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ABSTRACT

ADVANCED TRAFFIC VIDEO ANALYTICS
FOR ROBUST TRAFFIC ACCIDENT DETECTION

by
Hadi Ghahremannezhad

Automatic traffic accident detection is an important task in traffic video analysis due to
its key applications in developing intelligent transportation systems. Reducing the time
delay between the occurrence of an accident and the dispatch of the first responders to the
scene may help lower the mortality rate and save lives. Since 1980, many approaches have
been presented for the automatic detection of incidents in traffic videos. In this dissertation,
some challenging problems for accident detection in traffic videos are discussed and a new
framework is presented in order to automatically detect single-vehicle and intersection traffic
accidents in real-time.

First, a new foreground detection method is applied in order to detect the moving
vehicles and subtract the ever-changing background in the traffic video frames captured by
static or non-stationary cameras. For the traffic videos captured during day-time, the cast
shadows degrade the performance of the foreground detection and road segmentation. A
novel cast shadow detection method is therefore presented to detect and remove the shadows
cast by moving vehicles and also the shadows cast by static objects on the road.

Second, a new method is presented to detect the region of interest (ROI), which
applies the location of the moving vehicles and the initial road samples and extracts the
discriminating features to segment the road region. After detecting the ROI, the moving
direction of the traffic is estimated based on the rationale that the crashed vehicles often make
rapid change of direction. Lastly, single-vehicle traffic accidents and trajectory conflicts are

detected using the first-order logic decision-making system.



The experimental results using publicly available videos and a dataset provided by
the New Jersey Department of Transportation (NJDOT) demonstrate the feasibility of the
proposed methods. Additionally, the main challenges and future directions are discussed
regarding (1) improving the performance of the foreground segmentation, (ii) reducing the

computational complexity, and (ii1) detecting other types of traffic accidents.
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CHAPTER 1

INTRODUCTION

The ever-escalating demand for land transportation, along with the continuous growth in the
number of motor vehicles and other road users, has given rise to several traffic-related issues,
including congestion, safety, commuting delays, increased energy consumption, and negative
environmental impacts. There is an inevitable need to monitor road traffic and develop
strategies for enabling safer roadways, limiting environmental impacts and enhancing
the mobility of transport networks. Due to the ineluctable requirement for smart traffic
management along with the accelerated advancements in the fields of electronics, sensors,
communication, information, and computers, has led to the development of intelligent
transportation systems (ITSs).

The functioning capacity of intelligent transportation systems is heavily affected by
the competence of traffic data collection via sensors and the performance of the algorithms
designed for automatic data processing. This is why traffic surveillance cameras have
become one of the most popular sensors used in ITS applications [61]. Traffic cameras
are, on one hand, one of the most cost-effective sensor technologies due to their simple
installation, provision of a rich source of visual data, and a vast area of coverage. On the
other hand, the revolutionary breakthroughs that have emerged in the world of artificial
intelligence (Al), especially in the field of computer vision, have enabled modern traffic
management systems to effectively process the footage obtained from traffic cameras
automatically. The data provided by the traffic surveillance cameras is used for a wide variety
of applications, including vehicle counting, road-user classification, anomaly detection,
traffic flow estimation, speed estimation, and incident detection.

The architecture of traffic video analytics systems involves several hierarchical steps

that are taken to process the raw data and generate useful information. The main steps



in the process of analyzing traffic surveillance videos are camera calibration; locating
objects of interest; object tracking; region-of-interest (ROI) determination; and incident
detection. Figure 1.1 illustrates the general architecture of intelligent traffic monitoring
systems. As seen in the figure, among the core components of intelligent traffic video
analytics, locating the objects is the most important step, as it serves as the basis for most of
the other steps [167].

One of the most important applications in traffic management systems is traffic
accident detection. Despite all the improvements in road and vehicle safety, car accidents
have been one of the leading causes of fatalities in the world. Automatic detection and
notification of traffic collisions can help reduce the accident response time and, consequently,
decrease the number of fatalities. Since videos captured by camera sensors provide a large
amount of information at a relatively low cost, they have been the focus of many vision-based
traffic accident detection methods throughout the previous years [46].

As mentioned before, there are several integral components to traffic video analysis,
including background subtraction, moving vehicle detection, vehicle tracking, and object
classification. Statistical methods are more applicable in real-time systems due to their
computational efficiency and generalizability. Background subtraction and object tracking
are the core components of statistical video analysis methods. In order to detect the moving
vehicles in traffic videos, most approaches tend to segment the moving foreground from
the stationary background. Each video frame is compared with the background model,
and the pixels with significantly different values are classified as foreground. Background
subtraction is a prerequisite of many video analysis applications and has been studied
intensely over the past decades [47, 53, 125, 128, 132, 172]. Among the foreground
segmentation techniques, statistical approaches based on Gaussian mixture models (GMM)
are widely used for their good performance and low computational cost. Specifically,
in real-time traffic video analysis, GMM has proven to be one of the best methods for

subtracting the background and detecting moving vehicles. Here, we have applied a new
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Figure 1.1 The general architecture of intelligent traffic monitoring systems. Locating
objects of interest is a core component in the pipeline of these systems and the performance
of the further steps is heavily reliant on this task.

foreground detection method, which is based on GMM. This approach is robust in dealing
with moving cameras, stopped objects, and low-quality videos, which are common issues in
the case of traffic video analysis.

Another challenge in traffic videos captured during daytime is the shadows cast by the
static and moving objects [45,48]. The shadows cast by moving vehicles are often classified
as foreground due to their similar motion patterns to their corresponding objects. Moving
cast shadows deteriorate the performance of the following video analysis tasks by linking
different objects together or increasing the location estimation error. Also, the shadows
cast by static objects on the scene cause the performance of image segmentation to reduce
significantly, which in turn causes issues for the region of interest (ROI) determination. Thus,
the shadows should be detected and removed from the foreground prior to taking further
steps.

In terms of object tracking, there have been a large number of studies over the
past years [90]. Generally, for the purpose of traffic video analysis, several vehicles are
present in each frame, and all the vehicles should be tracked simultaneously. Therefore,
multiple object tracking methods are preferred to process traffic videos. Tracking multiple
objects in videos at the same time involves the detection of objects in each video frame
and the association of the detected objects across multiple consecutive frames. With
the improvements in object detection methods in recent years, tracking by detection has

been the most studied approach in multi-target tracking. Some methods depend on the



information from previous and future frames at the same time to deal with detection errors
and improve the tracking performance [134]. Nevertheless, multiple object tracking (MOT)
methods based on batch-wise strategies cannot be applied in real-world applications with
no information about the future frames of videos. Another way to approach the tracking
problem is to use only the information gained up to the current frame. The so-called online
tracking strategies associate the detected objects in the frame and estimate the trajectories
based on current and previous frames and can be utilized in real-world applications. There
have been many attempts to improve the performance of the MOT methods both from the
aspect of object detection and object association [11]. Some studies have targeted the MOT
problem by improving the performance of the object detection step [67]. For the sake of
computational efficiency, we have applied the simple blob-tracking method [18] that tracks
each vehicle based on the distance between its centroid and the blob centroids in the previous
frame.

The focus of this study is to develop an accident detection framework in traffic videos
by automatically determining the region of interest and monitoring the motion behavior
of vehicles in order to detect single-vehicle and intersection accidents. Specifically, an
innovative real-time foreground detection method is presented that models the foreground
and the background simultaneously and works for both moving and stationary cameras.
In particular, first, each input video frame is partitioned into a number of blocks. Then,
assuming the background takes the majority of each video frame, the iterative pyramidal
implementation of the Lucas-Kanade optical flow approach is applied to the centers
of the background blocks in order to estimate the global motion and compensate for
the camera movements. Subsequently, each block in the background is modeled by a
mixture of Gaussian distributions, and a separate Gaussian mixture model is constructed
for the foreground in order to enhance the classification. However, the errors in motion
compensation can contaminate the foreground model with background values. The novel

idea of the proposed method is to match a set of background samples to their corresponding



blocks for the most recent frames in order to avoid contaminating the foreground model
with background samples. The input values that do not fit into either the statistical or
the sample-based background models are used to update the foreground model. Finally,
the foreground is detected by applying the Bayes classification technique to the major
components in the background and foreground models, which removes the false positives
caused by the hysteresis effect.

After background subtraction, the cast shadows are detected and removed from the
foreground by a novel shadow removal method. The potential shadow pixels are identified
by considering the physical properties of reflection and comparing the changes in luminance
values in the corresponding background and foreground locations. The integrated features
extracted from the RGB and HSV color spaces for each pixel are modeled by a mixture
of Gaussian distributions to classify the foreground pixels into shadows and objects. The
classified shadow and object pixels are clustered to detect the shadow regions and improve
the results of the classification.

Furthermore, a new adaptive road detection method for determining the region of
interest is presented. The initial road samples are obtained from the subtracted background
model in the location of the moving vehicles. The integrated features extracted from both
the grayscale and the RGB and HSV color spaces are further applied to construct several
probability maps, which are then combined in order to estimate a more accurate road region
map. The robust road mask is derived by integrating the initially estimated road region and
the regions located by the flood-fill algorithm. Lastly, the moving direction of the traffic
is estimated and traffic accidents are detected using the first-order logic decision-making
system. Experimental results using real traffic video data show the feasibility of the proposed
method. In particular, traffic accidents are detected in real time in the traffic videos without
any false alarms.

This study is organized in the following manner: Chapter 2 outlines the previous

related work that has approached the problem from various angles of view and compares



the differences to our proposed method. Chapter 3 presents the main steps of the proposed
foreground detection framework. Chapter 4 describes the new cast shadow detection and
removal method, which is applied in order to remove cast shadows in the object detection
step and to enhance the performance of the further steps. Chapter 5 contains details on
initial road recognition and refining the extracted road region by using temporal and color
features. Chapters 6 and 7 demonstrate the steps of the proposed method for traffic accident
detection along with experimental results. Chapter 8 concludes and summarizes the work

and outlines some future research directions.



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Foreground Detection Methods

The main advantage of video data over images is the additional motion information provided
by the temporal features that allow incorporating many signal processing techniques in
the procedures of video analytics. In the case of surveillance applications, as an instance,
exploiting the temporal features can be very useful due to the significant motion associated
with the usual objects of interest compared to the stationary background. Therefore,
identifying the pixel locations that are associated with considerable motion has been
the focus of some of the closely related tasks in computer vision, such as background
subtraction, foreground segmentation, change detection, and motion segmentation. As
opposed to videos captured by in-vehicle cameras where the camera is mounted on a moving
platform, traffic surveillance videos are usually captured by stationary camera sensors, and
the objects of interest, which are usually moving vehicles, can be distinguished from the
background solely based on the motion information. In addition to that, the input video
data for traffic surveillance applications in intelligent transportation systems is live feeds
from mostly low-quality camera sensors overlooking roads, highways, intersections, and
other urban traffic environments with wide fields of view and few visual details of the
target objects are available. Hence, motion segmentation techniques have proven to be
more practical in real-time applications than image-based object detection methods due
to their generalization and computational efficiency. Also, motion segmentation can be
applied to generate hypotheses about object locations, followed by a feature extraction and
classification step to improve the detection performance [66].

Most motion segmentation techniques applied in traffic video analytics consider the

camera to be static and the target objects to have significant motion. There is large variety



of mathematical [125], machine learning [35], signal processing [32], and classification
[109] techniques proposed for background subtraction [40]. In spite of recent advances
in this field, most real-world systems tend to apply relatively older techniques, such as
MoG [131], AGMM [171], Codebook [71], Multi-Cue [107], PAWCS [130], PBAS [55],
and ViBe [8] due to the limitations in computational capacity and the lack of collaboration
between researchers and the industry [151]. Nonetheless, among various approaches for
motion segmentation in the case of static cameras that are applied to traffic videos, frame
differencing, optical flow, and statistical background modeling have been applied to traffic
videos the most.

Frame differencing is the simplest motion estimation method in which the locations
of the moving objects are estimated by calculating the absolute value of intensity difference
between adjacent frames and applying a threshold to the results. Several studies have
applied frame differencing to detect moving traffic objects such as vehicles [70]. Although
this method is simple and fast, it is prone to errors and its performance suffers in many
challenging scenarios, such as changes in illumination. One of the main drawbacks of this
approach is the blank holes that appear in the foreground mask of objects due to the slow
movement or relatively large parts of the object with uniform intensities. A number of
studies have attempted to solve these issues by using three [75] or five [65] consecutive
video frames.

Another approach for estimating the location of moving objects is to use the correlation
between adjacent frames and find corresponding points so as to calculate the optical flow
vector of the moving object, which describes the instantaneous velocity of a certain point
in the image. The optical flow algorithm has been applied in the applications of traffic
video analytics for various purposes, including motion-based object localization [21]. In
the study conducted by Chen and Wu [21], the pyramid model of the Luas-Kanade optical
flow algorithm is applied to a set of feature points that are extracted from the edges of the

image. The feature points are clustered using the weighted Kmeans method in order to detect



moving vehicles. The methods that are based on optical flow are not computationally as
efficient as statistical modeling or temporal differencing; therefore, limiting the calculations
to a lower frequency or a smaller reference region will help with achieving real-time
performance.

In the applications of traffic video surveillance where the data is captured by static
cameras, background modeling is by far the most popular approach for locating moving
objects due to its compromise between efficiency and performance [40]. These methods
benefit from the higher frequency in the intensity values corresponding to the stationary
objects in the temporal domain compared to the moving objects in order to construct a
background model. Each video frame is compared with the established background model
and the spatial locations of the video frame with considerably different values from the
current background model are classified as foreground, which represents the location of
moving objects. In general, there are five groups of background subtraction methods, namely,
basic, non-parametric, fuzzy, neural networks, and statistical methods [108]. The variations
in the video quality and hardware capacity among video surveillance systems bring about an
important requirement for background subtraction methods to be concurrently generalizable,
robust, and efficient. This requirement has resulted in the methods based on statistical
modeling being the most popular among background subtraction methods in real-time
surveillance applications.

Most statistical background subtraction methods have attempted to establish the
background model by the use of frame averaging [70], single Gaussian [106, 152], or a
mixture of Gaussian distributions [173] with the majority tending to use Gaussian models. In
the earlier studies each pixel was modeled with a single Gaussian distribution [152] and
later the Gaussian Mixture Model (GMM) was proposed to model each pixel with a mixture
of K Gaussian distributions in order to better deal with the effects of noise, camera jitter,
and background texture [131]. Further improvements upon the GMM method were achieved

by efficient parameter updating in adaptive GMM (AGMM) [171, 173] and other innovative



techniques [125]. There are other representative background modeling methods, such as
Vibe [8], PBAS [55], and Codebook [71] that have been applied in surveillance applications.

Background subtraction methods have been applied to traffic videos in a large number
of studies [40,122]. Shi and Liu [125] construct twelve-dimensional feature vectors from the
values in the RGB, YIQ, and YCbCr color-spaces, the horizontal and vertical Haar wavelets,
and the temporal difference, and establish a global foreground model along with the local
background model in order to improve the discrimination and classification performance
of the MoG method for vehicle detection. In the study done by Chetouane et al. [29],
Gaussian Mixture Model (GMM), GMM-Kalman filter, Optical Flow, and Aggregate
Channel Features (ACF) [34] methods are applied in order to detect vehicles in urban and

highway traffic videos.

2.1.1 Challenging scenarios faced by motion-based methods

Despite all the benefits in terms of generalization and computational efficiency, locating
objects based on motion information comes with its own set of challenging problems, such
as illumination changes, camera jitter, multi-modal backgrounds, detection of small objects,
cast shadows, low frame-rate, and dynamic backgrounds [40]. Figure 2.1 demonstrates
sample video frames and the corresponding foreground masks extracted by popular motion

segmentation methods in challenging situations.

Moving cast shadows Cast shadows are specifically a problem for traffic surveillance
videos due to the abundance of their occurrence during the daytime and the consecutive
effects they have on further tasks, such as vehicle tracking and classification. Cast shadows
are mostly classified as foreground because of the similarities in the motion patterns
among the moving objects and their shadows. Therefore, in order to avoid deteriorating the
performance of video analytics, many studies have attempted to suppress the cast shadows
in motion segmentation algorithms [60, 113, 120]. Statistical methods [58, 95, 103, 149],

DCNN-based approaches [170], or various features such as color [3,33], texture [51, 141],
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or other information such as shape, size, and direction [20, 56] have been utilized in order to
detect cast shadows [118].

In the case of traffic surveillance applications, due to a strict requirement for real-time
performance the computational complexity of shadow removal algorithms should be as
light as possible. A few considerations are worth noting for cast shadow detection in
traffic-related videos. One observation is that the sun is the single major environmental
light source in outdoor scenes, which brings along the possibility of applying heuristics
based on light direction and assuming a contiguous region for the shadow cast by each
object. Another observation is the uniformity of the road region in terms os texture and color
which results in the pixels corresponding to shadowed regions, which are mostly on the road,
exhibiting homogeneous features. These observations and other physics-based properties of
shadows have been the basis of many algorithms developed for shadow removal in traffic
videos. Hang and Liu [126] developed a hierarchical cast shadow detection framework by
integrating a set of chromatic criteria in the HSV color-space, a region-based clustering
technique, and a statistical global shadow modeling method in order to detect and remove
moving cast shadows in traffic surveillance videos. Russell et al. [117] scan each video
frame in horizontal lines in the opposite direction to the illumination direction and utilize
intensity measurements in the neighboring pixels to classify foreground pixels into objects
and shadows. Phan et al. [112], employ gradient features to discriminate between vehicles

and their shadows for a real-time shadow removal method in traffic surveillance videos.

Non-stationary cameras In addition to the case of videos captured by stationary cameras,
there are many studies addressing the problem of motion segmentation in dynamic cameras.
In many modern surveillance systems, remote control pan-tilt-zoom (PTZ) cameras are
utilized in order to give the operators the ability to move the cameras remotely and direct
attention to a specific event or survey a different area. Since the assumption of a static camera

does not hold, motion segmentation methods applied for applications of static cameras cannot
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Figure 2.1 The qualitative performance of popular motion segmentation methods in
challenging scenarios tested on ATON [120] and CDnet [150] datasets. From top to
bottom the rows represent a challenging situation with cast shadows, low frame-rate,
camera jitter, night time, continuous pan, and adverse weather conditions, respectively.
From left to right the columns show a sample video frame and the results of different
methods: (a) original frame, (b) ground truth, (c) AGMM [171], (d) Codebook [71],
(e) Multi-Cue [107], (f) PAWCS [130], (g) PBAS [55], (h) ViBe [8].

be directly used in the case of dynamic cameras. Therefore, motion segmentation studies
are generally grouped into two categories based on their application and use of static or
dynamic cameras.

A dynamic camera can refer to a freely moving camera, such as a handheld, drone,
smartphone, or dashcam, which can have unrestricted movements, or a constrained moving
camera, such as pan-tilt-zoom (PTZ) cameras, which can have a restricted type of motion.
When it comes to the applications of traffic video analytics, both types of dynamic cameras

are typically used with in-vehicle cameras, such as dashcams, being considered as freely

moving and in-road cameras, such as PTZ, being considered as constrained moving cameras.
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Motion segmentation methods in the case of stationary cameras rely heavily on the
assumption that the static objects of the scene are captured at a spatially stable location in
the video frame. This strong assumption is due to the fixed viewing angle and distance of
the stationary cameras, and even if there are variations in the background intensity values,
they are associated with changes in illumination, shadows, small motions, or camera jitter.
However, this assumption does not hold in the case of dynamic cameras, where the static
objects also appear to have a so-called ego-motion, and therefore, the same methods cannot
be directly applied for segmenting the foreground.

There are several studies, especially in recent years, that address motion segmentation
in the case of a moving camera [19,162]. In the case of in-vehicle cameras, most studies tend
to apply object detection or image segmentation algorithms rather than motion segmentation.
However, most in-road surveillance cameras are stationary with PTZ capabilities that
capture videos with lower resolution, so motion segmentation methods are more practical.
Nevertheless, it is worth considering motion segmentation methods in the case of dynamic
cameras for the applications of traffic analytics.

In general, studies concerning motion segmentation in videos captured by dynamic
cameras can be categorized into two groups. One group of studies focus on statistically
modeling and subtracting the dynamic background and reporting the values that do not fit
into the model as the segmented foreground. These methods vary mainly based on the
approach to background representation. The other group of studies tend to distinguish the
moving objects from the background based on the differences in the motion patterns. This
group of methods is more computationally expensive than the first group as they require
more detailed steps and a greater number of calculations.

Most of the motion segmentation methods in the first group are based on ideas that are
inspired by the algorithms used in the case of static cameras. Several techniques have been
utilized in these studies in order to adapt to a dynamic scene and distinguish the motion of

the objects from the motion of the camera. To name a few of these techniques, we can refer
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to panoramic background subtraction, superpixel segmentation, motion compensation, low
rank matrix decomposition, and block-based splitting of the video frames.

Motion compensation is the simplest and most efficient approach used in motion
segmentation methods in videos captured by dynamic cameras. As in the case of stationary
cameras, one of the most common approaches for subtracting the background in videos
captured by dynamic cameras is to benefit from the high frequency of data points in the
temporal domain in order to model the background. In these methods, a set of beginning
frames is first used to initialize a parametric or non-parametric model for each local
representation of the background image. Since the entire scene seems to be moving in
the eyes of the dynamic camera, the camera motion should be compensated for for the
background modeling to function.

To estimate the motion of the camera, a set of feature points or uniformly distributed
points are selected and the corresponding points in the new video frame are found in order
to calculate a homography matrix and warp all the pixels in the new frame to corresponding
pixels in the previous frame through an inverse perspective transformation. This is assumed
to be the movement of the background compensated after applying the two-dimensional
parametric transformation. After motion compensation, the background model is registered
with the current video frame and can be updated and used for foreground segmentation.
Since the set of selected points includes the feature points of the foreground objects, there
are some registration errors after the transformation estimation which often results in false
positives in the foreground segmentation step. Therefore, the registration is usually followed
by a refinement step. Some methods repeat this process a number of times until a condition
is reached which results in extracting multiple planes where each plane corresponds to a
dynamically homogeneous group of pixels [5]. One of the popular techniques is dividing
each video frame into a number of blocks with a pre-defined size or using superpixel

segmentation in order to simultaneously reduce the computational complexity and improve
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the performance by taking spatial relations into account. Motion compensation can be
applied to the entire image or separately to each block.

Another common approach is the use of low rank and sparse decomposition for the
task of motion segmentation. An optimization process is carried out to form an observation
matrix using a set of video frames and Principal Component Pursuit (PCP) [15] is applied
in order to construct low-rank and sparse representations. Similar to the background
modeling techniques, a global motion compensation technique is first applied to obtain a
transformation matrix and align the background before matrix decomposition. The static
objects are coherent in terms of relative motion to the camera, but the moving objects exhibit
different dynamic behavior. Therefore, the low-rank matrix is assumed to represent the
background while the sparse matrix contains the outliers and is considered to represent
the moving objects. In spite of the effectiveness of this group of algorithms in motion
segmentation, the requirement for collecting a pre-defined number of frames before being
able to apply them imposes limitations on their applicability in real-time systems.

Some studies attempt to stitch the images captured by the moving camera together in
order to construct a panorama or mosaic, which is a bigger image that represents the entire
background. This panorama is constructed by frame to frame, frame to mosaic, or mosaic to
frame alignment, depending on the desire to use a fixed coordinate system. The background
is modeled based on the constructed panorama, and moving objects are detected by applying
one of the background subtraction methods used in the case of fixed cameras.

The second group of studies has taken a different approach by attempting to track
the trajectories of the feature points or uniformly distributed points that represent the
displacements in a sequence of adjacent frames and applying clustering techniques to classify
the trajectories and extract the foreground from the dynamic background. Modeling the
background values is not required as the motion segmentation only relies on the differences

between the trajectories of the moving and static objects in the eyes of the camera. This group
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of methods relies heavily on the precision of trajectory calculation and dense segmentation

of moving objects, which is a common problem [162].

Stopped objects Most foreground detection methods fail to keep detecting the moving
objects after they stop. In parametric modeling methods such as GMM, the stopped objects
are absorbed by the background model shortly after they stop moving. This is specifically
problematic for traffic surveillance systems, as road users may stop regularly at intersections.
On the other hand, stopped vehicles are considered a threat to highway and road traffic
and should be marked as anomalies. In order to locate the stalled vehicles and report
them as anomalies, many studies have attempted a combination of motion-based and
appearance-based methods [153,169]. These studies assume the stopped vehicles are merged
into the background model and they can be located by applying an object detection method,
such as Faster R-CNN or YOLO on the background image. However, there are studies
conducted on locating the stopped vehicles solely based on the motion information [123].
Among the regular motion segmentation methods, the LBAdaptiveSOM [92] and adaptive
background learning techniques have shown better performance in detecting stopped objects

[129].

Weather and illumination variations Traffic surveillance systems are required to work
day and night under adverse weather conditions and illumination changes in the presence of
large shadows and reflections. These variations can lead to sizable drops in the performance
of motion-based object locating methods. Although there are studies that have attempted to
solve these issues by applying motion-based features [6, 159], most studies tend to rely on

appearance-based features as they are more robust to illumination changes.

Occlusions Locating objects of interest solely based on motion information is prone to
severe performance drops in the case of object occlusions. Since every connected component

in the foreground mask is considered to be an object, two or more nearby objects can
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easily fall into the same component. This is specifically problematic for traffic surveillance
applications where moving vehicles can be occluded by each other. This problem has
been addressed in many studies [30, 93] who have attempted to handle the occlusions by
various heuristics. However, these techniques are limited to specific scenarios and cannot be

considered as a general solution.

2.2 Shadow Detection Methods

In video analysis applications, shadows cast by moving objects are often classified as
foreground due to their similar motion patterns to the moving objects. Since object detection
is one of the fundamental steps, this misclassification causes several issues in the subsequent
operations. In order to solve this problem, many methods have been proposed throughout
the previous years [120]. Most methods assume similar chromaticity values among the
background and shadows while darker illumination for the shadows [50, 120]. Therefore,
several color-spaces such as HSV, HSI, C1C2C3, and YUV are examined along with
RGB to separate the luminance and chromaticity components with the goal of detecting
shadows [33].

Many shadow detection methods operate at a pixel level. McKenna et al. [98] made
the popular assumption that shadows change the intensity but not the chromaticity. The
chromaticity values and gradient information of the pixels are modeled, and the foreground
pixels are classified as background if they match the background in terms of chromaticity and
gradient. Cucchiara et al. [33] convert the image from RGB to HSV color-space, expecting
the shadows to darken the pixel values in the luminance component while preserving the hue
and saturation components. The main problem with these types of methods is their need for
empirical parameter tuning and their weak performance in the case of achromatic shadows
where the ambient component of the light is strong.

Another group of studies approaches the problem of cast shadow detection in a

statistical manner [58,94, 103, 149]. Martel-Brisson and Zaccarin [94] examine the stability

17



of different states in the mixture of Gaussian distributions of each pixel and detect shadows
based on the assumption that states corresponding to shadows are more frequent than those
corresponding to foreground objects. In a later study [95], they proposed a non-parametric
method for modeling the changes in pixels while they under shadow. A single direction in
the RGB space is determined in which the shadowed pixels reside.

As opposed to pixel-level methods, some studies tend to exploit region-based strategies
[139,160]. Toth et al. [139] applied the mean-shift image segmentation technique and used
the segmented regions as a reference for analyzing the constancy of the intensity ratios over
the neighboring area. Yang et al. [160] exploit multiple cues, such as color, shading, texture,
neighborhood, and temporal consistency in order to detect the shadows. The reliance of
these methods on texture information makes them computationally expensive and limits
their generalization capability.

Over recent years, machine learning algorithms and methods based on deep learning
have grown to be some of the most popular techniques for detecting shadows [28,77, 141,
168,170]. Lee et al. [78] generate several super-pixels by over-segmenting the image and
learn shadow features through a convolutional deep neural network consisting of seven
layers. Chen et al. [24] present a multi-task mean teacher model for semi-supervised shadow
detection by using unlabeled data and learning shadow regions, edges, and counts. Le and
Samaras [76] set a number of physics-based constraints in order to train an adversarial
network using only patches cropped from the images. Although these methods achieve
high performance, they often require supervision and large datasets of shadowed and
non-shadowed images, which are difficult to obtain. Therefore, in real-time applications of

video analysis, statistical methods are more feasible.

2.3 Road Detection Methods
Automatic Region of Interest (Rol) detection is an important task in many traffic video

analysis applications and can be used in road management, driver assistance systems,
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automatic driving, intelligent traffic surveillance, robot and car navigation systems, etc. In
recent years, many automatic Rol detection methods have been proposed in order to reduce
manual work in urban and highway traffic monitoring applications. Some methods have
tried to utilize various features in order to segment the road region from the remaining
parts of the image. In the paper written by Santos et al. [121], a feature vector of gray
amount, texture homogeneity, traffic motion, and the horizontal line are fed to a support
vector machine to classify each superpixel into road or non-road. Helala et al. [54] use the
contours of superpixel blocks to generate a large number of edges, which are organized into
clusters of co-linearly similar sets, and the best clusters are chosen according to a confidence
level assigned to each cluster. In the end, the top-ranked pair of clusters are selected as
road boundaries. Almazan et al. [2] combine a spatial prior with the vanishing point and
horizontal line estimators in order to adapt to new weather conditions. Cheng et al. [26]
propose a road segmentation method by applying the Gaussian mixture model to color
features and fusing them with the geometric cues within a Bayesian framework.

Some studies approach the task of roadway detection by using temporal features and
extracting the active traffic regions. Lee and Ran [79], extract the moving parts of the scene
in videos of bidirectional traffic as difference images between two consecutive frames and
accumulate them to form a road map. Then a center line is used to divide the roadway
into two segments, each of which corresponds to one of the two major traffic directions.
Similarly, Tsai et al. [140] accumulate the difference between two consecutive frames to
obtain a map of the road where the motion vectors are used to separate the roadway into two
regions in order to represent two major traffic directions. The performance of background
subtraction and tracking methods utilized in these techniques has a large influence on the
results of the road segmentation process.

Most recent studies tend to propose illumination-invariant methods to deal with strong
shadows and benefit from the recent advances in deep learning models to segment the road

in a supervised manner. Li et al. [82] propose a bidirectional fusion network (BiFNet)
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consisting of a dense space transformation module and a context-base feature fusion module
in order to fuse the image and the bird’s eye view of the point cloud. Tong et al. [138],
calculate an effective projection angle in the logarithmic domain to extract the intrinsic
images with a weakened shadow effect and adopt to different directions of the camera
view. Li et al. [84] propose a road segmentation by estimating the spatial structure of the
road and using the color and edge features of the intrinsic image, which is extracted based
on regression analysis. Cheng et al. [27] propose a novel adaptation method to generalize
road segmentation to new illumination situations and viewing geometries by training a
fully-convolutional network for road segmentation. The learned geometric prior is anchored
by estimating the vanishing point of the road and is used to extract road regions that are
utilized as ground-truth data to adapt the network to the target domain. Wang et al. [146]
generate an illumination invariant image and a manual triangular area is used as the color
sample to obtain a number of probability maps which are used to segment the road, which is
further refined by taking the extracted road boundaries into consideration. Junaid et al. [68],
extract multiple abstract features from the explicitly derived representations of the video
frames and feed them to a shallow convolutional neural network. Most of the new studies
benefit from supervised learning methods, which limits their ability to adapt to new videos.
Here, we proposed an unsupervised statistical method which can be applied in real-time

applications.

2.4 Accident Detection Methods
Over the past several decades, there have been some studies addressing the issue of vision-
based accident detection on roads and highways. Zu et al. [174] use a Gaussian Mixture
Model to detect the moving vehicles and the mean shift method for tracking them. In this
study, three main motion features, namely, velocity, acceleration, and orientation, are derived
from the trajectories of the tracked vehicles. When all these values exceed the predefined

thresholds, an accident is reported. Since the videos are from the viewpoint of a driver, the
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motion features are more reliable than those captured by the CCTV cameras overlooking
the highway from above. Note that this method may cause false alarms when the pattern of
traffic flow varies in a short period of time. Besides, rapid changes in motion features do
not always result in an accident. Ren et al. [116] use a modified Gaussian Mixture Model
to extract the moving vehicles in aerial videos and, after detecting the lanes and dividing
each lane into a cluster of cells, some traffic features are extracted for each cell based on the
tracking information. Finally, a support vector machine is trained to detect incident points.
Traffic parameters include flow rate, average travel speed, and average space occupancy.
This method is reliable and fast, but it is for generally detecting traffic incidents and is not
specifically for accident detection. Also, it relies on straight road lanes, whereas in our
case, accidents usually occur in the curved lanes of the road. Xia et al. [154] propose a
close-to-real-time approach that divides each frame into non-overlapping blocks for each of
which an average velocity magnitude is calculated and the low-rank matrix approximation
is utilized to detect the increase in approximation error. Although this method is more
generalizable to different situations, it can result in some false alarms. On the other hand, the
method can be computationally expensive for higher resolution videos. Maaloul et al. [91]
use the Farneback optical flow to extract motion and a statistical heuristic approach to select
thresholds and adaptively model traffic flow for accident detection. This method is effective
in various scenarios of traffic videos (e.g. highways and expressways) and requires a low
amount of training data for motion modeling. Nevertheless, the use of optical flow makes
this approach not suitable for real-time applications.

Some other studies use more complex methods to detect abnormalities in traffic
flow. Thomas et al. [136] formulate vehicle incident analysis as an optimization problem.
An optimal summarization framework is proposed that relies on the salient features of the
moving vehicles. This method achieves comparatively good results. However, it suffers
from errors in segmentation techniques. Ahmadi et al. [1] use a group sparse topical

coding-based technique to model the normal traffic motion using the Lukas-Kanade’s optical
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flow vectors in a document of words. In this model, each word corresponds to velocities in
a specific range of orientations, and when the computed words do not match the model, it
means some abnormal motion has happened. This approach is focused mostly on abnormal
movement detection and is not specific to a type of accident. Arceda and Riveros [4] present
a three-stage approach to detect car crash incidents. First, cars are detected using the You
Only Look Once (YOLO) deep learning model. Then, after tracking each detected car, the
Violent Flow (ViF) descriptor is used alongside an SVM to detect car crashes. This approach
is not real-time, and there can be some false alarms. Xu et al. [157] present a model for
anomaly detection in road traffic by analyzing vehicle motion patterns in static and dynamic
modes. In the static mode, the background is subtracted and fed into a Faster R-CNN model
for detecting stopped vehicles. In the dynamic mode, the trajectories of vehicles are tracked
to find an abnormal trajectory that is aberrant from the dominant motion patterns. This
method ranked first place in the NVIDIA Al City Challenge [105]. However, it has some
limitations due to the use of a supervised deep learning model and is also not very specific
about the type of detected abnormality.

There have been more studies for vision-based traffic accident detection with the
use of deep convolutional networks in recent years. Batanina et al. [9] use a video game
to generate synthetic data due to the lack of real videos of car crashes. After training a
three-dimensional (3D) deep convolutional neural network on the synthetic rendered videos,
domain adaptation is used to adapt the model to real videos. Huang et al. [S9] propose an
integrated two-stream convolutional network architecture to detect and track vehicles in
real time and also detect near-accidents in videos from overhead cameras. Appearance and
motion features from the two networks are incorporated to detect near accidents. Most of
these studies are generally designed to detect abnormal traffic motion, which can include
stopped vehicles, head-to-head collisions, unexpected congestion, etc. and they are not
specific to the type of anomaly. Some methods cannot be applied in real time due to

computational complexity. Also, many of the existing methods rely on supervised data
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to train a prediction model before they can be applied. In this study, we present a novel
real-time traffic accident detection framework to detect two types of traffic accidents, namely,

single-vehicle traffic accidents and trajectory conflicts at intersections.
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CHAPTER 3

FOREGROUND DETECTION

3.1 Introduction

Detecting the location of interesting objects has been intensively studied in the field of
computer vision. Generally speaking, the current techniques for locating objects of interest
can be categorized into two groups: appearance-based and motion-based methods. Motion-
based methods are applicable to video data and tend to perform a binary classification on
the pixel locations in each video frame. In many applications of video analytics systems, the
objects of interest (aka the foreground) have a dynamic pattern different from the rest of
the scene, namely the background. This difference has been exploited by many studies in
order to segment the foreground from the background and subsequently locate the objects of
interest.

Foreground segmentation has specifically been applied to intelligent surveillance
systems [16], traffic monitoring [37, 4144, 48, 88, 123, 125], gesture recognition [64],
and robot vision [96]. The input video data used in the majority of these applications is
captured by stationary cameras, which causes the foreground to have significant motion
compared to the background. A large number of studies have attempted various approaches
to subtract the relatively static background from the changing foreground in order to detect
the location of the moving objects [40]. The strong presumption that the camera is stationary
or only has jittering movements is common among all these studies and substantially affects
their strategies to the point that they become ineffective in the event that the camera has
considerable movements. However, in real-world applications, camera movements are
common and can happen in restricted forms, such as panning, tilting, or zooming in the
case of PTZ cameras used in video surveillance, and freely moving cameras, such as

handheld cameras, smartphones, drones, or dashcams, in which case the camera is mounted
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on a moving platform. In all these scenarios, the camera is non-stationary with regard
to the captured scene, and therefore, everything seems to be moving in reference to the
camera. Consequently, there is a need to implement foreground segmentation methods
that are capable of dealing with camera motion and quickly adapting to the changes in the
background. When relying solely on motion information to segment the foreground from
the background in video frames captured by non-stationary cameras, the only heuristic lies
in the differences between the dynamic patterns of the moving objects and the background
(Figure 3.1). Many approaches have been proposed to take these differences into account
and locate the objects of interest in videos captured by non-stationary cameras [19, 162].
The real-world applicability of the current methods suffers from high requirements for
computational resources and/or low performance in classifying foreground and background.
Here we apply spatial and temporal features for statistical modeling of the background
and the foreground separately in order to classify them in real-time. Each block of the
background is modeled using a mixture of Gaussian distributions (MOG) and a set of values
sampled randomly in spatial and temporal domains. At each video frame, the Lucas-Kanade
optical flow method is applied to the block centers in order to estimate the camera motion
and find the corresponding locations between two adjacent frames. The global motion is
then compensated by updating the background models of each block according to the values
of its corresponding location in the previous frame. On the other hand, the foreground is
modeled by another MOG, which is updated by the input values that do not fit into the
background models. The final classification is performed by comparing the input super-pixel
intensity values with the major components in the statistical background and foreground
models. The remainder of this chapter is organized as follows: In Section 3.2 the main
steps of the proposed framework are described in order. Section 3.3 contains experimental

evaluations of the method’s performance, and the conclusions are summarized in Section 3.4.
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Figure 3.1 Optical flow field calculated by applying the UnFlow method [99]. The direction
is indicated by hue and the velocity is represented by saturation.
3.2 The Proposed Foreground Segmentation Method

The first observation in videos obtained by moving cameras is that the entire captured scene
appears to be moving from the camera’s perspective. However, by assuming the background
to occupy the majority of the scene compared to the objects of interest, we can estimate the
motion of the camera relative to the background. Afterwards, the estimated camera motion
can be compensated for by using the corresponding values in the previous frame for updating
background models. After motion compensation, the foreground can be segmented using
approaches similar to the methods used for the applications of stationary cameras. Here, we
apply an MOG to model the entire foreground using the values that are not absorbed by the
background models. The major components of the Gaussian mixture distributions in the
background and foreground models are utilized for final binary classification. The details of

each step are described in this section.

3.2.1 Global motion estimation
The main purpose behind moving the camera in most applications of video analytics is to

focus on the interesting objects and try to keep them in the view field of the camera. In many
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scenarios, the objects of interest occupy a portion of each video frame, and the remaining
majority is considered to be background. Therefore, the majority of point displacements
among video frames are caused by the camera motion, which can be estimated by calculating
the global motion. For the sake of computational efficiency and accounting for spatial
relationships, a similar approach to [166] is applied where the input image is converted to
grayscale and divided into a number of grids with equal sizes. The Kanade—Lucas—Tomasi
feature tracking approach [137] is applied to the centers of the grid cells from the previous
frame. Then a homography matrix is obtained that warps the image pixels at frame ¢ to pixels
at frame ¢ — 1 through a perspective transform. If we denote the intensity of the grayscale
image at time ¢ by /® and assume consistent intensity between consecutive frames, the
corresponding location of each point in the new frame can be used to calculate the global

velocity vector as follows:

v (T +ug, ys +v;) = ](tfl)(iﬁi, Yi) (3.1)

where (u;, v;) is the velocity vector of the center point of the i-th block located at (x;, y;).

Three-dimensional vectors X; can be constructed as:

Xz'(til) = (24, yi, 1)T7 Xz(t) = (2 + wi, yi + vy, 1)T (3.2)
and a reverse transformation matrix H;;_; is obtained that satisfies Equation (3.1) for the
largest possible number of samples:

[Xf), pedh } —H,, [Xl(t‘”, X0 (3.3)
which is solved by applying the RANSAC algorithm [38] in order to remove outliers from
further calculations. Also, the center points of the blocks classified as foreground in the

previous frame are excluded from this calculation as they do not contribute to the camera

motion.
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(a) The foreground object (b) MOG model

Figure 3.2 The foreground is modeled by a mixture of Gaussian distribution.

3.2.2 Background and foreground modeling

Each block of the image is modeled by a mixture of Gaussian distributions and the model is
updated at each video frame. In order to update the background models at each frame we
have to calculate the corresponding values in the warped background image of the previous
frame. The mean and variance of the warped background model are calculated as a weighted
sum of the neighboring models, where each weight is proportional to a rectangular area as a

bilinear interpolation:

ey = > wepy Y
kER;

5_i(t—1) _ Z ka'](:_l)

kER,;

(3.4)

where R is a set of block indices falling in a rectangular region centered at the corresponding
point location calculated by the homography matrix in Equation (3.3), wy is the weight that
indicates the overlapping area between the block ¢ and the corresponding neighbor k, and 1
and o represent the mean and variance of the Gaussian distributions, respectively.

Since the camera might have slight movements in the form of a pan, there can be
slight variations in the illumination due to the changes in the angle of view and light
direction. Also, even after motion compensation, the pan motion of the camera can cause

a part of the background to move out of the scene, which results in a block representing
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another part. The Gaussian modeling keeps the information from the previous frames and
might be slow in catching up with the pace of changing values at the borders of the video
frames. In order to make the model parameters adapt to these changes, a global variation
factor g is calculated by subtracting the mean intensities in the background model and the

current frame:

1 & 1<
W _ = [(t>__§:~<f*1> 3.5
I szzl Pl (3-5)

with B being the number of blocks and /N being the number of pixels. At each frame the

parameters of the Gaussian mixture model for each block are updated as follows:

i = (™ (0 4+ 99) + MO) /D 4 1)

a,(:) = (n,&til)é,gtfl) + V(t’1)> /(n,(ffl) +1)

_ (3.6)
ngf) = ng 2 +1
K
t t t
ol? =00/ 5!
k=1

where ny, is a counter representing the number of times an input value has been used to
update component k, oy, is the weight of the kth component, M and V' stand for the mean
intensity and the variance of the block, respectively. The component with the largest weight
of each Gaussian mixture model is considered to be the background value of the block.

In the case of moving cameras, the objects of interest are usually present in the scene
for a longer time as the camera is focused on them. Therefore, it is reasonable to model the
values of the foreground objects throughout the video. A similar approach to background
modeling is applied to modeling the foreground, except only one mixture of Gaussian
distributions is used for the entire foreground pixels. Also, instead of a single component,
a number of components from the foreground model that have the largest weights are
considered to represent the foreground objects. This is because the foreground objects have

multiple parts with different intensity values, and each major component in the foreground
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(a) (b) (c)

Figure 3.3 Improving the classification results with foreground modeling. (a) Original
frame, (b) False positives caused by hysteresis effect in background modeling, (c) False
positives are avoided after foreground modeling.

(a) (b) © (d) (e)

Figure 3.4 The final classification process. (a) Original frame, (b) Heat-map of the
foreground probability, (c) Super-Pixels obtained by applying watershed segmentation,
(d) Foreground confidence map, (e) Final foreground mask.
model is used to represent one part of the foreground. Figure 3.2 illustrates an example of a
foreground object modeled by an MOG with three components.

In addition to the statistical modeling and inspired by the ViBe method [8], we keep
a set of sample values as a secondary non-parametric model for each block. This set is

initialized by the mean value of the block and its neighboring blocks at the beginning of

the first frame. In each of the consecutive frames, one of the values in the set is selected

30



randomly and replaced with the new mean value. We can denote the collection of background

sample values for the block 7 as S; as follows:

Si = {s},s2,...,s%} (3.7)
where sF is the kth sampled mean intensity of block i. The sample-based model is kept and
updated mainly to avoid contaminating the foreground model with the background values
that do not fit into any of the Gaussian components of the corresponding block model. This
problem occurs mostly because of motion compensation errors or new background values
being introduced into the scene due to the camera motion. If an input value does not fit into
any of the Gaussian components of a background model, the Euclidean distance between the
pixel value and each background sample in the set of the corresponding block is calculated. If
the number of samples in the set of blocks 7 that are closer than a distance threshold to
the input value is less than a counting threshold, the foreground model is updated by that

value. Representing this number of samples by C; it can be calculated as follows:

IS

=31 <D(x, 39 < ed) (3.8)
j=1

with x being the input pixel intensity value, D representing the Euclidean distance, 6,

being a predefined threshold, which is set to 20, 1 denoting an indicator function, §§-S)

(k)

representing the corresponding value of s, after motion compensation, and S; denoting the
set of neighboring blocks.

Since the camera is in motion, the parameters in the background models can lag
behind the sudden changes caused by motion compensation errors, sudden illumination
changes, or new samples appearing at the borders of the frame. Consequently, the distance
between the new samples and the mean values may exceed the threshold defined based on
the standard deviations, which in turn causes the new samples to falsely be classified as

foreground. By keeping a set of values containing a number of recent background samples,

we can compensate for the hysteresis effect of Gaussian models representing the older
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samples. We calculate the Euclidean distances between the new values and the samples
in the set and only classify the new values as foreground if they match with less than a
few samples in the set. The foreground model is only updated with values that belong
to the foreground class with a high certainty, and therefore, the majority of false positive
cases are avoided. An example of the classification is illustrated in Figure 3.3. As seen in
the Figure 3.3(b), some of the input values do not fit into their corresponding background
models due to the camera movements and the motion compensation errors. In Figure 3.3(c)
these values are removed from the foreground mask as they do not fit into any of the major

components of the foreground model.

3.2.3 Background and foreground classification
For the final classification, at first the foreground likelihood values are calculated for each

pixel at an input image as follows:

(I(z,y) — )’

Lyg(w,y) = (3.9)

where I(z,y) and Ly, (z,y) are the intensity and foreground likelihood values of the pixel
at location (z,y), and py and oy, are the mean and variance of the corresponding background
block, respectively. Afterwards, the watershed segmentation algorithm [100] is applied to
each input image in order to extract a set of super-pixels, notated by P = { P, P, ..., Py }.
For final classification, the mean value of each super-pixel is compared against the
major component in the background model of the corresponding block as well as each
component in the foreground model. The foreground confidence map F is obtained by

calculating the mean of confidence values in each super-pixel as follows:

1
F(P) =57 Y Ly (@y) (3.10)

|R| x,yGPi

where |P;| is the number of pixels at super-pixel P;. Assuming there are M major

components in the global foreground model, a background confidence map B,,,m €

32



{1,..., M} is similarly obtained based on each component. The Gaussian Naive Bayes
(GNB) classifier is applied to each super-pixel in order to calculate the z-score distance
between the input value and each class-mean and classify the super-pixel accordingly in
order to obtain the final foreground mask H:

Lif F(P;) > B (P)
H(P) = (3.11)

0, otherwise

where B,, is the background confidence map corresponding to the m-th foreground model
and H(FP;) = 1 indicates that the super-pixel at location P; belongs to the moving objects and
H(P;) = 0 means it belongs to the background. The process of segmenting the foreground
is detailed in Algorithm 1.

The different stages in the classification process can be seen in Figure 3.4 . From top
to bottom, each row in the figure represents a sample video frame from the DAVIS [111],
Segment Pool Tracking [81], and SCBU [166] datasets, respectively. The second column
represents heatmaps where the pixels with a higher probability of belonging to the foreground
are represented by red colors. The third column is the results of the watershed segmentation
algorithm applied to each video frame, with the markers chosen uniformly across the image
at the same locations as the background block centers. The fourth column illustrates the
foreground confidence maps calculated based on Equation (3.10) and the last column is the

final results of foreground detection after morphological dilation.

3.3 Experiments
The performance of the proposed method is evaluated using video data collected from the
publicly available SCBU dataset [166], which consists of nine video sequences captured
by moving cameras. The videos in the dataset impose various challenges in the way of
foreground segmentation, such as fast or slow-moving objects, objects of different sizes,

illumination changes, and similarities in intensity values between the background and
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foreground. Figure 3.5 represents the foreground masks detected by various methods. Similar
to [165], in addition to background modeling methods [8,25,31,72,89,102, 164, 166], the
detection results are compared with a number of object-centric methods, such as uNLC [36],
which is the unsupervised version of the NLC [36] approach, OSVOS [13] without the
fine-tuning step, CIS [161], and BASNet [114]. In terms of time and space complexity, the
statistical methods are more efficient as the methods based on deep neural networks require
more resources. Therefore, our method is more practical in applications with real-time
requirements and edge devices that have lower hardware capacity.

Figure 3.6 represents the foreground detection results in a number of video sequences
compared with other background modeling methods. It can be seen that our proposed
method is able to detect the foreground in various challenging scenarios. Compared to some
of the representative methods, such as MCD [102] and MCD NP [72], our method models
the foreground and background separately, which enhances the classification results. One
of the limitations in the proposed method is the ability of the foreground model to adapt
well to sudden illumination changes caused by the pan movements of the camera. Also,
the camouflage problem, where the foreground color values are very similar to those of
the corresponding background block, can lead to false negative results (part of the person’s
head is not detected in Figure 3.5(1)). This problem can be solved by introducing more
discriminating features to the statistical modeling process.

The f-score metric is used in order to evaluate the quantitative results:

;

PRE = Tp/(Tp + Fp)

REC = Tp/(Tp + Fy) (3.12)

F\ =2 x (PRE x REC)/(PRE + REC)

where T’p, Fp are the number of pixels correctly and incorrectly reported as foreground,
and Ty and Fy are the numbers of pixels that are correctly and incorrectly reported as

background, respectively. PRE, REC, and F refer to precision, recall, and F1-score,
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respectively. The F1-scores are listed in Table 3.1 in comparison with other popular methods.
The quantitative results demonstrate the robustness of our method in detecting the foreground
mask in different videos.

The hardware specification used for the experiments is a 3.4 GHz processor and 16
GB RAM. The average processing speed for video frames of size 320 x 240 pixels was about
~ 143 frames per second, which is feasible for real-time applications of video analytics.
The average running speed of the proposed method is reported in Table 3.2 for each video
frame of size 320 x 240 pixels. The run-time calculations show that the method is feasible

to be used as a preprocessing step in real-time traffic video analysis tasks.

3.4 Conclusion
In this study, a new real-time method is proposed for locating the moving objects in
videos captured by non-stationary cameras, which poses one of the challenging problems in
computer vision. The global motion is estimated and used to compensate for background
variations caused by camera movements. Each block is modeled by a mixture of Gaussian
distributions, which is updated by the values at the corresponding locations in the warped
image after motion compensation. Additionally, the mean values of each block are modeled
along with the mean values of its neighboring blocks as a set of samples, which is in
turn updated by random selection. The foreground, on the other hand, is modeled by a
separate MOG which is updated by values that do not fit into either of the statistical or
sample-based background models. For classification, each input value is compared against
both the background and foreground models to obtain the definite and candidate foreground
locations, respectively. The watershed segmentation algorithm is then applied to detect the
final foreground mask. Experimental results demonstrate the feasibility of the proposed

method in real-time video analytics systems.
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Algorithm 1: Acquiring the foreground mask

Input:
The input video frame in gray-scale /®
A set of predefined thresholds
Output:
The foreground mask H of the same size as the video frame

initialize F with 0;

o

foreach pixel p € IV do

[

3 if p fits into the MOG model of block i then
4 update the ith MOG;
5 end

6 else if p doesn’t fit the ith sample-based model then

7 update the foreground MOG;
8 end
9 end

10 apply watershed segmentation to obtain PP;
1n H=0;

12 foreach super-pixel P; € P do

13 calculate F(F;);

14 foreach component m in foreground model do
15 calculate B,,(P,);

16 if 7(P,) > B,,(P,) then

17 H(P) =1;

18 break;

19 end

20 end

21 end
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Figure 3.5 Foreground detection results from some of the popular methods
applied on the “Woman” sequence from the SCBU dataset [166]. (a) Original
frame, (b) Ground truth, (c) MCD [102], (d) MCD NP [72], (e) Stochastic approx
[89], (f) SC MCD [166], (g) uNLC [36], (h) OSVOS [13], (i) BASNet [114], (j) CIS [161],
(k) uMOD [165], (1) Proposed method.
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Table 3.1 The F1-Scores of Different Foreground Segmentation Methods

Methods Walking Skating Woman Groundl Ground5 Average
ViBe [8] 0.0375 0.2229 0.0375 0.5656  0.1309  0.2107
FIC [31] 0.0613 0.2373 0.0361 0.4543  0.1319 0.1761

BMRI-VIBE [25] 0.0438 0.2402 0.0400  0.4249 0.1377  0.1730
MCD NP [72] 0.4351 0.4164 04935 0.2773 0.3540  0.3519

FP Sampling [164] 0.7058 0.8539 0.7268  0.7977 0.8212  0.6646
MCD [102] 0.7349  0.2447 0.3395  0.6573 0.0678  0.4523

SC MCD [166] 0.7496  0.8560 0.6650  0.8965 0.9326  0.8173
Stochastic approx [89] 0.8335 0.6543 0.3986  0.2221 0.2181  0.4392

uNLC [36] 0.0158 0.1419 0.0178 0.0570  0.0143  0.0389
OSVOS [13] 0.3397 0.5344 0.0121  0.7697 0.1224  0.4127
CIS [161] 0.0538 0.3036 0.1522  0.1545 0.0184  0.1418
BASNet [114] 0.3433  0.9379 0.0205  0.6039 0.9829  0.6188
uMOD [165] 0.7809  0.9600 0.7269  0.9037 0.9793  0.8546

Proposed method 0.8144 09710 0.7874 0.9112 0.9686  0.8725

Table 3.2 The Average Runtime of Different Foreground Detection Methods for Each Frame

Methods Run time (ms)  FPS
ViBe [8] 14.6 68.5
MCD [102] 7.46 134
MCD NP [72] 20.9 47.85
SC MCD [166] 9.56 104.6
uMOD [165] 29.23 342
Proposed method 9.4 106.38
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Figure 3.6 Comparison of the qualitative results of background modeling methods.
From top to bottom, the rows represent the Woman2, Ground3, Ground4, and Ground5
sequences. Each subfigure at the first column illustrates one video frame of each
sequence with the corresponding ground-truth represented at the second column. The
remaining columns represent the classification results of (c) MCD [102], (d) MCD NP [72],
(e) Stochastic approx [89], and (f) our proposed methods, respectively.
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CHAPTER 4

SHADOW SUPPRESSION

4.1 Introduction

Detecting moving objects is a fundamental step in many applications, such as video
surveillance, traffic monitoring, content-based video coding, gesture recognition, and
human-computer interaction [40]. One of the main challenges in foreground detection
is the shadows cast by moving objects in the background, which are often classified as part
of the foreground as a result of their similar movement patterns to the moving objects. This
misclassification can have severe negative effects on the performance of the further steps in
the video analysis systems, such as object classification [37], segmentation [41-43], and
object tracking [44,123]. The task of shadow removal has been addressed in many studies,
which have been grouped into seven categories based on the methodologies and exploited
features [118], such as color [33] and texture features [120], statistical modeling [58], or a
combination of features [48, 124]. Recently, some methods have applied deep convolutional
neural networks (DCNNs) for shadow detection [23,148]. However, these techniques are not
suitable for many real-world applications due to the large amount of training data and high
demand for computational resources they require. There are a number of other shortcomings
in the existing shadow removal methods, such as being limited to specific applications or
the requirement for manually specifying sensitive parameters.

In this chapter, a real-time method is proposed to detect and suppress moving shadows
with minimal manual involution. First, the global foreground modeling (GFM) method [125]
is applied for foreground segmentation due to its efficiency and robustness. Therefore,
we employ a region-based classification method, which is capable of dealing with
achromaticity and camouflage issues. The watershed segmentation approach [101] is

applied in order to extract superpixels. A locally near-invariant illumination feature is
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Figure 4.1 Histogram of RGB norm ratios. (a) Sample video frame [120]. (b) Lighter,
darker, and shadowed samples represented by orange, brown, and gray, respectively.
(c) Histogram of the RGB norm ratios.

applied to merge correlated superpixels and segment the foreground into a number of
regions. These regions are then classified based on the number of candidate shadow samples,
foreground-background gradient direction correlation, and the number of external terminal
points. In the end, the results of all three steps are integrated for final shadow detection. This
integration results in an accurate and robust shadow detection method for real-time video
analytics applications.Figure 4.2 shows the system architecture of the proposed shadow
detection method.

The remainder of this chapter is organized as follows. In Section 4.2 the major steps of
the proposed method, including image segmentation (Section 4.2.1) and region classification
(Section 4.2.2) are described in detail. The performance of the proposed method is evaluated

on publicly available data in Section 4.3 and Section 4.4 is the conclusion of the chapter.

4.2 A New Cast Shadow Detection Method
In order to subtract the background, the GFM method [125] is applied, which results in a
binary motion mask M (z,y) where M(z,y) = 1 indicates there is significant motion at
location (z, y), either caused by an object or moving cast shadow and M(z,y) = 0 means
the location (z, y) belongs to the stationary background. The goal here is to classify the

foreground pixels into object and shadow classes in order to disregard the moving cast
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Figure 4.2 The general overview of the system architecture of the proposed shadow detection
method

shadows in the further tasks of video analytics. The details of the proposed multi-layer

shadow detection method are discussed in this section.

4.2.1 Image segmentation based on locally near-invariant illumination feature

Pixel-wise approaches fail to differentiate between shadows and dark objects that have
similar color values (see Figure 4.1) as they are limited only to the variations in the RGB
values and do not take the spatial relations between each pixel and its neighborhood into
account. Therefore, a combination of pixel-based and region-based techniques can help
with locating the dark objects and reducing the misclassification errors. Here, we first apply
component analysis [133] in order to partition the binary motion mask M (z, y) into a set
of independent components R = {ry,rs, ..., r;}. By assuming that most locations in the
scene have rough Lambertian surfaces with negligible specular reflection, there is a single
dominant illumination source, there is a specific geometry with constant scene angles, and
the camera filters have infinitely narrow bandwidth [33] we can express the camera sensor

responses at location (z, y) as follows:

where A, k € {R, G, B} represents the central frequency of the k-th channel camera filter,

qr, k € {R, G, B} indicates the spectral sensitivities of the three color camera sensors, and
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E(X\ x,y) and S(\, z,y) are the incident illumination and surface reflectance at location
(x,y), respectively [62]. This response can be expressed by the contributions of the direct

C¢ and ambient C¢ illumination components [97] as follows:

Cr = aC¢ 4+ CF = aqpELS! + ¢ ELSE k € {R, G, B} 4.2)

where « € [0, 1] is the attenuation factor that accounts for the unblocked proportion of the
direct light, E¢, S,f, E7, and S} are the incident illumination and surface reflectance of the
direct and ambient components, respectively.

With the assumption of @ = 1 in the background and negligible variations in the
ambient illumination, we can define spectral ratio ? = [Sg, Sq, S B]T as a near-invariant

1llumination feature:

S p— p—
" BG  aquE{S{+ @ ELS;

(4.3)

where k € {R, G, B} indicates the sensor bands. Since there is little to no direct illumination
in the umbra region of the shadow (o = 0) and the surface material is the same at location
(z,y) in the foreground and background when shadowed (S¢ = S¢%), the spectral ratio in

this region can be indicated as follows:
Ed
Sy, = E—’g (4.4)
which is near-constant among neighboring pixels across the umbra region and the changes
are mostly because of the variations in the ambient illumination (Figure 4.3(b)).

We apply the watershed segmentation approach [101] on the spectral ratios of each
region in R to obtain the superpixels. Afterward, correlated superpixels are merged by
applying the union-find algorithm [156]. Due to the ratio-invariance property of shadows,
two neighboring superpixels are merged if their spectral ratio differences are less than a small

threshold across all three color channels. In addition, the edge between two superpixels may

have been caused by intersecting shadows, which are difference-invariant [73]. Therefore,
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(a) (b)

(c) (d)

Figure 4.3 The segmentation process of each frame. (a) Original video frame. (b) Spectral
ratio. (c) superpixels. (d) Merged segments based on eq. (4.5).

two neighboring segments are merged if the difference between the foreground values is
close to the difference between their background values. Another possible scenario is if
the moving shadow is cast over an existing stationary shadow. In this case, the background
values are different, but the foreground values are similar and close to the background value
of the darker segment.

Two neighboring superpixels/segments s; and s; are merged according to three criteria:

(
FGi/pa; ~ FGi/Ba;
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If any of the above conditions hold, the two segments will be merged. Figure 4.3 shows an
example of the segmentation and merging process. At this point, each foreground component

e € R is partitioned into a number of segments s, such that:
Nk Nk K
k k
Usl =T, ﬂsl =J, Urk:R (4.6)
=1 1=1 k=1

where ny, is the total number of segments sf at each region r (Figure 4.3(c)). Note that the
efficiency of this method is much higher than pixel-wise segmentation methods [3] due to
the use of superpixels and applying the union-find algorithm. This way, if two pixels belong
to the same superpixel/segment, there is no need to calculate the merging criteria. Otherwise,
the dissimilarity measures are calculated in order of priority only for the neighboring pixels
of two separate superpixels/segments. If the two superpixels/segments are decided to be
merged, all the pixels corresponding to them will be merged at the same time. Figure 4.3
illustrates the steps of the segmentation method in a sample video frame. The white and

gray colors represent the 0 and 1 values in the binary masks, respectively.

4.2.2 Segment classification based on various heuristic cues

In order to improve the robustness and accuracy of the object/shadow classification in the
foreground, we employ four different heuristic cues simultaneously, including thresholds,
gradient correlation, and the number of extrinsic boundary points. The classification results
from all three steps are aggregated for final classification. In this section, the steps in the

segment classification process are explained in detail.

Extracting candidate shadow pixels Since the HSV color-space separates the chromaticity
from the intensity to a good level, it is useful to distinguish the variations in illumination
from the changes in material. Figure 4.4 illustrates the potential shadow zone in the RGB
color-space which is a portion of the conic region in the RGB space Since shadows have little

to no effect on the H(hue) component of the HSV color-space, we choose the S(saturation)
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Figure 4.4 The initial shadow candidate detection. Pixels falling in the conic region are
considered as potential shadow samples.

and V(value) components to set the criteria. The value ratio can roughly specify the
attenuation, which is represented by the vector magnitudes, and the saturation component
can determine the apex angle of the cone, which depends on the ambient illumination. By
assuming Sy, Vy, S, and V}, to be the saturation and value components of the foreground

and background, respectively, the chromatic criteria can be formulated as follows:

¢

L (7 < Vi)V < Ton)

P(:c,y) = /\(Tsl < Sf — Sb < Tsh) 4.7)

0, otherwise
\

where P is a binary mask where P(x,y) = 1 indicates that pixel at location (z,y) is a
potential shadow sample, and 7,;, 7,5, s, and 74, denote the lower and upper thresholds for
the value ratio and saturation variation, respectively. All the foreground pixels that satisfy
these criteria are considered to be potential shadow candidate samples. Figure 4.5 illustrates

an example of potential shadows represented by gray color.
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Each segment s} of region 7, is classified as an object or shadow according to its
intersection with potential shadow candidates. If most pixels inside a segment are classified
as potential shadow candidates, that segment is likely to belong to the shadow class. This

can be expressed as follows:

|Pﬂsé€|

k
‘Sl’

1,if > Ty

Csy) = (4.8)

0, otherwise

where C(s}) is a binary mask where C(s}') = 1 if more than 7, of the pixels in segment s}

are classified as potential shadows.

Calculating the gradient direction correlation The amount of gradient information
introduced by the objects is generally more than the amount introduced by shadows. The
dominant edges are extracted by applying the Canny edge detection method, and the
difference in gradient direction between the frame and the background is calculated as

follows:

L Vi) V()
|7 5w [Fov

AfB(x,y) = cos (4.9)

where V f(z,y) and ?b(w, y) are the gradient vectors at location (x, y) in the frame and the
background, respectively, and Af(x,y) is the angular distance between two vectors. If the
gradient direction is highly correlated between the frame and the background in a segment,
it has a higher probability of belonging to the shadow class. This criterion is expressed as

follows:

Lif e S H (A0~ 1) > 7
G(s)) = ! (4.10)

0, otherwise

where |s}| is the number of pixels in the segment sy, H(.) denotes the unit step function

which is one if the angular distance is larger than or equal to a threshold 7, and G(sF) is a
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Figure 4.5 Extracting potential shadow candidates. (a) Sample video frame. (b) Potential
shadows.

binary mask which is one if a fraction more than 7, of the pixels in segment s} have similar

gradient direction in the frame and the background.

Computing the number of extrinsic terminal points Another observation about shadow
samples is their spatial distribution around the objects, which results in shadow segments of
each region containing a considerable number of extrinsic terminal points. Such criterion
can be expressed in a binary mask S; as follows:

p,if Zo00meb]

T(sk) = TGPl @.11)
0, otherwise

where T(ry,) and T(sF) are the sets of external boundary points of the foreground component
. and each of its segments sy, respectively, and 7 (sF) is a binary mask which is 1 if a

fraction more than 7; of terminal points are external.

Final shadow detection based on integration of the previous steps For the final object
and shadow classification, the results of the previous steps are integrated by calculating the

weighted summation as follows:
W(z,y) = weC(x,y) + weG(z,y) + wrT(z,y) (4.12)
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(a) (b)

(d) (e) ()

Figure 4.6 Classification process of a sample frame from Highway 3 sequence. (a) Original
video frame. (b) segmentation. (c) Potential shadows. (e) Heatmap of gradient correlation.
(d) Heatmap of external terminal points. (f) Region based classification (S).

where we € [0, 1], wg € [0, 1], and wy € [0, 1] are the weights indicating the significance of
the shadow detection results based on chromatic criteria, gradient correlation, and extrinsic

terminal points, respectively. The three weights are normalized and summed up to one:

we +wg +wr =1 (4.13)

We have considered wg to be twice the value of w¢ and wp. By thresholding the weighted
sum values we obtain a binary mask F which represents the final shadow detection results

as follows:

Lif W(x,y) > 7y
Flz,y) = (4.14)

0, otherwise
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Figure 4.7 The foreground masks and the detected shadows in different methods using
various sequences from the ATON dataset [120]. (a) Original video frame. (b) Ground
truth. (c), (d), (e), (f), (g), and (h) are the results of Cucchiara et al. [33], Hsieh et al. [56],
Sanin et al. [120], Huang and Chen [58], Amato et al. [3], and our proposed method,
respectively.

where 7; is a threshold, F(x,y) = 1 indicates that the pixel at location (z, y) belongs to
shadow and F(z,y) = 0 means it belongs to moving objects. Subtracting F from M will
result in a shadow-free foreground mask. Figure 4.6 shows an example of the described steps
in the classification procedure. In the heatmaps, the warmer colors represent the objects and

the colder colors represent shadows.

4.3 Experiments
The quantitative and qualitative results of the proposed method are evaluated using publicly
available video data [120]. The spatial resolution of each video sequence is 320 x 240

pixels and each video contains 15 frames per second. The underlying system hardware is
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Table 4.1 The Average Shadow Detection Runtime for Each Video Frame in Different
Methods

Methods \ Runtime (ms)
320 x 240 640 x 482
Cucchiara et al. [33] 23 141
Zhu et al. [170] (with GPU) 421 1069
Huang and Chen. [58] 16 81
Sanin et al. [120] 61 244
Hsieh et al. [56] 5 16
leone and Distante. [80] 135 284
Amato et al. [3] 16 102
Proposed method 5 16

Table 4.2 The Average Runtime of The Main Steps in Shadow Detection After Background
Subtraction

Steps \ Runtime (ms)
320 x 240 640 x 482

pre-processing 0.32 0.55
segmentation 2.85 11.44
candidate shadows 0.07 0.28
gradient correlation 1.40 3.36
terminal points 0.27 0.56
post-processing 0.37 0.73
Total 5.29 16.93

a Dell XPS 8900 PC with a 3.4 GHz processor and 16 GB of RAM. The processing time
is, on average, 5.48 milliseconds for each frame, which is consistent with the efficiency
requirements of real-time applications. Table 4.1 compares the run-time with some of the
popular shadow detection methods for video frames of size 320 x 240 and 640 x 482 pixels.
Table 4.2 contains detailed run-time for each step of the process. The preprocessing step
involves removing the fringe of the shadow segments and smoothing each image by Gaussian
blurring. The post-processing is a noise correction step that assigns a shadow/object class to
each foreground pixel according to the majority of its surrounding pixels.

In Figure 4.7, a sample frame from some videos is illustrated along with the shadow
detection results of some of the representative methods. The thresholds 7,, 7., 7;, and 7

are all empirically set to 0.5 and show low sensitivity when experimented with various
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Table 4.3 The Shadow Detection Results Compared to Other Methods in Terms of F-Measure

IntelligentRoom Laboratory Highway-1 Campus Highway-3

Cucchiara et al. [33] 78.18 84.33 70.36 53.22 53.40
Hsieh et al. [56] 61.26 56.51 70.55 58.88 54.61
Huang et al. [57] 71.59 54.46 56.79 55.24 48.79
Leone et al. [80] 75.27 84.69 28.69 67.39 10.58
Sanin et al. [120] 88.59 78.05 74.04 66.81 53.56
Wang et al. [143] 94.63 90.30 84.80 80.42 68.68

Proposed method 92.68 84.22 88.14 89.92 84.09

videos. Three performance measures are calculated for quantitative evaluation of the shadow

detection method as follows:

(

¢=TP,/(TP, + FN,)

n=TP,/(TPs; + FNjy) (4.15)

| F1=2x(x&)/n+¢)

where T'FP, and T'P; denote the true positive rates of the object and shadow pixels and
F'N,, and F'N, are the false negative rates of the object and shadow pixels, respectively.
n, &, and F} denote the shadow detection rate, shadow discrimination rate, and F-measure,
respectively. In Table 4.3 the calculated measures for the performance evaluation are

reported along with some of the popular methods [120].

4.4 Conclusion
This chapter presents a new moving cast shadow detection method to separate moving
objects from their cast shadows in real-time applications of video analytics. After applying
the global foreground modeling (GFM) method for background subtraction, the foreground
class contains the moving objects along with their cast shadows. First, a set of chromatic
criteria in the HSV color space is applied in order to extract the potential shadow candidates.
Then a segmentation technique is used based on the physical properties of the surface

reflections to group the correlated pixels in each foreground component and classify the
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segments according to a set of three criteria. The final decision about shadow and object
classification is made through an integration process of the previous steps. The experimental

results demonstrate the effectiveness of the proposed method in real-time video analytics

applications.
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CHAPTER 5

REGION-OF-INTEREST DETECTION

5.1 Introduction

A region of interest (ROI) is a sample within a dataset identified for a particular purpose [12].
In the case of video analysis, a region of interest refers to a subspace of the video frame
that is identified as the region of main focus. Selecting one or multiple regions of the video
frame to perform video analytic tasks not only reduces the unnecessary and false results, but
also decreases the computational complexity due to a lower volume of input data, which
means a great deal to real-time applications. One of the main applications of video analysis
is in traffic surveillance videos, where the region of interest usually refers to the road area
and its proximity. The area of focus in traffic video analysis tasks such as vehicle counting,
speed estimation, and detecting traffic incidents such as wrong-way vehicles and vehicle
accidents is the road lanes and shoulders. Currently, in most applications, the region of
interest is selected manually, which has to be performed for every video and repeated in
case of changes in the angle or distance of camera view.

Automatic road recognition has been a popular research topic in applications regarding
traffic surveillance videos [121] and in-vehicle perception [17]. Most of the techniques
used in these studies are applicable in both areas, with the main motivation of the former
being ROI determination and the latter providing useful information for advanced driving
assistance systems. In some studies, the local features such as color [87], brightness [147],
texture [158], or a combination of them are extracted in order to classify the pixels into road
and non-road classes. Some methods tend to rely on the road models in order to match them
with low-level features and detect the road region [27]. Several techniques suggest utilizing
motion information and temporal features obtained from a sequence of video frames in

order to extract the road area [140]. Recently, convolutional deep neural networks have also
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been applied to segment the road region due to their ability to model non-linear variable
relationships [14,22]. In terms of road detection in traffic video analytic applications, the
performance of supervised methods can suffer from a wide range of different illumination
and weather conditions, image resolutions, camera viewing angles, and distance from the
road surface.

The focus of this study is road recognition and ROI determination in traffic surveillance
videos to aid with detection of driving violations, traffic incident recognition, and reduce the
computational complexity of urban and highway traffic video analysis tasks. We propose a
motion-based statistical method to extract the road region and separate the road map into
left and right sides based on the two major moving directions of vehicles in traffic videos.
No assumption about the structure of the road is made, and therefore, this method can be
used for structured and unstructured road scenarios. The locations of moving vehicles are
appropriately assumed to be associated with the roadway region and they are utilized as
color samples to estimate the location of road pixels. A novel foreground segmentation
technique [125] based on Gaussian mixture models is applied in order to detect the moving
vehicles and subtract the stable background. The pixel values of the background image at
the corresponding locations of the vehicles are utilized as initial road samples and as seed
points by the flood-fill method in an accumulative manner, and several road probability maps
are generated. The extracted probability values are then combined in order to estimate a
more accurate road region map, which is further refined by using the aggregated foreground
mask. The straight and curved road boundaries are estimated by second-degree polynomial
curve-fitting to improve the obtained road map from the previous step by removing possible
extra pixels that are incorrectly categorized as road pixels by the flood-fill method. The
use of color features combined with gradient information and temporal features makes this
method robust against illumination changes and severe weather conditions. At the same
time, a statistical approach is applied with Lucas-Kanade optical flow and is further refined

by a blob-tracking method to separate the two major directions in roads with bidirectional
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traffic. The detected road regions can further be updated and used as ROI in traffic video

surveillance applications.

5.2 A New Automatic Method For Road Region Extraction
Extracting the region of interest is an important preprocessing step in many image and
video analytic applications. Currently, the selection of ROI is mostly performed manually
by a human agent at the initial stages of preprocessing. Manually determining the region
of interest, which in traffic video analysis refers to the road region, is an exhaustive and
time-consuming task for human agents. Retrieving the ROI automatically can reduce the
need for manual work, and constant updates in the extracted ROI help with adaptation
to new scenes when the camera’s view changes. We propose a fully automatic method
for road recognition that updates the ROI at each frame of the video and therefore can
quickly adjust to changes in the camera’s view. The proposed method can be performed in
real-time and is adaptive to cameraview changes and various illumination scenarios. The
only madeassumption is about the location of the vehicles, which are assumed to move
mostly along the road region. Our proposed method has three major contributions: (i) The
new motion-based statistical method can automatically extract the road region and reduce a
great deal of manual work. (ii) The newroad probability estimation method can generate
a reliable roadmap from the initial frames of the video without the need to wait for many
vehicles to pass along the road region. (iii) The novel ROI determination approach can extract
a separate ROI for each side of roads with bidirectional traffic. The ROI determination is

fast and robust for real-world application use.

5.2.1 Selection of the initial road samples
In the case of applications with an onboard camera system, initial road samples are usually
taken from a triangular area in front of the vehicle. In contrast, in applications with a

stationary camera overlooking the roadway, the initial road samples can be extracted based
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Figure 5.1 Sampling the road pixels from the background image based on the direction of
moving vehicles in order to avoid sampling non-road pixels. The red color indicated the
location of the sampled road pixels.

on the location of moving vehicles. The further steps for road segmentation based on the
initial samples can be commonly used in applications of traffic surveillance and self-driving
vehicles. The focus of this study is on automatic ROI determination in traffic surveillance
videos. However, our proposed feature extraction and classification approach can work for
road segmentation in self-driving vehicles as well.

In order to obtain an estimate of the road region during the initial frames of the video,
we first attempt to detect the vehicles and segment them from the still background. The
global foreground modeling (GFM) method introduced by Hang and Liu [125] is utilized to
detect the location of the moving vehicles and to subtract the stationary background image
from the video frames. The GFM foreground segmentation approach was chosen due to its
ability to quickly subtract the background in a video captured by a stationary camera. Also,
the GFM method is robust in dealing with stopped vehicles, which are continuously detected
as foreground and therefore separated from the background image. The road estimation
method is applied on the subtracted background with the assumption that most vehicles
pass along the roadway. The corresponding locations of the moving and stopped vehicles in
the background image are considered to be samples of the road region, which are in turn
utilized to estimate the probability of all background pixels. The generated probability maps
are further used to classify the pixels into road and non-road in order to segment the road

region from other areas and determine the ROI based on the extracted road map.
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The selected pixels for road samples should be exclusively from the road region in
order to obtain a good estimation of road pixel-values. In many intelligent vehicle systems,
such as automatic driving and advanced driver assistance systems, where the field of view
is similar to that of the driver, the road region priori is approximated as a triangular region
at the mid-bottom of the frame [83]. In the case of traffic surveillance videos, where the
cameras are overlooking the road, there can be no initial assumption of the road’s location
without any observation of the images. On the other hand, in a generally short period of
time, vehicles pass along different parts of the road rather than a specific lane. Subsequently,
accumulating the motion masks obtained from the foreground segmentation method covers
the majority of the road region in a relatively short period of time. Each time a vehicle passes
along the road, the pixels of the road map in the corresponding location to its foreground
mask are added by a constant positive value. By applying the Otsu’s threshold [49], we can
get rid of the remaining noise and obtain a binary image representing the estimated active
zone of the traffic flow.

Here, a valid assumption is made that most of the pixels in the background image
with locations corresponding to those of the vehicles in the foreground mask belong to
the roadway region. However, due to the variety of camera view angles, different sizes
of vehicles, and occasional movements in the non-road regions, some of the pixels of
the foreground mask can belong to the areas outside of the road. In order to discard the
faulty outputs of the foreground segmentation method, a tracking approach is utilized to
only include the foreground mask of the moving vehicles and discard the pixels that are
segmented as foreground due to the possible motion in the areas outside of the roadway. For
the sake of simplicity and real-time performance, we apply the blob-tracking method [18]
for vehicle tracking. At each frame, the foreground mask of each tracked vehicle is saved
separately, and if the life-time and moving length of that track exceeds predefined thresholds,
the corresponding pixels of the entire foreground mask of that track in the active traffic

region map are added with a positive number. Applying filters to the foreground mask based
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on track life-time and the moving length of each track ensures that only vehicles passing
along the road are considered as part of the active traffic region and noises in the foreground
mask are disregarded.

In order to obtain a mask containing pixels that represent road samples €2,.,,, only the
foreground mask of vehicles with sizable movement and a long enough tracking lifetime is
considered. The moving direction of each vehicle is estimated and updated as follows in
each sequence of f frames:

Vg = Ty — Ty

Vy = Ymo — Ymy

(5.1)

d; = arctan(vy, v,)
— o2 42
My, = 4/ Vg + Uy

where v, and v, are the components of the velocity vector, x,,, and y,,, are the average
x and y values of the blob centroid in the most recent f/2 frames, x,,, and y,,, are the
average x and y values of the blob centroid in the remaining f/2 frames, d; is the estimated
direction of the vehicle 7, and m,, is the estimated magnitude of the vehicle ¢, respectively.
The filtered foreground mask of each vehicle is then cropped with regard to its moving
direction so that only the part that corresponds to the road region is added to the €2,,,
mask. Figure 5.1 illustrates some examples of the road sampling strategy which helps avoid
including non-road regions in the €2, at the boundaries of the roadway. The road samples
are accumulated throughout the video, and the €2,.,,,, mask will cover more parts of the road

when more vehicles pass along the roadway.

5.2.2 Road region probability map extraction
Creating a single probability map that represents the roadway region in all cases is
rather difficult due to the variety of illumination, texture, color, and other visual

conditions. Therefore, generating multiple probability maps and merging them helps obtain

59



a more reliable probability distribution for classifying the pixels into road and non-road
regions. In this section, multiple approaches are taken in order to generate a number of
probability maps using low-level features, e.g., color, edge, and temporal features. The
generated probability maps are further combined together to obtain a binary classification
mask, which is in turn refined by the accumulative foreground mask as the number of passing

vehicles increases.

Extraction of probability maps based on difference images One approach to estimating
the road probability of the pixels is to compare the pixel’s value to the average value of the
initially selected road samples in 2,.,,. Similar to the approach used by Wang et al. [146],
the gray-scale image G* of background is first smoothed by applying a Gaussian convolution
kernel of size 3 x 3 to reduce the noise effect. Then the absolute difference between the mean
value G*,, = of the grayscale image in the location of §2,.,, and each pixel in the smoothed
grayscale image is utilized to obtain a gray-scale difference image . A similar process is
carried out on the three channels of the smoothed background image, and the three outputs
are added together to obtain another different image C based on the color input. In traffic
scenes where the roadway is considerably different in color from the surrounding area, the
hue channel of HSV color space can be a distinguishable factor in segmenting the road
pixels from the image, especially at the boundaries of the road. The background image is
also converted to HSV color space and the hue channel is utilized to acquire a difference
image H through a similar process. Figure 5.2 illustrates sample difference images obtained
from real traffic video data.

Lower values in the difference images correspond to the parts of the image that are
closer to the average value of the road pixels in 2., and have a higher probability of
belonging to the road region. Therefore, the probability value of each pixel should be
inversely proportional to the corresponding pixel in the difference image.Based on the

difference images obtained so far, probability maps can be estimated accordingly based on
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(a) (b) (c) (d)

Figure 5.2 Extracting the auxiliary road region probability maps using difference images.
(a) The background image. (b), (c), (c) are the gray-scale, color, and hue difference images,
respectively.

(a) (b) (© (d) (e)

Figure 5.3 Extracting the auxiliary road region probability maps using difference images.
(a) The background image. (b), (c), (d), (e) are the extracted probability maps Pg, Pc, Py,
and Pgs, respectively.
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which the probability of each pixel is calculated as follows:

/ _ 1- K<pz)
Pre(pi) = mar (K)o € K (5.2)

where i = 1...N is the pixel index, K € {G,C, H} refers to each difference image, and
P} (p;) is the probability of the pixel p; belonging to the road region in the difference
image K. In order to normalize the brightness and increase the probability contrast of
the probability maps, their histograms are normalized to obtain an approximation of the
probability density function, and the normalized histograms are equalized as follows:
;L,P;{ = Z Hp; (m)
0<m<n (5.3)
Py (pi) = Hp, (P (pi))

where i = 1...IV is the pixel index, K € {G, C, H} represents each difference image, Hp,
and H 1/D;< are the normalized histogram and the integral histogram of probability map P,
respectively, and Py refers to the equalized histogram of each probability map.

The pixels representing the road region in traffic videos usually have a close value in
most parts of the roadway contained in the frame, and the road samples represent a high
percentage of the road pixels. Therefore, the standard deviation is usually assumed to have a
relatively small interval with a high level of confidence. The further the pixel values in G
are from the standard deviation of the pixels in the road sample mask §2,,,, the probability
of belonging to the road region should drop. Considering the standard deviation of the road
samples, another probability map can be obtained as follows that specifically favors the

pixels that are close to the road samples:

a(p;) = max(0, sgn(G(p;) — Orsm))

Glpi) | 1 G(pi)
— —1<
]{fUrsm k2]7 g ! " Opsm

(5.4)

Ps(pi) =1 —a(p)| <k

where p; € G, i = 1...N, 0,4, is the standard deviation of the pixel values in €2,,, mask

of G, k is a natural number in {k € N|1 < k < max(G(p;) — 0rsm)}, and Ps(p;) is the
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resulting probability map. Figure 5.3 represents the extracted probability maps from the

difference images.

Extraction of probability maps based on histogram models Another approach to
estimating the road region probability of each frame is to utilize histogram models extracted
from the road and non-road samples. A similarity measure is used in order to generate
probability maps that help classify the road and non-road pixels. The non-road samples are
taken from the regions outside of the final estimated road region in the previous frame. The
normalized histograms of the blue and green channels of the background image and the

gray-scale image G* are used to estimate probabilities as follows:

Ni (K (pi))

Pr) = ko) + N (R )

(5.5)

where ¢ = 1...N is the pixel index, K € {Blue, Green,Gray} refers to the blue and
green channels of the background image and the gray-scale image G*, N (K (p;)) and
N (K (p;)) are the values of the K (p;)th bin in the histogram models obtained from the
road samples in €2, and non-road samples of the previous frame respectively, and Pk (p;)
is the probability of the pixel p; belonging to the road region in the image K. Since the
histogram models of the red channel and gray-scale of background image are close (as seen
in Figure 5.4(b)), the red-channel histogram is not considered and two probability maps
Perist and Pgppist = Pareen + Pprue are obtained from the gray-scale image G* and a

combination of green and blue channels of the background image, respectively.

Extraction of probability maps based on edge information In many road detection
methods [84, 163] gradient filters are applied in order to differentiate between the road and
non-road regions based on the presumed fact that the road region contains considerably
less amount of gradient information compared to the surrounding areas. This is usually not
the case in traffic surveillance videos, where the objects are further from the camera and

the edge density is not much higher in the non-road regions. However, the dominant road
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Figure 5.4 Extracting the road region probability maps using histogram models. (a) The
background image. (b) The histogram plot representing the RGB channels and gray-scale
image of the background image. (c), (d) are the extracted probability maps Fgpnis: and
Penist, respectively.

boundaries create strong edges, which can be used along with the location of the vehicles to
separate the road region from the surroundings. The Canny edge detection method is applied
on the gray-scale difference image G' with lower and upper thresholds set to 7; = 0.66 x M
and 7, = 1.33 x M, respectively; where M is the median luminance of G. Figure 5.7(c)
represents the edges extracted from the background image. Therefore, since the geometric
distortion caused by the perspective view of the camera lens results in the loss of valuable
edge information in the regions that are further from the camera, the horizontal line can be
estimated and considered as a secondary boundary in addition to the background edges in
order to avoid including areas like the sky above the vanishing point inside the road region.

In order to avoid the inclusion of non-road pixels as seed points for flood-fill operation,

a single block from the colored difference image C' located at one of the corner points
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of each vehicle’s surrounding bounding box is chosen as the road sample. The selected
corner is picked according to the moving direction of each vehicle in order to make sure
the sample block is certain to belong entirely to the road region. The pixels in the chosen
blocks form a flood seed mask 2, which contains the starting nodes for the procedure of
flood-fill algorithm. The extracted edges from the gray-scale difference image GG along with
the horizontal line are used as boundaries for the flood-fill algorithm with a connectivity
value of 4, in order to fill the connected components with a constant value in a flood-fill
mask image M. The maximal lower and upper intensity difference between the currently
observed pixel and one of its four nearest neighbors of the same component, or a new seed
pixel being added to the component is calculated based on the standard deviation of the

colored difference image C' as follows:

| N
m:N;C(pi)

. \/ SN (C(p) — m)? (5.6)

thr = max(1, %)

where m is the mean value of the colored difference image C, N is the total number of
pixels in the background image, p; is the intensity value of the ¢ — th pixel, & is a pre-defined
constant, and thr is the maximal lower or upper intensity difference. The maximal lower
and upper thresholds are selected based on the general intensity difference among the pixels
of the entire background image.

When the dissimilarity among intensity values is relatively large, the connected
components in the Flood-Fill method tend to grow slower, and thus a larger value for the
maximal thresholds is chosen. On the other hand, in cases where the intensity values are
close, e.g., foggy and rainy weather conditions or night time videos, the distinction level
between pixels that belong to the road region and pixels that belong to the side of the road

is lower. Therefore, in order to avoid connecting the pixels outside of the road area to the
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Algorithm 2: Acquiring The Accumulative Foreground Mask

Input:
The size of each video frame
The set 1" of vehicle tracks in the current frame
The set of blobs for each track B; = {by,...b,, }
A set of predefined thresholds 7 = {74, 7;, 75}
Output:
The accumulative foreground mask F,.. of the same size as the video
frame

1 initialize F,.. with O;
2 foreach t € T do

3 | ifsize(t) < 7, then

4 ‘ continue;

5 end

6 d = [[ten — teall;

7 if d < 7,5 then

8 | continue;

9 end

10 add track’s current blob b,, to track’s accumulative mask F;
11 if t; > 7; then

12 ‘ facc[Ft] = Facc['/—_;f] + d;
13 end

14 end

15 Faee = maf(a.;icc);

generated components, a smaller value is needed for the maximal thresholds. Another
consideration to avoid the inclusion of the pixels outside of the road area as seed points
for flood-fill operation, a single seed point is selected for each vehicle based on its moving
direction. We consider the moving direction of the vehicle and always select one of the
corner points of its surrounding bounding box that is certain to belong to the road area, thus
avoiding the selection of non-road pixels as seed points.

After applying the edge detection method, leak segmentation error can still occur
due to lack of enough gradient information at the dominant road boundaries, which can be
corrected by using the accumulative foreground mask F,... Algorithm 2 shows the steps of
accumulating the foreground masks obtained by the GFM [125] method with false positives

and slow-moving object filtered out by applying two thresholds 7; and 75 at steps 3—8. The
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threshold 7; is used to define how long a track has to be inactive before being removed. The
accumulative foreground mask .. is added by d in the location of the track only after track
t has been removed from the set " (step 11 of Algorithm 2). This way, the tracks with larger
movements contribute more to the estimated road region. At the end, .. is normalized as
it is divided by the maximum value.

The contours of F,.. are smoothed using a Gaussian kernel. The Gaussian coefficients

are calculated as follows:

o = % (CU + 1)
M =2 (sgn(a’)||o'| +0.5]) —1 (5.7)
B (z B ;1)2 M-1
2
gZ:aexp< 552 ) 7;91—1

where c is an integer constant, M € {2n + 1 : n € Z} is the Gaussian aperture size, o is
the standard deviation, « is the scale factor chosen so that Z;A;{(; ! g; = 1, and g; is the i-th
Gaussian filter coefficient.

The contours are smoothed separately over each X and Y axis:

(

Ci(ICl+n—k) .ifn<k

Cin)=1C;(n—k—1|C|) ifn> (k+|C|—1)
(5.8)

Cj(n—k) ,otherwise
\

M-1
Ci(n)=> Ckn)g; k=-L.L
1=0

where n = 0... (|C| — 1) is the index of each point on the curve,C is the surrounding
contour of the accumulative foreground mask,j € {x,y} represents the x or y axis,L =
5 (M —1),and C;(n) is the position of the n-th point in the smoothed contour.

The sides of the smoothed contours, which correspond to the boundaries of the road,
are partitioned into a set of K separate clusters C = {c;, }/_, based on their connectivity,

which is in turn measured by Euclidean distance. The points of each cluster ¢;, are resampled
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by traversing in a pace equal to resample size m; = s;/d where sy, is the arc-length of ¢,
and d is a pre-defined constant.

Then a simple approach is used to estimate the boundaries of the road by fitting a
second-degree polynomial curve to each cluster. The 1 component analysis (PCA) method is
applied to each set of re-sampled points in order to calculate the direction of the maximum

variation in the set. First a matrix P, € N™#*x2

is formed with each row containing the
x,y coordinate values of each resampled point from c;. Then the covariance matrix Sy, is

computed as follows:

(5.9

where uy, is a row vector that contains the mean z and 7 values of each column in P. The

eigenvalues and eigenvectors of the covariance matrix are calculated as follows:

1 2
k \k 2 2
)‘17 )‘2 = 5 (ka + Ty, + \/(Uazik - J§k> + 40—%kyk>

2 (5.10)

k 1 kayk

J 2
2 L g2 . g2
\/Uﬂ%yk + </\J Uzk) )\J Ty,

where j € {1,2}, 02 , Jzsz’ and agkyk are the variance of x, variance of y, and covariance

. . k k; . . .
of zy values in Py, respectively. A7 and e; are the eigenvalues and their corresponding
eigenvectors of Sy. A matrix Ey, is defined as follows:

k k
ap; Qg

E; = (5.11)
agl a§2
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© ) 9] (h)

Figure 5.5 The estimation process of the road boundaries. (a) Sample traffic video frame.
(b) Accumulative foreground mask after one minute. (c) Contours of the accumulative
foreground masks. (d) Smoothed contours. (e) Cropped contours. (f) Clustering.
(g) Resampled points. (h) The estimated road boundaries.

T T .
where e} = [a’fl, algl] and ef = [a’f2, a’gﬂ are the first and second eigenvectors of Py,

respectively. A new axis is generated and the data points from P}, are rotated as follows:
0 = cos™ ! (tr(E;)/2)

cos @, —sinb,

R, = (5.12)
sinf, cosf

P =R,PT

where 0, is the direction of maximum dispersion in Py, tr(E;) = a¥, + a5,, Ry is the
rotation matrix, and P’;, is the matrix containing the rotated points. After second-degree
polynomial curve-fitting on each P’;, the resulting curves are rotated back to the original
2 and y axis to represent an estimation of the dominant road boundaries. Figure 5.5 and
Figure 5.6 represent an example of road boundary estimation.

Figure 5.7 presents examples of the flood-fill algorithm applied on traffic videos in a

period of one minute.
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(a) (b) (©)

Figure 5.6 Extracting the dominant road boundaries using the PCA method. (a) Resampled
points used for curve fitting. (b) The direction of the maximum variation recognized by
PCA. (c) The limiting boundaries estimated by curve fitting.

5.2.3 Updating and merging the extracted probability maps

The extracted probability maps are updated in order to take into account the gathered
information from all observed frames. As more vehicles pass along different locations of
the roadway, the number of pixels in the {2 grows, which makes the probability maps of the
latest frames more reliable than the initial values. Also, when a pixel repeatedly appears in
the foreground mask of the moving vehicles, it is more likely to belong to the road region.
Therefore, all probability maps are updated by applying the temporal fusing algorithm at

each frame as follows: . ; ;
Zf:l w; X P (p;)

Pt i) —
K(p) 1_{_2;:1 wlf
N (5.13)
w) =04 (p))
j=1

where ¢ = 1...N is the pixel index, wzf is the weight associated with pixel p; at frame f,
K € {G,C,H,S,Ghist, GBhist, F'} refers to the source of each probability map, P}; (i)
is the probability value of pixel p; at frame f, M € {rsm, fsm} is the source of the
sample mask containing the initial seed points, Q&(pz) € {0, 1} is the value of p; in the
accumulative road sample mask of frame f, NV is the total number of pixels in each frame,

and P}, (p;) is the updated probability value of pixel p;.
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(a) (b) (©) (d)

Figure 5.7 Extracting the road region using the cumulative maps of the flood-fill method.
(a) Original video frame. (b) The background obtained by the GFM method. (c¢) The edges
of the background image. (d) The retrieved road map.

The updated probability values for each pixel extracted from different sources should
be combined with each other in order to obtain a consensus estimation. If we denote the set
of all pixels with A" and the set of extracted probability maps with K, the event R; specifying
whether a pixel i € A belongs to the road region or not, can be considered as a Bernoulli

random variable Ber(g;) where ¢; € [0, 1].R; = 1 means ¢ belongs to the road region and
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Figure 5.8 The process of merging and refining the probability maps. The extracted
probability maps are combined and the Otsu’s threshold is applied on the result. The
non-road pixels that are misclassified as a part of the road region due to similar color values
are later filtered out by intersecting the binary image with the accumulative foreground
mask.

R; = 0 means 7 is a non-road pixel. The set of generated probability maps, K, contains
several estimations, each of which is drawn from a different source of information. We
denote the probability prediction of source j made on pixel ¢ with p; ; € [0, 1]. To solve a
probability aggregation problem, we need to design a function F' : ([0, 1])VI*IXI — [0, 1]V
that takes the predicted probabilities {p; ; }icxrjex as input and generates an aggregated
probability estimation ¢; € [0, 1] for each pixel 7.

Some simple approaches to aggregate probability predictions are the arithmetic mean
of the probabilities, the median of the probabilities, majority voting, the logarithmic opinion
pool, and the Beta-transformed linear opinion pool. Here, we use weighted mean and
median in order to solve the aggregation problem by considering the different degrees
of reliability among the generated probability maps and also, taking into account that
the aggregated estimation should tend towards the majority opinion in extreme cases of

probability predictions.The values of each pixel ¢ in the set Kare sorted and the resulting
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ordered list K’ = { P}, ..., P, } is utilized to define the weighted median p; , such that:

K|

k—1
> w;<1/2 and Y w; <1/2 (5.14)
j=1 j=k

where j = 1...K is the index of the probability maps and w; is the weight for each map
representing its reliability. Experimental results have shown higher stability of the Pr and
Pg probability maps and higher weights are assigned to these source in the aggregation
process.

If the values of a pixel in the set of extracted probability maps K = {P, ..., P}
have a large median, it means that the pixel has a high value in most probability maps and,
therefore, is most likely inside the road region. On the other hand, low median means most
predictions contain a low value for a pixel and it most likely belongs to the non-road area.

The aggregated probability values are calculated as follows:

e DS U N

G = %zj’:lp;,j Jif pl,, < (1 —6y) (5.15)
L, + Zjex Wibii ), otherwise
\ 2\ k Zje)c wj ’

where i € N is a pixel, p; ; is the probability value of pixel 7 in the sorted probability set
K" = {p}}ienjexss K is the index of the weighted median value p; ;, 0 is a pre-defined
threshold close to 1, and ¢; is the aggregated probability value for pixel p;. The Otsu’s
threshold [49] is applied to the resulting map in order to filter out the regions with low
probability value.

When the intersection between the binary probability mask and the aggregated
foreground mask surpasses a threshold, the cumulative foreground mask has covered most
of the road pixels after morphological dilation with a size close to the average size of

vehicles. The morphological procedure is performed on M~ to bridge the gaps and the
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intersection between its result and P, is utilized as the final estimated road region as follows:

F=MroB
- IMenPy
Pl (5.16)
Pr AFT <0

Mp =
MNPy, otherwise

where M’y = {z|[(B), N M| # @} is the result of a dilation operation with B as a
structuring element,7 is the number of common pixels between the probability mask and
the accumulative flood-fill mask,f € [0, 1] is a predefined threshold,and Mp, is the final
mask representing road pixels.

As illustrated in Figure 5.19, the intersection between the cumulative foreground mask
and the binary fused probabilitymask is utilized as the final estimated road region. This way,
the possible misclassified non-road regions are removed, and the final road map is refined

by the exclusion of the over segmentation and leak segmentation errors.

5.2.4 A novel statistical method for separating major traffic directions

Most roads and highways carry traffic in two opposite directions. In the case of most traffic
video analytic tasks, a separate ROI is needed for each side of the road. In order to retrieve
an ROI for each side of the road, the tracking information obtained from the blob-tracking
approach is used to detect the moving direction of each vehicle. The centroid of each track at
the starting and ending positions is compared to estimate the direction of its movement. To
avoid the effects of noises in the foreground and noisy results of the tracking method, only
vehicles with high enough movement size and speed are considered. Each time such a
vehicle passes along the road, the pixels with a corresponding location in its foreground
mask are added with a positive number in the road map of the correct direction and added
with a negative number in the road map in the opposite direction. To avoid having common

areas between left and right regions, we try to remove the foreground mask of a vehicle
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(a) (b) (©)

Figure 5.9 Separated accumulative foreground masks of the moving vehicles. (a) Original
traffic video frame. (b) and (c) are the accumulative foreground masks of the left and right
sides, respectively.

(a) (b) (©)

Figure 5.10 Assigning the overlapping area between the maps of the two traffic direction
to the correct side. (a) The original traffic video frame. (b) The blue color indicates the
overlapping area between two ROIs. (c) The overlapping area is assigned to the correct ROI
and removed from the other ROI.

from the opposite side when it is being added to one side, in case it has previously been
added to the opposite side by mistake.
For each tracked vehicle that passes along the road, the left and right sides of the road

are updated as follows:

T
m = mazx (0, ava — B(m, + me)) (5.17)
f=1

75



where m is the traffic region map for one side of the road, m,, is the foreground mask of
the vehicle passing along that side at frame f, m,, is the foreground mask of the vehicle
passing along the opposite side at frame f, m, is the traffic region map of the opposite side
of the road, 7" is the current frame, and o and 3 are predefined coefficients between 0 and 1.
In order to speed up the update process of the traffic region maps, « and /3 should be closer
to 1, and in order to reduce the update errors, they should be closer to 0. Each road map is
then updated by applying Otsu’s threshold:

1, ifmee.>7
my = (5.18)

0, otherwise

where m; is the final traffic region binary map for each side, m,cc is the accumulative
foreground masks in that side, f is the current frame, 7 is the calculated Otsu’s threshold,
my is the foreground mask of frame f, and F' is the total number of frames. The Otsu’s
threshold is applied to remove noises that are mostly caused by occasional noises in the
foreground mask. Figure 5.9 shows examples of the separated accumulative foreground
masks for the two major directions of the traffic flow.

In order to obtain an ROI for each side of the road that contains the road itself and a
good portion of its surroundings, the convex hull of the road map’s contour is used for each
side. The two convex hulls corresponding to the contours obtained from the road map of
each side of the road have proven to be good representations for the ROI, as they involve
the entire road and its surroundings while avoiding the regions outside of the road and
therefore save the video analytic applications from unnecessary noise and computational
overload. However, in videos where the camera angle is from one side of the road, the
foreground masks of the vehicles from different sides can overlap each other, which in turn
causes an intersecting area between the convex hulls of the two sides in the middle part of
the road. The overlapping area should be removed from the ROI of the wrong side to avoid

false positive results in further video analysis tasks. In order to decide which side of the
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Figure 5.11 Extracting a matrix of motion flow vectors using GMM method with optical
flow vectors as input. First row contains sample frames of traffic videos. Second row
represents the corresponding flow model matrix obtained from the GMM method.

road the overlapping area belongs to, the intersection between the overlapping area and the
convex hull of each side is calculated, and the overlapping area is removed from the ROI of
the side with the lower intersection. Figure 5.10 shows the overlapping area removed by our
proposed method.

In some videos, the traffic flows in more than two directions, and further steps are
required to be taken in order to extract only the regions corresponding to the major directions
and exclude others. In this case, using the direction obtained from tracking is not enough
to separate the regions with similar directions but different road segments. Here, we have
applied a statistical method based on Gaussian Mixture Models (GMM) in order to estimate
the general moving velocity of the vehicles at various locations on the road. At each frame,
the Lucas-Kanade optical flow method [7] is applied to obtain a matrix of flow vectors in
the size of the entire frame. The Lucas-Kanade optical flow method has incorrect outputs,
especially in video with low resolution, and the results of a few frames are not reliable for
estimating the motion vectors. To overcome this problem, the non-zero magnitude and speed
of the optical flow vectors in a sequence of frames are utilized as two-dimensional input

vectors by the GMM method in order to estimate the most probable velocity at each pixel.
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(a) (b) (c)

d) (e

Figure 5.12 Excluding smaller road regions with similar direction to one of the major traffic
regions. (a) The original traffic video frame. (b) The road under the bridge is incorrectly
grouped with one of the major traffic regions. (c) The flow vectors obtained by the GMM
method. (d) Applying K-means clustering method to separate the small region with a similar
direction. (e) The small region is excluded from the ROIL.

The Gaussian modeling of the optical flow vectors is described as follows:

K
P(x) =Y WilN(xJwy) (5.19)
k=1
Ll ity =l
NGeles) = - 2((2);)d/l;k|)2:|15§ )} (5.20)
K
> W =1 (5.21)
k=1

where x € R? is the two-dimensional feature vector containing flow angle and magnitude of
each pixel, K is the number of Gaussian distributions in the flow model, 1} is the weight
of the ky, Gaussian distribution N (x|wy,).u, and Xy are the mean vector and the covariance

matrix of the k;, Gaussian density N (x|wy,). Note that the Gaussian model of each pixel is
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updated only when the magnitude of the optical flow is greater than zero. The results of the
GMM are further refined by removing incorrect estimations based on the general direction
of each tracked vehicle. Figure 5.11 shows examples of the optical flow vectors modeled by
the GMM method.

After generating the flow matrix, the K-means clustering approach is applied in order
to group pixels with vectors of close angles together, thus excluding the regions that are not
part of the two major traffic directions. Figure 5.12 shows an example of how the smaller

region falsely included in one of the two major traffic regions is separated and removed from

the ROL.

5.2.5 Single image based road detection based on illumination invariant image

In this section, we discuss automatic road region extraction in traffic images that aids with
ROI determination, which can be useful in the automated detection of obstacles, traffic
incidents, and driving violations. We propose an adaptive road recognition method that
extracts the road location from single frames. No assumption about the structure of the
road is made, and therefore, this method can be used for structured and unstructured road
scenarios. A triangular region in front of the vehicle is assumed to belong to the road region
and is utilized as the initial road sample. Initially, an illumination-invariant gray-scale image
is extracted from the RGB image in order to weaken the effects of shadows that decrease
the segmentation performance. Afterward, the boundaries of the road and the horizontal
line are estimated. in order to limit the road map from the previous step and avoid possible
leak-segmentation errors. Finally, the Chan-Vese segmentation algorithm is applied to the

illumination invariant image in order to segment the road region.

Generating the illumination invariant image The shadows cast on the objects in an
image captured by a regular camera have negative effects on most computer vision tasks such
as segmentation and object detection, especially in outdoor scenes. Therefore, eliminating or

weakening the effects of illumination and shadows as a preprocessing step can improve the

79



performance of vision tasks. One of the main methods for weakening the effects of shadows
is to derive a one-dimensional illumination invariant image from the three-channel color
image based on the relations between the three color values. Assuming a Planckian light
source and Lambertian surface for the objects in the natural environment, we can denote the
spectral power distribution (SPD) of the light with F/(\, x, y) which is incident on a surface

with reflectance S(\, z, y). Then the response of the camera sensor is as follows:

Where k£ € 1,2, 3, o(x,y) is a constant equal to the dot product of the illumination direction
and the surface normal at location (x,y) and Q) () is the sensitivity of the k-th camera
sensor. If we drop the indices for the locations and assume the camera sensors are based on

Dirac delta functions Q (Ax) = qrd(A — A\g), we would have:

If the illumination is modeled by Wien’s approximation to Planck’s law, the SPD can

be demonstrated by its color temperature as follows:

E\T) = I\ Pe ™ (5.24)

With ¢; and ¢, being constants I being the overall intensity of the light. Therefore, the

response of each camera sensor to can be expressed as follows:

PL=0 Icl)\_5e_%5(/\k)qk (5.25)

If we calculate the ratio chromaticities using the color channels, we would have:

xi| R/G B (AR_56_T372RS(AR)QR)/(AG75677&72GS()\G)qG>

= = L 3 (5.26)
X2 B/G ()\3756 TAB S()‘B)QB)/()\G_567WS(Ag)qc)

X:
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In logarithmic space, we would have:

lo log ()‘Riss()\R)QR)/ Aa5S0)ae)| + T ey (L _ L)
X = g X1 _ [ (e e G)} Ao )| g4 et

log x» log [()\R_5S()\R)QR)/(>\G—55()\G)qa)} + T_102 (}\L _ )\L
(5.27)

Which indicates that by varying the illumination (T) the vector x’ moves along a straight
line in the log-chromaticity space for each surface. Therefore, by determining the direction
of vector e, we can specify the changes in illumination which is only camera-dependent and
by projecting the vector x’ onto the vector e+ orthogonal to e, a one-dimensional grayscale

image is generated as follows:

Giny = €Xp <X/t€L> (5.28)

Where the effect of the illumination is weakened.
Here, if we represent the triangular area containing the road samples as (2, for
each road image I the RGB values of pixel p;, € I where : € 1,..., N are indicated

by (R (p;), G (p;), B (p;)) and the corresponding intrinsic image is calculated as follows:

zi = log (A®9)/c ) — log (R ®2) /G (pe))
y; = log (B®)/c (p)) — log (R #2) /G (p)) (5.29)
Giny = x; COS @ + ; sin «v

In order to calculate the angle o, we have used the median of four different values

based on moment 1, linear regression, moment 3, and principal component analysis (PCA)
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Figure 5.13 Transformation from RGB to 1D intrinsic image. (a) The original road image.
(b) Log-Chromaticity space. (c) The intrinsic image.

to estimate a more accurate and general value as follows:

oy = tan™! (sign (O'XY W

3/ 1 y3
Qg = tan ™! it = tan ! (5.30)
3/ 1 1’3
N Zai*i
e—)
a4 = tan~! <Ty>
e$

Qe = med {Oz,-}f:1

where €’is the first principal component. In Figure 5.13, we can see an example of weakening

the shadow effect by projecting the log ratio values onto an orthogonal vector to e.

Road boundaries extraction In order to extract the dominant boundaries of the road,

first we need to weaken the shadow effects while preserving the gradient information
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corresponding to the material changes. Therefore, we cannot use the intrinsic image from
the previous step since it also reduces the amount of gradient information at important edges.
Here, we have used another shadow feature which is robust to strong shadows in order
to reduce the illumination effects while intensifying the edges corresponding to material
changes. This feature extraction method has less dependence on the camera settings and
relies on the fact that ro