the eyes of the camera. This group

15



of methods relies heavily on the precision of trajectory calculation and dense segmentation

of moving objects, which is a common problem [162].

Stopped objects Most foreground detection methods fail to keep detecting the moving

objects after they stop. In parametric modeling methods such as GMM, the stopped objects

are absorbed by the background model shortly after they stop moving. This is specifically

problematic for traffic surveillance systems, as road users may stop regularly at intersections.

On the other hand, stopped vehicles are considered a threat to highway and road traffic

and should be marked as anomalies. In order to locate the stalled vehicles and report

them as anomalies, many studies have attempted a combination of motion-based and

appearance-based methods [153,169]. These studies assume the stopped vehicles are merged

into the background model and they can be located by applying an object detection method,

such as Faster R-CNN or YOLO on the background image. However, there are studies

conducted on locating the stopped vehicles solely based on the motion information [123].

Among the regular motion segmentation methods, the LBAdaptiveSOM [92] and adaptive

background learning techniques have shown better performance in detecting stopped objects

[129].

Weather and illumination variations Traffic surveillance systems are required to work

day and night under adverse weather conditions and illumination changes in the presence of

large shadows and reflections. These variations can lead to sizable drops in the performance

of motion-based object locating methods. Although there are studies that have attempted to

solve these issues by applying motion-based features [6, 159], most studies tend to rely on

appearance-based features as they are more robust to illumination changes.

Occlusions Locating objects of interest solely based on motion information is prone to

severe performance drops in the case of object occlusions. Since every connected component

in the foreground mask is considered to be an object, two or more nearby objects can
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easily fall into the same component. This is specifically problematic for traffic surveillance

applications where moving vehicles can be occluded by each other. This problem has

been addressed in many studies [30, 93] who have attempted to handle the occlusions by

various heuristics. However, these techniques are limited to specific scenarios and cannot be

considered as a general solution.

2.2 Shadow Detection Methods

In video analysis applications, shadows cast by moving objects are often classified as

foreground due to their similar motion patterns to the moving objects. Since object detection

is one of the fundamental steps, this misclassification causes several issues in the subsequent

operations. In order to solve this problem, many methods have been proposed throughout

the previous years [120]. Most methods assume similar chromaticity values among the

background and shadows while darker illumination for the shadows [50, 120]. Therefore,

several color-spaces such as HSV, HSI, C1C2C3, and YUV are examined along with

RGB to separate the luminance and chromaticity components with the goal of detecting

shadows [33].

Many shadow detection methods operate at a pixel level. McKenna et al. [98] made

the popular assumption that shadows change the intensity but not the chromaticity. The

chromaticity values and gradient information of the pixels are modeled, and the foreground

pixels are classified as background if they match the background in terms of chromaticity and

gradient. Cucchiara et al. [33] convert the image from RGB to HSV color-space, expecting

the shadows to darken the pixel values in the luminance component while preserving the hue

and saturation components. The main problem with these types of methods is their need for

empirical parameter tuning and their weak performance in the case of achromatic shadows

where the ambient component of the light is strong.

Another group of studies approaches the problem of cast shadow detection in a

statistical manner [58, 94, 103, 149]. Martel-Brisson and Zaccarin [94] examine the stability
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of different states in the mixture of Gaussian distributions of each pixel and detect shadows

based on the assumption that states corresponding to shadows are more frequent than those

corresponding to foreground objects. In a later study [95], they proposed a non-parametric

method for modeling the changes in pixels while they under shadow. A single direction in

the RGB space is determined in which the shadowed pixels reside.

As opposed to pixel-level methods, some studies tend to exploit region-based strategies

[139, 160]. Toth et al. [139] applied the mean-shift image segmentation technique and used

the segmented regions as a reference for analyzing the constancy of the intensity ratios over

the neighboring area. Yang et al. [160] exploit multiple cues, such as color, shading, texture,

neighborhood, and temporal consistency in order to detect the shadows. The reliance of

these methods on texture information makes them computationally expensive and limits

their generalization capability.

Over recent years, machine learning algorithms and methods based on deep learning

have grown to be some of the most popular techniques for detecting shadows [28, 77, 141,

168, 170]. Lee et al. [78] generate several super-pixels by over-segmenting the image and

learn shadow features through a convolutional deep neural network consisting of seven

layers. Chen et al. [24] present a multi-task mean teacher model for semi-supervised shadow

detection by using unlabeled data and learning shadow regions, edges, and counts. Le and

Samaras [76] set a number of physics-based constraints in order to train an adversarial

network using only patches cropped from the images. Although these methods achieve

high performance, they often require supervision and large datasets of shadowed and

non-shadowed images, which are difficult to obtain. Therefore, in real-time applications of

video analysis, statistical methods are more feasible.

2.3 Road Detection Methods

Automatic Region of Interest (RoI) detection is an important task in many traffic video

analysis applications and can be used in road management, driver assistance systems,
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automatic driving, intelligent traffic surveillance, robot and car navigation systems, etc. In

recent years, many automatic RoI detection methods have been proposed in order to reduce

manual work in urban and highway traffic monitoring applications. Some methods have

tried to utilize various features in order to segment the road region from the remaining

parts of the image. In the paper written by Santos et al. [121], a feature vector of gray

amount, texture homogeneity, traffic motion, and the horizontal line are fed to a support

vector machine to classify each superpixel into road or non-road. Helala et al. [54] use the

contours of superpixel blocks to generate a large number of edges, which are organized into

clusters of co-linearly similar sets, and the best clusters are chosen according to a confidence

level assigned to each cluster. In the end, the top-ranked pair of clusters are selected as

road boundaries. Almazan et al. [2] combine a spatial prior with the vanishing point and

horizontal line estimators in order to adapt to new weather conditions. Cheng et al. [26]

propose a road segmentation method by applying the Gaussian mixture model to color

features and fusing them with the geometric cues within a Bayesian framework.

Some studies approach the task of roadway detection by using temporal features and

extracting the active traffic regions. Lee and Ran [79], extract the moving parts of the scene

in videos of bidirectional traffic as difference images between two consecutive frames and

accumulate them to form a road map. Then a center line is used to divide the roadway

into two segments, each of which corresponds to one of the two major traffic directions.

Similarly, Tsai et al. [140] accumulate the difference between two consecutive frames to

obtain a map of the road where the motion vectors are used to separate the roadway into two

regions in order to represent two major traffic directions. The performance of background

subtraction and tracking methods utilized in these techniques has a large influence on the

results of the road segmentation process.

Most recent studies tend to propose illumination-invariant methods to deal with strong

shadows and benefit from the recent advances in deep learning models to segment the road

in a supervised manner. Li et al. [82] propose a bidirectional fusion network (BiFNet)
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consisting of a dense space transformation module and a context-base feature fusion module

in order to fuse the image and the bird’s eye view of the point cloud. Tong et al. [138],

calculate an effective projection angle in the logarithmic domain to extract the intrinsic

images with a weakened shadow effect and adopt to different directions of the camera

view. Li et al. [84] propose a road segmentation by estimating the spatial structure of the

road and using the color and edge features of the intrinsic image, which is extracted based

on regression analysis. Cheng et al. [27] propose a novel adaptation method to generalize

road segmentation to new illumination situations and viewing geometries by training a

fully-convolutional network for road segmentation. The learned geometric prior is anchored

by estimating the vanishing point of the road and is used to extract road regions that are

utilized as ground-truth data to adapt the network to the target domain. Wang et al. [146]

generate an illumination invariant image and a manual triangular area is used as the color

sample to obtain a number of probability maps which are used to segment the road, which is

further refined by taking the extracted road boundaries into consideration. Junaid et al. [68],

extract multiple abstract features from the explicitly derived representations of the video

frames and feed them to a shallow convolutional neural network. Most of the new studies

benefit from supervised learning methods, which limits their ability to adapt to new videos.

Here, we proposed an unsupervised statistical method which can be applied in real-time

applications.

2.4 Accident Detection Methods

Over the past several decades, there have been some studies addressing the issue of vision-

based accident detection on roads and highways. Zu et al. [174] use a Gaussian Mixture

Model to detect the moving vehicles and the mean shift method for tracking them. In this

study, three main motion features, namely, velocity, acceleration, and orientation, are derived

from the trajectories of the tracked vehicles. When all these values exceed the predefined

thresholds, an accident is reported. Since the videos are from the viewpoint of a driver, the
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motion features are more reliable than those captured by the CCTV cameras overlooking

the highway from above. Note that this method may cause false alarms when the pattern of

traffic flow varies in a short period of time. Besides, rapid changes in motion features do

not always result in an accident. Ren et al. [116] use a modified Gaussian Mixture Model

to extract the moving vehicles in aerial videos and, after detecting the lanes and dividing

each lane into a cluster of cells, some traffic features are extracted for each cell based on the

tracking information. Finally, a support vector machine is trained to detect incident points.

Traffic parameters include flow rate, average travel speed, and average space occupancy.

This method is reliable and fast, but it is for generally detecting traffic incidents and is not

specifically for accident detection. Also, it relies on straight road lanes, whereas in our

case, accidents usually occur in the curved lanes of the road. Xia et al. [154] propose a

close-to-real-time approach that divides each frame into non-overlapping blocks for each of

which an average velocity magnitude is calculated and the low-rank matrix approximation

is utilized to detect the increase in approximation error. Although this method is more

generalizable to different situations, it can result in some false alarms. On the other hand, the

method can be computationally expensive for higher resolution videos. Maaloul et al. [91]

use the Farneback optical flow to extract motion and a statistical heuristic approach to select

thresholds and adaptively model traffic flow for accident detection. This method is effective

in various scenarios of traffic videos (e.g. highways and expressways) and requires a low

amount of training data for motion modeling. Nevertheless, the use of optical flow makes

this approach not suitable for real-time applications.

Some other studies use more complex methods to detect abnormalities in traffic

flow. Thomas et al. [136] formulate vehicle incident analysis as an optimization problem.

An optimal summarization framework is proposed that relies on the salient features of the

moving vehicles. This method achieves comparatively good results. However, it suffers

from errors in segmentation techniques. Ahmadi et al. [1] use a group sparse topical

coding-based technique to model the normal traffic motion using the Lukas-Kanade’s optical
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flow vectors in a document of words. In this model, each word corresponds to velocities in

a specific range of orientations, and when the computed words do not match the model, it

means some abnormal motion has happened. This approach is focused mostly on abnormal

movement detection and is not specific to a type of accident. Arceda and Riveros [4] present

a three-stage approach to detect car crash incidents. First, cars are detected using the You

Only Look Once (YOLO) deep learning model. Then, after tracking each detected car, the

Violent Flow (ViF) descriptor is used alongside an SVM to detect car crashes. This approach

is not real-time, and there can be some false alarms. Xu et al. [157] present a model for

anomaly detection in road traffic by analyzing vehicle motion patterns in static and dynamic

modes. In the static mode, the background is subtracted and fed into a Faster R-CNN model

for detecting stopped vehicles. In the dynamic mode, the trajectories of vehicles are tracked

to find an abnormal trajectory that is aberrant from the dominant motion patterns. This

method ranked first place in the NVIDIA AI City Challenge [105]. However, it has some

limitations due to the use of a supervised deep learning model and is also not very specific

about the type of detected abnormality.

There have been more studies for vision-based traffic accident detection with the

use of deep convolutional networks in recent years. Batanina et al. [9] use a video game

to generate synthetic data due to the lack of real videos of car crashes. After training a

three-dimensional (3D) deep convolutional neural network on the synthetic rendered videos,

domain adaptation is used to adapt the model to real videos. Huang et al. [59] propose an

integrated two-stream convolutional network architecture to detect and track vehicles in

real time and also detect near-accidents in videos from overhead cameras. Appearance and

motion features from the two networks are incorporated to detect near accidents. Most of

these studies are generally designed to detect abnormal traffic motion, which can include

stopped vehicles, head-to-head collisions, unexpected congestion, etc. and they are not

specific to the type of anomaly. Some methods cannot be applied in real time due to

computational complexity. Also, many of the existing methods rely on supervised data
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to train a prediction model before they can be applied. In this study, we present a novel

real-time traffic accident detection framework to detect two types of traffic accidents, namely,

single-vehicle traffic accidents and trajectory conflicts at intersections.
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CHAPTER 3

FOREGROUND DETECTION

3.1 Introduction

Detecting the location of interesting objects has been intensively studied in the field of

computer vision. Generally speaking, the current techniques for locating objects of interest

can be categorized into two groups: appearance-based and motion-based methods. Motion-

based methods are applicable to video data and tend to perform a binary classification on

the pixel locations in each video frame. In many applications of video analytics systems, the

objects of interest (aka the foreground) have a dynamic pattern different from the rest of

the scene, namely the background. This difference has been exploited by many studies in

order to segment the foreground from the background and subsequently locate the objects of

interest.

Foreground segmentation has specifically been applied to intelligent surveillance

systems [16], traffic monitoring [37, 41–44, 48, 88, 123, 125], gesture recognition [64],

and robot vision [96]. The input video data used in the majority of these applications is

captured by stationary cameras, which causes the foreground to have significant motion

compared to the background. A large number of studies have attempted various approaches

to subtract the relatively static background from the changing foreground in order to detect

the location of the moving objects [40]. The strong presumption that the camera is stationary

or only has jittering movements is common among all these studies and substantially affects

their strategies to the point that they become ineffective in the event that the camera has

considerable movements. However, in real-world applications, camera movements are

common and can happen in restricted forms, such as panning, tilting, or zooming in the

case of PTZ cameras used in video surveillance, and freely moving cameras, such as

handheld cameras, smartphones, drones, or dashcams, in which case the camera is mounted
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on a moving platform. In all these scenarios, the camera is non-stationary with regard

to the captured scene, and therefore, everything seems to be moving in reference to the

camera. Consequently, there is a need to implement foreground segmentation methods

that are capable of dealing with camera motion and quickly adapting to the changes in the

background. When relying solely on motion information to segment the foreground from

the background in video frames captured by non-stationary cameras, the only heuristic lies

in the differences between the dynamic patterns of the moving objects and the background

(Figure 3.1). Many approaches have been proposed to take these differences into account

and locate the objects of interest in videos captured by non-stationary cameras [19, 162].

The real-world applicability of the current methods suffers from high requirements for

computational resources and/or low performance in classifying foreground and background.

Here we apply spatial and temporal features for statistical modeling of the background

and the foreground separately in order to classify them in real-time. Each block of the

background is modeled using a mixture of Gaussian distributions (MOG) and a set of values

sampled randomly in spatial and temporal domains. At each video frame, the Lucas-Kanade

optical flow method is applied to the block centers in order to estimate the camera motion

and find the corresponding locations between two adjacent frames. The global motion is

then compensated by updating the background models of each block according to the values

of its corresponding location in the previous frame. On the other hand, the foreground is

modeled by another MOG, which is updated by the input values that do not fit into the

background models. The final classification is performed by comparing the input super-pixel

intensity values with the major components in the statistical background and foreground

models. The remainder of this chapter is organized as follows: In Section 3.2 the main

steps of the proposed framework are described in order. Section 3.3 contains experimental

evaluations of the method’s performance, and the conclusions are summarized in Section 3.4.
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Figure 3.1 Optical flow field calculated by applying the UnFlow method [99]. The direction
is indicated by hue and the velocity is represented by saturation.

3.2 The Proposed Foreground Segmentation Method

The first observation in videos obtained by moving cameras is that the entire captured scene

appears to be moving from the camera’s perspective. However, by assuming the background

to occupy the majority of the scene compared to the objects of interest, we can estimate the

motion of the camera relative to the background. Afterwards, the estimated camera motion

can be compensated for by using the corresponding values in the previous frame for updating

background models. After motion compensation, the foreground can be segmented using

approaches similar to the methods used for the applications of stationary cameras. Here, we

apply an MOG to model the entire foreground using the values that are not absorbed by the

background models. The major components of the Gaussian mixture distributions in the

background and foreground models are utilized for final binary classification. The details of

each step are described in this section.

3.2.1 Global motion estimation

The main purpose behind moving the camera in most applications of video analytics is to

focus on the interesting objects and try to keep them in the view field of the camera. In many
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scenarios, the objects of interest occupy a portion of each video frame, and the remaining

majority is considered to be background. Therefore, the majority of point displacements

among video frames are caused by the camera motion, which can be estimated by calculating

the global motion. For the sake of computational efficiency and accounting for spatial

relationships, a similar approach to [166] is applied where the input image is converted to

grayscale and divided into a number of grids with equal sizes. The Kanade–Lucas–Tomasi

feature tracking approach [137] is applied to the centers of the grid cells from the previous

frame. Then a homography matrix is obtained that warps the image pixels at frame t to pixels

at frame t− 1 through a perspective transform. If we denote the intensity of the grayscale

image at time t by I(t) and assume consistent intensity between consecutive frames, the

corresponding location of each point in the new frame can be used to calculate the global

velocity vector as follows:

I(t)(xi + ui, yi + vi) = I(t−1)(xi, yi) (3.1)

where (ui, vi) is the velocity vector of the center point of the i-th block located at (xi, yi).

Three-dimensional vectors Xi can be constructed as:

X
(t−1)
i = (xi, yi, 1)

T , X
(t)
i = (xi + ui, yi + vi, 1)

T (3.2)

and a reverse transformation matrix Ht:t−1 is obtained that satisfies Equation (3.1) for the

largest possible number of samples:

[
X

(t)
1 , X

(t)
2 , ...

]
= Ht:t−1

[
X

(t−1)
1 , X

(t−1)
2 , ...

]
(3.3)

which is solved by applying the RANSAC algorithm [38] in order to remove outliers from

further calculations. Also, the center points of the blocks classified as foreground in the

previous frame are excluded from this calculation as they do not contribute to the camera

motion.
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Figure 3.2 The foreground is modeled by a mixture of Gaussian distribution.

3.2.2 Background and foreground modeling

Each block of the image is modeled by a mixture of Gaussian distributions and the model is

updated at each video frame. In order to update the background models at each frame we

have to calculate the corresponding values in the warped background image of the previous

frame. The mean and variance of the warped background model are calculated as a weighted

sum of the neighboring models, where each weight is proportional to a rectangular area as a

bilinear interpolation:

µ̃
(t−1)
i =

∑
k∈Ri

ωkµ
(t−1)
k

σ̃
(t−1)
i =

∑
k∈Ri

ωkσ
(t−1)
k

(3.4)

where R is a set of block indices falling in a rectangular region centered at the corresponding

point location calculated by the homography matrix in Equation (3.3), ωk is the weight that

indicates the overlapping area between the block i and the corresponding neighbor k, and µ

and σ represent the mean and variance of the Gaussian distributions, respectively.

Since the camera might have slight movements in the form of a pan, there can be

slight variations in the illumination due to the changes in the angle of view and light

direction. Also, even after motion compensation, the pan motion of the camera can cause

a part of the background to move out of the scene, which results in a block representing
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another part. The Gaussian modeling keeps the information from the previous frames and

might be slow in catching up with the pace of changing values at the borders of the video

frames. In order to make the model parameters adapt to these changes, a global variation

factor g is calculated by subtracting the mean intensities in the background model and the

current frame:

g(t) =
1

N

N∑
j=1

I
(t)
j − 1

B

B∑
i=1

µ̃
(t−1)
i (3.5)

with B being the number of blocks and N being the number of pixels. At each frame the

parameters of the Gaussian mixture model for each block are updated as follows:

µ
(t)
k =

(
n
(t−1)
k

(
µ̃
(t−1)
k + g(t)

)
+M (t)

)
/(n

(t−1)
k + 1)

σ
(t)
k =

(
n
(t−1)
k σ̃

(t−1)
k + V (t−1)

)
/(n

(t−1)
k + 1)

n
(t)
k = n

(t−1)
k + 1

α
(t)
k = n

(t)
k /

K∑
k=1

n
(t)
k

(3.6)

where nk is a counter representing the number of times an input value has been used to

update component k, αk is the weight of the kth component, M and V stand for the mean

intensity and the variance of the block, respectively. The component with the largest weight

of each Gaussian mixture model is considered to be the background value of the block.

In the case of moving cameras, the objects of interest are usually present in the scene

for a longer time as the camera is focused on them. Therefore, it is reasonable to model the

values of the foreground objects throughout the video. A similar approach to background

modeling is applied to modeling the foreground, except only one mixture of Gaussian

distributions is used for the entire foreground pixels. Also, instead of a single component,

a number of components from the foreground model that have the largest weights are

considered to represent the foreground objects. This is because the foreground objects have

multiple parts with different intensity values, and each major component in the foreground
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(a) (b) (c)

Figure 3.3 Improving the classification results with foreground modeling. (a) Original
frame, (b) False positives caused by hysteresis effect in background modeling, (c) False
positives are avoided after foreground modeling.

(a) (b) (c) (d) (e)

Figure 3.4 The final classification process. (a) Original frame, (b) Heat-map of the
foreground probability, (c) Super-Pixels obtained by applying watershed segmentation,
(d) Foreground confidence map, (e) Final foreground mask.

model is used to represent one part of the foreground. Figure 3.2 illustrates an example of a

foreground object modeled by an MOG with three components.

In addition to the statistical modeling and inspired by the ViBe method [8], we keep

a set of sample values as a secondary non-parametric model for each block. This set is

initialized by the mean value of the block and its neighboring blocks at the beginning of

the first frame. In each of the consecutive frames, one of the values in the set is selected
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randomly and replaced with the new mean value. We can denote the collection of background

sample values for the block i as Si as follows:

Si = {s1i , s2i , ..., sKi } (3.7)

where ski is the kth sampled mean intensity of block i. The sample-based model is kept and

updated mainly to avoid contaminating the foreground model with the background values

that do not fit into any of the Gaussian components of the corresponding block model. This

problem occurs mostly because of motion compensation errors or new background values

being introduced into the scene due to the camera motion. If an input value does not fit into

any of the Gaussian components of a background model, the Euclidean distance between the

pixel value and each background sample in the set of the corresponding block is calculated. If

the number of samples in the set of blocks i that are closer than a distance threshold to

the input value is less than a counting threshold, the foreground model is updated by that

value. Representing this number of samples by Ci it can be calculated as follows:

Ci =

|Si|∑
j=1

1
(
D(x, s̃

(s)
j ) < θd

)
(3.8)

with x being the input pixel intensity value, D representing the Euclidean distance, θd

being a predefined threshold, which is set to 20, 1 denoting an indicator function, s̃(s)j

representing the corresponding value of s(k)i after motion compensation, and Si denoting the

set of neighboring blocks.

Since the camera is in motion, the parameters in the background models can lag

behind the sudden changes caused by motion compensation errors, sudden illumination

changes, or new samples appearing at the borders of the frame. Consequently, the distance

between the new samples and the mean values may exceed the threshold defined based on

the standard deviations, which in turn causes the new samples to falsely be classified as

foreground. By keeping a set of values containing a number of recent background samples,

we can compensate for the hysteresis effect of Gaussian models representing the older
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samples. We calculate the Euclidean distances between the new values and the samples

in the set and only classify the new values as foreground if they match with less than a

few samples in the set. The foreground model is only updated with values that belong

to the foreground class with a high certainty, and therefore, the majority of false positive

cases are avoided. An example of the classification is illustrated in Figure 3.3. As seen in

the Figure 3.3(b), some of the input values do not fit into their corresponding background

models due to the camera movements and the motion compensation errors. In Figure 3.3(c)

these values are removed from the foreground mask as they do not fit into any of the major

components of the foreground model.

3.2.3 Background and foreground classification

For the final classification, at first the foreground likelihood values are calculated for each

pixel at an input image as follows:

Lfg(x, y) =
(I(x, y)− µk)

2

σk

(3.9)

where I(x, y) and Lfg(x, y) are the intensity and foreground likelihood values of the pixel

at location (x, y), and µk and σk are the mean and variance of the corresponding background

block, respectively. Afterwards, the watershed segmentation algorithm [100] is applied to

each input image in order to extract a set of super-pixels, notated by P = {P1, P2, ..., Pk}.

For final classification, the mean value of each super-pixel is compared against the

major component in the background model of the corresponding block as well as each

component in the foreground model. The foreground confidence map F is obtained by

calculating the mean of confidence values in each super-pixel as follows:

F(Pi) =
1

|Pi|
∑

x,y∈Pi

Lfg (x, y) (3.10)

where |Pi| is the number of pixels at super-pixel Pi. Assuming there are M major

components in the global foreground model, a background confidence map Bm,m ∈
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{1, ...,M} is similarly obtained based on each component. The Gaussian Naive Bayes

(GNB) classifier is applied to each super-pixel in order to calculate the z-score distance

between the input value and each class-mean and classify the super-pixel accordingly in

order to obtain the final foreground mask H:

H(Pi) =


1, if F(Pi) > Bm(Pi)

0, otherwise
(3.11)

where Bm is the background confidence map corresponding to the m-th foreground model

and H(Pi) = 1 indicates that the super-pixel at location Pi belongs to the moving objects and

H(Pi) = 0 means it belongs to the background. The process of segmenting the foreground

is detailed in Algorithm 1.

The different stages in the classification process can be seen in Figure 3.4 . From top

to bottom, each row in the figure represents a sample video frame from the DAVIS [111],

Segment Pool Tracking [81], and SCBU [166] datasets, respectively. The second column

represents heatmaps where the pixels with a higher probability of belonging to the foreground

are represented by red colors. The third column is the results of the watershed segmentation

algorithm applied to each video frame, with the markers chosen uniformly across the image

at the same locations as the background block centers. The fourth column illustrates the

foreground confidence maps calculated based on Equation (3.10) and the last column is the

final results of foreground detection after morphological dilation.

3.3 Experiments

The performance of the proposed method is evaluated using video data collected from the

publicly available SCBU dataset [166], which consists of nine video sequences captured

by moving cameras. The videos in the dataset impose various challenges in the way of

foreground segmentation, such as fast or slow-moving objects, objects of different sizes,

illumination changes, and similarities in intensity values between the background and
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foreground. Figure 3.5 represents the foreground masks detected by various methods. Similar

to [165], in addition to background modeling methods [8, 25, 31, 72, 89, 102, 164, 166], the

detection results are compared with a number of object-centric methods, such as uNLC [36],

which is the unsupervised version of the NLC [36] approach, OSVOS [13] without the

fine-tuning step, CIS [161], and BASNet [114]. In terms of time and space complexity, the

statistical methods are more efficient as the methods based on deep neural networks require

more resources. Therefore, our method is more practical in applications with real-time

requirements and edge devices that have lower hardware capacity.

Figure 3.6 represents the foreground detection results in a number of video sequences

compared with other background modeling methods. It can be seen that our proposed

method is able to detect the foreground in various challenging scenarios. Compared to some

of the representative methods, such as MCD [102] and MCD NP [72], our method models

the foreground and background separately, which enhances the classification results. One

of the limitations in the proposed method is the ability of the foreground model to adapt

well to sudden illumination changes caused by the pan movements of the camera. Also,

the camouflage problem, where the foreground color values are very similar to those of

the corresponding background block, can lead to false negative results (part of the person’s

head is not detected in Figure 3.5(l)). This problem can be solved by introducing more

discriminating features to the statistical modeling process.

The f-score metric is used in order to evaluate the quantitative results:
PRE = TP/(TP + FP )

REC = TP/(TP + FN)

F1 = 2× (PRE ×REC)/(PRE +REC)

(3.12)

where TP , FP are the number of pixels correctly and incorrectly reported as foreground,

and TN and FN are the numbers of pixels that are correctly and incorrectly reported as

background, respectively. PRE, REC, and F1 refer to precision, recall, and F1-score,
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respectively. The F1-scores are listed in Table 3.1 in comparison with other popular methods.

The quantitative results demonstrate the robustness of our method in detecting the foreground

mask in different videos.

The hardware specification used for the experiments is a 3.4 GHz processor and 16

GB RAM. The average processing speed for video frames of size 320×240 pixels was about

∼ 143 frames per second, which is feasible for real-time applications of video analytics.

The average running speed of the proposed method is reported in Table 3.2 for each video

frame of size 320× 240 pixels. The run-time calculations show that the method is feasible

to be used as a preprocessing step in real-time traffic video analysis tasks.

3.4 Conclusion

In this study, a new real-time method is proposed for locating the moving objects in

videos captured by non-stationary cameras, which poses one of the challenging problems in

computer vision. The global motion is estimated and used to compensate for background

variations caused by camera movements. Each block is modeled by a mixture of Gaussian

distributions, which is updated by the values at the corresponding locations in the warped

image after motion compensation. Additionally, the mean values of each block are modeled

along with the mean values of its neighboring blocks as a set of samples, which is in

turn updated by random selection. The foreground, on the other hand, is modeled by a

separate MOG which is updated by values that do not fit into either of the statistical or

sample-based background models. For classification, each input value is compared against

both the background and foreground models to obtain the definite and candidate foreground

locations, respectively. The watershed segmentation algorithm is then applied to detect the

final foreground mask. Experimental results demonstrate the feasibility of the proposed

method in real-time video analytics systems.
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Algorithm 1: Acquiring the foreground mask
Input:

The input video frame in gray-scale I(t)

A set of predefined thresholds

Output:

The foreground mask H of the same size as the video frame

1 initialize F with 0;

2 foreach pixel p ∈ I(t) do

3 if p fits into the MOG model of block i then

4 update the ith MOG;

5 end

6 else if p doesn’t fit the ith sample-based model then

7 update the foreground MOG;

8 end

9 end

10 apply watershed segmentation to obtain P;

11 H = 0;

12 foreach super-pixel Pi ∈ P do

13 calculate F(Pi);

14 foreach component m in foreground model do

15 calculate Bm(Pi);

16 if F(Pi) > Bm(Pi) then

17 H(Pi) = 1;

18 break;

19 end

20 end

21 end
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Figure 3.5 Foreground detection results from some of the popular methods
applied on the ”Woman” sequence from the SCBU dataset [166]. (a) Original
frame, (b) Ground truth, (c) MCD [102], (d) MCD NP [72], (e) Stochastic approx
[89], (f) SC MCD [166], (g) uNLC [36], (h) OSVOS [13], (i) BASNet [114], (j) CIS [161],
(k) uMOD [165], (l) Proposed method.
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Table 3.1 The F1-Scores of Different Foreground Segmentation Methods

Methods Walking Skating Woman Ground1 Ground5 Average

ViBe [8] 0.0375 0.2229 0.0375 0.5656 0.1309 0.2107

FIC [31] 0.0613 0.2373 0.0361 0.4543 0.1319 0.1761

BMRI-ViBE [25] 0.0438 0.2402 0.0400 0.4249 0.1377 0.1730

MCD NP [72] 0.4351 0.4164 0.4935 0.2773 0.3540 0.3519

FP Sampling [164] 0.7058 0.8539 0.7268 0.7977 0.8212 0.6646

MCD [102] 0.7349 0.2447 0.3395 0.6573 0.0678 0.4523

SC MCD [166] 0.7496 0.8560 0.6650 0.8965 0.9326 0.8173

Stochastic approx [89] 0.8335 0.6543 0.3986 0.2221 0.2181 0.4392

uNLC [36] 0.0158 0.1419 0.0178 0.0570 0.0143 0.0389

OSVOS [13] 0.3397 0.5344 0.0121 0.7697 0.1224 0.4127

CIS [161] 0.0538 0.3036 0.1522 0.1545 0.0184 0.1418

BASNet [114] 0.3433 0.9379 0.0205 0.6039 0.9829 0.6188

uMOD [165] 0.7809 0.9600 0.7269 0.9037 0.9793 0.8546

Proposed method 0.8144 0.9710 0.7874 0.9112 0.9686 0.8725

Table 3.2 The Average Runtime of Different Foreground Detection Methods for Each Frame

Methods Run time (ms) FPS

ViBe [8] 14.6 68.5

MCD [102] 7.46 134

MCD NP [72] 20.9 47.85

SC MCD [166] 9.56 104.6

uMOD [165] 29.23 34.2

Proposed method 9.4 106.38
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(a) (b) (c) (d) (e) (f)

Figure 3.6 Comparison of the qualitative results of background modeling methods.
From top to bottom, the rows represent the Woman2, Ground3, Ground4, and Ground5
sequences. Each subfigure at the first column illustrates one video frame of each
sequence with the corresponding ground-truth represented at the second column. The
remaining columns represent the classification results of (c) MCD [102], (d) MCD NP [72],
(e) Stochastic approx [89], and (f) our proposed methods, respectively.
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CHAPTER 4

SHADOW SUPPRESSION

4.1 Introduction

Detecting moving objects is a fundamental step in many applications, such as video

surveillance, traffic monitoring, content-based video coding, gesture recognition, and

human-computer interaction [40]. One of the main challenges in foreground detection

is the shadows cast by moving objects in the background, which are often classified as part

of the foreground as a result of their similar movement patterns to the moving objects. This

misclassification can have severe negative effects on the performance of the further steps in

the video analysis systems, such as object classification [37], segmentation [41–43], and

object tracking [44, 123]. The task of shadow removal has been addressed in many studies,

which have been grouped into seven categories based on the methodologies and exploited

features [118], such as color [33] and texture features [120], statistical modeling [58], or a

combination of features [48, 124]. Recently, some methods have applied deep convolutional

neural networks (DCNNs) for shadow detection [23,148]. However, these techniques are not

suitable for many real-world applications due to the large amount of training data and high

demand for computational resources they require. There are a number of other shortcomings

in the existing shadow removal methods, such as being limited to specific applications or

the requirement for manually specifying sensitive parameters.

In this chapter, a real-time method is proposed to detect and suppress moving shadows

with minimal manual involution. First, the global foreground modeling (GFM) method [125]

is applied for foreground segmentation due to its efficiency and robustness. Therefore,

we employ a region-based classification method, which is capable of dealing with

achromaticity and camouflage issues. The watershed segmentation approach [101] is

applied in order to extract superpixels. A locally near-invariant illumination feature is
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Figure 4.1 Histogram of RGB norm ratios. (a) Sample video frame [120]. (b) Lighter,
darker, and shadowed samples represented by orange, brown, and gray, respectively.
(c) Histogram of the RGB norm ratios.

applied to merge correlated superpixels and segment the foreground into a number of

regions. These regions are then classified based on the number of candidate shadow samples,

foreground-background gradient direction correlation, and the number of external terminal

points. In the end, the results of all three steps are integrated for final shadow detection. This

integration results in an accurate and robust shadow detection method for real-time video

analytics applications.Figure 4.2 shows the system architecture of the proposed shadow

detection method.

The remainder of this chapter is organized as follows. In Section 4.2 the major steps of

the proposed method, including image segmentation (Section 4.2.1) and region classification

(Section 4.2.2) are described in detail. The performance of the proposed method is evaluated

on publicly available data in Section 4.3 and Section 4.4 is the conclusion of the chapter.

4.2 A New Cast Shadow Detection Method

In order to subtract the background, the GFM method [125] is applied, which results in a

binary motion mask M(x, y) where M(x, y) = 1 indicates there is significant motion at

location (x, y), either caused by an object or moving cast shadow and M(x, y) = 0 means

the location (x, y) belongs to the stationary background. The goal here is to classify the

foreground pixels into object and shadow classes in order to disregard the moving cast
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Figure 4.2 The general overview of the system architecture of the proposed shadow detection
method

shadows in the further tasks of video analytics. The details of the proposed multi-layer

shadow detection method are discussed in this section.

4.2.1 Image segmentation based on locally near-invariant illumination feature

Pixel-wise approaches fail to differentiate between shadows and dark objects that have

similar color values (see Figure 4.1) as they are limited only to the variations in the RGB

values and do not take the spatial relations between each pixel and its neighborhood into

account. Therefore, a combination of pixel-based and region-based techniques can help

with locating the dark objects and reducing the misclassification errors. Here, we first apply

component analysis [133] in order to partition the binary motion mask M(x, y) into a set

of independent components R = {r1, r2, ..., rk}. By assuming that most locations in the

scene have rough Lambertian surfaces with negligible specular reflection, there is a single

dominant illumination source, there is a specific geometry with constant scene angles, and

the camera filters have infinitely narrow bandwidth [33] we can express the camera sensor

responses at location (x, y) as follows:

Ck(x, y) = qk E(λk, x, y)S(λk, x, y) (4.1)

where λk, k ∈ {R,G,B} represents the central frequency of the k-th channel camera filter,

qk, k ∈ {R,G,B} indicates the spectral sensitivities of the three color camera sensors, and
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E(λ, x, y) and S(λ, x, y) are the incident illumination and surface reflectance at location

(x, y), respectively [62]. This response can be expressed by the contributions of the direct

Cd
k and ambient Ca

k illumination components [97] as follows:

Ck = αCd
k + Ca

k = αqkE
d
kS

d
k + qkE

a
kS

a
k , k ∈ {R,G,B} (4.2)

where α ∈ [0, 1] is the attenuation factor that accounts for the unblocked proportion of the

direct light, Ed
k , Sd

k , Ea
k , and Sa

k are the incident illumination and surface reflectance of the

direct and ambient components, respectively.

With the assumption of α = 1 in the background and negligible variations in the

ambient illumination, we can define spectral ratio
−→
S = [SR, SG, SB]

T as a near-invariant

illumination feature:

Sk =
FG

BG
=

qkE
d
kS

d
k

αqkEd
kS

d
k + qkEa

kS
a
k

(4.3)

where k ∈ {R,G,B} indicates the sensor bands. Since there is little to no direct illumination

in the umbra region of the shadow (α = 0) and the surface material is the same at location

(x, y) in the foreground and background when shadowed (Sd
k = Sa

k ), the spectral ratio in

this region can be indicated as follows:

Sk =
Ed

k

Ea
k

(4.4)

which is near-constant among neighboring pixels across the umbra region and the changes

are mostly because of the variations in the ambient illumination (Figure 4.3(b)).

We apply the watershed segmentation approach [101] on the spectral ratios of each

region in R to obtain the superpixels. Afterward, correlated superpixels are merged by

applying the union-find algorithm [156]. Due to the ratio-invariance property of shadows,

two neighboring superpixels are merged if their spectral ratio differences are less than a small

threshold across all three color channels. In addition, the edge between two superpixels may

have been caused by intersecting shadows, which are difference-invariant [73]. Therefore,
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(a) (b)

(c) (d)

Figure 4.3 The segmentation process of each frame. (a) Original video frame. (b) Spectral
ratio. (c) superpixels. (d) Merged segments based on eq. (4.5).

two neighboring segments are merged if the difference between the foreground values is

close to the difference between their background values. Another possible scenario is if

the moving shadow is cast over an existing stationary shadow. In this case, the background

values are different, but the foreground values are similar and close to the background value

of the darker segment.

Two neighboring superpixels/segments si and sj are merged according to three criteria:

FGi/BGi ≈ FGj/BGj

FGi − FGj ≈ BGi −BGj

BGj ≈ FGi ≈ FGj, BGi ≫ BGj

(4.5)
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If any of the above conditions hold, the two segments will be merged. Figure 4.3 shows an

example of the segmentation and merging process. At this point, each foreground component

rk ∈ R is partitioned into a number of segments skl , such that:

nk⋃
l=1

skl = rk,

nk⋂
l=1

skl = ∅,

K⋃
k=1

rk = R (4.6)

where nk is the total number of segments skl at each region rk (Figure 4.3(c)). Note that the

efficiency of this method is much higher than pixel-wise segmentation methods [3] due to

the use of superpixels and applying the union-find algorithm. This way, if two pixels belong

to the same superpixel/segment, there is no need to calculate the merging criteria. Otherwise,

the dissimilarity measures are calculated in order of priority only for the neighboring pixels

of two separate superpixels/segments. If the two superpixels/segments are decided to be

merged, all the pixels corresponding to them will be merged at the same time. Figure 4.3

illustrates the steps of the segmentation method in a sample video frame. The white and

gray colors represent the 0 and 1 values in the binary masks, respectively.

4.2.2 Segment classification based on various heuristic cues

In order to improve the robustness and accuracy of the object/shadow classification in the

foreground, we employ four different heuristic cues simultaneously, including thresholds,

gradient correlation, and the number of extrinsic boundary points. The classification results

from all three steps are aggregated for final classification. In this section, the steps in the

segment classification process are explained in detail.

Extracting candidate shadow pixels Since the HSV color-space separates the chromaticity

from the intensity to a good level, it is useful to distinguish the variations in illumination

from the changes in material. Figure 4.4 illustrates the potential shadow zone in the RGB

color-space which is a portion of the conic region in the RGB space Since shadows have little

to no effect on the H(hue) component of the HSV color-space, we choose the S(saturation)
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Figure 4.4 The initial shadow candidate detection. Pixels falling in the conic region are
considered as potential shadow samples.

and V(value) components to set the criteria. The value ratio can roughly specify the

attenuation, which is represented by the vector magnitudes, and the saturation component

can determine the apex angle of the cone, which depends on the ambient illumination. By

assuming Sf , Vf , Sb, and Vb to be the saturation and value components of the foreground

and background, respectively, the chromatic criteria can be formulated as follows:

P(x, y) =


1, (τvl < Vf/Vb < τvh)

∧(τsl < Sf − Sb < τsh)

0, otherwise

(4.7)

where P is a binary mask where P(x, y) = 1 indicates that pixel at location (x, y) is a

potential shadow sample, and τvl, τvh, τsl, and τsh denote the lower and upper thresholds for

the value ratio and saturation variation, respectively. All the foreground pixels that satisfy

these criteria are considered to be potential shadow candidate samples. Figure 4.5 illustrates

an example of potential shadows represented by gray color.
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Each segment skl of region rk is classified as an object or shadow according to its

intersection with potential shadow candidates. If most pixels inside a segment are classified

as potential shadow candidates, that segment is likely to belong to the shadow class. This

can be expressed as follows:

C(skl ) =


1, if |P∩skl |

|skl |
> τp

0, otherwise
(4.8)

where C(skl ) is a binary mask where C(skl ) = 1 if more than τp of the pixels in segment skl

are classified as potential shadows.

Calculating the gradient direction correlation The amount of gradient information

introduced by the objects is generally more than the amount introduced by shadows. The

dominant edges are extracted by applying the Canny edge detection method, and the

difference in gradient direction between the frame and the background is calculated as

follows:

∆θ(x, y) = cos−1
−→▽f(x, y) · −→▽ b(x, y)∥∥∥−→▽f(x, y)

∥∥∥ ∥∥∥−→▽ b(x, y)
∥∥∥ (4.9)

where −→▽f(x, y) and −→▽ b(x, y) are the gradient vectors at location (x, y) in the frame and the

background, respectively, and ∆θ(x, y) is the angular distance between two vectors. If the

gradient direction is highly correlated between the frame and the background in a segment,

it has a higher probability of belonging to the shadow class. This criterion is expressed as

follows:

G(skl ) =


1, if 1

|skl |
∑|skl |

i=1H(∆θi − τa) > τe

0, otherwise
(4.10)

where |skl | is the number of pixels in the segment skl , H(.) denotes the unit step function

which is one if the angular distance is larger than or equal to a threshold τa, and G(skl ) is a
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Figure 4.5 Extracting potential shadow candidates. (a) Sample video frame. (b) Potential
shadows.

binary mask which is one if a fraction more than τe of the pixels in segment skl have similar

gradient direction in the frame and the background.

Computing the number of extrinsic terminal points Another observation about shadow

samples is their spatial distribution around the objects, which results in shadow segments of

each region containing a considerable number of extrinsic terminal points. Such criterion

can be expressed in a binary mask St as follows:

T (skl ) =


1, if |T(rk)∩T(s

k
l )|

|T(skl )|
> τt

0, otherwise
(4.11)

where T(rk) and T(skl ) are the sets of external boundary points of the foreground component

rk and each of its segments skl , respectively, and T (skl ) is a binary mask which is 1 if a

fraction more than τt of terminal points are external.

Final shadow detection based on integration of the previous steps For the final object

and shadow classification, the results of the previous steps are integrated by calculating the

weighted summation as follows:

W(x, y) = wCC(x, y) + wGG(x, y) + wTT (x, y) (4.12)
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(a) (b) (c)

(d) (e) (f)

Figure 4.6 Classification process of a sample frame from Highway 3 sequence. (a) Original
video frame. (b) segmentation. (c) Potential shadows. (e) Heatmap of gradient correlation.
(d) Heatmap of external terminal points. (f) Region based classification (S).

where wC ∈ [0, 1], wG ∈ [0, 1], and wT ∈ [0, 1] are the weights indicating the significance of

the shadow detection results based on chromatic criteria, gradient correlation, and extrinsic

terminal points, respectively. The three weights are normalized and summed up to one:

wC + wG + wT = 1 (4.13)

We have considered wG to be twice the value of wC and wT . By thresholding the weighted

sum values we obtain a binary mask F which represents the final shadow detection results

as follows:

F(x, y) =


1, if W(x, y) > τf

0, otherwise
(4.14)
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Figure 4.7 The foreground masks and the detected shadows in different methods using
various sequences from the ATON dataset [120]. (a) Original video frame. (b) Ground
truth. (c), (d), (e), (f), (g), and (h) are the results of Cucchiara et al. [33], Hsieh et al. [56],
Sanin et al. [120], Huang and Chen [58], Amato et al. [3], and our proposed method,
respectively.

where τf is a threshold, F(x, y) = 1 indicates that the pixel at location (x, y) belongs to

shadow and F(x, y) = 0 means it belongs to moving objects. Subtracting F from M will

result in a shadow-free foreground mask. Figure 4.6 shows an example of the described steps

in the classification procedure. In the heatmaps, the warmer colors represent the objects and

the colder colors represent shadows.

4.3 Experiments

The quantitative and qualitative results of the proposed method are evaluated using publicly

available video data [120]. The spatial resolution of each video sequence is 320 × 240

pixels and each video contains 15 frames per second. The underlying system hardware is
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Table 4.1 The Average Shadow Detection Runtime for Each Video Frame in Different
Methods

Methods Runtime (ms)
320× 240 640× 482

Cucchiara et al. [33] 23 141
Zhu et al. [170] (with GPU) 421 1069

Huang and Chen. [58] 16 81
Sanin et al. [120] 61 244
Hsieh et al. [56] 5 16

leone and Distante. [80] 135 284
Amato et al. [3] 16 102

Proposed method 5 16

Table 4.2 The Average Runtime of The Main Steps in Shadow Detection After Background
Subtraction

Steps Runtime (ms)
320× 240 640× 482

pre-processing 0.32 0.55
segmentation 2.85 11.44

candidate shadows 0.07 0.28
gradient correlation 1.40 3.36

terminal points 0.27 0.56
post-processing 0.37 0.73

Total 5.29 16.93

a Dell XPS 8900 PC with a 3.4 GHz processor and 16 GB of RAM. The processing time

is, on average, 5.48 milliseconds for each frame, which is consistent with the efficiency

requirements of real-time applications. Table 4.1 compares the run-time with some of the

popular shadow detection methods for video frames of size 320× 240 and 640× 482 pixels.

Table 4.2 contains detailed run-time for each step of the process. The preprocessing step

involves removing the fringe of the shadow segments and smoothing each image by Gaussian

blurring. The post-processing is a noise correction step that assigns a shadow/object class to

each foreground pixel according to the majority of its surrounding pixels.

In Figure 4.7, a sample frame from some videos is illustrated along with the shadow

detection results of some of the representative methods. The thresholds τp, τe, τt, and τf

are all empirically set to 0.5 and show low sensitivity when experimented with various
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Table 4.3 The Shadow Detection Results Compared to Other Methods in Terms of F-Measure

IntelligentRoom Laboratory Highway-1 Campus Highway-3
Cucchiara et al. [33] 78.18 84.33 70.36 53.22 53.40

Hsieh et al. [56] 61.26 56.51 70.55 58.88 54.61
Huang et al. [57] 71.59 54.46 56.79 55.24 48.79
Leone et al. [80] 75.27 84.69 28.69 67.39 10.58
Sanin et al. [120] 88.59 78.05 74.04 66.81 53.56
Wang et al. [143] 94.63 90.30 84.80 80.42 68.68

Proposed method 92.68 84.22 88.14 89.92 84.09

videos. Three performance measures are calculated for quantitative evaluation of the shadow

detection method as follows: 
ξ = TPo/(TPo + FNo)

η = TPs/(TPs + FNs)

F1 = 2× (η × ξ)/(η + ξ)

(4.15)

where TPo and TPs denote the true positive rates of the object and shadow pixels and

FNo, and FNs are the false negative rates of the object and shadow pixels, respectively.

η, ξ, and F1 denote the shadow detection rate, shadow discrimination rate, and F-measure,

respectively. In Table 4.3 the calculated measures for the performance evaluation are

reported along with some of the popular methods [120].

4.4 Conclusion

This chapter presents a new moving cast shadow detection method to separate moving

objects from their cast shadows in real-time applications of video analytics. After applying

the global foreground modeling (GFM) method for background subtraction, the foreground

class contains the moving objects along with their cast shadows. First, a set of chromatic

criteria in the HSV color space is applied in order to extract the potential shadow candidates.

Then a segmentation technique is used based on the physical properties of the surface

reflections to group the correlated pixels in each foreground component and classify the
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segments according to a set of three criteria. The final decision about shadow and object

classification is made through an integration process of the previous steps. The experimental

results demonstrate the effectiveness of the proposed method in real-time video analytics

applications.
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CHAPTER 5

REGION-OF-INTEREST DETECTION

5.1 Introduction

A region of interest (ROI) is a sample within a dataset identified for a particular purpose [12].

In the case of video analysis, a region of interest refers to a subspace of the video frame

that is identified as the region of main focus. Selecting one or multiple regions of the video

frame to perform video analytic tasks not only reduces the unnecessary and false results, but

also decreases the computational complexity due to a lower volume of input data, which

means a great deal to real-time applications. One of the main applications of video analysis

is in traffic surveillance videos, where the region of interest usually refers to the road area

and its proximity. The area of focus in traffic video analysis tasks such as vehicle counting,

speed estimation, and detecting traffic incidents such as wrong-way vehicles and vehicle

accidents is the road lanes and shoulders. Currently, in most applications, the region of

interest is selected manually, which has to be performed for every video and repeated in

case of changes in the angle or distance of camera view.

Automatic road recognition has been a popular research topic in applications regarding

traffic surveillance videos [121] and in-vehicle perception [17]. Most of the techniques

used in these studies are applicable in both areas, with the main motivation of the former

being ROI determination and the latter providing useful information for advanced driving

assistance systems. In some studies, the local features such as color [87], brightness [147],

texture [158], or a combination of them are extracted in order to classify the pixels into road

and non-road classes. Some methods tend to rely on the road models in order to match them

with low-level features and detect the road region [27]. Several techniques suggest utilizing

motion information and temporal features obtained from a sequence of video frames in

order to extract the road area [140]. Recently, convolutional deep neural networks have also
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been applied to segment the road region due to their ability to model non-linear variable

relationships [14, 22]. In terms of road detection in traffic video analytic applications, the

performance of supervised methods can suffer from a wide range of different illumination

and weather conditions, image resolutions, camera viewing angles, and distance from the

road surface.

The focus of this study is road recognition and ROI determination in traffic surveillance

videos to aid with detection of driving violations, traffic incident recognition, and reduce the

computational complexity of urban and highway traffic video analysis tasks. We propose a

motion-based statistical method to extract the road region and separate the road map into

left and right sides based on the two major moving directions of vehicles in traffic videos.

No assumption about the structure of the road is made, and therefore, this method can be

used for structured and unstructured road scenarios. The locations of moving vehicles are

appropriately assumed to be associated with the roadway region and they are utilized as

color samples to estimate the location of road pixels. A novel foreground segmentation

technique [125] based on Gaussian mixture models is applied in order to detect the moving

vehicles and subtract the stable background. The pixel values of the background image at

the corresponding locations of the vehicles are utilized as initial road samples and as seed

points by the flood-fill method in an accumulative manner, and several road probability maps

are generated. The extracted probability values are then combined in order to estimate a

more accurate road region map, which is further refined by using the aggregated foreground

mask. The straight and curved road boundaries are estimated by second-degree polynomial

curve-fitting to improve the obtained road map from the previous step by removing possible

extra pixels that are incorrectly categorized as road pixels by the flood-fill method. The

use of color features combined with gradient information and temporal features makes this

method robust against illumination changes and severe weather conditions. At the same

time, a statistical approach is applied with Lucas-Kanade optical flow and is further refined

by a blob-tracking method to separate the two major directions in roads with bidirectional
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traffic. The detected road regions can further be updated and used as ROI in traffic video

surveillance applications.

5.2 A New Automatic Method For Road Region Extraction

Extracting the region of interest is an important preprocessing step in many image and

video analytic applications. Currently, the selection of ROI is mostly performed manually

by a human agent at the initial stages of preprocessing. Manually determining the region

of interest, which in traffic video analysis refers to the road region, is an exhaustive and

time-consuming task for human agents. Retrieving the ROI automatically can reduce the

need for manual work, and constant updates in the extracted ROI help with adaptation

to new scenes when the camera’s view changes. We propose a fully automatic method

for road recognition that updates the ROI at each frame of the video and therefore can

quickly adjust to changes in the camera’s view. The proposed method can be performed in

real-time and is adaptive to cameraview changes and various illumination scenarios. The

only madeassumption is about the location of the vehicles, which are assumed to move

mostly along the road region. Our proposed method has three major contributions: (i) The

new motion-based statistical method can automatically extract the road region and reduce a

great deal of manual work. (ii) The newroad probability estimation method can generate

a reliable roadmap from the initial frames of the video without the need to wait for many

vehicles to pass along the road region. (iii) The novel ROI determination approach can extract

a separate ROI for each side of roads with bidirectional traffic. The ROI determination is

fast and robust for real-world application use.

5.2.1 Selection of the initial road samples

In the case of applications with an onboard camera system, initial road samples are usually

taken from a triangular area in front of the vehicle. In contrast, in applications with a

stationary camera overlooking the roadway, the initial road samples can be extracted based
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Figure 5.1 Sampling the road pixels from the background image based on the direction of
moving vehicles in order to avoid sampling non-road pixels. The red color indicated the
location of the sampled road pixels.

on the location of moving vehicles. The further steps for road segmentation based on the

initial samples can be commonly used in applications of traffic surveillance and self-driving

vehicles. The focus of this study is on automatic ROI determination in traffic surveillance

videos. However, our proposed feature extraction and classification approach can work for

road segmentation in self-driving vehicles as well.

In order to obtain an estimate of the road region during the initial frames of the video,

we first attempt to detect the vehicles and segment them from the still background. The

global foreground modeling (GFM) method introduced by Hang and Liu [125] is utilized to

detect the location of the moving vehicles and to subtract the stationary background image

from the video frames. The GFM foreground segmentation approach was chosen due to its

ability to quickly subtract the background in a video captured by a stationary camera. Also,

the GFM method is robust in dealing with stopped vehicles, which are continuously detected

as foreground and therefore separated from the background image. The road estimation

method is applied on the subtracted background with the assumption that most vehicles

pass along the roadway. The corresponding locations of the moving and stopped vehicles in

the background image are considered to be samples of the road region, which are in turn

utilized to estimate the probability of all background pixels. The generated probability maps

are further used to classify the pixels into road and non-road in order to segment the road

region from other areas and determine the ROI based on the extracted road map.
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The selected pixels for road samples should be exclusively from the road region in

order to obtain a good estimation of road pixel-values. In many intelligent vehicle systems,

such as automatic driving and advanced driver assistance systems, where the field of view

is similar to that of the driver, the road region priori is approximated as a triangular region

at the mid-bottom of the frame [83]. In the case of traffic surveillance videos, where the

cameras are overlooking the road, there can be no initial assumption of the road’s location

without any observation of the images. On the other hand, in a generally short period of

time, vehicles pass along different parts of the road rather than a specific lane. Subsequently,

accumulating the motion masks obtained from the foreground segmentation method covers

the majority of the road region in a relatively short period of time. Each time a vehicle passes

along the road, the pixels of the road map in the corresponding location to its foreground

mask are added by a constant positive value. By applying the Otsu’s threshold [49], we can

get rid of the remaining noise and obtain a binary image representing the estimated active

zone of the traffic flow.

Here, a valid assumption is made that most of the pixels in the background image

with locations corresponding to those of the vehicles in the foreground mask belong to

the roadway region. However, due to the variety of camera view angles, different sizes

of vehicles, and occasional movements in the non-road regions, some of the pixels of

the foreground mask can belong to the areas outside of the road. In order to discard the

faulty outputs of the foreground segmentation method, a tracking approach is utilized to

only include the foreground mask of the moving vehicles and discard the pixels that are

segmented as foreground due to the possible motion in the areas outside of the roadway. For

the sake of simplicity and real-time performance, we apply the blob-tracking method [18]

for vehicle tracking. At each frame, the foreground mask of each tracked vehicle is saved

separately, and if the life-time and moving length of that track exceeds predefined thresholds,

the corresponding pixels of the entire foreground mask of that track in the active traffic

region map are added with a positive number. Applying filters to the foreground mask based
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on track life-time and the moving length of each track ensures that only vehicles passing

along the road are considered as part of the active traffic region and noises in the foreground

mask are disregarded.

In order to obtain a mask containing pixels that represent road samples Ωrsm, only the

foreground mask of vehicles with sizable movement and a long enough tracking lifetime is

considered. The moving direction of each vehicle is estimated and updated as follows in

each sequence of f frames:

vx = xm2 − xm1

vy = ym2 − ym1

di = arctan(vy, vx)

mvi =
√
v2x + v2y

(5.1)

where vx and vy are the components of the velocity vector, xm2 and ym2 are the average

x and y values of the blob centroid in the most recent f/2 frames, xm1 and ym1 are the

average x and y values of the blob centroid in the remaining f/2 frames, di is the estimated

direction of the vehicle i, and mvi is the estimated magnitude of the vehicle i, respectively.

The filtered foreground mask of each vehicle is then cropped with regard to its moving

direction so that only the part that corresponds to the road region is added to the Ωrsm

mask. Figure 5.1 illustrates some examples of the road sampling strategy which helps avoid

including non-road regions in the Ωrsm at the boundaries of the roadway. The road samples

are accumulated throughout the video, and the Ωrsm mask will cover more parts of the road

when more vehicles pass along the roadway.

5.2.2 Road region probability map extraction

Creating a single probability map that represents the roadway region in all cases is

rather difficult due to the variety of illumination, texture, color, and other visual

conditions. Therefore, generating multiple probability maps and merging them helps obtain
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a more reliable probability distribution for classifying the pixels into road and non-road

regions. In this section, multiple approaches are taken in order to generate a number of

probability maps using low-level features, e.g., color, edge, and temporal features. The

generated probability maps are further combined together to obtain a binary classification

mask, which is in turn refined by the accumulative foreground mask as the number of passing

vehicles increases.

Extraction of probability maps based on difference images One approach to estimating

the road probability of the pixels is to compare the pixel’s value to the average value of the

initially selected road samples in Ωrsm. Similar to the approach used by Wang et al. [146],

the gray-scale image G∗ of background is first smoothed by applying a Gaussian convolution

kernel of size 3×3 to reduce the noise effect. Then the absolute difference between the mean

value ¯G∗
rsm of the grayscale image in the location of Ωrsm and each pixel in the smoothed

grayscale image is utilized to obtain a gray-scale difference image G. A similar process is

carried out on the three channels of the smoothed background image, and the three outputs

are added together to obtain another different image C based on the color input. In traffic

scenes where the roadway is considerably different in color from the surrounding area, the

hue channel of HSV color space can be a distinguishable factor in segmenting the road

pixels from the image, especially at the boundaries of the road. The background image is

also converted to HSV color space and the hue channel is utilized to acquire a difference

image H through a similar process. Figure 5.2 illustrates sample difference images obtained

from real traffic video data.

Lower values in the difference images correspond to the parts of the image that are

closer to the average value of the road pixels in Ωrsm and have a higher probability of

belonging to the road region. Therefore, the probability value of each pixel should be

inversely proportional to the corresponding pixel in the difference image.Based on the

difference images obtained so far, probability maps can be estimated accordingly based on
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(a) (b) (c) (d)

Figure 5.2 Extracting the auxiliary road region probability maps using difference images.
(a) The background image. (b), (c), (c) are the gray-scale, color, and hue difference images,
respectively.

(a) (b) (c) (d) (e)

Figure 5.3 Extracting the auxiliary road region probability maps using difference images.
(a) The background image. (b), (c), (d), (e) are the extracted probability maps PG, PC , PH ,
and PS , respectively.

61



which the probability of each pixel is calculated as follows:

P ′
K(pi) =

1−K(pi)

max(K(pi)|pi ∈ K)
(5.2)

where i = 1...N is the pixel index, K ∈ {G,C,H} refers to each difference image, and

P ′
K(pi) is the probability of the pixel pi belonging to the road region in the difference

image K. In order to normalize the brightness and increase the probability contrast of

the probability maps, their histograms are normalized to obtain an approximation of the

probability density function, and the normalized histograms are equalized as follows:

H ′
n,P ′

K
=
∑

0≤m<n

HP ′
K
(m)

PK(pi) = H ′
P ′
K
(P ′

K(pi))

(5.3)

where i = 1...N is the pixel index, K ∈ {G,C,H} represents each difference image, HP ′
K

and H ′
P ′
K

are the normalized histogram and the integral histogram of probability map P ′
K

respectively, and PK refers to the equalized histogram of each probability map.

The pixels representing the road region in traffic videos usually have a close value in

most parts of the roadway contained in the frame, and the road samples represent a high

percentage of the road pixels. Therefore, the standard deviation is usually assumed to have a

relatively small interval with a high level of confidence. The further the pixel values in G

are from the standard deviation of the pixels in the road sample mask Ωrsm, the probability

of belonging to the road region should drop. Considering the standard deviation of the road

samples, another probability map can be obtained as follows that specifically favors the

pixels that are close to the road samples:

α(pi) = max(0, sgn(G(pi)− σrsm))

PS(pi) = 1− α(pi)[
G(pi)

kσrsm

+
1

k2
], k − 1 ≤ G(pi)

σrsm

< k
(5.4)

where pi ∈ G, i = 1...N , σrsm is the standard deviation of the pixel values in Ωrsm mask

of G, k is a natural number in {k ∈ N|1 < k ≤ max(G(pi) − σrsm)}, and PS(pi) is the
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resulting probability map. Figure 5.3 represents the extracted probability maps from the

difference images.

Extraction of probability maps based on histogram models Another approach to

estimating the road region probability of each frame is to utilize histogram models extracted

from the road and non-road samples. A similarity measure is used in order to generate

probability maps that help classify the road and non-road pixels. The non-road samples are

taken from the regions outside of the final estimated road region in the previous frame. The

normalized histograms of the blue and green channels of the background image and the

gray-scale image G∗ are used to estimate probabilities as follows:

PK(pi) =
N r

K(K(pi))

N r
K(K(pi)) +Nnr

K (K(pi))
(5.5)

where i = 1...N is the pixel index, K ∈ {Blue,Green,Gray} refers to the blue and

green channels of the background image and the gray-scale image G∗, N r
K(K(pi)) and

Nnr
K (K(pi)) are the values of the K(pi)th bin in the histogram models obtained from the

road samples in Ωrsm and non-road samples of the previous frame respectively, and PK(pi)

is the probability of the pixel pi belonging to the road region in the image K. Since the

histogram models of the red channel and gray-scale of background image are close (as seen

in Figure 5.4(b)), the red-channel histogram is not considered and two probability maps

PGhist and PGBhist = PGreen + PBlue are obtained from the gray-scale image G∗ and a

combination of green and blue channels of the background image, respectively.

Extraction of probability maps based on edge information In many road detection

methods [84, 163] gradient filters are applied in order to differentiate between the road and

non-road regions based on the presumed fact that the road region contains considerably

less amount of gradient information compared to the surrounding areas. This is usually not

the case in traffic surveillance videos, where the objects are further from the camera and

the edge density is not much higher in the non-road regions. However, the dominant road

63



(a) (b) (c) (d)

Figure 5.4 Extracting the road region probability maps using histogram models. (a) The
background image. (b) The histogram plot representing the RGB channels and gray-scale
image of the background image. (c), (d) are the extracted probability maps PGBhist and
PGhist, respectively.

boundaries create strong edges, which can be used along with the location of the vehicles to

separate the road region from the surroundings. The Canny edge detection method is applied

on the gray-scale difference image G with lower and upper thresholds set to τl = 0.66×M

and τh = 1.33 ×M , respectively; where M is the median luminance of G. Figure 5.7(c)

represents the edges extracted from the background image. Therefore, since the geometric

distortion caused by the perspective view of the camera lens results in the loss of valuable

edge information in the regions that are further from the camera, the horizontal line can be

estimated and considered as a secondary boundary in addition to the background edges in

order to avoid including areas like the sky above the vanishing point inside the road region.

In order to avoid the inclusion of non-road pixels as seed points for flood-fill operation,

a single block from the colored difference image C located at one of the corner points
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of each vehicle’s surrounding bounding box is chosen as the road sample. The selected

corner is picked according to the moving direction of each vehicle in order to make sure

the sample block is certain to belong entirely to the road region. The pixels in the chosen

blocks form a flood seed mask Ωfsm which contains the starting nodes for the procedure of

flood-fill algorithm. The extracted edges from the gray-scale difference image G along with

the horizontal line are used as boundaries for the flood-fill algorithm with a connectivity

value of 4, in order to fill the connected components with a constant value in a flood-fill

mask image MF . The maximal lower and upper intensity difference between the currently

observed pixel and one of its four nearest neighbors of the same component, or a new seed

pixel being added to the component is calculated based on the standard deviation of the

colored difference image C as follows:

m =
1

N

N∑
i=1

C(pi)

s =

√∑N
i=1(C(pi)−m)2

N

thr = max(1,
s

k
)

(5.6)

where m is the mean value of the colored difference image C, N is the total number of

pixels in the background image, pi is the intensity value of the i− th pixel, k is a pre-defined

constant, and thr is the maximal lower or upper intensity difference. The maximal lower

and upper thresholds are selected based on the general intensity difference among the pixels

of the entire background image.

When the dissimilarity among intensity values is relatively large, the connected

components in the Flood-Fill method tend to grow slower, and thus a larger value for the

maximal thresholds is chosen. On the other hand, in cases where the intensity values are

close, e.g., foggy and rainy weather conditions or night time videos, the distinction level

between pixels that belong to the road region and pixels that belong to the side of the road

is lower. Therefore, in order to avoid connecting the pixels outside of the road area to the
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Algorithm 2: Acquiring The Accumulative Foreground Mask

Input:
The size of each video frame
The set T of vehicle tracks in the current frame
The set of blobs for each track Bt = {b1, ...bn}
A set of predefined thresholds T = {τd, τi, τs}

Output:
The accumulative foreground mask Facc of the same size as the video
frame

1 initialize Facc with 0;
2 foreach t ∈ T do
3 if size(t) < τs then
4 continue;
5 end
6 d = ∥tcn − tc1∥;
7 if d < τd then
8 continue;
9 end

10 add track’s current blob bn to track’s accumulative mask Ft;
11 if ti > τi then
12 Facc[Ft] = Facc[Ft] + d;
13 end
14 end
15 Facc =

Facc

max(Facc)
;

generated components, a smaller value is needed for the maximal thresholds. Another

consideration to avoid the inclusion of the pixels outside of the road area as seed points

for flood-fill operation, a single seed point is selected for each vehicle based on its moving

direction. We consider the moving direction of the vehicle and always select one of the

corner points of its surrounding bounding box that is certain to belong to the road area, thus

avoiding the selection of non-road pixels as seed points.

After applying the edge detection method, leak segmentation error can still occur

due to lack of enough gradient information at the dominant road boundaries, which can be

corrected by using the accumulative foreground mask Facc. Algorithm 2 shows the steps of

accumulating the foreground masks obtained by the GFM [125] method with false positives

and slow-moving object filtered out by applying two thresholds τd and τs at steps 3–8. The
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threshold τi is used to define how long a track has to be inactive before being removed. The

accumulative foreground mask Facc is added by d in the location of the track only after track

t has been removed from the set T (step 11 of Algorithm 2). This way, the tracks with larger

movements contribute more to the estimated road region. At the end, Facc is normalized as

it is divided by the maximum value.

The contours of Facc are smoothed using a Gaussian kernel. The Gaussian coefficients

are calculated as follows:

σ′ =
1

2
(cσ + 1)

M = 2 (sgn(σ′)⌊|σ′|+ 0.5⌋)− 1

gi = αexp

(
−
(
i− M−1

2

)2
2σ2

)
,
M−1∑
i=0

gi = 1

(5.7)

where c is an integer constant, M ∈ {2n + 1 : n ∈ Z} is the Gaussian aperture size, σ is

the standard deviation, α is the scale factor chosen so that
∑M−1

i=0 gi = 1, and gi is the i-th

Gaussian filter coefficient.

The contours are smoothed separately over each X and Y axis:

Ck
j (n) =


Cj (|C|+ n− k) ,if n < k

Cj (n− k − |C|) ,if n > (k + |C| − 1)

Cj (n− k) ,otherwise

C∗
j (n) =

M−1∑
i=0

Ck
j (n)gi , k = −L...L

(5.8)

where n = 0... (|C| − 1) is the index of each point on the curve,C is the surrounding

contour of the accumulative foreground mask,j ∈ {x, y} represents the x or y axis,L =

1
2
(M− 1),and C∗

j (n) is the position of the n-th point in the smoothed contour.

The sides of the smoothed contours, which correspond to the boundaries of the road,

are partitioned into a set of K separate clusters C = {ck}Kk=1 based on their connectivity,

which is in turn measured by Euclidean distance. The points of each cluster ck are resampled
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by traversing in a pace equal to resample size mk = sk/d where sk is the arc-length of ck

and d is a pre-defined constant.

Then a simple approach is used to estimate the boundaries of the road by fitting a

second-degree polynomial curve to each cluster. The l component analysis (PCA) method is

applied to each set of re-sampled points in order to calculate the direction of the maximum

variation in the set. First a matrix Pk ∈ Nmk×2 is formed with each row containing the

x, y coordinate values of each resampled point from ck. Then the covariance matrix Sk is

computed as follows:

uk =
1

mk

mk∑
i=1

Pk

Sk =
1

mk − 1

mk∑
i=1

(Pk − uk)(Pk − uk)
T

(5.9)

where uk is a row vector that contains the mean x̄ and ȳ values of each column in Pk. The

eigenvalues and eigenvectors of the covariance matrix are calculated as follows:

λk
1, λ

k
2 =

1

2

(
σ2
xk

+ σ2
yk
±
√(

σ2
xk

− σ2
yk

)2
+ 4σ2

xkyk

)

ekj =
1√

σ2
xkyk

+
(
λj − σ2

xk

)2
 σ2

xkyk

λj − σ2
xk

 (5.10)

where j ∈ {1, 2}, σ2
xk

, σ2
yk

, and σ2
xkyk

are the variance of x, variance of y, and covariance

of xy values in Pk, respectively. λk
j and ekj are the eigenvalues and their corresponding

eigenvectors of Sk. A matrix Ek is defined as follows:

Ek =

ak11 ak12

ak21 ak22

 (5.11)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5 The estimation process of the road boundaries. (a) Sample traffic video frame.
(b) Accumulative foreground mask after one minute. (c) Contours of the accumulative
foreground masks. (d) Smoothed contours. (e) Cropped contours. (f) Clustering.
(g) Resampled points. (h) The estimated road boundaries.

where ek1 =
[
ak11, a

k
21

]T and ek2 =
[
ak12, a

k
22

]T are the first and second eigenvectors of Pk,

respectively. A new axis is generated and the data points from Pk are rotated as follows:

θk = cos−1 (tr(Ek)/2)

Rk =

cos θk − sin θk

sin θk cos θk


P′T

k = RkP
T
k

(5.12)

where θk is the direction of maximum dispersion in Pk, tr(Ek) = ak11 + ak22, Rk is the

rotation matrix, and P′
k is the matrix containing the rotated points. After second-degree

polynomial curve-fitting on each P′
k, the resulting curves are rotated back to the original

x and y axis to represent an estimation of the dominant road boundaries. Figure 5.5 and

Figure 5.6 represent an example of road boundary estimation.

Figure 5.7 presents examples of the flood-fill algorithm applied on traffic videos in a

period of one minute.
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(a) (b) (c)

Figure 5.6 Extracting the dominant road boundaries using the PCA method. (a) Resampled
points used for curve fitting. (b) The direction of the maximum variation recognized by
PCA. (c) The limiting boundaries estimated by curve fitting.

5.2.3 Updating and merging the extracted probability maps

The extracted probability maps are updated in order to take into account the gathered

information from all observed frames. As more vehicles pass along different locations of

the roadway, the number of pixels in the Ω grows, which makes the probability maps of the

latest frames more reliable than the initial values. Also, when a pixel repeatedly appears in

the foreground mask of the moving vehicles, it is more likely to belong to the road region.

Therefore, all probability maps are updated by applying the temporal fusing algorithm at

each frame as follows:

P t
K(pi) =

∑t
f=1w

f
i × P f

K(pi)

1 +
∑t

f=1w
f
i

wf
i =

N∑
j=1

Ωf
M(pj)

(5.13)

where i = 1...N is the pixel index, wf
i is the weight associated with pixel pi at frame f ,

K ∈ {G,C,H, S,Ghist,GBhist, F} refers to the source of each probability map, P f
K(pi)

is the probability value of pixel pi at frame f , M ∈ {rsm, fsm} is the source of the

sample mask containing the initial seed points, Ωf
M(pi) ∈ {0, 1} is the value of pi in the

accumulative road sample mask of frame f , N is the total number of pixels in each frame,

and P t
K(pi) is the updated probability value of pixel pi.
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(a) (b) (c) (d)

Figure 5.7 Extracting the road region using the cumulative maps of the flood-fill method.
(a) Original video frame. (b) The background obtained by the GFM method. (c) The edges
of the background image. (d) The retrieved road map.

The updated probability values for each pixel extracted from different sources should

be combined with each other in order to obtain a consensus estimation. If we denote the set

of all pixels with N and the set of extracted probability maps with K, the event Ri specifying

whether a pixel i ∈ N belongs to the road region or not, can be considered as a Bernoulli

random variable Ber(qi) where qi ∈ [0, 1].Ri = 1 means i belongs to the road region and
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Figure 5.8 The process of merging and refining the probability maps. The extracted
probability maps are combined and the Otsu’s threshold is applied on the result. The
non-road pixels that are misclassified as a part of the road region due to similar color values
are later filtered out by intersecting the binary image with the accumulative foreground
mask.

Ri = 0 means i is a non-road pixel. The set of generated probability maps, K, contains

several estimations, each of which is drawn from a different source of information. We

denote the probability prediction of source j made on pixel i with pi,j ∈ [0, 1]. To solve a

probability aggregation problem, we need to design a function F : ([0, 1])|N |×|K| → [0, 1]|N |

that takes the predicted probabilities {pi,j}i∈N ,j∈K as input and generates an aggregated

probability estimation q̂i ∈ [0, 1] for each pixel i.

Some simple approaches to aggregate probability predictions are the arithmetic mean

of the probabilities, the median of the probabilities, majority voting, the logarithmic opinion

pool, and the Beta-transformed linear opinion pool. Here, we use weighted mean and

median in order to solve the aggregation problem by considering the different degrees

of reliability among the generated probability maps and also, taking into account that

the aggregated estimation should tend towards the majority opinion in extreme cases of

probability predictions.The values of each pixel i in the set Kare sorted and the resulting
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ordered list K′ = {P ′
1, ..., P

′
m} is utilized to define the weighted median p′i,k such that:

k−1∑
j=1

wj ≤ 1/2 and

|K′|∑
j=k

wj ≤ 1/2 (5.14)

where j = 1...K is the index of the probability maps and wj is the weight for each map

representing its reliability. Experimental results have shown higher stability of the PF and

PS probability maps and higher weights are assigned to these source in the aggregation

process.

If the values of a pixel in the set of extracted probability maps K = {P1, ..., Pm}

have a large median, it means that the pixel has a high value in most probability maps and,

therefore, is most likely inside the road region. On the other hand, low median means most

predictions contain a low value for a pixel and it most likely belongs to the non-road area.

The aggregated probability values are calculated as follows:

q̂i =



1
(m−k+1)

∑m
j=k p

′
i,j , if p′i,k > θ1

1
k

∑k
j=1 p

′
i,j , if p′i,k < (1− θ1)

1
2
(p′i,k +

∑
j∈K wjpi,j∑

j∈K wj
) , otherwise

(5.15)

where i ∈ N is a pixel, p′i,j is the probability value of pixel i in the sorted probability set

K′ = {p′i,j}i∈N ,j∈K′ , k is the index of the weighted median value p′i,k, θ is a pre-defined

threshold close to 1, and q̂i is the aggregated probability value for pixel pi. The Otsu’s

threshold [49] is applied to the resulting map in order to filter out the regions with low

probability value.

When the intersection between the binary probability mask and the aggregated

foreground mask surpasses a threshold, the cumulative foreground mask has covered most

of the road pixels after morphological dilation with a size close to the average size of

vehicles. The morphological procedure is performed on MF to bridge the gaps and the
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intersection between its result and P∗
R is utilized as the final estimated road region as follows:

M′
F = MF ⊕B

T =
|M′

F ∩ P∗
R|

|P∗
R|

MR =


P∗

R , if T < θ

M′
F ∩ P∗

R , otherwise

(5.16)

where M′
F = {x|[(B̂)x ∩ MF ] ̸= ∅} is the result of a dilation operation with B as a

structuring element,T is the number of common pixels between the probability mask and

the accumulative flood-fill mask,θ ∈ [0, 1] is a predefined threshold,and MR is the final

mask representing road pixels.

As illustrated in Figure 5.19, the intersection between the cumulative foreground mask

and the binary fused probabilitymask is utilized as the final estimated road region. This way,

the possible misclassified non-road regions are removed, and the final road map is refined

by the exclusion of the over segmentation and leak segmentation errors.

5.2.4 A novel statistical method for separating major traffic directions

Most roads and highways carry traffic in two opposite directions. In the case of most traffic

video analytic tasks, a separate ROI is needed for each side of the road. In order to retrieve

an ROI for each side of the road, the tracking information obtained from the blob-tracking

approach is used to detect the moving direction of each vehicle. The centroid of each track at

the starting and ending positions is compared to estimate the direction of its movement. To

avoid the effects of noises in the foreground and noisy results of the tracking method, only

vehicles with high enough movement size and speed are considered. Each time such a

vehicle passes along the road, the pixels with a corresponding location in its foreground

mask are added with a positive number in the road map of the correct direction and added

with a negative number in the road map in the opposite direction. To avoid having common

areas between left and right regions, we try to remove the foreground mask of a vehicle
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(a) (b) (c)

Figure 5.9 Separated accumulative foreground masks of the moving vehicles. (a) Original
traffic video frame. (b) and (c) are the accumulative foreground masks of the left and right
sides, respectively.

(a) (b) (c)

Figure 5.10 Assigning the overlapping area between the maps of the two traffic direction
to the correct side. (a) The original traffic video frame. (b) The blue color indicates the
overlapping area between two ROIs. (c) The overlapping area is assigned to the correct ROI
and removed from the other ROI.

from the opposite side when it is being added to one side, in case it has previously been

added to the opposite side by mistake.

For each tracked vehicle that passes along the road, the left and right sides of the road

are updated as follows:

m = max(0, α
T∑

f=1

mv − β(mo +
T∑

f=1

mvo)) (5.17)
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where m is the traffic region map for one side of the road, mv is the foreground mask of

the vehicle passing along that side at frame f , mvo is the foreground mask of the vehicle

passing along the opposite side at frame f , mo is the traffic region map of the opposite side

of the road, T is the current frame, and α and β are predefined coefficients between 0 and 1.

In order to speed up the update process of the traffic region maps, α and β should be closer

to 1, and in order to reduce the update errors, they should be closer to 0. Each road map is

then updated by applying Otsu’s threshold:

mf =


1, if macc ≥ τ

0, otherwise
(5.18)

where mf is the final traffic region binary map for each side, macc is the accumulative

foreground masks in that side, f is the current frame, τ is the calculated Otsu’s threshold,

mf is the foreground mask of frame f , and F is the total number of frames. The Otsu’s

threshold is applied to remove noises that are mostly caused by occasional noises in the

foreground mask. Figure 5.9 shows examples of the separated accumulative foreground

masks for the two major directions of the traffic flow.

In order to obtain an ROI for each side of the road that contains the road itself and a

good portion of its surroundings, the convex hull of the road map’s contour is used for each

side. The two convex hulls corresponding to the contours obtained from the road map of

each side of the road have proven to be good representations for the ROI, as they involve

the entire road and its surroundings while avoiding the regions outside of the road and

therefore save the video analytic applications from unnecessary noise and computational

overload. However, in videos where the camera angle is from one side of the road, the

foreground masks of the vehicles from different sides can overlap each other, which in turn

causes an intersecting area between the convex hulls of the two sides in the middle part of

the road. The overlapping area should be removed from the ROI of the wrong side to avoid

false positive results in further video analysis tasks. In order to decide which side of the
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Figure 5.11 Extracting a matrix of motion flow vectors using GMM method with optical
flow vectors as input. First row contains sample frames of traffic videos. Second row
represents the corresponding flow model matrix obtained from the GMM method.

road the overlapping area belongs to, the intersection between the overlapping area and the

convex hull of each side is calculated, and the overlapping area is removed from the ROI of

the side with the lower intersection. Figure 5.10 shows the overlapping area removed by our

proposed method.

In some videos, the traffic flows in more than two directions, and further steps are

required to be taken in order to extract only the regions corresponding to the major directions

and exclude others. In this case, using the direction obtained from tracking is not enough

to separate the regions with similar directions but different road segments. Here, we have

applied a statistical method based on Gaussian Mixture Models (GMM) in order to estimate

the general moving velocity of the vehicles at various locations on the road. At each frame,

the Lucas-Kanade optical flow method [7] is applied to obtain a matrix of flow vectors in

the size of the entire frame. The Lucas-Kanade optical flow method has incorrect outputs,

especially in video with low resolution, and the results of a few frames are not reliable for

estimating the motion vectors. To overcome this problem, the non-zero magnitude and speed

of the optical flow vectors in a sequence of frames are utilized as two-dimensional input

vectors by the GMM method in order to estimate the most probable velocity at each pixel.
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(a) (b) (c)

(d) (e)

Figure 5.12 Excluding smaller road regions with similar direction to one of the major traffic
regions. (a) The original traffic video frame. (b) The road under the bridge is incorrectly
grouped with one of the major traffic regions. (c) The flow vectors obtained by the GMM
method. (d) Applying K-means clustering method to separate the small region with a similar
direction. (e) The small region is excluded from the ROI.

The Gaussian modeling of the optical flow vectors is described as follows:

P (x) =
K∑
k=1

WkN(x|ωk) (5.19)

N(x|ωk) =
exp

{
−1

2
(x− µk)

tΣ−1
k (x− µk)

}
(2π)d/2 | Σk |1/2

(5.20)

K∑
k=1

Wk = 1 (5.21)

where x ∈ Rd is the two-dimensional feature vector containing flow angle and magnitude of

each pixel, K is the number of Gaussian distributions in the flow model, Wk is the weight

of the kth Gaussian distribution N(x|ωk).µk and Σk are the mean vector and the covariance

matrix of the kth Gaussian density N(x|ωk). Note that the Gaussian model of each pixel is
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updated only when the magnitude of the optical flow is greater than zero. The results of the

GMM are further refined by removing incorrect estimations based on the general direction

of each tracked vehicle. Figure 5.11 shows examples of the optical flow vectors modeled by

the GMM method.

After generating the flow matrix, the K-means clustering approach is applied in order

to group pixels with vectors of close angles together, thus excluding the regions that are not

part of the two major traffic directions. Figure 5.12 shows an example of how the smaller

region falsely included in one of the two major traffic regions is separated and removed from

the ROI.

5.2.5 Single image based road detection based on illumination invariant image

In this section, we discuss automatic road region extraction in traffic images that aids with

ROI determination, which can be useful in the automated detection of obstacles, traffic

incidents, and driving violations. We propose an adaptive road recognition method that

extracts the road location from single frames. No assumption about the structure of the

road is made, and therefore, this method can be used for structured and unstructured road

scenarios. A triangular region in front of the vehicle is assumed to belong to the road region

and is utilized as the initial road sample. Initially, an illumination-invariant gray-scale image

is extracted from the RGB image in order to weaken the effects of shadows that decrease

the segmentation performance. Afterward, the boundaries of the road and the horizontal

line are estimated. in order to limit the road map from the previous step and avoid possible

leak-segmentation errors. Finally, the Chan-Vese segmentation algorithm is applied to the

illumination invariant image in order to segment the road region.

Generating the illumination invariant image The shadows cast on the objects in an

image captured by a regular camera have negative effects on most computer vision tasks such

as segmentation and object detection, especially in outdoor scenes. Therefore, eliminating or

weakening the effects of illumination and shadows as a preprocessing step can improve the
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performance of vision tasks. One of the main methods for weakening the effects of shadows

is to derive a one-dimensional illumination invariant image from the three-channel color

image based on the relations between the three color values. Assuming a Planckian light

source and Lambertian surface for the objects in the natural environment, we can denote the

spectral power distribution (SPD) of the light with E(λ, x, y) which is incident on a surface

with reflectance S(λ, x, y). Then the response of the camera sensor is as follows:

ρk(x, y) = σ(x, y)

∫
E(λ, x, y)S(λ, x, y)Qk(λ)dλ (5.22)

Where k ∈ 1, 2, 3, σ(x, y) is a constant equal to the dot product of the illumination direction

and the surface normal at location (x, y) and Qk (λ) is the sensitivity of the k-th camera

sensor. If we drop the indices for the locations and assume the camera sensors are based on

Dirac delta functions Qk (λk) = qkδ(λ− λk), we would have:

ρk = σE (λk)S(λk)qk (5.23)

If the illumination is modeled by Wien’s approximation to Planck’s law, the SPD can

be demonstrated by its color temperature as follows:

E (λ, T ) = Ic1λ
−5e−

c2
Tλ (5.24)

With c1 and c2 being constants I being the overall intensity of the light. Therefore, the

response of each camera sensor to can be expressed as follows:

ρk = σ Ic1λ
−5e−

c2
TλS(λk)qk (5.25)

If we calculate the ratio chromaticities using the color channels, we would have:

χ =

χ1

χ2

 =

R/G

B/G

 =


(
λR

−5e
− c2

TλR S(λR)qR

)
/
(
λG

−5e
− c2

TλG S(λG)qG

)
(
λB

−5e
− c2

TλB S(λB)qB

)
/
(
λG

−5e
− c2

TλG S(λG)qG

)
 (5.26)
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In logarithmic space, we would have:

χ′ =

logχ1

logχ2

 =

log [(λR
−5S(λR)qR)/(λG

−5S(λG)qG)
]
+ T−1c2

(
1
λG

− 1
λR

)
log
[
(λR

−5S(λR)qR)/(λG
−5S(λG)qG)

]
+ T−1c2

(
1
λG

− 1
λR

)
 = s+ eT−1

(5.27)

Which indicates that by varying the illumination (T) the vector χ′ moves along a straight

line in the log-chromaticity space for each surface. Therefore, by determining the direction

of vector e, we can specify the changes in illumination which is only camera-dependent and

by projecting the vector χ′ onto the vector e⊥ orthogonal to e, a one-dimensional grayscale

image is generated as follows:

Ginv = exp
(
χ′te⊥

)
(5.28)

Where the effect of the illumination is weakened.

Here, if we represent the triangular area containing the road samples as Ω, for

each road image I the RGB values of pixel pi ∈ I where i ∈ 1, . . . , N are indicated

by (R (pi) , G (pi) , B (pi)) and the corresponding intrinsic image is calculated as follows:

xi = log (R (pi)/G (pi))− ¯log (R (pΩ)/G (pΩ))

yi = log (B (pi)/G (pi))− ¯log (R (pΩ)/G (pΩ))

Ginv = xi cosα + yi sinα

(5.29)

In order to calculate the angle α, we have used the median of four different values

based on moment 1, linear regression, moment 3, and principal component analysis (PCA)
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Figure 5.13 Transformation from RGB to 1D intrinsic image. (a) The original road image.
(b) Log-Chromaticity space. (c) The intrinsic image.

to estimate a more accurate and general value as follows:

α1 = tan−1
(
sign

(
σ2
XY

))∑
i |xi|∑
i |yi|

α2 =
1

2

(
tan−1

(
σ2
X

σ2
XY

)
+ tan−1

(
σ2
Y

σ2
XY

))

α3 = tan−1

 3

√
1
N

∑
i y

3
i

3

√
1
N

∑
i x

3
i

 = tan−1

(
3

√∑
i y

3
i∑

i x
3
i

)

α4 = tan−1

(
e⃗y
e⃗x

)
αmed = med {αi}4i=1

(5.30)

where e⃗ is the first principal component. In Figure 5.13, we can see an example of weakening

the shadow effect by projecting the log ratio values onto an orthogonal vector to e.

Road boundaries extraction In order to extract the dominant boundaries of the road,

first we need to weaken the shadow effects while preserving the gradient information
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corresponding to the material changes. Therefore, we cannot use the intrinsic image from

the previous step since it also reduces the amount of gradient information at important edges.

Here, we have used another shadow feature which is robust to strong shadows in order

to reduce the illumination effects while intensifying the edges corresponding to material

changes. This feature extraction method has less dependence on the camera settings and

relies on the fact that road color values in the RGB space are close to each other. In most

cases, the road surface has relatively similar values in red, green, and blue components,

whereas the surrounding vegetation has one component considerably higher than the other.

This fact can be used as a discriminating feature between shadow edges and the edges

corresponding to material changes. By assuming the road to be a homogeneous dielectric

surface, the values of pixels of the same material lie on a line passing the origin in the RGB

space with a small offset. We can assume a vector for each pixel that belongs to the road

surface in the RGB space.

The cause of shadows is the occlusion of sunlight by objects, and in the shadow areas,

the road is illuminated by skylight. On the other hand, we know that in the outdoor scenes,

the white light emitted from the sun is scattered in all directions by molecules in the air.

The Rayleigh scattering effect is higher in the shorter wavelengths, such as blue, which

causes the sky to appear bluish. Whereas light in the longer wavelengths, such as red, passes

through the atmosphere with less scattering effect. Therefore, we can confidently state that

the attenuation is non-proportional due to the ambient illumination, which is blue in this case.

As the ambient light can have a Spectral Power Distribution (SPD) different from that of

incident light, the decrease in luminance when a surface is under shadow is not proportional

among the color channels. Here, we have used the HSV color-space in order to generate

a grayscale image where the gradient information is stronger in edges corresponding to

material changes in comparison to edges corresponding to illumination changes. The RGB

image is converted to HSV color-space where the V component represents the maximum

value among the red, green, and blue channels and the S component denotes the saturation
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Figure 5.14 Examples of the proposed shadow feature extractor. First row contains some
sample road images and the second row represents the corresponding results of the shadow
weakening method.

and is calculated as follows:

S =
max (R,G,B)−min (R,G,B)

max (R,G,B)
(5.31)

Taking into account that the road surfaces have similar values among the three

components, we introduce a feature to weaken the shadow effects while preserving the

discriminating properties of material changes as follows:

F ≜ 2− V + b

B + ε
(5.32)

where F represents a feature matrix with the same size as the image, b is a bias that is

dependent on the camera sensors and can be estimated by polynomial fitting, and ε is a

small positive constant. Some examples of the extracted feature can be seen in Figure 5.14.

After weakening the illumination effects, we can extract the candidate road boundaries

by using the global thresholding method and only filtering the bottom section of each image,

followed by a morphological operation and connected component analysis to remove the

small blobs that are considered to be noise. A middle-to-side operation is performed in order

to extract the pixels corresponding to the road boundaries. A bottom-up scan is applied
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Figure 5.15 An example of road boundary detection. First row contains some sample road
images and the second row represents the corresponding results of the boundary detection
and horizontal line estimation method indicated by a red line.

to each column, and the first non-zero pixels are marked as boundary candidates. Then

a middle-to-left and right-to-left scan is performed on the candidate pixels to extract the

left and right boundaries, respectively. Finally, the Hough transformation is applied to fit a

straight line on each boundary, and the vanishing point is defined as the intersection of the two

lines, which is assumed to be located on the horizontal line. These boundaries are later used

in order to limit the segmentation process and reduce the amount of leakage-segmentation

errors. An example of road boundary detection is shown in Figure 5.15.
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Road region segmentation In order to segment the road region, the Chan-Vese

segmentation algorithm is applied. This model for active contours is more robust than

traditional segmentation methods such as thresholding or gradient-based methods. The

Chan-Vese model is based on the Mumford-Shah function and is mostly used in medical

images. In the case of road segmentation, we have already extracted the road boundaries,

and a region-growing strategy such as active contour seems to be a choice. The neighboring

pixels of a set of initial seed points are examined and decided whether to be added to the

region or not in an iterative manner. In the Chan-Vese model, the goal is to minimize the

energy defined as the weighted values corresponding to the sum of intensity variations

among the pixels inside and outside of the currently segmented region and a term indicating

the arc length of the region’s boundary. Here, we first apply the segmentation method to the

illumination invariant image extracted in the first step. Then the extracted region is filtered

by removing the possible pixels segmented as part of the road region as a leak-segmentation

error. This error is usually caused by the similarities between the sky and road chromaticity

proportions. Some examples of the iterative region-growing method are illustrated in

Figure 5.16. The initial seed points are chosen from the triangular area assumed to belong

to the road region, and the region is iteratively grown until the boundaries of the road

are covered. After this step, the leak-segmentation errors must be removed by using the

horizontal line calculated in the previous step.

The similarities between the sky and the road region in terms of chromaticity and

color component proportions tend to cause leak-segmentation errors in some images. In

order to deal with these types of errors, we can apply to limit boundaries the horizontal line

estimated in the previous steps. The resulting mask of the segmentation step is intersected

with the resulting binary mask of the road boundary detection step in order to remove areas

that are outside of the boundaries (such as the sky) while preserving the exact boundary

points of the road instead of the straight lines.
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Figure 5.16 A few results of the road segmentation method. The first row contains some
sample road images, the second row represents the corresponding ground truth road map,
and the third row shows the results of the road segmentation method indicated by a red
mask.

5.3 Experiments

In this section, the performance of the proposed method is evaluated on different videos

with various illumination and weather conditions, resolution, and frame-rate values in order

to ensure the diversity of the tested data. The used dataset, provided by the New Jersey

Department of Transportation (NJDOT), contains 84 real traffic surveillance videos with

various illumination conditions, road shapes, resolutions, viewing angles, and frame rates.

A sample frame of each video is displayed in the first rows of Figures 5.17 and 5.18. The

ground-truth mask representing the road region corresponding to each video is illustrated in

the second row of Figures 5.17 and 5.18 and the third rows present the resulting extracted

road as a red mask on the background image of each video.
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(a) Video 1 (b) Video 2 (c) Video 3 (d) Video 4 (e) Video 5 (f) Video 6

Figure 5.17 Road extraction results in regular traffic videos. The first row displays a sample
frame of each video. The second row represents the ground-truth road region masks. The
third row illustrates the extracted road region by the proposed method before applying the
accumulative foreground mask.

(a) Video 7 (b) Video 8 (c) Video 9 (d) Video 10 (e) Video 11 (f) Video 12

Figure 5.18 Road extraction results in traffic videos with challenging illumination conditions.
The first row displays a sample frame of each video. The second row represents the
ground-truth road region masks. The third row illustrates the extracted road region by the
proposed method before applying the accumulative foreground mask.

5.3.1 Dataset

As the automatic two-direction ROI determination method is a relatively new topic in

traffic video processing, there is no publicly available benchmark dataset with ground-truth
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Figure 5.19 The F-measure score, accuracy, and false-positive rate of the proposed road
extraction method at different frames, tested on some of the sample traffic videos. The
sudden improvement in the performance measures happens when the first vehicle is observed
in the video sequence and the initial road samples are obtained based on its location.

(a) Video 9 (b) Video 10 (c) Video 11 (d) Video 12

(e) Video 13 (f) Video 14 (g) Video 15 (h) Video 16

Figure 5.20 Some experimental results of the proposed method on traffic surveillance videos.
The blue color and green color indicate the two sides of traffic (ROIs) determined by our
proposed method.
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Table 5.1 The Quantitative Evaluation of the Proposed Road Detection Method

Video # Precision Recall F-Score
1 0.98 0.96 0.97
2 0.87 0.93 0.90
3 1.0 0.95 0.97
4 0.93 0.94 0.93
5 0.99 0.87 0.92
6 0.99 0.73 0.84
7 0.86 0.98 0.92
8 0.89 0.96 0.92
9 0.97 0.89 0.93

10 0.80 0.92 0.86
11 0.97 0.89 0.93
12 0.99 0.91 0.95

Average 0.94 0.91 0.93

Table 5.2 The Properties of the Traffic Video Sequences Represented in Figure 5.20

Video # 9 10 11 12
Resolution 320× 240 352× 240 640× 482 640× 480

FPS 15 15 15 15
Video # 13 14 15 16

Resolution 352× 240 320× 240 320× 240 320× 240
FPS 30 15 15 15

data for two-side roadways. We have used real traffic video sequences from the New

Jersey Department of Transportation (NJDOT) for evaluation. This dataset contains dozens

of diverse traffic surveillance video scenarios, with different illumination circumstances,

weather conditions, and spatial resolutions.

5.3.2 Performance analysis

The experiments were carried out using a Dell XPS 8900 PC with a 3.4 GHz processor

and 16 GB of RAM. The average speed was ∼ 42.22 frames per second for videos of a

size 720 × 480 pixels, which shows the feasibility of the proposed method for real-time

applications.
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In order to evaluate the quantitative results, several evaluation metrics are utilized as

follows: 

FPR = FP/(FP + TN)

PRE = TP/(TP + FP )

REC = TP/(TP + FN)

ACC = (TP + TN)/(TP + FP + TN + FN)

F1 = 2× (PRE ×REC)/(PRE +REC)

(5.33)

where TP , FP refer to the number of pixels correctly and incorrectly detected as part of

the road region, and TN and FN are the number of pixels that are correctly and incorrectly

detected as part of the non-road region, respectively. FPR, PRE, REC, ACC, and F1

refer to false positive rate, precision, recall, accuracy, and F-measure respectively. The

number of pixels classified as road and non-road are compared with the ground-truth data to

calculate each measure. Figure 5.19 demonstrates the accuracy, F1 score, and false-positive

rate charts for a number of traffic videos. An instant improvement in the detection results

can be seen in the charts shown in Figure 5.19 which corresponds to the frame at which the

first vehicle is observed in the video and a number of pixels corresponding to the location of

the vehicle can be used as initial road samples.

Table 5.1 shows the quantitative performance of the road extraction method given

12 sample traffic videos. The precision values are higher than the recall values in most

cases, which means that the entire roadway region is not always extracted due to under-

segmentation. Some examples can be seen in Figures 5.17(e), 5.17(f), 5.18(a) and 5.18(e).

This is usually caused by the perspective view and losing the tracking information at the far

side of the road. Also, strong cast shadows and congested traffic can result in excluding some

road pixels at the initial frames from the road map (e.g., Figure 5.18(b)). In some videos,

the recall value is higher than the precision, which means there are more false-positive cases

than false-negative ones. This is due to the overestimation or leak segmentation, which is in
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turn caused by inconspicuous edges and a lack of sufficient gradient information at the road

boundaries. Another reason is the illumination effect, which makes the non-road regions

such as the sky have similar values to the road pixels. Some examples of this can be seen in

Figures 5.17(b), 5.17(d), 5.18(e) and 5.18(f). Here, we do not make any presumptions about

the shape of the road in order for the approach to work on unstructured roads. Therefore,

segmentation errors cannot be avoided by restrictions based on geometric models.

The performance of the ROI detection method introduced in Section 5.2.4 is evaluated

using videos with various view angles and illumination conditions. Table 5.2 shows the

video information we have used in our experiment. Figure 5.20 illustrates some examples

of the ROIs determined by our proposed method. In each frame, the green and blue colors

represent the two traffic regions (ROI) determined by our proposed method, respectively. We

can see that the automatically detected regions cover most of the road regions, which can

directly be utilized as the ROIs in the applications of traffic surveillance videos.

5.3.3 Discussion

In this chapter, we have not made any assumptions about the shape of the roadway or the

viewing angle of the camera. This approach can work on straight, curved, forked, and other

road structures. The method is completely automatic and performed in real-time, which

makes it applicable in real-world scenarios. However, in some videos with challenging

illumination and weather conditions, the initial road region extraction might have leak

segmentation errors due to the similarities between the road pixels and the surrounding (e.g.

sky). These errors are later dealt with by using the location of moving foreground objects.

However, achieving a good ROI determination can take longer.

5.4 Conclusion

Determining the region of interest (ROI) is a fundamental preprocessing step in video

analysis applications. In this study, a statistical method is proposed to automatically
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determine the region of interest corresponding to two major traffic directions in surveillance

videos captured from roads with bidirectional traffic. Our proposed method has two

contributions. First, the road region is segmented automatically by using color, edge, and

temporal features and applying a background subtraction method along with the flood-fill

operation. Second, two regions of interest are generated, representing the major traffic

directions on roads and highways with bidirectional traffic. As opposed to the supervised

learning methods, the proposed method can adapt well to a wide range of videos with

different illumination conditions and viewing angles in real-time. The experimental results

using real traffic videos provided by NJDOT demonstrate the good performance of the

proposed methods.
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CHAPTER 6

SINGLE-VEHICLE ACCIDENT DETECTION

6.1 Introduction

Vehicle accidents on major roads and highways are one of the main issues in traffic

management. It is important to report accidents immediately when they occur so that

they can be dealt with without much delay. Automatic detection of traffic accidents helps

turn traffic back to normal, and if needed, further medical assistance may be requested in a

timely fashion. The term ”accident on the road” may refer to different scenarios, such as

rear-end, side-impact, head-on collisions, vehicle rollovers, or single-car accidents. The

focus of this study is on single-vehicle accidents when a vehicle strikes a stationary object

such as a tree or a barrier on the side of the road. Such incidents are usually caused by the

driver losing control of the vehicle and making a sudden turn towards the road-side when

there is no turning point.

In order to detect accidents on a highway involving vehicles, the first step is to

detect and separate them from the background. Background subtraction methods based on

the Gaussian mixture models are statistical techniques that provide a suitable approach

to extract the foreground objects with a relatively low time complexity. We apply the

Global Foreground Modeling (GFM) method [125] for foreground detection. Note that the

GFM method was chosen due to its robustness to noise, efficiency, and ability to keep the

temporarily stopped objects in the foreground model. This is helpful in cases where the

vehicles involved in an accident stop on the road after the accident.

After the moving objects are detected, they should be tracked as long as they are

present in the scene in order to monitor their behavior and classify specific types of motion

patterns. We apply the blob tracking method [18] for vehicle tracking. Note that this blob

tracking method does not always track the vehicle continuously, but it is chosen for real-time
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(a) Original frame (b) MOG foreground (c) GFM foreground

Figure 6.1 The foreground masks extracted using the MOG method and the GFM method,
respectively. Note that the GFM method extracts a more accurate foreground mask with
both the moving vehicles (blue) and the stopped vehicles (red) clearly detected in the binary
mask. In comparison, the MOG method fails to detect the stopped vehicles.

vehicle tracking due to its simplicity and low computational complexity. Note also that in

the process of accident detection, the vehicle only needs to be tracked for a short period of

time when it is involved in an accident.

The idea of our proposed real-time single-vehicle traffic accident detection framework

analyzes the motion of each vehicle and applies heuristics to decide whether the pattern

of movement matches those of single-vehicle accidents.First, the boundaries of the active

traffic region are automatically detected using the region of interest determination method

introduced in the previous chapter. Second, the direction and speed of a vehicle are examined.

For a single-vehicle accident to take place, the vehicle should move towards the side of the

road at a rather high speed. The tracking information is utilized to estimate the direction for

each vehicle, which is detailed in subsection 6.3.1. The average direction of the vehicles

is calculated to estimate the correct moving direction at each point in the active traffic

region. Finally, after noticing a vehicle making a sudden turn and moving outside of the

traffic region, the variations in speed and neighboring foreground pixels are examined to

decide whether a single-vehicle crash has happened. Subsection 6.3.2 explains the specific

method.
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6.2 A Statistical Modeling Method for Detecting Both Foreground Objects and
Stopped Moving Objects

Vehicle traffic accidents often involve moving vehicles and stopped moving vehicles, as

when a traffic accident occurs, a vehicle is initially moving and then stops. Therefore, traffic

accident detection requires a method that is capable of detecting both foreground objects

and stopped moving objects. We introduce in this section a statistical modeling approach

that applies the Global Foreground Modeling (GFM) method [125], the Mixture of Gaussian

(MOG) method [131], and the Bayes Classifier to detect foreground objects.

The GFM method models the foreground objects using a mixture of Gaussian

distributions. Taking advantage of the fact that the foreground objects appear at different

locations in some continuous frames, the GFM method models all the foreground pixels

globally.In addition, the GFM method updates its parameters as the video progresses in

order to adapt to different foreground objects.The global foreground model is described as

follows:

P (x|Mf ) =
K∑
k=1

WkN(x|ωk) (6.1)

N(x|ωk) =
exp

{
−1

2
(x− µk)

tΣ−1
k (x− µk)

}
(2π)d/2 | Σk |1/2

(6.2)

K∑
k=1

Wk = 1 (6.3)

where x ∈ Rd is the feature vector that describes each pixel, Mf means the foreground class,

K is the number of Gaussian distributions in the foreground model, Wk is the weight of the

kth Gaussian distribution N(x|ωk). µk and Σk are the mean vector and the covariance matrix

of the kth Gaussian density N(x|ωk). Note that every pixel that is classified as foreground

is used to update the foreground model P (x|Mf ). The foreground model is called global

because it contains all the information about foreground pixels in the frame.
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After the global foreground modeling, we also need to estimate a background model.

We use the traditional MOG method, which estimates a Gaussian mixture density function

for every location in a frame as the background model. The probability density function

P (x|Mb, L) is calculated for location L as described by Stauffer and Grimson [131].

In order to classify a pixel into a foreground class or a background class, we apply the

Bayes classifier for the classification.

p (x|Mf , L)P (Mf , L) > p (x|Mb, L)P (Mb, L) (6.4)

For each pixel in a frame, if the inequality 6.4 holds, the pixel is classified as a

foreground pixel. Otherwise, it is classified as a background pixel. Note that the conditional

probability density functions p(x|Mf , L) and p(x|Mb, L) are estimated using the GFM

model and the MOG model, respectively.The prior probabilities P (Mf , L) and P (Mb, L)

are estimated using the weights of the MOG model [53].

Figure 6.1 shows the foreground masks extracted using the MOG method and the

GFM method, respectively. Note that the GFM method extracts a more accurate foreground

mask with both the moving vehicles and the stopped vehicles clearly detected in the binary

mask. In comparison, the MOG method fails to detect stopped vehicles.

6.3 A Novel Real-Time Traffic Accident Detection Framework

Our proposed real-time single-vehicle traffic accident detection framework consists of

three major methods: an automated traffic region detection method, a new traffic direction

estimation method; and a traffic accident detection method using first-order logic. These

three methods detect the active traffic region, estimate the traffic direction, and detect

single-vehicle traffic accidents by applying the assumptions about the abnormality of the

movement and specific behaviors of a vehicle that lead to crashing into the traffic barrier.
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6.3.1 A new traffic direction estimation method

The first step after segmenting the foreground and tracking the vehicles is to estimate the

traffic direction on the road.Since in many traffic videos, the roads are curved, we cannot use

a single direction for the entire road segment. Therefore, we divide the road into a number

of rectangular areas and estimate one traffic direction for each of these areas based on the

average direction and magnitude of the moving vehicles for each area of the road.A number

of frames (f ) are used to estimate the direction of each vehicle. This is done by finding the

mean centroid from the first half and the second half of the f frames to estimate a consistent

and smooth direction for the movement of each vehicle. The direction and magnitude of

each vehicle are estimated as follows:

vx = xm2 − xm1

vy = ym2 − ym1

di = arctan(vy, vx)

mvi =
√

v2x + v2y

(6.5)

where vx and vy are the components of the velocity vector, xm2 and ym2 are the mean x and

y values of the blob centroid in the most recent f/2 frames, xm1 and ym1 are the mean x and

y values of the blob centroid in the remaining f/2 frames, di is the estimated direction of

the vehicle i, and mvi is the estimated magnitude of the vehicle i, respectively. Note that we

do not consider the slow movements for the direction estimation since, in these cases, the

centroids are too close, which can lead to faulty results. Furthermore, the vehicles have to be

mostly separated, and in situations when traffic congestion occurs, average directions are not

updated. Consequently, only movements with considerable speed and size are considered

for estimating the average direction and average speed.

After the calculation of the moving direction of the vehicles, the average direction and

magnitude in each part of the active traffic region can be estimated based on equations 6.6
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and 6.7 for each frame.

avg(ckd) = (1/F ) ∗
F∑

f=1

∑n
i=1 di,f
N

(6.6)

avg(ckm) = (1/F ) ∗
F∑

f=1

∑n
i=1 mi,f

N
(6.7)

where ckd and ckm are the direction and magnitude of cellk respectively, F is the total

number of frames, f is the current frame, n is the number of vehicles at cellk, N is the total

number of vehicles passed through cellk, and di,f and mi,f are the direction and magnitude

of vehicle i at frame f respectively, which are calculated based on equation 6.5.

Figure 6.2 shows the estimation of the traffic flow direction at each area of the curved

road. The size of these areas can be estimated by considering the size of the road section

and the average size of the vehicles. To partition the road, we used the contour derived from

the estimated traffic region map.

When a vehicle hits the traffic barrier, it usually starts with an abrupt movement,

which is mostly caused by the driver losing control of the vehicle. This rapid movement can

be detected by comparing the direction of the moving vehicle with the estimated direction

for the area of the road where the vehicle is currently traveling. If the two degrees differ

more than a notable value (d) and the magnitude of the movement is also large, it means

that the vehicle is making a sudden unexpected move that often can be dangerous. This kind

of hasty movement alone does not necessarily result in the vehicle colliding with the traffic

barrier or another vehicle.

We should also consider the location of the vehicle after it has made a hasty move. If

the vehicle goes beyond the estimated boundary of the road without slowing down its speed,

there can be two possibilities. Either the vehicle is making a turn to another road that is

not detected in road estimation (because there have not been enough cars making a similar

turn), or the driver is making a rapid side move, which can be due to losing control. In the
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(a) (b) (c)

Figure 6.2 Estimation of the traffic flow direction at each area of the curved road. (a) The
original frame from a traffic video. (b) The automatically partitioned rectangular areas of
the curved road. (c) The estimated average direction and magnitude of the moving vehicles
for each part of the road.

first case, the vehicle will not crash and will continue its movement, and that road will be

added to the estimated road map. However, if the vehicle actually hits an obstacle, it will

most probably have a considerable change in its speed, direction, and acceleration. In some

scenarios, this type of accident may also lead to vehicle rollovers. After the traffic accident,

the vehicle itself and some of the surrounding vehicles usually stop, and traffic congestion

occurs. All these cues can help detect a single-vehicle traffic accident. Furthermore, another

cue of a single-vehicle collision can be the foreground segmentation mask showing a splash

(an unexpected blob detected in the middle of the road) caused by the vehicle hitting the

traffic barrier (see Figure 6.3).

6.3.2 A traffic accident detection method using the first-order logic

By considering the occurrence of a sequence of steps, we are able to detect single-vehicle

collisions. To keep track of the target vehicle, we can use the stopped vehicle strategy as a
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(a) (b)

Figure 6.3 Unexpected blob detected in the middle of the foreground mask caused by the
vehicle hitting the traffic barrier. The vehicle and the unexpected emerged blob are indicated
by blue and red colors respectively. (a) The original frame from traffic video. (b) The
foreground mask and the unexpected blob caused by the vehicle crashing the traffic barrier.

factor that makes the assumption more certain. To detect whether the vehicle is stopped, we

use the foreground mask from the GFM method, which keeps the corresponding foreground

information for temporarily stationary objects. Due to the fact that, in most cases, the vehicle

stops after having an accident, and there might be some level of congestion and slow traffic

flow. In other words, the probability of an accident having taken place is high if the same

vehicle stops after the abnormal movement and if the nearby vehicles also stop or move

at a slow speed. We can make an assumption about an accident occurring after having all

these incidents happen in close proximity to each other. Here we consider all these factors

in order to decide on the possibility of a single-vehicle traffic accident.

The first step of the proposed method is to estimate the location and boundaries of

the two directions of the road by thresholding their accumulative foreground masks. As
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the number of vehicles passing through different parts of the road grows, the probability of

that region belonging to the road increases. This step is useful for having an estimate of the

correct traffic zone and the boundaries of the road.

The second step is to partition each part of the road into a number of rectangular areas,

each of which has an average direction, average speed, and average blob size. The purpose

of dividing the road into different areas is to estimate the direction of the traffic flow in each

area of the road. Note that while on straight roads the direction of the traffic flow does not

change much, on curved roads the direction changes rapidly. Therefore, partitioning the

traffic region into smaller areas and assigning a unique average direction and speed to each

of them can help improve traffic accident detection accuracy.The rectangular areas on each

side of the road are calculated automatically based on the contour of the active traffic region

map for that side. Each rectangular area covers the width of the road at the corresponding

location and the height of each rectangle is set to be small enough to be reliable even at the

curvy parts of the road.

The third step of the proposed method is to detect in real-time single-vehicle traffic

accidents. Since crashing the barrier usually starts with an abrupt side-move, the direction of

each tracked vehicle (not considering slow vehicles) is compared with the average direction

of the corresponding area (part of the road where the vehicle is currently on). If a vehicle

makes a rapid side-move, we keep track of that vehicle to see whether it moves out of the

road boundaries or whether the abrupt movement ends earlier. In the event that the vehicle

moves out of the traffic region, the changes in speed and the neighboring foreground mask

are monitored. If the speed decreases suddenly and an unexpected foreground blob appears

in the vicinity of the vehicle, it indicates that a crash has happened. Figure 6.4 shows the

flowchart of the proposed real-time single-vehicle traffic accident detection framework.

The idea of our proposed real-time single-vehicle traffic accident detection framework

may be expressed using the first-order logic knowledge representation language [119]. In
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Figure 6.4 Flowchart of the proposed real time single-vehicle traffic accident detection
framework.

particular, the following statements (6.8), (6.9) and (6.10) represent the idea of the traffic

accident detection.

∀vV ehicle(v) ∧ Fast(v) ∧ Swerve(v)

∧ ¬ShortDistance(v) ⇒ Rapid(v)

(6.8)

where v represents a vehicle, V ehicle(v) means that v is an actual tracked vehicle that

is in the current frame, Fast(v) means that the estimated magnitude for v is around the

average magnitude of the cell containing its centroid or higher, Swerve(v) indicates that

the calculated direction of movement for vehicle v is different from the average direction

of the cell containing its centroid by a value more than 45◦. ShortDistance(v) stipulates

that the size of movement should not be too small in order to avoid false positives caused by

the inaccuracies in the blob detection process. Rapid(v) means that vehicle v has made an

abrupt side-move in an unexpected location (see Figure 6.6(b)). These types of movements

do not always result in the vehicle crashing into an obstacle on the side of the road. Therefore,
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in order to draw the conclusion that an accident has happened, more information needs to be

considered.

∀vV ehicle(v) ∧OutOfBoundary(v)

∧ Splash(v) ⇒ Crash(v)

(6.9)

where OutOfBoundary(v) is a predicate which indicates that vehicle v has moved outside

of the estimated traffic region, Splash(v) means that there is an unexpected blob in the

foreground mask in the surrounding block of vehicle v, and crash(v) means that vehicle v

has probably collided with some obstacle on the side of the road.

∀vV ehicle(v) ∧Rapid(v) ∧ Crash(v)

∧ TimeOf(Rapid(v)) < TimeOf(Crash(v))

⇒ Accident(v)

(6.10)

where TimeOf() is a function which returns the time when its input term has occurred,

and Accident(v) indicates that vehicle v has had a single-vehicle accident. Therefore, this

statement means a single-vehicle crash happens when a vehicle hits the barrier after moving

in that direction at a high speed without slowing down during this abrupt movement.

To prove the rules are complete for FOL, we can use the forward chaining method,

which is complete for a Horn knowledge base. The knowledge base is a set of facts

representing facts about a particular subject. As for these facts in the case of a single-vehicle

road-side accident, we have assumed that if a vehicle makes a sudden turn to the side with

a high enough speed and a long enough moving distance, it has made a dangerous move,

which we call a rapid move. Also, we assume if a vehicle moves outside of the common

traffic region boundaries and at the same time a blob of pixels appears in the foreground

mask around the vehicle, a collision with an obstacle might have happened, which we call a

crash.
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(a) (b)

(c) (d)

Figure 6.5 Real time single-vehicle traffic accident detection results using a real traffic
video. (a) Vehicles move in the correct traffic direction. (b) A vehicle makes a sudden side
move. (c) The vehicle hits the road barrier. (d) The vehicle stops after the accident.

For a single-vehicle road-side accident to occur, the rapid movement should happen

before the crash. If we consider V1 to be a vehicle experiencing both incidents in

chronological order, the occurrence of a single-vehicle accident can be concluded. Using

the forward chaining method, we can use the known facts to keep proving new information

and eventually prove the final clause. Assuming a vehicle V1 has met all the preconditions

of a single-vehicle accident, we can use the known facts to prove the accident has occurred.

According to the statement 6.8 which is in the form of a Horn clause, the rapid

movement of the vehicle V1 can be proved by considering four facts from the knowledge

base to be true for this vehicle. These facts are that V1 is a vehicle and it has made a

large movement at a high speed. In line with statement 6.9 which is also in the form of a
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Horn clause, the predefined crash incident can be concluded by considering two more facts

from the knowledge-base to be true about vehicle V1 that are moving outside of the traffic

region boundaries and occurrence of an unexpected foreground blob around the vehicle.

As stated in 6.10, the resulting clause, which is Accident(V1) can then be concluded by

the conjunction of the previous Horn clauses with another fact from knowledge-based that

indicates the right time order.

6.4 Experiments

We apply real traffic videos from the department of transportation to evaluate our proposed

method.The spatial resolution of the traffic videos used in our experiments is 720 × 480

with a frame rate of 30 frames per second. Specifically, first, the motion information from

the videos is used to estimate the road boundaries. Second, the tracking and the foreground

segmentation results are applied to detect the abnormal motion.And finally, the first-order

logic decision-making system is utilized to detect single-vehicle accidents. Traffic accidents

are detected in real time in the traffic videos without any false alarms. The experiments are

implemented using a Dell XPS 8900 PC with a 3.4 GHz processor and 16 GB of RAM.

Figures 6.5 and 6.6 show the experimental results of real-time single-vehicle

traffic accident detection using two real traffic videos from the department of trans-

portation. Considering the limitation of video data for the specific type of single-car traffic

accidents, we only apply our method to two video sequences. In particular, Figure 6.5

(a) shows that the vehicles are moving in the right traffic direction in a frame from one

traffic video. Figure 6.5 (b) shows that a vehicle makes a sudden side move, which is

detected automatically by our proposed method. Figure 6.5 (c) shows that the vehicle hits

the road barrier, and our proposed method automatically detects such a single-vehicle traffic

accident in real time. Figure 6.5 (d) shows that the vehicle stops after the accident, and our

proposed method automatically detects both the traffic accident and the stopped vehicle

106



(a) (b)

(c) (d)

Figure 6.6 Real time single-vehicle traffic accident detection results using a real traffic
video. (a) Vehicles moves in the right traffic direction. (b) A vehicle makes a sudden side
move. (c) The vehicle hits the road barrier. (d) The vehicle stops after the accident.

in real time. Figure 6.6 shows the real-time traffic accident results using another real-time

traffic video from the department of transportation.

Our proposed method successfully detects the vehicle’s sudden move to the side

of the road, the traffic accident when the vehicle hits the road barrier, as well as the

stopped vehicles in real-time as shown in Figure 6.6 (b), Figure 6.6 (c), and Figure 6.6

(d), respectively. Figure 6.7 shows some other sample experimental results from real traffic

videos. The vehicle involved in an accident is indicated by a red bounding box on the right

image. Because of using the GFM method for foreground segmentation, we are able to keep

track of the crashed vehicle even after it stops. Table 6.1 shows the length (in seconds) of

videos; the runtime (in seconds) of our proposed method, the number of frames in each of
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Table 6.1 The Runtime of the Proposed Accident Detection Method

video 1 video 2 video 3 video 4 video 5 video 6 video 7

Length of video (s) 56 56 60 60 236 178 178

runtime (s) 47.04 45.36 25.20 54.00 198.24 77.43 82.77

Number of frames 1680 1680 900 1800 7080 2670 2670

Run-time per frame (ms) 28 27 28 30 28 29 31

the videos; and the runtime (in milliseconds) for each frame. From the table, we can see that

our proposed method runs in real time.

6.5 Conclusion

We have presented in this chapter a novel real-time single-vehicle accident detection method

for traffic video analysis. First, we use a statistical foreground modeling method to detect the

foreground objects. In order to detect both the moving foreground objects and the temporarily

stopped objects, the Global Foreground Modeling (GFM) method is used together with

the Mixture of Gaussian (MOG) method. In addition, the Bayes classifier is applied for

foreground and background classification. Second, we propose our novel traffic accident

detection method. The contributions of our proposed method are three-fold: (i) a new traffic

region detection method, (ii) a traffic direction estimation method, and (iii) a single-car

run-off-road accident detection method using first-order logic. The traffic region detection

method is used to find out the boundaries of the road. By detecting the road boundaries,

we are able to detect vehicles that hit or go outside the boundaries. The traffic direction

estimation method is able to estimate the correct direction of the moving traffic. A vehicle

moving in an abnormal direction may cause a traffic accident. These two methods can

provide some clues for detecting a traffic accident. Finally, we use first-order logic to make

a final decision based on these clues. We implement our proposed method and evaluate it

using real-time traffic video data and achieve good performance in real-time traffic accident

detection.
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(a) (b)

Figure 6.7 Single-vehicle traffic accident detection results using some traffic videos.
(a) A snapshot before the accident. (b) A snapshot after the accident.
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CHAPTER 7

ACCIDENT DETECTION AT URBAN INTERSECTIONS

7.1 Introduction

One of the main problems in urban traffic management is the conflicts and accidents that

occur at the intersections. Drivers caught in a dilemma zone may decide to accelerate at the

time of the phase change from green to yellow, which in turn may induce rear-end and angle

crashes. Additionally, despite all the efforts to prevent hazardous driving behaviors, running

the red light is still common. Other dangerous behaviors, such as sudden lane changes and

unpredictable pedestrian or cyclist movements at the intersection, may also arise due to the

nature of traffic control systems or intersection geometry. Timely detection of such trajectory

conflicts is necessary for devising countermeasures to mitigate their potential harm.

Currently, most traffic management systems monitor the traffic surveillance cameras

by using manual perception of the captured footage. In addition to being a tedious and

inefficient task for human operators, manual monitoring may not provide real-time reports

of the observed incidents .Since most intersections are equipped with surveillance cameras,

automatic detection of traffic accidents based on computer vision technologies will mean a

great deal to traffic monitoring systems. Numerous studies have applied computer vision

techniques in traffic surveillance systems [37, 41–44, 88, 123] for various tasks. Automatic

detection of traffic incidents not only saves a great deal of unnecessary manual labor,

but the spontaneous feedback also helps the paramedics and emergency ambulances to

dispatch in a timely fashion. The outputs from trajectory conflict analysis offer useful

insights into the association between the detected types of conflicts and the number of

traffic incidents. An automatic accident detection framework provides useful information

for adjusting intersection signal operation and modifying intersection geometry in order to

defuse severe traffic crashes.
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Figure 7.1 The system architecture of our proposed accident detection framework.

The first step in the accident detection framework is detecting objects of interest, such

as vehicles, pedestrians, and cyclists.With the recent developments in deep convolutional

neural networks (DCNNs), many studies have applied deep learning for the task of object

detection in traffic surveillance [167]. Considering the applicability of our method in real-

time edge-computing systems, we apply the efficient and accurate YOLOv4 [145] method

for object detection. The second step is to track the movements of all interesting objects that

are present in the scene to monitor their motion patterns. A new set of dissimilarity measures

are designed and used by the Hungarian algorithm [74] for object association coupled with

the Kalman filter approach for smoothing the trajectories and predicting missed objects. The

third step in the framework involves motion analysis and applying heuristics to detect

different types of trajectory conflicts that can lead to accidents. The moving direction and

speed of road-user pairs that are close to each other are examined based on their trajectories

in order to detect anomalies that could cause them to crash. The variations in acceleration,

angle, and velocity are used as factors for detecting the road-user pairs that are involved
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in a near-accident or accident event. Figure 7.1 illustrates the system architecture of our

proposed accident detection framework.

The layout of this chapter is as follows. In Section 7.2, the major steps of the proposed

accident detection framework, including object detection (Subsection 7.2.1), object tracking

(Subsection 7.2.2), and accident detection (Subsection 7.2.3) are discussed. Subsection 7.3

provides details about the collected dataset and experimental results, and the chapter is

concluded in Subsection 7.4.

7.2 Methodology

This section provides details about the three major steps in the proposed accident detection

framework. These steps involve detecting interesting road-users by applying the state-

of-the-art YOLOv4 [145] method with a pre-trained model based on deep convolutional

neural networks, tracking the movements of the detected road-users using the Kalman filter

approach, and monitoring their trajectories to analyze their motion behaviors and detect

hazardous abnormalities that can lead to mild or severe crashes. The proposed framework is

purposely designed with efficient algorithms in order to be applicable in real-time traffic

monitoring systems.

7.2.1 Road user detection

As in most image and video analytics systems, the first step is to locate the objects of

interest in the scene. Since here we are also interested in the category of the objects, we

employ a state-of-the-art object detection method, namely YOLOv4 [145], to locate and

classify the road-users in each video frame. The family of YOLO-based deep learning

methods demonstrates the best compromise between efficiency and performance among

object detectors.

The first version of the You Only Look Once (YOLO) deep learning method was

introduced in 2015 [115]. The main idea of this method is to divide the input image into an
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Figure 7.2 Architecture of the YOLOv4 model with three major component.

S × S grid where each grid cell is either considered as background or used for detecting

an object. A predefined number (B) of bounding boxes and their corresponding confidence

scores are generated for each cell. The intersection over union (IOU) of the ground truth and

the predicted boxes is multiplied by the probability of each object to compute the confidence

scores. Furthermore, the non-maximum suppression is applied to remove the repetitive

bounding boxes. In later versions of YOLO multiple modifications have been made in order

to improve the detection performance while decreasing the computational complexity of

the method. Although there are online implementations, the latest official version of the

YOLO family is YOLOv4 [145], which improves upon the performance of the previous

methods in terms of speed and mean average precision (mAP). As illustrated in Figure 7.2,

the architecture of this version of YOLO is constructed with a CSPDarknet53 model as

the backbone network for feature extraction, followed by a neck and a head part. The neck

refers to the path aggregation network (PANet) and spatial attention module, and the head

is the dense prediction block used for bounding box localization and classification. This

architecture is further enhanced by additional techniques referred to as bag of freebies and

bag of specials.
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Here, we have applied the YOLOv4 [145] model pre-trained on the MS COCO

dataset [86] for the task of object detection. Although the model is pre-trained on a dataset

with different visual characteristics in terms of object sizes and viewing angles, YOLOv4

proved to generalize well to images with overhead perspective. We are interested in trajectory

conflicts among the most common road-users at regular urban intersections, namely, vehicles,

pedestrians, and cyclists. Due to the hesitant nature of the decision-makers at intersections,

trajectory conflicts can be the cause of mild-to-severe crashes.

7.2.2 Road user tracking

Multiple object tracking (MOT) has been intensively studied over the past decades [90] due

to its importance in video analytics applications. Here we employ a simple but effective

tracking strategy similar to that of the Simple Online and Realtime Tracking (SORT)

approach [10]. The Hungarian algorithm [74] is used to associate the detected bounding

boxes from frame to frame. Additionally, the Kalman filter approach is used as the estimation

model to predict the future locations of each detected object based on their current location

for better association, smoothing trajectories, and predicting missed tracks.

The inter-frame displacement of each detected object is estimated by a linear velocity

model. The state of each target in the Kalman filter tracking approach is presented as follows:

oti = [xi, yi, si, ri, ẋi, ẏi, ṡi] (7.1)

where xi and yi represent the horizontal and vertical locations of the bounding box center,

si, and ri represent the bounding box scale and aspect ratio, and ẋi, ẏi, ṡi are the velocities

in each parameter xi, yi, si of object oi at frame t, respectively. The velocity components are

updated when a detection is associated with a target. Otherwise, in the case of no association,

the state is predicted based on the linear velocity model.
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Considering two adjacent video frames t and t+ 1, we will have two sets of objects

detected at each frame as follows:

Ot = {ot1, ot2, . . . , otn}

Ot+1 = {ot+1
1 , ot+1

2 , . . . , ot+1
m }

(7.2)

Every object oi in set Ot is paired with an object oj in set Ot+1 that can minimize the cost

function C(oi, oj). The index i ∈ [N ] = 1, 2, . . . , N denotes the objects detected at the

previous frame and the index j ∈ [M ] = 1, 2, . . . ,M represents the new objects detected at

the current frame.

In order to efficiently solve the data association problem despite challenging scenarios

such as occlusion, false positive or false negative results from object detection, overlapping

objects, and shape changes, we designed a dissimilarity cost function that employs a

number of heuristic cues, including appearance, size, intersection over union (IOU), and

position. The appearance distance is calculated based on the histogram correlation between

an object oi and a detection oj as follows:

CA
i,j = 1−

∑
b

(
Hb(oi)− H̄(oi)

) (
Hb(oj)− H̄(oj)

)√∑
b

(
Hb(oi)− H̄(oi)

)2∑
b

(
Hb(oj)− H̄(oj)

)2 (7.3)

where CA
i,j is a value between 0 and 1, b is the bin index, Hb is the histogram of an object in

the RGB color-space, and H̄ is computed as follows:

H̄(ok) =
1

B

∑
b

Hb(ok) (7.4)

in which B is the total number of bins in the histogram of an object ok.

The size dissimilarity is calculated based on the width and height information of the

objects:

CS
i,j =

1

2

(
|hi − hj|
hi + hj

+
|wi − wj|
wi + wj

)
(7.5)
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where w and h denote the width and height of the object’s bounding box, respectively. The

more different the bounding boxes of the object oi and detection oj are in size, the more Ci,j
S

approaches one. The position dissimilarity is computed in a similar way:

CP
i,j =

1

2

(
|xi − xj|
xi + xj

+
|yi − yj|
yi + yj

)
(7.6)

where the value of CP
i,j is between 0 and 1, approaching more towards 1 when the object oi

and detection oj are further. In addition to the mentioned dissimilarity measures, we also

use the IOU value to calculate the Jaccard distance as follows:

CK
i,j = 1− Box(oi) ∩Box(oj)

Box(oi) ∪Box(oj)
(7.7)

where Box(ok) denotes the set of pixels contained in the bounding box of object k.

The overall dissimilarity value is calculated as a weighted sum of the four measures:

Ci,j = waC
A
i,j + wsC

S
i,j + wpC

P
i,j + waC

A
i,j + wkC

K
i,j (7.8)

in which wa, ws, wp, and wk define the contribution of each dissimilarity value in the total

cost function. The total cost function is used by the Hungarian algorithm [74] to assign the

detected objects at the current frame to the existing tracks. If the dissimilarity between a

matched detection and track is above a certain threshold (τd), the detected object is initiated

as a new track.

7.2.3 Accident detection

In this section, details about the heuristics used to detect conflicts between a pair of road users

are presented. Conflicts among road-users do not always end in crashes. However, near-

accident situations are also of importance to traffic management systems as they can indicate

flaws associated with the signal control system and/or intersection geometry. Logging and

analyzing trajectory conflicts, including severe crashes, mild accidents, and near-accident

situations, will help decision-makers improve the safety of urban intersections. The most
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Figure 7.3 The workflow of the speed estimation method demonstrated on a scene from the
NVIDIA AI City Challenge 2022 dataset [105].

common road-users involved in conflicts at intersections are vehicles, pedestrians, and

cyclists. Therefore, for this study, we focus on the motion patterns of these three major

road-users to detect the time and location of trajectory conflicts.

The Euclidean distances among all object pairs are calculated in order to identify the

objects that are closer than a threshold to each other. These object pairs can potentially

engage in a conflict, and they are, accordingly, chosen for further analysis. The recent motion

patterns of each pair of close objects are examined in terms of speed and moving direction.

As there may be imperfections in the previous steps, especially in the object detection

step, analyzing only two successive frames may lead to inaccurate results. Therefore, a

predefined number f of consecutive video frames is used to estimate the speed of each

road-user individually. The average bounding box centers associated to each track at the first

half and second half of the f frames are computed. The two averaged points, p and q are

transformed to the real-world coordinates using the inverse of the homography matrix H−1,
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which is calculated during camera calibration [135] by selecting a number of points on the

frame and their corresponding locations on the Google Maps. The distance in kilometers

can then be calculated by applying the haversine formula [39] as follows:

h = sin2

(
ϕq − ϕp

2

)
+ cosϕp · cosϕq · sin2

(
λq − λp

2

)
dh(p, q) = 2r arcsin

(√
h
) (7.9)

where ϕp and ϕq are the latitudes, λp and λq are the longitudes of the first and second

averaged points p and q, respectively, h is the haversine of the central angle between the two

points, r ≈ 6371 kilometers is the radius of earth, and dh(p, q) is the distance between the

points p and q in real-world plane in kilometers. The speed s of the tracked vehicle can then

be estimated as follows:

S =
dh(p, q)× 3600× fps

f
(7.10)

where fps denotes the frames read per second and S is the estimated vehicle speed in

kilometers per hour. Note that if the locations of the bounding box centers among the f

frames do not have a sizable change (more than a threshold), the object is considered to be

slow-moving or stalled and is not involved in the speed calculations.

Another factor to account for in the detection of accidents and near-accidents is

the angle of collision. Traffic accidents include different scenarios, such as rear-end,

side-impact, single-car, vehicle rollovers, or head-on collisions, each of which contains

specific characteristics and motion patterns. When it comes to an intersection, most accidents

occur due to reckless driving, running red lights, or risky decisions to pass the intersection

when the vehicles are caught in the dilemma zone. These hazardous behaviors may induce

angle or rear-end collisions. Accordingly, our focus is on the side-impact collisions at the

intersection area where two or more road users collide at a considerable angle. The bounding

box centers of each road user are extracted at two points: (i) when they are first observed

and (ii) at the time of conflict with another road user. Then, the approaching angle of a pair
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Figure 7.4 Vehicle-to-Vehicle (V2V) traffic accidents at intersections detected by our
proposed framework. The red circles indicate the location of the incidents.

of road users a and b is calculated as follows:

ma =

(
yta − yt

′
a

)
(xt

a − xt′
a )

mb =

(
ytb − yt

′′

b

)(
xt
b − xt′′

b

)
θ = arctan

(
ma −mb

1 +mamb

) (7.11)

where θ denotes the estimated approaching angle, ma and mb are the the general moving

slopes of the road-users a and b with respect to the origin of the video frame, xt
a, yta, xt

b, y
t
b

represent the center coordinates of the road-users a and b at the current frame, xt′
a and yt

′
a are

the center coordinates of object a when first observed, xt′′

b and yt
′′

b are the center coordinates

of object b when first observed, respectively.

If the bounding boxes of the object pair overlap each other or are closer than a

threshold, the two objects are considered to be close. The trajectories of each pair of

close road-users are analyzed with the purpose of detecting possible anomalies that can

lead to accidents. The approaching angle of each pair of close objects is calculated and
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examined to see whether it is higher than the pre-defined threshold. The variations in

the calculated magnitudes of the velocity vectors of each approaching pair of objects that

have met the distance and angle conditions are analyzed to check for signs that indicate

anomalies in the speed and acceleration. If the pair of approaching road-users move at a

substantial speed towards the point of trajectory intersection during the previous f frames

and the speed of one or both shows a sudden drop at the most recent frames, a trajectory

conflict is reported. Trajectory conflicts involve near-accident and accident occurrences and

include three types, namely, vehicle-to-vehicle (V2V), vehicle-to-pedestrian (V2P), and

vehicle-to-bicycle (V2B).

7.3 Experiments

Due to the lack of a publicly available benchmark for traffic accidents at urban intersections,

we collected 29 short videos from YouTube that contain 24 vehicle-to-vehicle (V2V),

2 vehicle-to-bicycle (V2B), and 3 vehicle-to-pedestrian (V2P) trajectory conflict cases.

The dataset includes day-time and night-time videos of various challenging weather and

illumination conditions. Each video clip includes a few seconds before and after a trajectory

conflict. The spatial resolution of the videos used in our experiments is 1280× 720 pixels

with a frame-rate of 30 frames per second. We used a desktop with a 3.4 GHz processor,

16 GB of RAM, and an Nvidia GTX-745 GPU, to implement our proposed method. The

average processing speed is 35 frames per second (fps), which is feasible for real-time

applications.

The results are evaluated by calculating detection and false alarm rates as metrics:

DR =
detected conflict cases

total number of conflicts

FAR =
number of false alarms

total number of conflicts

(7.12)

The proposed framework achieved a Detection Rate of 93.10% and a False Alarm Rate of

6.89%. The performance is compared to other representative methods in Table 7.1. The
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Table 7.1 Performance Comparison With Other Accident Detection Methods

Methods Num. of videos DR % FAR %
Ki et al. [69] 1 63 6

Singh et al. [127] 7 77.5 22.5
Ijjina et al. [63] 45 71 0.53

Wang et al. [144] – 92.5 7.5
Pawar et al. [110] 7 79 20.5
Proposed method 29 93.1 6.89

object detection and object tracking modules are implemented asynchronously to speed up

the calculations.The trajectory conflicts are detected and reported in real-time with only 2

instances of false alarms, which is an acceptable rate considering the imperfections in the

detection and tracking results. Our framework is able to report the occurrence of trajectory

conflicts along with the types of the road-users involved immediately. Additionally, it keeps

track of the location of the involved road-users after the conflict has happened. Figure 7.4

shows sample accident detection results by our framework given videos containing vehicle-

to-vehicle (V2V) side-impact collisions. Furthermore, Figure 7.5 contains samples of other

types of incidents detected by our framework, including near-accidents, vehicle-to-bicycle

(V2B), and vehicle-to-pedestrian (V2P) conflicts.

7.4 Conclusion

In this chapter, a new framework is presented for automatic detection of accidents and near-

accidents at traffic intersections. The framework integrates three major modules, including

object detection based on the YOLOv4 method; a tracking method based on the Kalman

filter and Hungarian algorithm with a new cost function; and an accident detection module

to analyze the extracted trajectories for anomaly detection. The state-of-the-art YOLOv4

object detection method is applied due to its high performance and efficiency to locate and

classify different road-users that are most commonly seen at urban intersections. The robust

tracking method accounts for challenging situations, such as occlusion, overlapping objects,

and shape changes in tracking the objects of interest and recording their trajectories. The
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(a) (b)

(c) (d)

Figure 7.5 Different types of conflicts detected at the intersections. (a) Vehicle to Vehicle
(V2V) near accident, (b) Vehicle to Bicycle (V2B) near accident, (c) and (d) Vehicle to
Pedestrian (V2P) accident.

trajectories are further analyzed to monitor the motion patterns of the detected road-users in

terms of location, speed, and moving direction. Different heuristic cues are considered in the

motion analysis in order to detect anomalies that can lead to traffic accidents. A dataset of

various traffic videos containing accident or near-accident scenarios has been collected to test

the performance of the proposed framework against real videos. Experimental evaluations

demonstrate the feasibility of our method in real-time applications of traffic management.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusions

This dissertation presents a fully automatic, real-time framework for single-vehicle and

intersection accident detection in traffic video. Specifically, the moving objects are detected

using a statistical method based on a mixture of Gaussians in order to locate the moving

vehicles. Since shadows cast by moving objects cause issues for the following steps, in

Chapter 4 a shadow detection and removal method is introduced. In this method, the potential

shadow candidates are first extracted based on physics laws for reflection models. The

attenuation in different channels of the RGB color space is examined in the case of pixels

that are classified as foreground using two reference points from the background and

foreground models. Various features are integrated to construct a feature vector for each

pixel in the foreground class, and multivariate Gaussian mixture models are applied in order

to classify the extracted features into objects and shadows. The classification results are

further enhanced by applying the k-means clustering algorithm and separating the classes

based on the location of the pixels. After removing the cast shadows from the foreground, the

remaining pixels are considered to be objects.An efficient blob-tracking method is applied

to the resulting foreground mask in order to track multiple objects simultaneously at a low

computational cost.

In Chapter 5, the tracked foreground objects and the subtracted background are used

to estimate the region of interest, which helps reduce the computational load as well as

faulty results in the successive video analysis operations. On the other hand, the segmented

road region is used to estimate the location of each vehicle relative to the boundaries of

the road, which in turn helps with the detection of single-vehicle accidents. For the task

of road segmentation, initial road samples are chosen from the corresponding locations of
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the moving objects in the background image. A feature vector is established for each pixel

that consists of features from the grayscale, RGB, and HSV color-spaces, and a probability

map is generated according to the standardized Euclidean distance between the feature

vectors. After applying a binary threshold on the resulting probability map, an initial road

mask is obtained, which is further refined by the integration of the pixels located by the

Flood-fill algorithm. In the case of roads with bi-directional traffic, the extracted road is

divided into separate regions based on estimating the traffic direction and modeling the

results of the Lucas-Kanade optical flow algorithm in a mixture of Gaussians.

In Chapter 6, the sequential steps of the single-vehicle accident detection framework

are explained in detail. The average direction and magnitude of the velocity vectors are

calculated at each location and considered to be the correct moving pattern.At the same

time, the motion pattern of each tracked vehicle is monitored separately in order to detect

rapid changes that can lead to run-off-road collisions. In the case of a sudden change

in direction, the variations in velocity of the corresponding vehicles are examined along

with the changes in the neighboring foreground pixels in order to report single-vehicle

accidents.The experimental results using public datasets and the videos provided by NJDOT

demonstrate the practicability of our method in real-world applications.Intersection accidents

are discussed in Chapter 7, where the road users are detected using the YOLOv4 method

and further tracked by applying a number of heuristics in the association process. Later, the

trajectories are analyzed in order to detect trajectory conflicts and different types of crashes

at the intersections.

8.2 Challenges

On the whole, an intelligent traffic monitoring system should be concomitantly accurate,

responsive, and generalizable. The Advanced Traffic Management Systems (ATMSs)

are envisaged to enhance mobility, improve safety, increase transport efficiency, reduce

environmental costs, and increase economic productivity in land transportation. The
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real-time data from multiple sensors, including monocular cameras, flowing into the

Transportation Management Centers (TMCs) should be handled and processed using

advanced intelligent systems with the goal of producing useful information and taking

appropriate actions. The intelligent algorithms designed to process the visual data are

responsible for providing the traffic monitoring systems with useful information, such as

speed, volume, and different classes of road-users.Additionally, they are used for generating

alerts for various events, including stopped vehicles, wrong-way vehicles, slow speed,

congestion, trajectory conflicts, and accidents.The essential need for developing accurate,

robust, and efficient algorithms for locating the objects of interest in traffic surveillance

videos opens new horizons and prospects for future research studies.The main challenges

and future research scope of intelligent traffic video analytics systems are briefly discussed

in this section.

8.2.1 Performance and reliability

Without the ability to perform at a reasonable level of expectations, intelligent traffic video

analytics systems will not be able to rely on automatic processing of the visual data and

achieve sustainable development. A traffic operation center may house a large number of

video feeds concurrently, and an unerring intelligent video analytics system can help lighten

the workload of the human operators to a great extent. On the other hand, a faulty system that

fails to generate reliable information and triggers too many false alarms will be liable and

therefore futile. The algorithms designed to process the visual data should, first and foremost,

perform satisfactorily enough to be trusted with the significant traffic data processing.

The performance of intelligent visual traffic monitoring systems revolves around

their ability to locate the objects of interest, as it is the foundation of all the other major

modules, such as object tracking, classification, and event detection.In spite of recent

advancements in object detection techniques, most of the existing traffic surveillance systems

use outdated methods. Despite all the shortcomings, motion segmentation techniques are
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still prevalently used due to old infrastructures, computational limits, lower costs, and a

lack of sufficient training data for deep learning models. On the other hand, deep learning

techniques are primarily designed to work with high-resolution and high-quality videos. Yet

real-world traffic surveillance footage consists mostly of low-resolution videos with low

frame rates. Designing effective algorithms that can perform well despite all these limitations

is a challenging problem, which requires substantial effort by researchers in the field.

8.2.2 Versatility and flexibility

Traffic surveillance videos are continuously captured during night and day from different

locations, and they can vary in illumination conditions, resolution, viewing angle, viewing

distance, frame-rate, and weather conditions. Many of the Closed Circuit Television

(CCTV) cameras provide the operators with the functionality of adjusting the Pan, Tilt,

and Zoom (PTZ) movements to survey an area of interest.These variations introduce

numerous possibilities in the visual characteristics of the traffic videos that only make

it more challenging to locate the objects. In order for a video analytics system to robustly

locate the objects of interest in various situations, it should be generalizable and adaptable to

all sorts of changes in the visual properties. Otherwise, an algorithm that is limited to specific

situations and cannot be deployed in real-world systems, due to significant performance

degradation in adverse weather conditions, illumination changes, or different perspective

views.In spite of the efforts to integrate other sensors, such as thermal cameras [52, 104]

and LiDAR [155], they are not commonly used in real-world systems due to the additional

costs. Developing algorithms to increase the generalization ability of object detection

methods in monocular traffic surveillance can make worthwhile contributions to intelligent

traffic monitoring systems.
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8.2.3 Efficiency and responsiveness

Processing time is one of the main factors in intelligent traffic video analytics systems. A

traffic operation center may house a large number of video feeds concurrently, and there is

limited processing capability of the servers. On the other hand, in addition to locating the

objects, there are multiple other tasks to be undertaken in order to analyze the continuous

streams of video frames and produce useful information. Not to mention, many traffic

incidents should be reported promptly with little to no tolerance for delay.

An intelligent traffic video analytics system is expected to operate responsively and

process the video frames in real-time.The quality and the resolution of the video streams,

frame rate, the computational capacity of the underlying platforms, and compliance with

specified cost-efficiency policies are among the key points of consideration when defining

the limits for the complexity of the designed algorithms.The object detection methods should

be configured in a way that complies with the real-time requirements to be applicable in

real-world systems.There have been numerous studies attempting to increase the efficiency

of object detection if traffic surveillance applications on edge computing platforms [85, 88,

142].However, enabling the object detection algorithms, especially those that are designed

based on deep learning, to achieve the desired real-time characteristics is still an open

challenge that requires substantial effort.

8.3 Future Directions

With regard to future research directions, we plan to focus on improving the core steps of

the video analysis applications, such as foreground segmentation and shadow detection, as

well as reducing the computational complexity of the algorithms. We also want to work on

improving the performance and generalizability of accident detection methods in order to

detect other types of traffic incidents with few to no false alarms.

First, we are looking forward to improving the performance of the fundamental video

analytics tasks such as foreground segmentation and shadow removal. The use of machine
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learning methods for learning the parameters of Gaussian mixture models in an online

manner instead of manual initialization is one of the possible ways to achieve a more

adaptive and automatic approach. Also, the effects of considering the relations among each

pixel and its neighboring pixels, gradient features, and fuzzy Gaussian mixture models on

the results of the foreground segmentation can be studied in order to further improve the

results of the object detection step. In terms of detecting and removing shadows, we plan

to examine the state stability of Gaussian distributions in the foreground model in order

to see whether we can enhance the results of the Gaussian mixture model used in shadow

detection.This is based on the observation that each pixel is generally more affected by

recurrent shadow values than various objects.Also, the features extracted based on the laws

of physics to extract the initial shadow samples are going to be one of the main points of

focus in our future studies.

Second, computational complexity reduction is another direction for future research. The

possibility of applying the analysis algorithms in a more selective manner and on a smaller

number of pixels in each video frame can reduce the need for computational resources and

also leave more room to include additional processing steps. Obtaining a more accurate

and adaptive region of interest can specifically increase the speed and decrease the memory

usage by a considerable amount.

Third, we are planning to include the detection of other types of traffic accidents,

such as head-on collisions, rear-end collisions, and rollovers, in videos captured from

highways and urban areas. Detecting different vehicle accidents in various visual conditions

without false alarms or misdetections is a difficult task which requires extracting high-level

features.Most current methods for accident detection tend to model the motion patterns

statistically, which are regarded as normal movements, and abnormal motions are reported

as anomalies. This can refer to collisions or stopped, wrong-way driving, and slow-speed

vehicles. However, detecting the exact incident that is considered an anomaly is usually not

128



straightforward. Therefore, another direction for future research can be the traffic incident

type determination.
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