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ABSTRACT

EXPLORING TOPOLOGICAL PHONONS IN DIFFERENT LENGTH SCALES:
MICROTUBULES AND ACOUSTIC METAMATERIALS

by
Ssu-Ying Chen

The topological concepts of electronic states have been extended to phononic systems,

leading to the prediction of topological phonons in a variety of materials. These phonons

play a crucial role in determining material properties such as thermal conductivity,

thermoelectricity, superconductivity, and specific heat. The objective of this dissertation is

to investigate the role of topological phonons at different length scales.

Firstly, the acoustic resonator properties of tubulin proteins, which form microtubules,

will be explored The microtubule has been proposed as an analog of a topological phononic

insulator due to its unique properties. One key characteristic of topological materials is

the existence of edge modes within the energy gap. These edge modes allow energy to be

transferred at specific frequencies along the edges of the material, while the bulk remains

unaffected. In the case of microtubules, its ability to store vibrational energy at its edges

and the sensitivity to changes in local bulk structure align with the properties of topological

insulators. Furthermore, the appearance of edge modes in topological phononic insulators

is determined by the local interactions of the bulk material. Even small changes in the

local structure can shift the resonant frequency of the edge mode or completely extinguish

it. Similarly, the ability of microtubules to shorten or overcome energy barriers is greatly

affected by changes in their local bulk structure. This suggests a parallel between the impact

of local bulk structure on both topological insulators and microtubules. This similarity has

led to the proposal that microtubules could serve as an analog of topological phononic

insulators, providing insights into their dynamics and potential applications in fields such

as chemotherapy drug development and nanoscale materials.



Secondly, the application of topological phonons in the realm of acoustic metama-

terials will be examined. Acoustic waves have recently become a versatile platform for

exploring and studying various topological phases, showcasing their universality and diverse

manifestations. The unique properties of topological insulators and their surface states

heavily rely on the dimension and symmetries of the material, making it possible to classify

them using a periodic table of topological insulators. However, certain combinations of

dimensions and symmetries can impede the achievement of topological insulation. It is

of utmost importance to preserve symmetries in order to maintain the desired topological

properties, which necessitates careful consideration of coupling methods. In the context

of discrete acoustic resonant models, efficiently coupling resonators while simultaneously

preserving symmetry poses a challenging question. In this part, a clever experimental

approach is proposed and discussed to couple acoustic crystals. This modular platform not

only supports the existence of topologically protected edge and interface states but also offers

a convenient setup that can be easily assembled and disassembled. Furthermore, inspired by

recent theoretical advancements that draw on techniques from the field of C∗-algebras for

identifying topological metals, the present study provides direct observations of topological

phenomena in gapless acoustic crystals. Through these observations, a general experimental

technique is realized and developed to demonstrate the topology of such systems. By

employing the method of coupling acoustic crystals, the investigation unveils robust

boundary-localized states in a topological acoustic metal and presents a reinterpretation

of a composite operator as a new Hamiltonian. This reinterpretation enables the direct

observation of a topological spectral flow and facilitates the measurement of topological

invariants.

Through these investigations, the aim of this dissertation is to deepen our

understanding of the significance and potential applications of topological phonons in

diverse systems.
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CHAPTER 1

INTRODUCTION

1.1 Topological Phonons

The concepts of topology that originated in the study of electronic states have been extended

to the realm of phonons, leading to the prediction of topological phonons in diverse

materials. Phonons play a crucial role in determining various material properties, such as

thermal conductivity, thermoelectricity, superconductivity, and specific heat. In topological

phononics study, the focus is on exploring the unique behavior of phonons in materials with

non-trivial topological features. [Yang et al., 2015]

Topology, in this context, refers to the geometric and connectivity properties of a

material rather than its specific shape or size. Topological materials exhibit properties

that are robust against certain perturbations and are protected by underlying symmetries.

These materials possess a distinct energy band structure with band gaps and topologically

protected edge or surface states. The presence of these protected states ensures that the

material’s properties remain stable even in the presence of defects or imperfections.

In the case of topological phonons, researchers investigate the behavior of phonons

in materials. This includes studying the dispersion relations, group velocities, and mode

profiles of phonons in these materials. The unique topological features of the material

can give rise to exotic wave phenomena, such as the existence of protected phonon modes

localized at the edges or surfaces of the material.

The study of topological phonons has both fundamental and practical implications.

From a fundamental perspective, it allows for the exploration of novel wave phenomena

and the understanding of how topology influences wave propagation in materials. On the

practical side, topological phononics holds promise for developing new types of materials
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with desired acoustic properties, such as the ability to control sound wave propagation or

enhance sound insulation.

This dissertation aims to investigate the role of topological phonons across different

length scales. Firstly, we will examine the acoustic resonator properties of tubulin proteins,

which form microtubules, and explore their potential as phononic analog of topological

insulators. Secondly, we will explore the application of topological phonons in the context

of acoustic metamaterials. By studying these two aspects, we attempt to gain a deeper

understanding of the significance and potential of topological phonons in diverse systems.

Figure 1.1 A device with a similar energy landscape. The system can be switched between two
equilibrium configurations by: a. delivering a large amount of energy at once or b. by attaching
a spring and weight, and releasing the beads one by one. c. The 2D lattice of dimers of primitive
vectors b1 and b2. At equilibrium, the dimers are all parallel and orientated along an arbitrary
direction. The xy coordinate system indicates the plane of motion. The y axis is along the dimer
but the x axis is arbitrary. d. The interaction between the tubulin dimers is modeled by a network
of springs. There are 7 distinct springs and corresponding e unit vectors. We also indicate second
order neighbors whose harmonic interaction is also considered. e. The degrees of freedom for the
xy planar motion. f. Stretched configuration of a spring with the ends displaced by r1, r2.
Source: [Prodan and Prodan, 2009]
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1.2 Microtubules: The Possible Phononic Analog of Topological Insulator

Microtubules are cylindrical protein structures that play a vital role in the cellular

architecture and mechanical properties of cells. Composed of tubulin proteins, microtubules

form part of the cytoskeleton, providing structural support and contributing to cell shape.

Despite their slender dimensions, with an outer diameter of 25 nanometers and lengths of a

few microns, microtubules exhibit exceptional stiffness. Their unique mechanical properties

are critical for various cellular processes, including cell division. (Figure 1.2)

Figure 1.2 Tubulin dimers compose the microtubule. The microtubule is composed of a dimeric
structure, where alpha and beta tubulins come together to form a dimer. These dimers then assemble
into protofilaments, and a group of 13 protofilaments arrange themselves to create a sheet. The sheet
further closes up to form a tubular structure.
Source: [Löwe et al., 2001]

The growth and shrinkage of microtubules occur through the addition and removal of

tubulin proteins at their ends. As new tubulin proteins attach, microtubules elongate, while

shedding portions of their protofilaments — a filamentous arrangement of polymerized

tubulins — results in shortening. Remarkably, microtubules can assemble and disassemble

without introducing defects throughout their lifetime, remaining stable in aqueous

environments. This dynamic behavior, characterized by the random timing and length

of growth and shrinkage, is known as dynamic instability. It is considered a stochastic

process due to its unpredictable nature [Fygenson et al., 1994].
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In a previous study [Mahadevan and Mitchison, 2005], the total energy of a tubulin

sheet was examined with respect to its transversal and longitudinal curvatures near the

edge. It was proposed that the energy landscape exhibited two distinct minima separated

by an energy barrier. One minimum favored a cylindrical shape, while the other favored

a trumpet shape. This sliding motion from one minimum to the other led to the opening

of the microtubule ends and subsequent depolymerization. To illustrate a similar energy

landscape, consider the device depicted in Figure 1.1. It consists of a bow made of two

elastic roads connected by two connectors, with a stretched rubber band between them that

can freely slide. The energy of the bow, as a function of the position denoted by x , as shown

in Figure 1.1a, exhibits two minima. Switching between these minima can be achieved by

applying a strong force to the free end or by utilizing a series of low-energy actions. Based

on the assumption that topological phonon states can appear at the microtubule’s edges,

it is highly probable that topological edge modes contribute to the dynamic instability of

microtubules [Prodan and Prodan, 2009].

Anticancer drugs can modify dynamic instability. Taxol, an chemotherapy drug

commonly used in microtubule studies, plays a role in stabilizing microtubules by binding

to them and preventing their disassembly. By disrupting the dynamic instability of

microtubules, Taxol effectively inhibits the proper division of cancer cells, making it a

valuable treatment option [Jordan and Wilson, 2004]. The presence of just one Taxol

molecule per thousand tubulins is remarkably effective in stabilizing the entire microtubule

structure, underscoring the profound impact of small structural changes on microtubule

behavior [Derry et al., 1997].

Interestingly, Taxol does not appear to significantly affect the static mechanical

properties of microtubules. For instance, the range of persistence lengths, which indicates

the stiffness of microtubules, remains similar for both Taxol-stabilized and non-stabilized

microtubules [Hawkins et al., 2010]. Previous research suggests that Taxol interferes with
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the dynamical characteristics of microtubules, giving rise to a new understanding of their

dynamic instability [Prodan and Prodan, 2009].

To investigate the small local changes along microtubules and their potential

modulation of dynamic instability, we propose utilizing dynamic correlation matrices,

which will be discussed in detail in Chapter 2. These matrices provide a means to explore

the relationships between neighboring small regions within microtubules, shedding light

on the underlying dynamics of these intricate structures.

Resistance to Taxol in cancerous cells has been linked to the production of different

isotypes of tubulin, leading to changes in the bulk structure of microtubules and alterations

in their dynamic properties [Derry et al., 1997] [Orr et al., 2003]. Previous studies

have indicated that cancerous microtubules exhibit slower dynamics compared to regular

microtubules [Feizabadi and Rosario, 2017, Newton et al., 2002]. In our research, we

investigated the mechanical properties of cancerous microtubules by calculating their

persistence lengths and mapping their phonon spectra. The results clearly demonstrated

that cancerous microtubules possess distinct mechanical characteristics.

In Chapter 2, we utilized correlation matrices to examine the local differences within

individual microtubules. By segmenting the microtubules, we observed random regions

of bright and dark fluorescence, representing normal and cancerous tubulins, respectively

(Figure2.7). The correlation matrices revealed that the dark regions exhibited greater

mechanical flexibility compared to the highlighted segments.

Collectively, these studies have emphasized the importance of exploring the local

variations in microtubules, such as Taxol binding and tubulin composition, and their impact

on dynamic properties, in the pursuit of effective cancer treatments. The preliminary

findings and comparisons between cancerous and regular microtubules are presented in

Chapter 2.
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1.3 Nanofluidic Devices

To investigate how local changes in tubulins within a microtubule affect its overall properties,

we aim to map the complete spectrum of microtubule vibrations, known as the phonon

spectrum. The edge modes we seek to identify may occur at high frequencies ranging

from 1 MHz to a few GHz. To achieve such frequencies, we require a more confined and

controlled environment for the microtubules, which can be accomplished using nanofluidic

devices. While nanofluidic devices have been developed for DNA and microtubules in

previous studies, our focus is on designing a device specifically for actuating a single

microtubule, necessitating a unique and precise design. The device fabrication process

involves several steps outlined below.

Figure 1.3 Microfluidic device for testing. Left: Schematic representation of the microfluidic
device layout. The microchannel contains seven pairs of electrodes positioned on both sides, enabling
precise control over the microtubule manipulation. The microtubule sample can be introduced into
the device from the reservoirs. Right: The microchannel width is 1.5 micrometers, while the
narrowest part of the electrodes measures 2 micrometers in width.

Firstly, we need to create a device with appropriate dimensions for the feeder channels

and nanochannels. Due to the rigid nature of microtubules, successful flow of microtubules

into the nanochannels presents practical challenges. Careful consideration of the channel

dimensions (width and depth) and their intersections is crucial. The nanochannel should be

wide enough for microtubules to flow through while preventing rotational movement.
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Secondly, our objective is to develop a device with only one nanochannel. Previous

attempts yielded devices with approximately 7-20 nanochannels, but for this study, we aim to

fabricate a device that allows the study of one microtubule at a time. Ensuring optimal liquid

flow within a single nanochannel presents challenges, as the ratio of the cross-sectional areas

of the micro-nanochannel and channel bending curvature can significantly affect liquid flow

resistance. We plan to optimize the electrophoresis technique to drive microtubules through

the nanochannels, determining the ideal voltage for a device with a single nanochannel.

Lastly, we intend to incorporate electrodes into the device to actuate the microtubule.

Pairs of electrodes will be positioned along the nanochannel, alternating their voltage at

different frequencies. However, the deposition of high-resolution nanoelectrodes using

electron beam lithography is a costly and time-consuming process, often requiring multiple

trials due to the challenges associated with electrode patterning and alignment. As an

alternative plan, we propose exploring different techniques to embed electrodes with

sufficient precision.

Through the stepwise development of this nanofluidic device, we aim to create a

controlled environment that enables the actuation of a single microtubule and the mapping

of its phonon spectrum, ultimately shedding light on the relationship between local changes

in tubulins and the properties of larger microtubule assemblies.

1.4 Acoustic Metamaterials

Acoustic metamaterials are engineered structures that possess unique properties resulting

from their macroscopic design. By carefully manipulating the structure of these materials,

the propagation of sound waves can be controlled and modified to achieve macroscopic

material parameters that are not readily attainable in traditional materials. For instance, the

frequency range at which sound is absorbed by the material can be precisely controlled by

designing the acoustic resonator’s structure [Yang et al., 2017]. And acoustic diode can

rectify sound waves like current flow of electrical diode [Liang et al., 2009]. There are
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other research directions of acoustic metamaterials including acoustic focusing [Al Jahdali

and Wu, 2016], acoustic imaging [Zhu et al., 2011], acoustic tweezers [Shi et al., 2009],

etc. Our specific research focus lies in exploring a relatively new application of acoustic

metamaterials known as topological acoustic metamaterials. These materials serve as the

acoustic counterpart to topological materials in condensed matter physics. By employing

innovative designs in acoustic metamaterials, we aim to investigate topological phenomena

that are challenging to observe in the realms of mathematics and condensed matter physics.

The study of topological properties in materials aims to identify inherent properties that

remain unchanged in the presence of external forces. This immutability holds significant

value for practical applications.

Figure 1.4 Energy spectrum of topological insulator. a. There are gapless edge states on the left
and right edge (red and blue lines, respectively). b. Acoustic one-way edge states. Dispersion of
the one-way acoustic edge states (red curves) occurring in a finite strip of the acoustic lattice. The
left and right red curves correspond to edge states localized at the bottom and top of the strip.
Source: [Qi and Zhang, 2011a]

Topological insulators are a specific class of materials characterized by their unique

band structures, discovered by Shou-cheng Zhang [Qi et al., 2008] and others in quantum

wells composed of HgTe and CdTe. A key characteristic of topological insulators is that

their internal energy bands exhibit topological triviality, similar to regular insulators, while

their surface features a topologically non-trivial energy band structure. This disparity arises
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from the crystal boundary’s interruption of the electron’s periodic potential. Figure 1.4

illustrates the combination of these energy bands.

Within the material (depicted by the black energy bands), the valence band is

completely occupied by electrons, rendering it an insulator. On the boundary, we

observe the blue and red energy bands, representing the edge states [Qi and Zhang,

2011a]. Notably, these bands connect the conduction and valence bands, allowing electrons

occupying these energy levels to be easily accelerated by external electric fields, resulting

in a macroscopic current. As a result, the surface of a topological insulator exhibits

conductivity. Additionally, due to the dispersion of the boundary states, electrons acquire

momentum in limited directions upon acceleration, leading to unidirectional conductivity

in two-dimensional scenarios. This remarkable behavior is a hallmark of topological

insulators, which possess highly stable boundary states protected by topology, unaffected

by impurities.

If we introduce such topological properties to acoustic systems, then we can get

topological acoustic metamaterials. Topological insulators, often referred to as symmetry-

protected topological phases of matter, exhibit their distinctive properties due to the presence

of symmetries. These gapped phases rely on the global nature of their band structures,

making the surface states impervious to local perturbations and preserving their topological

properties. The characterization and classification of topological insulators and their surface

states heavily depend on the dimensionality of the material and the symmetries it possesses.

A comprehensive framework known as the periodic table of topological insulators has been

established for this purpose [Chiu et al., 2016a].

From an experimental standpoint, it is important to engineer structures that satisfy

the required symmetries, as the preservation of symmetry is synonymous with preserving

the topological properties. Careful consideration must be given to the choice of coupling

methods in topological acoustic experiments in order to maintain the desired symmetries

and accurately explore the associated phenomena. In Chapter 4, we will present an effective

9



and efficient approach for coupling acoustic resonators from the bottom, leading to the

preservation of chiral symmetry.

In Chapter 5, we present direct observations of topological phenomena in

acoustic crystals without bulk band gaps, providing a general experimental technique to

demonstrate their underlying topology. Our findings include the identification of robust

boundary-localized states in a topological acoustic metal, as well as the reinterpretation

of a composite operator derived from the problem’s K-theory. By implementing a

physical Hamiltonian based on this composite operator, we directly observe a topological

spectral flow and measure the associated topological invariants. These observations and

experimental protocols have the potential to shed light on the exploration of topological

behavior in a wide range of artificial and natural materials that do not possess bulk band

gaps.
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CHAPTER 2

MEASURING LOCAL CHANGES IN STRUCTURAL PROPERTIES OF A

SINGLE MICROTUBULE

In this chapter, we utilized dynamic correlation matrices to analyze the stiffness of

microtubules and uncovered a significant difference between regular and cancerous

microtubules. Our findings revealed that cancerous microtubules exhibit higher flexibility,

which may be caused by the alterations in their structural integrity. By capturing the subtle

variations in stiffness along the microtubule structure, this approach provides valuable

insights into the mechanical properties of microtubules, with potential implications for

targeted interventions in cancer research.

Figure 2.1 Dynamic instability of a microtubule. The microtubule is composed of a dimeric
structure, where alpha and beta tubulins come together to form a dimer. These dimers then assemble
into protofilaments, and a group of 13 protofilaments arrange themselves to create a sheet. The sheet
further closes up to form a tubular structure. Despite its narrow width of 25nm, the microtubule
exhibits remarkable stiffness.
Source: [Roll-Mecak, 2020]
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2.1 Introduction

A microtubule is a cylindrical structure composed of tubulin proteins, characterized by an

outer diameter of 25 nanometers and a maximum length of up to 100 micrometers. One

of the remarkable properties of microtubules is their ability to undergo dynamic instability,

a process where they exhibit spontaneous changes in length. This phenomenon has been

observed both in laboratory settings (in vitro) and within living cells, suggesting that it arises

from the inherent interactions among the constituent proteins and the overall structure of

the microtubule itself [Fygenson et al., 1994, Lange et al., 1988, Martin et al., 1991, Desai

and Mitchison, 1997, Hyman et al., 1992, Derry et al., 1997] What makes microtubule

dynamic instability fascinating is the seemingly unpredictable transition between growth

and shrinkage, commonly referred to as rescue and catastrophe, as illustrated in Figure

2.1. Unlike predetermined limits, microtubules can elongate or contract to varying extents,

adding to the complexity of this process. A widely accepted theory proposes that the GTP

"cap", the orange part in Figure 2.1, potentially plays a role in stabilizing the microtubule.

If the GTP-tubulin molecules in the cap hydrolyze rapidly, exposing GDP-tubulin, the

microtubule disassembles. On the other hand, "rescue" occurs when new GTP-tubulin

molecules attach to the end of the microtubule, replenishing the GTP cap. [Desai and

Mitchison, 1997]

We are confronted with a fundamental inquiry: What is the impact of local structural

modifications within the microtubule on its macroscopic property of dynamic instability?

Our simplified representation of the microtubule structure has left significant gaps in our

comprehension of the underlying mechanism driving dynamic instability, consequently

widening our knowledge deficit regarding chemotherapy drug resistance. The GTP cap

theory falls short in explaining the sporadic disappearance of the GTP cap and how a small

GTP cap can effectively maintain the cohesion of microtubule with varying lengths. The

disassembly of the microtubule lacks a discernible critical length or time threshold, and

12



the precise mechanism by which subtle alterations in microtubule structure finely regulate

dynamic instability remains elusive.

However, it is clear that even subtle changes in the structure of the microtubule’s

building blocks have noticeable effects on the dynamics at the ends of the microtubule.

Could these local modifications alter the overall energy landscape of the microtubule?

[Mahadevan and Mitchison, 2005] proposed that microtubules behave as a bistable system,

with energy minima favoring polymerization and depolymerization, separated by an energy

barrier that must be overcome to transition between the two phases. When tubulin proteins

bind to the growing microtubule, they hydrolyze GTP and release 12.5 kcal/mol, which

could potentially provide the necessary energy to surpass this barrier. However, the factors

that determine the prevalence of the growing phase over the catastrophe phase and the

underlying mechanism of the transition point are still not well understood.

An alternative mechanism was proposed by [Prodan and Prodan, 2009] for the

microtubule to accumulate enough energy within its structure to overcome the energy barrier

and initiate the shortening of the microtubule. Theoretical calculations of the vibrational

energies of microtubules revealed intriguing properties, suggesting that they can function as

topological phononic insulators. As a result, the structural characteristics of microtubules

inherently create a phononic energy gap—a range of frequencies that can induce external

vibrations without transferring energy through the material. Notably, within this energy

gap, there exists a singular energy state known as an edge mode. At specific frequencies

within the energy gap, the bulk of the material does not transmit energy, while the edges

exhibit amplified vibrations. Theoretical analyses further indicate that microtubules possess

edge modes capable of storing significant amounts of vibrational energy at their tips. This

discovery provides a potential explanation for the energy source driving the transition from

a growing microtubule to a shrinking one.

Cancerous microtubules may have slow dynamic comparing with regular micro-

tubules. [Newton et al., 2002] [Feizabadi and Rosario, 2017] Measuring the persistence
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length of a polymerized material allows us to quantify the stiffness. From the data we have

from tracking the movement of microtubules, we then applied the analysis method from [J.

Nettleton, 1993] [Hawkins et al., 2012] to calculate the persistence lengths of cancerous

and regular microtubules. Considering that cancerous microtubules have different isotypes

of tubulins from regular microtubules, their mechanical properties may vary.

To further investigate the changes occurring along the microtubules, our objective

is to examine the stiffness matrices of regular microtubules and cancerous microtubules

with different concentrations of Taxol. Additionally, we plan to analyze the matrices of

segmented microtubules, which will provide insights into any local variations.

2.2 Theoretical Considerations

To study the phonon spectrum and local properties of microtubules, we developed our own

techniques since existing methods were not readily available. Our methodology involved

growing microtubule samples in a solution and stabilizing them with taxol. By capturing a

thousand frames of video and utilizing the ImageJ plugin, we tracked the movement of the

microtubules. To accurately represent the microtubule’s structure, we modeled it as a chain

of interconnected beads resembling a polymer, where each bead had distinct interactions

with its neighbors. Figure 2.2 Segmenting the microtubule into individual beads allowed

us to monitor their positions over time, enabling a thorough analysis of the impact of local

variations on the overall behavior and properties of microtubules. This innovative approach

provided valuable insights that closely align with the real characteristics of microtubuleS.

We can derive a correlation matrix by considering the displacements of each bead

or the bending angles between beads, which captures the interdependency among them.

This statistical method enables us to analyze the relationships between any two random

variables, specifically the movement of beads in the microtubule. Unlike methods assuming

uniformity among pairs, this approach accommodates the measurement of varying stiffness
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Figure 2.2 Experimental Workflow for Studying Microtubule Properties. Left: Growing
microtubule samples in a solution and stabilizing them with taxol. The prepared sample was
then placed on a slide and covered with a glass cover for imaging. Middle: Capturing a thousand
frames of the microtubule and tracking the movement with ImageJ software. Right: Divide the
microtubule into beads to study the local interaction from their movement.

along the microtubule. These variations may arise from taxol attachment or the distribution

of different tubulin isotypes.

Suppose you get the position of the beads at each time t:

un(t), n = 1, . . . , N, t ∈ [0, T ] . (2.1)

Here N is a number of beads.

The dynamic correlation matrix is defined as the displacement of pairwise beads from

an equilibrium position over time:

Ci,j = ⟨uiuj⟩t = lim
t→∞

1
t

∫ t

0
ui(s)uj(s)ds, i, j = 1, ..., N (2.2)
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The stiffness matrix is then derived from

C = kBTK−1 ⇌ K = kBTC−1 (2.3)

Imagine a system of a particle with very small mass attached to a soft spring doing

Brownian motion in liquid at temperature T. We can write down The potential energy of

the mass-spring system V = 1
2Ku2, K is the spring constant; the time average of the

potential energy should equal the quantum of thermal energy
〈

1
2Ku2

〉
= 1

2kBT , then we

have K = kBT 1
⟨u2⟩ .

When the system is at thermodynamic equilibrium, the time average of the physical

observables, in our case the displacements ui(t) , coincide with their ensemble averages:

Ci,j = lim
t→∞

1
t

∫ t

0
ui(s)uj(s)ds = 1

Z

∫
e−β[T (p)+V (u)]uiujdpdu (2.4)

Where β = 1
kB

and Z is the free energy of the system.

Z =
∫

e−β[T (p)+V (u)]dpdu =
∫

e−βT (p)dp
∫

e−βV (u)du = ZpZu (2.5)

One important observation is that the integrals over p and u decouple in Eq 2.4, and

the momentum factors out completely. Hence,

Ci,j = 1
Zu

∫ ∫
e−βV (u)uiujdu (2.6)
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With the harmonic approximation V (u) = 1
2

∑
ij Ki,juiuj , Eq 2.6 can be evaluated

explicitly as

Ci,j = 1
Zu

∫ ∫
e−βV (u)uiujdu = 1

β

〈
K−1

〉
i,j

(2.7)

Figure 2.3 Dynamic correlation matrix. a. An illustration to show how the correlation matrix is
constructed. The diagonal elements of the correlation matrix represent the correlations of each bead
with itself and hold no information. The off-diagonal elements, however, provide insights into the
correlations between beads and their neighboring beads. For example, the second diagonal reflects
the correlations between a bead and its immediate neighboring bead, the third diagonal represents the
correlations between a bead and its second neighboring bead, and so on. b. The general equation for
calculating elements in correlation matrix. c. Illustrations for Y-displacement correlation and angle
correlation. A negative correlation value indicates that neighboring beads within the microtubule
are moving in different directions, indicating a bending region and implying greater flexibility in
that particular area.

As long as the damping is only a direct function of the momentum (velocity) of the

particle, which is the case in most situations, the relation between dynamic correlation

matrices and stiffness matrices remains the same because the momentum will factor out

[equations (2.4) and (2.6)]. Thus, we can extract the natural frequencies of an undamped

system from a damped system, such as microtubules in buffer.
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2.3 Preliminary Work

In our previous study [Aslam and Prodan, 2019], we accomplished the mapping of phonon

spectra for naturally vibrating microtubules. Building upon this research, we are now

motivated to investigate whether the phonon spectra of cancerous microtubules present

distinct variations in comparison to regular microtubules. Through this exploration, we aim

to gain insights into the potential differences in mechanical properties between cancerous

and regular microtubules. Preliminary observations suggest that cancerous microtubules

demonstrate greater flexibility, as evidenced by their phonon spectra (Figure 2.4). This

finding highlights the significance of studying the phonon spectra as a means to unravel the

mechanical characteristics of microtubules affected by cancer.

Figure 2.4 Phonon Spectra Comparison of Regular and Cancerous Microtubules. The phonon
spectra of regular and cancerous microtubules reveal distinct characteristics. The regular microtubule
exhibits a steeper slope, indicating a faster group speed of the sound wave and implying a stiffer
material. In contrast, the cancerous microtubule displays a flatter slope, indicating greater flexibility.

We calculated the persistence lengths of 11 MCF-7(breast cancer cell line) cancerous

microtubules, the average of them is 0.3559 ± 0.3562 mm, it is one order less comparing

to the persistence lengths of regular microtubules from our previous work 2.20 ± 1.74 mm.

The result also shows that cancerous microtubules are mechanically more flexible.

The comparison of correlation matrices of a regular microtubule and a cancerous

microtubule can be seen in Figure2.5. We divide the microtubule into 101 beads, and in
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Figure 2.5 Correlation matrices show that regular microtubule is more rigid than a cancerous
microtubule. Top left: A regular microtubule. Top middle and right: Correlation matrix of
Y-displacements and angles of regular microtubule. Bottom left: A cancerous microtubule. Bottom
middle and right: Correlation matrices of Y-displacements and angles of cancerous microtubule.

the correlation matrices of Y-displacements, color blue means positively correlated, color

red means negatively correlated. For the regular microtubule, we can see in Figure2.5 that

it is highly correlated between beads even they are quite far apart from one another; and for

the cancerous microtubule (MCF-7) it reflects the low correlation along the microtubule.

The result is in agreement with the values of their persistence lengths, indicating that

the cancerous microtubules are indeed less stiff. However, in Figure2.6, after doubling

Taxol concentration, the correlation matirx of cancaerous microtubule started to look like

a regular one; which means Taxol molecules binding change the stiffness. The segmented

cancerous microtubule in Figure2.7 also supports the same argument; it was consist of

11% fluorescence labeled regular tubulins and 89% unlabeled MCF-7 cancerous tubulins,

the dark joints where red arrows point at in Figure2.7 were consequently made of mostly

cancerous tubulins. The correlation matrices of the segmented microtubule shows a very

good correspondence: the dark segments are less correlated.
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Figure 2.6 Taxol rescues the rigidity of cancerous microtubule. Left: A cancerous microtubule
with double Taxol concentration. Middle: Correlation matrix of Y-displacements. Right:
Correlation matrix of angles.

Figure 2.7 Correlation matrices can pinpoint the local rigidity of a microtubule. Left: A
segmented cancerous microtubule. Middle: Correlation matrix of Y-displacements. Right:
Correlation matrix of angles.
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2.4 Experimental Protocols

2.4.1 Grow microtubules

Regular microtubules Purchased from PurSolutions, pure double cycled tubulin and

tubulin labeled with Alexa488 and Alexa594 were stored in -80◦C in PEM buffer (80

mM piperazine-N,N’-bis2-ethanesulfonic acid(PIPES), 1 mM ethylene glycol tetraacetic

acid (EGTA), 1mM MgCl2, pH 6.9).

To grow microtubules, the tubulin was thawed on ice and grown in a GPEM buffer (1

mM guanonine triphosphate (GTP), 80 mM PIPES, 1 mM EGTA, 1mM MgCl2, pH 6.9)

with 10% dimethyl sulfoxide (DMSO). The solution was incubated on ice for 5 minutes and

then incubated at 37◦C for one hour. The tubulin was grown at 2 mg/ml with 10% to 50%

labeled tubulin. After incubation, warm Taxol was added to a final concentration of 10 M.

The stabilized microtubules were diluted 100 times in an anti-bleaching solution (250 nM

glucose oxidase, 64 nM catalase, 40 mM D-glucose, 1 beta-mercaptethanol (BME)) before

imaging.

Samples for imaging were prepared by coating the glass slide and coverslip with

bovine serum albumin(BSA), dropping 1.5-2 µl of the diluted microtubule solution onto

the slide, and sealing the coverslip to the slide with one minute epoxy.

Cancerous microtubules Same as above, except the tubulins are consist of 11% labeled

regular tubulins and 89% unlabeled cancerous tubulins. For growing segmented cancerous

microtubules, simply add two kinds of tubulins into solution without pipetting them.

2.4.2 Image microtubules

A Prime 95BT M Scientific CMOS Camera was used to acquire videos of the microtubules

at 10-100 frames per second. The plug in JFilament in FĲI was used to find the initial

coordinates of the microtubule. The ends of the microtubule can easily move out of focus,

and this results in missing data points in the tracking. Therefore, only microtubule that
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stayed in focus for 1000 frames were used for analysis to ensure that the length of the tracked

microtubule did not change significantly over time.

2.4.3 Image analysis

The coordinates from JFilament were then fit to a spline in MATLAB, and segmented into

27, 51, or 101 equal length blocks. Each block is represented by the position of its center

of mass. We utilized Fortran to extract the Y-displacements and angles data, and then

incorporated R Program for computing the correlation matrices.

2.5 Conclusion

Up until this stage of our research, the observed vibrations of microtubules were primarily

induced by the thermal energy present in the surrounding water. As a result, we were limited

to observing the lower vibrational modes of the microtubule. To gain a comprehensive

understanding of the complete phonon spectrum, it becomes imperative to excite higher

vibrational modes of the microtubules. In order to achieve this, we have devised two

distinct plans.

The first plan involves tethering microtubules with fluorescent beads and employing

piezoelectric devices to induce controlled vibrations. By precisely actuating the

microtubules using this approach, we aim to access a broader range of vibrational modes and

subsequently map out the full phonon spectrum. This method provides us with a means to

manipulate the vibrational behavior of the microtubules and gain insights into their unique

vibrational properties.

The second plan revolves around the creation of a well-controlled environment,

specifically utilizing nanofluidic chips equipped with electrodes along the sides. By

subjecting a single microtubule to this controlled setup, we can stimulate its vibrational

modes with greater precision. This approach allows us to create a highly controlled
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experimental system that facilitates the excitation and analysis of specific vibrational modes

within the microtubule.

Both plans aim to expand our understanding of the vibrational characteristics of

microtubules by enabling the exploration of higher vibrational modes and mapping out the

complete phonon spectrum. By implementing these strategies, we can uncover valuable

insights into the unique vibrational properties of microtubules and further investigate their

potential as topological phononic insulators.
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CHAPTER 3

ISOLATING A SINGLE MICROTUBULE IN NANOFLUIDIC DEVICE

This work is available as an arXiv preprint with the identifier arXiv:2302.08433.

Biological systems have been theoretically predicted to support topological wave-

modes, similar to the ones existing in meta-materials. The existing methods to measure

these modes are not implementable to biological systems; new techniques have to be

developed to accommodate measurements in life science. Motivated by this perspective,

we report a nanofluidic device for studying one microtubule at a time. Micro-channels

etched into fused-silica using reactive ion etching were interfaced with nanochannels milled

with electron beam lithography, and sealed with a PDMS-coated glass coverslip. The

microchannels are 1 µm deep and 100 µm wide, and the nanochannels are 150 nm deep

and 750 nm wide, they are tested to be effective for isolating microtubules. The methods

presented here are for an adaptable nanofluidic platform for phonon measurements in

biopolymers made of proteins or DNA.

3.1 Introduction

The field of topological mechanics and metamaterials is expanding to incorporate soft

topological materials, such as micro and nano scale colloids and polymers, including

biopolymers, suspended in water based media [Prodan and Prodan, 2009, Prodan et al.,

2017]. Phenomena similar to the one seen in topological insulators, like Thouless pumping,

are theoretically proposed to exist in polymers suspended in fluids. In particular the the

microtubules and actin have been proposed to support topological phonon modes [Prodan

and Prodan, 2009], and has been inspiring the development of other lattices [Prodan et al.,

2017]. While the bending modes of the microtubules have been experimentally measured,

the rest of the modes requires confinement and precise actuation [Aslam and Prodan, 2019].

Previous experimental methods to obtain of the density of state of colloidal micro-particles
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in suspension require accurate tracking of particle for a long period of time [M. F. Islam,

2010]. To adapt such methods to microtubules, one needs to confine the microtubules

to stay in the field of view of the microscope for a longer time, while allowing them to

exibit dynamic instability. The development of techniques in nanofabrication has become

an increasingly useful tool in the life sciences [Cao et al., 2002, Öz et al., 2019, Yeh et al.,

2015, Kutchoukov et al., 2004, C. Iliescu, 2012, Cannon et al., 2004, Xia et al., 2008].

Methods that are developed for nanofluidic channels are adaptable for microscopy and

can integrate electronics for sensing and actuation of single proteins or macromolecules.

[Reisner et al., 2012,Kaji et al., 2004,Wang et al., 2005] Single proteins and macromolecules

are typically imaged at high magnification using fluorescence or bright-field microscopy.

This requires imaging through a thin optically transparent material, typically glass or fused-

silica. Furthermore, the ability to adapt nanofluidic devices for electrodes to incorporate

manipulation and sensing requires the nanochannels to be in an insulating material, and this

is another benefit to fabricating in glass or fused-silica.

In this paper we present a method for confining a single microtubules in a nanochannel

and a highly repeatable and detailed method for interfacing microchannels that are 50 µm

apart with 750 nm wide by 150 nm deep nanochannels and capping them with a glass

coverslip using PDMS as a bonding medium. The bonding is done outside the cleanroom

and does not require expensive equipment. [Haubert et al., 2006] The nanochannels are

written into fused silica using electron beam lithography (E-beam lithography or EBL).

This device can be used for transmission and fluorescence microscopy at high magnification

with low fluorescence background. This method can be adapted to include electrodes in the

nanochannels for sensing and actuation with dimensions that promote high signal to noise

ratio.
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Figure 3.1 Cross-sectional nanochannel process flow. Directions of steps indicated by arrows.
First, start with an HMDS vapor primed fused-silica wafer coated in 1.8 µm AZ1518 photoresist.
Next, perform UV photolithography exposure with indicated photomask. RIE exposed pattern to
etch it into the substrate. Strip wafer in microposit remover 1165 photoresist stripper at 70°C. This
allows microchannels of width, w = 50µm, and depth, d = 1.5µm to be present on substrate.
Prepare wafer with 15 nm gold for E-beam writing. Gold etch after the nanochannel pattern is
written.

3.2 Fabrication of Nanofluidic Devices in Fused Silica

3.2.1 Fabrication of microchannels

The devices were fabricated on 500 µm thick fused-silica wafers with a diameter of d = 76.2

mm. The wafers were cleaned in a Piranha solution 3:1 H2SO4:H2O2 for 5 minutes, followed

by a DI water bath for 1 mintue. The wafers were rinsed with DI water and dried with N2.

Next, the wafers were placed in an isopropyl alcohol (IPA) bath for one minute, followed by

a DI water bath for another minute. Afterwards, the wafers were rinsed with DI water and

dried with N2.

Next, the wafers were primed with hexamethyldisilazane (HMDS) in a Yield

Engineering Systems (YES) HMDS prime oven at 148°C. The procedure dehydrates the

wafers and then vapor primes them with HMDS. Next, AZ1518 positive photoresist was

spun on the wafers at 4000 RPM for 40 s. The wafers are baked at 110°C for 2 minutes and

then cooled on a cooling plate. Standard photolithography was performed for 30 s using a
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EVG620 mask aligner to expose the sample with the microchannel pattern shown in Figure

3.2. The wafers were manually developed in AZ300 MIF for 60 s.

Wafers were measured with a Bruker Dektak-XT profilometer to verify that the

photoresist was properly removed from the patterning area. Next, the wafers were placed

in an Oxford PlasmaPro 80 Reactive Ion Etch (RIE) and an O2 descum was run for 2

minutes to remove any residual resist from the microchannel structure due to exposure and

development. Next, an SiO2 etch was performed for 15 minutes. The etch is a combination

of CF4 and O2 gasses at 35 sscm and 3 sscm, respectively. The set forward power was

300 W and the DC bias was between 520 and 530 V. The wafers were measured with

the profilometer to verify the etch depth. The photoresist was stripped for 1 hour in Dow

Microposit Remover 1165, and the final depth of each channel was measured once more in

the profilometer. The final depth of microchannels was around 1 µm.

In order to prep the fused-silica substrates for E-beam lithography, E-beam resist was

spun on the wafers before they were coated in 15 nm of gold in an Angstrom Nexdep E-beam

evaporator.

Figure 3.2 Rendered CAD model of the microchannel device integrated with the nanochannels.
Nanochannels are highlighted by the zoomed view insert. Imaging is done through the glass coverslip
with an inverted microscope.
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3.2.2 Electron-beam written nanochannels

The pattern of nanochannels were designed to be cascading to guide microtubules in

Figure 3.3a,b. Nanochannels were written between the microchannels using the Elionix

ELS-G100, an electron-beam lithography system with high speed and ultra high precision

thermal field emission. The ELS-G100 is capable of writing and generating patterns with a

line width of 6 nm. One wafer was loaded into the FIB chamber at a time. The SEM with

a beam current 500 pA was used to focus on the sample surface to determine the z-axis

working distance and locate the writing area on the sample. After focusing the beams on

the wafer, the pattern of nanochannels were aligned and then the wafer was ready to be

exposed.

After E-beam lithography, wafers were developed in 70% cold IPA and then inspected

under microscopy to confirm that the pattern was well-written. A gold etch was then

performed on the samples to remove the Au coating. Next, the wafers were placed in RIE

again to etch the nanochannels with calculated parameters until the depth reached 150 nm

(Figure 3.3d). The E-beam resist was stripped for 1 hour in Dow Microposit Remover 1165.

Next, the wafers were again coated with AZ1512 photoresist to be diced into 20 mm x 20

mm devices, and transported to the lab for bonding.

3.2.3 Packaging fluidic devices

Port holes were made at the ends of the microchannels using a BNP 220 Suction Blast

Cabinet. The metal mask was made beforehand and the devices were fixed and protected

by 3M Scotch Magic Tape.

To seal the devices, a modified PDMS bonding protocol was performed. To prepare

for the sealing of the nanofluidic devices, it is critical that the bench top, fume hood, and

laminar flow hood be as clean and dust-free as possible. They are all cleaned with 70%

ethanol and again with IPA. A Ni-Lo 4 XL vacuum holder digital spin coater is cleaned,
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Figure 3.3 SEM and AFM characterization. a. SEM image of microchannels integrated with
nanochannels. b. 10000x magnification of the cascading junction between the micron-sized and
nano-sized channels. c. AFM image of one nanochannel. d. The measured depth of the nanochannel
is around 150 nm.

lined with fresh foil and set to 3 stages of spinning: 500 RPM for 10 s, 3000RPM for 30 s,

and 5000 RPM for 20 s. The speed was reached with 500 RPM ramp speed.

Photoresist is stripped from the diced devices with 1165 microposit remover for 15

minutes at 70°C before the bonding procedure begins. The devices and 22 mm x 22 mm

coverslips are cleaned by placing them in a chemically resistant coverslip rack and sonicating

them in acetone for 5 minutes. Devices and coverslips are rinsed in the rack sequentially

with acetone, IPA, ethanol, and DI water.

PDMS (SYLGARD 184 Silicone Elastomer Kit, Dow Corning) was mixed with its

curing agent in the volume ratio of 10:1, then the mixture was placed in a desiccator for an

hour to remove the bubbles. Next, 500 µl bubble-free PDMS was spun on per coverslip,

coated coverslips were then moved to a pre-heated 120°C hot plate, and cured for at least

an hour.
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Both the device (patterns face up) and coverslip (PDMS side up) were placed side

by side in laminar flow hood, and treated with BD-20AC laboratory corona treater for

5 minutes. After corona treatment, the device was flipped and carefully placed on the

coverslip, the bonding should happen consequently, if not, use the blunt side of a tweezers

to gently tap the device on the corner. After the devices were sealed, 4 resin reservoirs were

adhered to 4 ports using Loctite Epoxy instant glue, after the Epoxy was cured, the devices

were ready for use.

3.2.4 Flowing microtubule into nanochannels

All the steps below have to be done in a humidity chamber that can be made from an empty

pipette tip rack with 2 Kimwipes soaked with DI water inside. The devices should sit on

the rack and the lid should be closed during waiting to prevent the device from dehydration.

The channel has to be first rinsed with PEM buffer (80 mM piperazine-N,N’-bis2-

ethanesulfonic acid (PIPES), 1 mM ethylene glycol tetraacetic acid (EGTA), 1mM MgCl2,

pH 6.9). 15-20 µl PEM buffer was pipetted into one port on the left microchannel, the

nanochannels began filling up with liquid within 15 minutes; the excess solution from the

port was pipetted out, then another 15-20 µl was placed at the port of the right microchannel.

This step is to create fluid pressure for the liquid to flow in. The device was let sit in humidity

chamber for another 15 minutes until all channels were filled up.

The channels then have to be passivated with BSA to prevent the adhesion of

microtubules to the surface. 10 µg/ml bovine serum albumin (BSA) diluted in PEM

buffer was flowed into the device. 15-20 µl BSA was pipetted into one port on the left

microchannel, then waited 30 minutes for BSA to fill up the left part. The excess solution

was pipetted out from the port. Another 15-20 µl was added at the port of the right

microchannel. After adding the solution, the device was let sit for another 30 minutes for

the channels to be filled up.
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To test the quality of the seal, 1 mM fluorescein solution diluted in PEM buffer was

flowed into the device. Fluorescein is sensitive to blue light, so solutions were made in with

red or yellow light and foil was used to cover any containers to prevent bleaching of the

sample before imaging. The nanochannels were imaged at 100x magnification with a 1.6x

optovar to increase magnification. The fluorescein solution flowed into the nanochannels

by placing 15-20 µl solution at one port on the left microchannel, the nanochannels began

filling up with liquid within 15 minutes; the excess solution from the port was pipetted out,

then another 15-20 µl was placed at the port of the right microchannel, and another 15

minutes was give for the device to sit in the humidity chamber until all channels were filled

up.

Pure double cycled tubulin and tubulin labeled with Alexa594 (Red) were stored in

-80◦C in PEM buffer. To grow microtubules, the tubulin was thawed on ice and grown

in a GPEM buffer (1 mM guanonine triphosphate (GTP), 80 mM PIPES, 1 mM EGTA,

1mM MgCl2, pH 6.9) with 10% dimethyl sulfoxide (DMSO). The solution was incubated

on ice for 5 minutes and then incubated at 37◦C for one hour. The tubulin was grown at

2 mg/ml with 10% to 50% labeled tubulin. After incubation, warm Taxol was added to

a final concentration of 10 M. The stabilized microtubules were diluted 100 times in an

anti-bleaching solution (250 nM glucose oxidase, 64 nM catalase, 40 mM D-glucose, 1

beta-mercaptethanol (BME), 10 µM Taxol) before flowing into fluidic devices.

We found that electrophoresys works best at guiding microtubules from the ports into

the nanochannel. Electric field of 0.9 V/m was applied using a DC power supply, it took

15-30 minutes until the microtubules approached the nanochannels.

The cleanliness of the wafer is critical for each stage of the process. Any particulates

on the surface can block the fluidic channels or cause an uneven photoresist deposition.

Wafers that were not cleaned properly at each step did not have precise patterning of the

microchannels due to uneven photoresist, and this caused jagged edges on the microchannels.
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Figure 3.4 Microtubule in nanochannel. Image of one fluorescence labeled microtubule(red)
moving in the nanochannel filled with 1 mM fluorescein solution(green) at 100x with fluorescent
microscope. b. was taken 50 millisecond after a.

Photoresist also does not adhere well to fused-silica. Priming the wafers with HMDS was

a necessary step to promote the adhesion of the photoresist to the wafers.

The profilometer measurements are important to verify proper photoresist devel-

opment, the etch rate of the RIE, and the final depth of the microchannels. Photoresist

AZ1518 is 1.8µm in depth, and the profilometer measurement after the photoresist was

developed verified that the photoresist is removed from the microchannels and the wafer is

set for etching. The RIE etch process etches both the fused-silica and the photoresist with

different selectivity, so the etch time for a specific depth must be determined. The wafers

are etched for different times, and profilimeter measurements are performed for each time

to determine the etch rate. An etch time of 1 hour and 15 minutes resulted in a 1.2 µm deep

microchannel.

The gold coating on the samples is necessary for SEM imaging. Fused-silica is

non-conductive, and therefore charging effects due to the SEM makes it difficult to image.

Charging occurs when the electrons do not have a conductive path to guide them away from

the sample surface and a layer of electrons is generated. The cloud of electrons prevents
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clear projectile of the secondary electrons from the surface to the electron detector, resulting

in poor image quality. The gold coating provides a conductive path the the electrons to

move away from surface during imaging. However, long exposure to the electron beam still

resulted in charging effects.

The E-beam lithography was done on one wafer (12-21 devices depends on their size)

at a time. The process is achieved by shooting a focused electron-beam at the surface of

the material. The system provides a stable 1.8 nm electron-beam using high beam current

at 100 kV, it is accurate and highly efficient. After exposure, the depth of nanochannels can

be decided by how long they are etched in RIE.

The bonding process is robust, repeatable, and easily done outside of the clean room.

A successful bonding can be seen by eye by a change in contrast between the coverslip

and the fused-silica. The drawback of this method is that the sagging of PDMS material

tends to partially or completely seal off the channels that do not have a high aspect ratio

due to the rubber-like behavior of PDMS. However, it was noticed that if PDMS coated

coverslips were let cool down after one hour heat treat and wait overnight, the chance of

PDMS collapse and block the channels becomes slim.

The port holes used to be made by drilling into the ends of the microchannels using

a drill press at 3600 rpm using a diamond coated drill bit of 0.5 mm diameter. The drilling

of the port holes can be difficult as well as time consuming, and still result in cracking

the device. Sandblasted-through portholes have cleaner edges, and the sizes of holes are

well-controlled by the metal masks, also portholes of a dozen of devices can be done within

a few minutes.

3.3 Results and Discussion

Previous devices for studying microtubule are microns in size. [Yokokawa et al., 2005,

van den Heuvel et al., 2007]. The depth of our channels is 150 nm and was chosen to keep

the microtubules in the field of view of a microtscope for longer while still allowing space
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for dynamic instability. The width of the nanochannel is 750nm and was chosen to allow

future actuation of the microtubule in the nanochannel for the purpose of exiting different

types of vibrational modes in the microtubules lattice.

Microtubules have a persistance length of 1mm making them much stiffer and longer

than DNA. We found that electrophoresis was the best way to guide the microtubules into the

nanochannels. We previously tried flow, and kinesin, a motor protein, but without success.

For this step to be successful, it is very important that the bonding is airtight such that the

electric field goes primary through the nanochannel. The width of the microchannel has to

be large to allow the microtubules to align with the electric field prior to the entrance in the

nanochannel.

In Figure 3.4, we present a microtubules flowing, under electric field through our

nano channels. Prior to the flow we test the bonding and wether the channel is free by

flowing flourescein (green) into the nanochannel. The microtubule (red) is flown through

the nanochannel using electric field. The position of the microtubule can be controlled.

This method can be further adapted to embed electrodes on two sides of the nanochannels

for sensing and actuation.

3.4 Conclusion

In conclusion, isolation of a microtubule in a 150 nm deep nanochannel is reported. The

channel is well characterized using SEM and AFM. The method to seal the fluidic channels

allows for easy imaging with a microscope. This methodology allows for an adaptable

tool to isolate a single microtubule to perform direct and quantitative measurements. The

reported device is further adaptable to fabricating electrodes along the channel as an added

sensor to detect and measure in the nanochannel. The small dimensions of the nanochannel

are crucial for the addition of electrodes because to increase the signal to noise ratio the

electrodes need to be close enough to the object of study to minimize electrical signal from

the solution itself.
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The use of nanofluidic platforms has already benefited the study of DNA’s unique

structural properties. The adaptability and repeatability of the fabrication of the devices

presented here makes it an ideal platform to open the doors to isolate and study not only

DNA, but also other proteins and protein assemblies. For example, the nanochannels

can be milled to an ideal height and width to isolate single actin or microtubule proteins.

These biopolymers have unique polymerization and depolymerization properties that need

to be quantitatively measured at the protein level to elucidate the dynamic mechanics of

these structures. This platform allows for variations in size that can be optimized for the

object of study. Furthermore, this platform affords the ability to isolate and manipulate

macromolecules and proteins for measurements, while keeping their naturally aqueous

environment.

In our research, we have successfully developed a nanofluidic device that allows us to

isolate a single microtubule. This achievement marks a significant milestone in our quest

to explore the vibrational properties of microtubules at a more controlled and precise level.

With the nanofluidic device in place, our next step is to integrate electrodes into the setup.

By incorporating electrodes along the sides of the nanofluidic device, we will have

the means to induce controlled vibrations in the isolated microtubule. This capability opens

up exciting possibilities for mapping the phonon spectrum of the microtubule with greater

accuracy and detail. The electrodes will enable us to selectively excite specific vibrational

modes and explore the full range of vibrational behaviors exhibited by the microtubule.

The addition of electrodes to the nanofluidic device represents a crucial advancement

in our experimental setup, as it empowers us to manipulate and analyze the vibrational

properties of the microtubule in a controlled environment. This step will pave the way for

in-depth investigations into the unique vibrational characteristics of microtubules and their

potential as topological phononic insulators.

Overall, our progress in constructing the nanofluidic device for isolating a single

microtubule sets the stage for the subsequent exploration of the microtubule’s vibrational
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landscape through the incorporation of electrodes. This advancement brings us closer to

unraveling the mysteries of microtubule phonon spectra and their potential as topological

phononic insulators.
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CHAPTER 4

SYMMETRY-PRESERVING COUPLING METHOD FOR TOPOLOGICAL

ACOUSTIC METAMATERIALS

This work is available as an arXiv preprint with the identifier arXiv:2303.06065.

In this chapter, we investigate different types of couplings used in acoustic

metamaterials requiring preservation of symmetries. For testing we use the SSH model to

test whether topologically edge and interface modes are supported with the different types

of connection. We observed that a modular platform where the resonators are coupled

through the bottom is the simplest method that is accurate and flexible.

4.1 Introduction

Topological insulators have attracted significant interest due to their distinct characteristics,

setting them apart from metals and insulators. [Hasan and Kane, 2010a]. In recent years,

the topological state of bosons (photon [Ozawa et al., 2019a] and phonons [Zhang et al.,

2018a]) has also attracted great attention.

The field of topology has paved the way for the realization of novel mechanical and

acoustic systems. Particularly, phononic crystals have emerged as a captivating subject, as

they present exciting prospects for manipulating sound in unconventional and unexpected

manners, leveraging the principles of topology.

Periodic acoustic systems, such as the topological boundary states based on the

analogue of quantum Hall effect [Khanikaev et al., 2015, Yang et al., 2015], the analogue

of quantum spin Hall effect [He et al., 2016], the Floquet topological insulator [Peng et al.,

2016], and the valley Hall effect [Lu et al., 2016] have been successively proposed and

experimentally verified. Besides periodic systems, topological systems that lack periodicity

can also achieve topological edge states, such as topological quasi-crystals [Ni et al.,

2019a,Cheng et al., 2020a,Apigo et al., 2019a,Coutant et al., 2021] where the topological
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structure is caused by disorder. The idea of topological acoustic insulators provides new

schemes for designing devices with advanced functionalities. For example, the potential

improvement of leaky-wave acoustic antenna [Fleury et al., 2016], directional topological

acoustic antenna controlling sound for versatile applications [Zhang et al., 2018b], specific

signal filtering achieved by adding random disorder to clean structures. [Zangeneh-Nejad

and Fleury, 2020], various sound proof strategies [Yamamoto et al., 2009,Xu et al., 2020,Liu

et al., 2021], and for a growing discussion of different fractal geometries. [Song et al.,

2016,Zhao et al., 2018, Singh et al., 2022] In essence, researchers have been and continue

to intensely explored various topological acoustic systems, and among these researches,

topological acoustic meta-material consisting of numerous phononic crystals is one of the

focuses.

In view of the fact that topological insulators are also called symmetry-protected

topological phases of matter, these gapped phases have topological properties relying on

the presence of symmetries. This result is from a global property of the topological

insulator’s band structure: local perturbations cannot alter or damage this surface state.

Since the properties of topological insulators and their surface states highly depend on the

dimension of the material and its symmetries, they can be categorized using the periodic

table of topological insulators [Chiu et al., 2016a]. From the experimental perspective, it is

crucial to satisfy certain structures and to display the symmetry, moreover, preserving the

symmetry is equivalent to preserving the topological properties. To preserve symmetry,

coupling methods for topological acoustic experiments must be carefully chosen. The

following question then arises: in discrete acoustic resonant models, how can the resonators

be efficiently coupled to form a desired structure while preserving the symmetry so that it

complies with the idea of topological metamaterial?

Some methods preserve the symmetry using double side connection, meaning they

added a coupling bridge that is also on the side and made the structure symmetric [Zheng

et al., 2022, Xiao et al., 2017, Ma et al., 2019, Qi et al., 2020]. The resonators are 3D

38



printed using photosensitive resins or other types of materials as coupling bridges must

be fabricated with the resonators which makes as manufacture more complicated and time

consuming. On top of that, if the dimension of the coupling bridge has to be changed,

everything has to be made from scratch all over again.

In this section, we test an acoustic coupling method to connect the resonators through

the bottom to preserve the symmetry and create a simple, flexible and Lego-like platform.

We will compare two types of coupling methods throughout the paper: side coupling

and bottom coupling (Figure 4.1b). We will start by showing that bottom coupling

preserves symmetry in simple periodic acoustic models while single side coupling fails

to do so. Via the simulations of resonant modes of dimer, trimer, pentamer, and a classic

Su–Schrieffer–Heeger model (SSH model) consisting of 14 resonators, as well as another

SSH model with 28 resonators and a domain boundary. Furthermore, we address the

corresponding experimental results of the dimer, the SSH model, and the SSH model with a

domain boundary. All experimental results clearly show great agreement to the simulations,

proving the effectiveness and simplicity of bottom coupling method.

4.2 Results and Discussion

The dimensions of the resonators that were used throughout the simulations and experiments

are shown in (Figure 4.1a,b).

4.2.1 Side connection vs. Bottom connection

To demonstrate and to compare the effect of side connection and bottom connection

for topological acoustic resonators, numerical simulations were done using COMSOL

Multiphysics software.

The simulated results is reported in Figure 4.1 where the structures of dimer, trimer

and pentamer of resonators with both side bridge coupling and bottom bridge coupling

(Figure 4.1b). The band spectrum (Figure 4.1c,d,e) were generated by sweeping the width
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of coupling bridge from 1 mm to 20 mm with 1 mm steps and plotting corresponding

eigenfrequencies versus widths. The wider coupling bridge means stronger coupling

strength. In the band spectrum, the second mode split and the gap became larger when the

coupling strength went up. With red dash lines as symmetry axes, it is clear that with side

connection, the splitting modes are not symmetrical. Once we moved the coupling bridges

to the bottom, the symmetry was restored.

Figure 4.1 Simulations showing that the bottom connection preserves the symmetry. a.
Dimensions of the resonators and coupling bridges. H = 40 mm, r = 10 mm. The coupling
bridge has the width = 5 mm, the length d = 26 mm, the thickness t = 3 mm. b. The height position
of the coupling bridge h1 = 5 mm for side connection, h1 = 0 mm for bottom connection. c. Dimer
structure and the band spectrum of both side and bottom coupling methods. d. Trimer structure and
the band spectrum of both side and bottom coupling methods. e. Pentamer structure and the band
spectrum of both side and bottom coupling methods. It is clear in the band spectrum that in all three
cases, the symmetry is preserved when the resonators are connected through bottom. Red dash lines
indicate the symmetrical axis.

4.2.2 Dimer experiment

The experiment of dimer coupling was done to confirm the simulation results. The

COMSOL-simulated acoustic pressure fields of the resonant modes are shown in Figure 4.2e,

the coupling width equals to 5 mm. The assembly process is shown in Figure 4.2a,b, and the

experimental set up is shown in Figure 4.2f. The speaker and the microphone were placed

on top of the same resonator to give off and collect sound, respectively. The frequency of

the input signal sent to the speaker was swept from 4 kHz to 5 kHz in intervals of 10 Hz.
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Experimental results of dimer with bottom coupling bridges show a great agreement to the

simulations (Figure 4.2c, bottom panel). The middle of 2 peaks is about 4.3 kHz, same

as where the 2 modes start to split in the band spectrum (around 18.5 kHz2). However,

with the side connection, the peaks shifted from the spectrum. Additionally, the height

difference in peaks for bottom coupling is noticeably smaller than that of the side coupling

(Figure 4.2d). Comparing with the results from bottom coupling method, the symmetry

was distinctly absent for side coupling.

Figure 4.2 Dimer experimental setups as well as the comparison of simulation and experiment
results. a. Assembly process of dimer connected through side. The dimer was 3D-printed together
with a side coupling bridge, the height position of the top of the side coupling bridge h1 is equal to
7 mm. b. Assembly process of dimer connected through bottom. Two resonators were 3D-printed
separately, and the bottom coupling bridge is grooved in the middle acrylic sheet as depicted. c.
Simulation results of dimers with side connection (top panel) and bottom connection (bottom panel).
Red boxes in both band spectrum indicate the coupling width (5 mm) used in the experiment. d.
Experimental results of dimers with side connection (top panel) and bottom connection (bottom
panel). The symmetry is lacking for side coupling in both simulation and experiment. e. Acoustic
pressure field distribution for the modes marked as red and blue dots in panel c. when S = -5 mm.
f. The experimental setup.

4.2.3 SSH acoustic model

To further explore how the position of connection between acoustic crystals would influence

topological gaps in band spectrum, we started by simulating 3 types of connection for SSH

model of 14 resonators. The first type is to couple them with bridges connected through

side, the second one is double side coupling bridges, and the third one is bottom connection.
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Figure 4.3a shows the top view of SSH coupling bridges. r1 and r2 are the widths of coupling

bridges, therefore they are related to the alternate coupling strength. Light blue dash lines

indicate where the resonators were placed. The geometries of 3 coupling types are shown

in Figure 4.3b, c, d. The resonant spectrum were generated by sweeping S – half of the

difference in widths between strong and weak coupling bridge – from -9 mm to 9 mm.

When S equals to zero, all coupling bridges have an identical width of 10 mm.

Figure 4.3 Band spectrum of different types of connection in SSH model of 14 resonators,
sweeping S. S is half of the difference in widths between strong and weak coupling bridge. a. Top
view of SSH coupling bridges. r1 and r2 are related to the alternate coupling strength. Light blue
dash lines are where the resonators were placed. b. SSH model with bottom connection. c. SSH
model with double connection from the sides. b. and c. has very similar spectrum. Blue boxes
include edge resonant modes. d. SSH model with side connection, the edge band merges into bulk.
e. Band spectrum of SSH model sweeping the height of the coupling bridges. Red parts represent
when the coupling bridges protrude from the bottom or top. Dark blue dash line marks 18.5 kHz2.

As one can see in the spectrum (Figure 4.3b, c, d, there is no gap for a uniform

coupling connection (S = 0 mm, r1 = r2 = 10 mm). A bulk spectral gap opens once the

connecting channels are set in an alternating strong/weak coupling strength (S ̸= 0 mm).

Furthermore, the bulk spectrum remains symmetric with respect to the middle of the bulk

spectral gap (the small deviations are less than 5% when compared with the overall width

of the bulk spectrum).

In (Figure 4.3b), SSH model with bottom connection, one can observe the expected

edge resonant modes, whose energies are pinned in the middle of the bulk spectral gap
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around 18.5 kHz2, where the second mode of resonant frequency of a single resonator is.

We can say that SSH model with bottom connection, COMSOL-simulated spectra displays

an exact chiral symmetry. In Figure 4.3c, SSH model with double side coupling bridges

gives the same spectra, meaning both types of coupling approaches achieve the goal of

protecting the chiral symmetry.

On the other hand, the spectra of SSH model connected through sides does not display

the same symmetry. In Figure 4.3d, not only do the edge modes merge into lower bulk

bands, but the middle point of the spectrum shifted to around 2 kHz2, demonstrating the

same impracticality as in dimer experiments.

We also checked to see if the height position (h1 in Figure 4.1b) of side coupling

plays a role in preserving the symmetry. The height of side coupling bridge was swept

from bottom to top to generate the spectra in Figure 4.3e, while the coupling width were

fixed at r1 = 15 and r2 = 5 (S = -5 mm). When h1 = -21.5 and 21.5 mm, the resonators

are coupled from the bottom or from the top which resulted in bulk modes symmetric with

respect to 18.5 kHz2, and the edge modes appear at middle. Red parts represent when the

coupling bridges protrude from the bottom or the top, meaning part of them are outside of

the resonators, there are still edge modes existing in the gap but the symmetry shifts further

and further away from the dash line. One can see that once the coupling bridges enter the

body of resonators, the edge modes merge into bulk and the symmetry disappears.

Next, we did experiments with SSH model connected through bottom to confirm if

the symmetry is also seen in the experimental results. Figure 4.4a shows how the setup was

made. The COMSOL-simulated acoustic pressure fields of the edge resonant modes are

shown in Figure 4.4b. The simulated band structure in Figure 4.4c is added as a reference

(same as Figure 4.3b).

In these measurements, same as dimer experiments, the speaker and the microphone

were inserted in the same resonator via two holes open at the top and the speaker’s frequency

was swept from 4 kHz to 5 kHz and the microphone picked up corresponding signals. The
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measurements were repeated for all resonators and the collected data was assembled in

the local density of states plot shown in Figure 4.4d. It is worth mentioning here that all

resonators are removable and interchangeable, so the one with holes can be placed at any

probe position desired for measurements. Panel e provides an alternative depiction of the

same data. The spectral gap as well as the expected edge and interface modes can be clearly

identified and they are well aligned with the simulation in panel c.

The density of states reported in Figure 4.4d was obtained by integrating the local

density of states acquired from resonators whose index are the same as the position of

the probe. The same instrumentation was used. The measurements were repeated while

moving the position of the probe. For each measurement, the frequency was scanned from

4 kHz to 5 kHz in 20 Hz steps.

Figure 4.4 SSH experiments demonstrate the simplicity and efficiency of bottom coupling method.
a. The assembling process of SSH model of 14 resonators connected through bottom. b. Acoustic
pressure field distribution for the edge modes marked as red and blue dots in panel c. when S =
-5 mm. c. COMSOL simulated SSH model resonant spectrum. The red vertical box indicates S
= -5 mm which makes r1 = 15 mm and r2 = 5 mm, the parameters used in the experiments. d.
Experimentally measured local density of states, assembled from normalized microphone readings
from the top of the block resonators. The bright dispersive modes indicate the bulk and edge modes.
e. Collapse on the frequency axis of the intensity plot in d.. The spectral gap is clearly recognized
and the edge modes that show up in the gap are marked with a red star.

Finally, we test and compare two coupling methods in a SSH model with a domain

boundary(interface), both simulationally and experimentally. A SSH model with a domain
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boundary separates two topologically distinct SSH insulating phases, with one non-trivial

edge(left) and one trivial(right). It is shown in Figure 4.5a where r1 = 15 mm and r2 = 5

mm. Figure 4.5b and Figure 4.5c show the band spectrum of side connection and bottom

connection, respectively. Red vertical boxes include resonant modes when S = -5 mm. Red

and blue stars label where interface mode and edge modes appear, and the acoustic pressure

field maps are shown below. Similar to the previous results, with bottom coupling, both

simulation and experiment verified that the system contains topological resonant modes at

the non-trivial edge as well as the domain boundary as expected, and they are located in the

middle of the bulk band gap. In opposition, with side coupling, the edge mode disappears

and the interface mode is close to the bulk, besides, it is noticeable that the energy is not as

concentrated at interface from the acoustic pressure field distribution.

We also did experiments for bottom-connected SSH model with a domain boundary,

the same protocol was applied and frequency was swept from 4 kHz to 5 kHz. The

measurements were repeated for all 28 resonators and the collected data was then used to

plot the local density of states which is shown in Figure 4.5d. Panel e shows the collapse

of the data in panel d on the frequency axis. The spectral gap as well as the expected edge

modes can be clearly identified and are well aligned with the simulation in panel c. The

COMSOL-simulated acoustic pressure field maps of the edge resonant modes are shown in

Figure 4.5b, c.

4.3 Material and Methods

4.3.1 Simulation

The simulations reported in all figures were performed with the COMSOL Multiphysics

pressure acoustic module. The wave propagation domain shown in Figure 4.1 was filled

with air with a mass density 1.3 kg/m3 and the sound’s speed was set at 343 m/s, which is

appropriate for room temperature. We shall consider the 3D printing UV resin material as

hard boundary because of the huge acoustic impedance mismatch comparing with air.
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4.3.2 Experiment

The resonators were 3D-printed using Anycubic Photon 3D printer, which uses UV resin

and has 47 um XY-resolution and 10 um Z-resolution. The thickness of the walls is 2 mm,

which ensures a high Q factor and justifies the rigid boundaries in the simulations. The

inner dimensions of the resonators are shown in Figure 4.1a.

A dimer with a coupling bridge on the sides is 3D-printed as a whole. The width,

length and the position of the coupling bridge are as labeled in Figure 4.1a. One side was left

open for ethanol rinsing and UV-curing. The dimer was then placed on a base of two layers

of acrylic plates (top layer: 2 mm in thickness, bottom layer: 3 mm in thickness) to create

a closed space for wave propagating (Figure 4.2a). The reason that the top layer was 2 mm

is to accommodate the side bridge. The bottom connection is achieved by assembling the

supporting base, which consists of three layers of 3 mm thick acrylic plates (Figure 4.2b).

The middle layer of a groove is to account for acoustic coupling. The acrylic plates with

patterns of the supporting bases were cut by the Boss Laser-1630 Laser Engraver. The

nominal tolerance of the laser-cutter is 250 um.

For the SSH model connected from bottom, the same method was utilized. 14

resonators were placed and coupled through the channels with alternating widths grooved

in the acrylic plates of the base. These resonators are detachable and interchangeable so

that they can be moved around, thus acoustic crystals with different probe positions can be

generated, and the resonators can be taken apart, stored and reassembled for new projects

or designs.

The protocol for the acoustic measurements shown in Figure 4.2, Figure 4.4 and

Figure 4.5 was as follows: Sinusoidal signals of duration 1 s and amplitude of 0.5 V

generated by a Rigol DG 1022 function generator were sent out to a speaker placed in

a porthole opened on top of a resonator. A dbx RTA-M Reference Microphone with a

Phantom Power was inserted in a porthole next to the previous one and was used to acquire

the acoustic signals (Figure 4.2c). The signals were then read by a custom LabVIEW code
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Figure 4.5 The SSH model consists of 28 resonators with a domain boundary in the middle,
topologically non-trivial at one end and trivial at the other. a. Coupling bridges and its dimension.
r1 = 5 mm and r2 = 15 mm. b. SSH model with side connection. The acoustic pressure field map
below shows the interface mode at the red star in the spectrum when S = −5 mm. The model lacks
edge modes. c. SSH model with bottom connection. Band structure and acoustic pressure field
maps of both edge mode and interface mode. Blue and Red stars in the panel mark edge mode and
interface mode, respectively. d. Experimentally measured local density of states, assembled from
normalized microphone readings from the top of the block resonators. The bright dispersive modes
indicates the bulk and edge modes. e. Collapse on the frequency axis of the intensity plot in d. The
spectral gap can be clearly identified and the edge and interface modes show up in the gap marked
with a red star.
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via National Instruments USB-6122 data acquisition box and the data was stored for graphic

renderings.

4.4 Conclusion

In this chapter, we investigated acoustic coupling that preserve symmetries through Comsol

simulations and experiments. We tested couplings through the bottom, and with bridges at

different height through the side. The first test was done on dimmers, then on single SSH

set up, as well as one with interface. We observed that the simplest way for such coupling is

to connect the resonators through the bottom. Coupling through the side requires a second

connection. The advantages of coupling through the bottom is the modular structure of the

set up. The resonators and coupling are printed individually, allowing for an easy variation

in the coupling strength when the experiment requires. This platform has an exceptional

flexibility since the resonators can be stored for further use.
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CHAPTER 5

REVEALING TOPOLOGY IN METALS USING EXPERIMENTAL PROTOCOLS

INSPIRED BY K-THEORY

This work has been published in Nature Communications. [Cheng et al., 2023]

Topological metals are conducting materials with gapless band structures and

nontrivial edge-localized resonances. Their discovery has proven elusive because traditional

topological classification methods require band gaps to define topological robustness.

Inspired by recent theoretical developments that leverage techniques from the field of

C∗-algebras to identify topological metals, here, we directly observe topological phenomena

in gapless acoustic crystals and realize a general experimental technique to demonstrate their

topology. Specifically, we not only observe robust boundary-localized states in a topological

acoustic metal, but also re-interpret a composite operator—mathematically derived from

the K-theory of the problem—as a new Hamiltonian whose physical implementation allows

us to directly observe a topological spectral flow and measure the topological invariants.

Our observations and experimental protocols may offer insights for discovering topological

behaviour across a wide array of artificial and natural materials that lack bulk band gaps.

5.1 Introduction

Over the past two decades, immense progress has been made in predicting and observing

topological phases of matter and their associated boundary-localized states in insulators

[Hasan and Kane, 2010b,Qi and Zhang, 2011b,Bansil et al., 2016,Chiu et al., 2016b,Ozawa

et al., 2019b] and semi-metals [Wang et al., 2012,Liu et al., 2014,Wang et al., 2013,Weng

et al., 2015, Lv et al., 2015, Lu et al., 2015, Xiao et al., 2015, Li et al., 2018, Xie et al.,

2019, Yang et al., 2019, Burkov et al., 2011, Xu et al., 2015, Fu et al., 2019]. These

developments have been predicated upon the spectral isolation of the topological phenomena

in these classes of systems; although materials such as Dirac semimetals [Wang et al.,
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2012, Liu et al., 2014, Wang et al., 2013], Weyl semimetals [Weng et al., 2015, Lv et al.,

2015,Lu et al., 2015,Xiao et al., 2015,Li et al., 2018,Xie et al., 2019,Yang et al., 2019], and

nodal line/ring semimetals [Burkov et al., 2011, Xu et al., 2015, Fu et al., 2019] generally

do not possess complete gaps in their band structures, the topological phenomena that

manifest in these systems nevertheless appear within incomplete band gaps, allowing their

boundary-localized states to be uniquely identified at some energy and quasimomentum.

In contrast, the lack of band gaps (or, more generally, mobility gaps) in metals and other

types of gapless systems has made their topological analysis extremely challenging and

presently there are concentrated efforts in this direction [Chiu et al., 2016b]. While previous

works have studied the bulk properties of topological metals, such as their topological

responses and their relation to the geometry and topology of the Fermi surface [Hořava,

2005, Alexandradinata et al., 2018, Sun et al., 2020, Yuan and Fu, 2021, Kane, 2022],

the focus of our work is on topological bulk-boundary correspondence in metals. As

such, for the purposes of this study, we are using ‘topological metal’ to specifically refer to

systems that exhibit a bulk-boundary correspondence that can be predicted using an invariant

determined in the system’s bulk, but whose topologically protected boundary-localized

states or resonances are always degenerate in both energy and wave vector with bulk states.

(In contrast, topological states in insulators and semimetals exhibit a range of energies

and wave vectors where no bulk states exist.) From a theoretical perspective, the absence

of spectral or dynamical gaps essentially precludes the use of topological band theory

to identify the invariants of these systems, and prohibits such theories from predicting a

measure of topological protection. Moreover, any boundary-localized phenomena in gapless

systems will generally hybridize with the degenerate bulk states to create boundary-localized

resonances, which complicates their experimental observation. Thus, despite the enormous

advances that have been made in topological materials, the study of topological metals has

remained almost entirely unexplored.
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Recently, a general theoretical method for evaluating the topology of metallic and

gapless systems was put forward, opening new opportunities for discovering topology in

this class of systems that could not be previously explored [Cerjan and Loring, 2022].

This theoretical framework is rooted in the system’s spectral localizer, which makes use

of the system’s real-space description and yields local invariants (synonymous with local

markers) that are protected by local gaps [Loring, 2015, Loring and Schulz-Baldes, 2020,

Loring and Schulz-Baldes, 2017]. The key concept that links traditional band theoretic

approaches to this local understanding of a system’s topology stems from a dual description

of atomic limits, i.e., the limit where a complete basis of spatially localized Wannier

functions exists. In band theoretic approaches, a group of bands is topologically trivial

if they can be continued to an atomic limit without closing the band gap or breaking a

symmetry; any obstruction to this continuation manifests as a non-trivial invariant [Kruthoff

et al., 2017, Bradlyn et al., 2017, Po et al., 2017, Cano et al., 2018]. From a real-space

operator perspective, an atomic limit’s complete set of Wannier functions each have both a

well-defined position and energy (in crystals they can be expressed as a flat band [Kitaev,

2009]). Thus, a d-dimensional atomic limit’s Hamiltonian, H(AL), commutes with its

position operators, X
(AL)
j , [H(AL), X

(AL)
j ] = 0, for all j ∈ 1, . . . , d. Using this mathematical

observation, the spectral localizer ascertains a system’s topology by determining whether

there is an obstruction in continuing its H and Xj to be commuting (given similar restrictions

as before), an analysis that can be performed using recent developments from the study of

C∗-algebras [Loring, 2015,Hastings and Loring, 2011a]; any obstruction to continuing the

system to possess commuting matrices yields a non-trivial invariant.

If a system’s topology is instead linked to its multiple inequivalent atomic limits

(e.g. as is common in systems with chiral- or crystalline-based topology), a system is only

considered trivial if it can be continued to a chosen trivial atomic limit. Such cases are

automatically handled by the spectral localizer, where it is necessary to explicitly specify the

system’s boundary and the grading operator that defines the chiral or crystalline symmetry to
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evaluate the possibility of continuation. This pair of choices effectively fixes which atomic

limit is considered to be trivial, and the spectral localizer ascertains whether there is an

obstruction to continuing a given system to this trivial atomic limit. Altogether, by recasting

the determination of a system’s topology to real space, and not relying upon a bulk band gap

to be the measure of topological protection, the spectral localizer is equally applicable to

insulators and metals—meaningful local gaps that protect non-trivial topology can be found

in both cases [Cerjan and Loring, 2022]. However, despite the prediction that the local

topological invariants of gapless systems can be robust against system perturbations, robust

topological metals that possess a bulk-boundary correspondence have not been previously

identified in any platform.

Here, we theoretically develop and experimentally realize robust boundary-localized

states protected by a bulk topological invariant in a gapless acoustic crystal. Unlike the

forms of topology that can be found in semi-metals, the topological states we observe are

degenerate with bulk states in both energy and wave vector. Our design is based on coupling

a topologically gapped acoustic crystal to a gapless one, yielding a system that full-wave

simulations show possesses a gapless resonant spectrum. Nevertheless, when domain

boundaries are introduced, both simulations and experimental observations reveal that this

two-layer system possesses boundary- and domain-localized states, and the topological

origins of these states can be proven using the spectral localizer. To confirm the topological

origin of these localized states, we develop an experimental protocol that treats the system’s

spectral localizer as the Hamiltonian of a related system, enabling the direct observation of

the underlying system’s spatially resolved K-theory, i.e., its local topology. Taken together,

these measurements demonstrate that we have realized a topological metal. Given the

generality of our experimental methodologies, these findings open opportunities to discover

gapless topological phenomena across a broad range of natural and artificial materials.

52



40 mm

20 mm

a b1

-1

�
20 mm

SSHc

Wave vector, � (�/�)

Fr
e

q
u

e
n

cy
2
 (

kH
z2

)

-1 -0.5 0 0.5 1
16

17

18

19

20

21

22

�in �out
unit cell

d

Fr
e

q
u

e
n

cy
2
 (

kH
z2

)

Metal

Wave vector, � (�/�)
-1 -0.5 0 0.5 1

16

17

18

19

20

21

22

�M supercell

Metalized SSHe

f g h

Wave vector, � (�/�)
Fr

e
q

u
e

n
cy

2
 (

kH
z2

)
-1 -0.5 0 0.5 1

16

17

18

19

20

21

22

�c

unit cell

�

Figure 5.1 Designing a phononic topological metal. a. Simulated acoustic eigen-pressure field
p for a single acoustic block resonator at the first elementary resonance mode with its geometry
parameters, 20 mm by 20 mm by 40 mm. p is shown in normalized units. b. 3D-printed acoustic
dimer consisting of one resonator belonging to the SSH layer and one resonator belonging to the
metal layer, with the pair connected by an acoustic 3D printed bridge (red arrow points to one
entrance to this bridge). The coupling bridge, parameterized by tc, has width 3 mm, height 3 mm,
and length 6 mm. c,d,e,f,g,h Schematics (c,d,e) and full wave simulations of the band structure
(f,g,h) of the acoustic SSH lattice (c,f), acoustic metal lattice (d,g), and acoustic metallized SSH
lattice (e,h). Band structures are shown in units of frequency squared to emphasize the symmetric
spectrum due to chiral symmetry. The wave vector k lies in the first Brillouin Zone, which ranges
from −π/a to π/a, where a = 52 mm is the lattice constant. The couplings in the SSH lattice tin
and tout are defined by channels with widths 15 mm (tin) and 5 mm (tout), and the same height 3 mm,
and length 6 mm. The metal layer’s coupling tM stems from a channel with dimensions width 7 mm,
height 3 mm, and length 6 mm.
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5.2 Results and Discussion

5.2.1 Gapless topological phononic crystal

To realize our proof-of-principle topological metal, we use a phononic crystal, as this

platform has been proven to be straightforward to fabricate and reconfigure (see Figure

5.1a,b) [Xiao et al., 2015, Li et al., 2018, Serra-Garcia et al., 2018, Xie et al., 2019, Yang

et al., 2019,Ni et al., 2019c,Ni et al., 2019b,Wen et al., 2019,Xue et al., 2019a,Xue et al.,

2019b, Apigo et al., 2019b, Peri et al., 2020, Cheng et al., 2020b, Ni et al., 2020, Chen

et al., 2021, Xue et al., 2021, Jiang et al., 2021, Deng et al., 2022]. Heuristically, our

aim for demonstrating such a phononic topological metal is to start with a topological

insulator, couple it to a second lattice such that the combined system is gapless, and

then probe it to observe boundary-localized states. For our specific design, we take the

initial topological insulator to be a Su–Schrieffer–Heeger (SSH) lattice [Su et al., 1979],

whose gapped spectrum is shown in Figure 5.1c. The second lattice is chosen to be a

1D monatomic lattice with uniform couplings, whose gapless spectrum is shown in Figure

5.1d. Here, we are enforcing the resonator geometry and spacing to be the same for both

lattices and we are displaying the monatomic lattice’s band structure as folded in to the

same Brillouin zone as that of the SSH lattice. Finally, the two lattice layers are uniformly

coupled together, resulting in a system with four resonators per unit cell that full-wave

simulations show to exhibit a gapless spectrum, see Figure 5.1e. We refer to this two-layer

lattice as an acoustic metallized SSH lattice. Note that the choice of lattice layer couplings

(and identical resonator geometry) ensures that the full system respects chiral symmetry,

which is necessary to allow for the possibility of topological states at mid-spectrum that

are associated with this local symmetry classification. (As our 1D lattice has real coupling

coefficients, it is in class BDI of the Altland–Zirnbauer symmetry classification, which

possesses an integer invariant in 1D [Schnyder et al., 2008,Kitaev, 2009,Ryu et al., 2010].)

Our phononic crystals consist of acoustic cavities coupled together via grooved

channels in the system’s base and also via direct bridges (see Figure 5.1a,b). The geometry
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Figure 5.2 Observation of a phononic SSH lattice with a domain wall. a. Schematic of the domain
wall in the phononic SSH lattice. Both edges of the lattice have topologically trivial terminations.
b. Full wave simulations of the system’s eigenfrequencies with 41 lattice sites in total. c. Measured
local density of states (LDOS), assembled from microphone readings on 41 resonators of the acoustic
SSH system. The observed pressure amplitude |p| is shown in normalized units. A bulk band gap
can be identified and the resonant mode in the bulk band gap is the domain boundary mode.

of the cavities is designed so that their fundamental axial pressure modes are well-separated

in frequency from the rest of the resonant spectrum. The coupling strength between

adjacent resonators is controlled through the width of the channels. The base of the system

is laser-cut, while the dimmers of bridged resonating cavities are fabricated by 3D printing

UV-curing resin. In particular, a bipartite single-layer metamaterial consisting of identical

resonators and alternating coupling channel groove widths yields an accurate acoustic

realization of the SSH lattice [Su et al., 1979] (see Supplementary Note 1). By designing

a metamaterial with a domain boundary between two topologically distinct SSH insulating

phases (without the added monatomic layer), and trivial outer edges, both simulation and

experimental observations confirm that the system possesses a single topological resonant

mode localized at the domain boundary, whose frequency is in the middle of the system’s

bulk band gap (see Figure 5.2). In addition, this topological mode’s mid-gap frequency

serves as implicit confirmation that the experimental platform can accurately reproduce

chiral symmetry. To facilitate identification of the effects of chiral symmetry in our data we
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show squared frequencies, as these are the eigenvalues of the acoustic wave equation that

are equivalent to energy in the Schrödinger equation.

The phononic topological metal is experimentally realized by adding a layer of

identical acoustic resonators, with uniform intra-layer coupling strength tM, to the SSH

layer and coupling the two layers together via uniform nearest-neighbor couplings tc, see

Figure 5.3a,b,c. In doing so, we are preserving the domain-wall boundary in the SSH layer

and its trivial edge terminations, but there is no alteration to the monatomic layer at the

domain boundary. Even so, this still yields a domain-wall in the combined system. Despite

the full system’s gapless spectrum, both full-wave numerical simulations (Figure 5.3d) and

experimental observations (Figs. 5.3e,f) show that this metamaterial possesses edge- and

domain wall-localized resonant states, whose appearance is linked to the relative strength

of the coupling coefficients. In particular, this system exhibits four boundary-localized

states in total, two that are approximately localized at the system’s domain wall, and one at

each edge, see Figure 5.3f,g. Moreover, we note that the phononic topological metal has

many more topological states than one might initially expect—by itself, the SSH layer has

topologically trivial edges (there are no edge-termination-localized states in Figure 5.2c)

and a single domain-wall-localized state.

However, it is not possible to use topological band theories to predict the appearance

of the four boundary-localized states seen in Figure 5.3f,g. Attempts to define a winding

number (or another similar integer invariant for 1D chiral-symmetric systems) based on this

crystal’s bulk structure cannot work; the lack of a bulk band gap would require a path of

matrix determinants that tried to characterize this winding to intersect the origin, making

the winding number undefined [Asbóth et al., 2016]. On top of that, the topology of the

observed boundary-localized resonances in the finite system cannot be understood from

the presence of low-dimensional degeneracies in the periodic gapless system’s spectrum,

as is the case for topological semimetals. For a d-dimensional semimetal, its topology is

connected to features in its band structure with dimension ≤ d − 2, and results in states
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Figure 5.3 Experimental demonstration of phononic topological metal. a. Photograph of the
fully assembled acoustic metallized SSH lattice consisting of block resonators and coupling bridges.
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are open at the bottom and are coupled through the 3D printed bridges and grooves in the black
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on its (d − 1)-dimensional surfaces that can be identified within an incomplete band gap.

In contrast, our 1D periodic phononic topological metal (Figure 5.1e) cannot possess such

low-dimensional band features, and upon introducing an edge or domain wall completely

lacks any such kind of incomplete band gap (Figure 5.3c,d). Likewise, as the observed

boundary-localized states are at mid-spectrum, we seek a topological classification that

predicts and protects this spectral location, which precludes crystalline invariants [Kruthoff

et al., 2017].

Altogether, standard theories of topology are unable to distinguish between the two

bulk phases in this system and identify whether these localized states are of topological

origin, or provide a measure of topological protection.

5.2.2 Theory of the spectral localizer

Instead, to prove that the observed localized states are of topological origin and that their

existence can be tied to a bulk-boundary correspondence, we use the spectral localizer as

this approach can be applied to systems that lack a bulk band gap [Cerjan and Loring, 2022].

In general, a system’s spectral localizer combines its Hamiltonian and position operators

using a non-trivial Clifford representation. Nonetheless, as our acoustic metamaterial is

a 1D chiral symmetric system in which all of the couplings are real (i.e., its effective

Hamiltonian is real-symmetric), its spectral localizer can be written in a reduced form as

(see Supplementary Note 2)

L̃(x,E)(X, H) = κ(X − xI)Π + H − iEΠ. (5.1)

Here, the spectral localizer can be evaluated at any choice of parameters x, E ∈ R (inside or

outside of the system’s spatial and spectral extent), κ is a tuning parameter that also ensures

that the terms have compatible units, Π is the system’s chiral operator, HΠ = −ΠH , and I

is the identity matrix. Although the spectral localizer is basis independent, if H is written

58



in a tight-binding basis, X is simply a diagonal matrix whose entries correspond to the

coordinates of each lattice site.

The spectral localizer (of appropriate dimension) can be used to both construct the

relevant local topological invariant for a system in any symmetry class, as well as define the

associated local gap. For the two-layer phononic topological metal considered here (or any

other 1D system in class BDI), its local invariant is given by [Loring, 2015],

νL(x) = 1
2sig

(
L̃(x,0)(X, H)

)
∈ Z, (5.2)

where sig is the signature of a matrix, i.e., its number of positive eigenvalues minus its

number of negative ones. Note, νL(x) is only defined for E = 0, which reflects the fact that

chiral symmetry can only protect states at the middle of the system’s spectrum. Similarly,

the local gap µ(x,E) is given by the smallest singular value of L̃(x,E),

µ(x,E)(X, H) = σmin(L̃(x,E)(X, H)). (5.3)

More generally, µ(x,E) is used to define the Clifford pseudospectrum of (X, H) [Cerjan

et al., 2023].

Together, νL(x) and µ(x,0) yield a complete picture of a system’s topology. Rigorously,

νL(x) is ascertaining whether the matrices H and X − xI can be continued to the

chosen trivial atomic limit while preserving both operators’ real-symmetric form and chiral

symmetry, and without closing the associated local gap, i.e., µ(x,0) > 0 during the entire

continuation process; if νL(x) = 0, such a continuation is possible. (Here, the limit that

is considered trivial is specified by the choice of Π in Equation (5.1).) Futhermore, this

picture of topology is entirely local, different choices of x can yield different invariants—for

x sufficiently far outside of the system’s spatial extent, one expects to see a system with trivial
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local topology, while x in the bulk of the system may reveal non-trivial local topology. At the

domain boundary between these two regions, x0, where νL(x0) changes, the local gap must

close µ(x0,0) = 0, which is a direct manifestation of bulk-boundary correspondence [Hastings

and Loring, 2011a] and is an indication that there are eigenstates or resonances of H near

x0 at E = 0 [Cerjan et al., 2023].

When the Hamiltonian itself displays a global spectral gap, the topological invariant

supplied by the spectral localizer coincides with the traditional 1D winding number [Asbóth

et al., 2016] (or, more generally, even/odd Chern numbers or Z2 invariants, depending

on the dimensionality and symmetry of the system [Loring and Schulz-Baldes, 2020,

Loring and Schulz-Baldes, 2017]). In the absence of such a gap, νL(x) has no analogue

in the traditional way of applying K-theory: The spectral localizer simply pushes the

applicability of the K-theoretic methods to previously unclassifiable systems and, in the

present context, provides the means to formulate a bulk-boundary correspondence principle

involving interface resonances as opposed to infinitely lived bound states. By a mechanism

somewhat similar to one in complex scaling [Simon, 1978], the spectral localizer pushes

away the continuum spectrum of H by opening a gap at locations away from the position

being probed x, allowing for the study of spectral flows and their associated topology.

Applying the spectral localizer to a tight-binding approximation of the acoustic

metallized SSH model proves that the localized states observed in this lattice are connected

to a bulk topological invariant (see Supplementary Note 6). In particular, we numerically

observe the local invariant νL(x) in this system to change a few times, both at the system’s

boundaries and twice at the domain wall within the lattice’s interior. Moreover, despite the

fact that this lattice does not possess a bulk band gap, for most values of x we find that the

localizer L̃(x,E)(X, H) does have a reasonable spectral gap at E = 0 that protects the bulk

topological invariant.
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5.2.3 Using the localizer as a system Hamiltonian

Beyond numerically calculating the phononic topological metal’s local invariant and

associated strength of protection, the form of the spectral localizer at E = 0 also inspires

an experimental approach to verify the system’s topology directly. In particular, because

the reduced spectral localizer Equation (5.1) is Hermitian at E = 0, it can be reinterpreted

as a set of Hamiltonians itself, with

H̃x ≡ L̃(x,0)(X, H) = κ(X − xI)Π + H, (5.4)

in which κ(X−xI)Π is now an on-site potential with a sign that is sublattice-dependent (i.e.,

a modification of the central frequencies of each resonator), and the choice of x re-centers

this potential at a different lattice site (or anywhere in between lattice sites). Thus, by

simulating and observing the spectrum of H̃x, we are directly measuring the spectrum of

L̃(x,0), which, through Equations (5.2) and (5.3), determines the topology and associated

protection of the underlying system described by H at x.

In practice, this reinterpretation presents a challenge, as ∥X − xI∥ can become

arbitrarily large as the lattice’s size increases, but it is not possible to alter a resonator’s

geometry to yield arbitrarily large or small resonance frequencies. Instead, we can

circumvent this challenge by using the substitution

κ(X − xI)Π → κ
[
tanh

(
X − xI

α

)]
Π, (5.5)

such that

H̃x = κ
[
tanh

(
X − xI

α

)]
Π + H. (5.6)
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As this bounded operator is linear in the vicinity of x = 0 (the range of approximate linearity

is set by α), one can prove that it preserves the necessary information for determining the

system’s topology using Equation (5.2) (see Supplementary Note 3). Additionally, this

choice of alteration to the system’s resonators can be experimentally realized for lattices of

any size (see Figure 5.4).

b
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� = 0

� = 9

a Domain boundaryA and B sublattices

Dimer index

ShorterSame height Taller

-4 -3 -2 -1 0 1 2 3 4
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Height

Figure 5.4 Experimental protocol for observing the spectral localizer. a. Schematic of the
spectrally localized phononic metamaterial with the domain wall shown. The two sublattices of
the system are indicated in magenta and cyan, which correspond to entries of +1 and −1 in Π,
respectively. b. The configurations of the system when the localizer is centered at x = −11, x = 0,
and x = 9. The height of each resonator above 38 mm is indicated by the color scale. As the
underlying phononic topological metal in Figure 5.3 uses resonators that are 40 mm tall, and small
changes to the resonator volume change its frequency without changing its couplings, this coloration
is effectively showing the on-site potential added in Equation (5.6).

We directly confirm the topological behavior of the phononic topological metal

described by the Hamiltonian H by numerically and experimentally observing the properties

of its spectrally localized counterpart given by H̃x at many different choices of x (a

realization for a single x is shown in Figure 5.5a). In particular, the sublattice-dependent

on-site potential is realized by modifying all of the resonator heights by up to 2 mm, which

preserves their well-separated fundamental axial mode but yields a shift their frequency (i.e.,
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Figure 5.5 Observation of topology using a spectrally localized acoustic metamaterial. a.
Photograph of the fully assembled spectrally localized metamaterial with the added sublattice-
dependent on-site energies to the underlying metallized SSH lattice. The resonators that comprise
this system can be re-assembled to realize different choices of the center of the localized potential x in
Equation (5.6). b. COMSOL simulated resonant spectrum of the spectrally localized metamaterial
as the position of the localized potential’s center x is varied, demonstrating the existence of the
two bands in the dynamical localization gap. c,d,e Localizer index (c), localizer gap (d), and
secondary gaps (e) derived from the full-wave simulated spectrum. The localizer index and gap
are calculated using the mid-spectrum frequency indicated in b (blue arrow on right), and the two
frequencies chosen for calculating the secondary gaps are similarly indicated (cyan and magenta
arrows on right). f. Experimental mapping of the local density of states as the localized potential’s
center is moved (constructed from microphone readings on the dimer where the localized potential
is centered x), confirming the existence of the two central eigenvalues for varying x seen in b.
α = 2.5a and κ = 1.85 kHz2 in Equation (5.6) were used in our simulations and experiments,
where a is the lattice constant. The observed pressure amplitude |p| is shown in normalized units.
g. Measured pressure in normalized units for the spectrally localized system’s bulk eigenvalues
constructed from the microphone readings on the bulk resonators at least three resonators away from
the localized potential center. The gray lines in f and g are showing that the spectrally localized
system’s two central sets of eigenvalues are well separated from the system’s remaining eigenvalues.
h. Experimentally measured mode profiles at 4760 Hz and 4860 Hz when x = 0 using the same
color map as f. The red and blue triangles in b and f correspond to the frequency and localized
potential center chosen for observing these data.
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a different on-site potential). First, full-wave simulations of the localized metamaterial, H̃x,

demonstrate that there are four x locations in the underlying system where the local invariant

changes and the local gap closes (Figure 5.5b,c,d), two locations at the outer edges of the

system, and two next to the domain boundary. As locations where µ(x,0) = 0 predict

the presence of states of H , the localized states seen in the original phononic topological

metal (Figure 5.3f,g) are a direct manifestation of bulk-boundary correspondence and are

necessarily of topological origin. Thus, despite the absence of a bulk band gap in the

system, these topological states are protected by the non-zero local gap µ(x,0) ≈ 0.1 kHz2

surrounding the locations where these states appear. In other words, chiral-preserving

perturbations to the system H → H + δH cannot alter the local topology at x so long as

∥δH∥ < µ(x,0). Furthermore, we note that these states possess additional protection due

to a relatively large secondary gap ≈ 0.4 kHz2, see and Figure 5.5e and Supplementary

Note 4. Heuristically, every gap in the localizer can be associated with an element in a

K-theory group, and thus can provide some form of topological protection [Schulz-Baldes

and Stoiber, 2021]. Although most such gaps are too small for the resulting topology to be

physically robust, for this particular system the secondary gap is relatively large and thus

provides strong protection for one of the two states at the domain boundary at the system’s

center.

We also experimentally realize the localized metamaterial, and directly characterize

the changes in the underlying system’s local K-theory (Figure 5.5f,g,h). In particular,

the simulated resonance spectrum is reproduced with high fidelity by experimental

measurements, confirming the topological properties of our phononic topological metal.

Likewise, the two central bands (Figure 5.5f) are observed to be well separated from

the remainder of the spectrally localized system’s bulk bands (Figure 5.5g). Although

different choices of x in H̃x yield distinct physical systems (see Figure 5.4b), our acoustic

metamaterial is re-configurable, and thus we do not need to fabricate a new system for each

choice of x shown in Figure 5.5. The discrepancies between simulation and experiment are
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likely the result of fabrication imperfections and variations, as well as measurement errors.

However, the discrepancy observed in Figure 5.5 is still of a similar magnitude to those

observed both Figs. 5.2 and 5.3. In particular, the observed discrepancy in the SSH lattice

(Figure 5.2) shows that these differences are standard to the acoustic metamaterial platform,

and are not substantially larger or smaller for our metallic (Figure 5.3) or spectrally localized

systems (Figure 5.5).

Thus, altogether, our experimental results, coupled with our full-wave simulations,

prove that our underlying phononic metamaterial (Figure 5.3) is a gapless topological

material.

5.2.4 The underlying K-theory

The relative simplicity of the equations of the spectral localizer and the local topological

invariants it provides tends to obscure the K-theory that it rests on. Thus, to show how

our experimental protocol for altering a system to directly observe its topology stems from

K-theory, we provide a brief discussion for an interested reader aimed at illuminating the

spectral localizer’s mathematical foundation.

A traditional form of K-theory, topological K-theory [Atiyah, 1967,Karoubi, 2008],

works with continuous functions that map from a given topological space to a space of

structured matrices. These spaces of structured matrices are called classifying spaces, as

they can be used to compute all 10 K-theory groups associated to the original given space.

(Classifying spaces for classes of real or complex vector bundles would be special cases

associated with this mapping.) A newer, more powerful form of K-theory is the K-theory of

C∗-algebras [Blackadar, 1986], which still applies when one has momentum space but also

applies when momentum space is lost. Here, we work with modified forms of C∗-algebra

K-theory [Boersema and Loring, 2016, Hastings and Loring, 2011b, Loring, 2015, Trout,

2000, Browne, 2019, Doll and Schulz-Baldes, 2021, Großmann and Schulz-Baldes, 2016]

that are more directly applicable to finite systems. Moreover, these newer forms of K-theory
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lead to efficient numerical algorithms and are adaptable to different symmetry classes. The

main speedup of these approaches comes from avoiding spectral flattening, as numerically,

operations like projecting into an occupied subspace tend to produce dense matrices even

when the original system can be described with sparse matrices.

Following Ref. [Kitaev, 2009], we briefly review how classical topological K-theory

arises in the case of a periodic 1D system in class BDI. The position operator is used to

define momentum space, which is a copy of the circle T1. The chirality of the Hamiltonian

means

H(k) =

 0 U(k)

U †(k) 0

 . (5.7)

If we have taken the optional step of spectrally flattening H , we find that U(k) is unitary.

Thus, the topology in class BDI arises from attempting to classify the ways in which

continuous functions can map from the circle to the classical groups of unitary matrices; that

is, homotopy classes of elements of C(T1, U(n)). Time-reversal symmetry manifests itself

as U∗(k) = U(−k). As Kitaev explains [Kitaev, 2009], homotopy classes in C(T1, U(n))

can be used to form a group, one of the classic groups in topological K-theory [Karoubi,

2008]. Finally, the K-theory group element determined by H(k) can be calculated using a

winding number.

For non-periodic, finite 1D systems in class BDI, we use the form of K-theory that

associates groups to certain algebras. The relevant algebra is A = M 2n(C), treated as

a graded, real C∗-algebra, and 2n is the number of sites in the system. The grading is

determined by Π and we use the standard reality structure (real matrix means real entries).

The zeroth group of K-theory for this algebra K0(A) is built out of out of homotopy classes

of 2n-by-2n unitary matrices U that also satisfy ΠUΠ = U † and U⊤ = U [Trout, 2000].

Nonetheless, if we want to avoid spectral flattening, we can instead look at homotopy classes
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of invertible matrices M such that ΠMΠ = M † and M⊤ = M . Finally, the element of

K0(A) determined by M is calculated using half the signature of MΠ.

To apply this general discussion to the spectral localizer, consider the full 1D spectral

localizer at E = 0

L(x,0)(X, H) =

 0 κ(X − xI) − iH

κ(X − xI) + iH 0

 , (5.8)

which at most positions x will contain two invertible matrices, Mx = κ(X − xI) + iH

and its adjoint. Notice that MxΠ is Hermitian (but not real), and thus we can determine

the underling physical system’s topology by calculating sig(MxΠ). In [Loring, 2015] it

was established that in the BDI symmetry class MxΠ is unitarily equivalent to the real

symmetric matrix κ(X − xI)Π + H (i.e., Equation (5.4)), and thus sig(MxΠ) = sig
(
H̃x

)
,

which is what is used in Equation (5.2).

Altogether, a more standard approach to topological materials would consider the

unitary Ux that is derived from Mx by spectral flattening (that is, Ux is the unitary polar

factor of Mx). Then one can apply the graded trace, which is more familiar in pure math

than the graded signature. However, since

tr (UxΠ) = sig (MxΠ) = sig
(
H̃x

)
(5.9)

we have many mathematically equivalent formulas to choose from to determine the

underlying system’s topology. In particular, the latter two of these formula can be

immediately recognized from the invertible matrix form of C∗-algebra K-theory that

underpin the spectral localizer. From the perspective of numerical efficiency, the formula

involving Ux would be the slowest, assuming one actually performs the spectral flattening.
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The formula involving H̃x will be the fastest, as this matrix will be real, symmetric, and

(usually) sparse.

Thus, as H̃x is the Hamiltonian for the localized system (Figure 5.5) that we realize

to observe the topology of the underlying phononic topological metal (Figure 5.3), our

experimentally methodology is inextricably linked to the K-theory of C∗-algebras.

5.3 Methods

5.3.1 Fabrication

Our fabrication process is modular and the acoustic crystals are assembled from parts that

are independently manufactured with different automated process. This approach enables

a high throughput of acoustic crystals, which can be disassembled and stored after use.

One leg of the process is the manufacturing of the supporting bases, which consist of

two layers of 3-mm thick black acrylic plates (Figure 5.3b) and one top layer of 1.5-mm thick

transparent acrylic plates (Figure 5.3a,b), of which the top transparent layer and middle

black layer have through holes, laser-cut at specific geometries with the Boss Laser-1630

Laser Engraver. The middle layer with 3mm deep through channels provides coupling

channels between the dimers. The top transparent layer with through square holes holds the

dimers in place.

The resonators were manufactured using an Anycubic Photon 3D printer, which uses

UV resin and has 47 µm XY-resolution and 10 µm Z-resolution. The thickness of their walls

is 2 mm, to ensure a good quality factor and to justify rigid boundaries in our numerical

simulations. The inner dimensions of the resonators are supplied in Figure 5.1a,b. For

the metallized-SSH system, the resonators are 3D printed as dimers with identical narrow

channels connecting the resonators. To implement the spectral localizer, the resonators

were printed with different heights according to the algorithm Equation (5.6) and were

made ready for the assembling.
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The resonators were mounted and coupled through the channels grooved in the acrylic

plates of the base. Let us specify that the resonators are interchangeable so that they can

be move around and acoustic crystals with different probe positions can be generated, as

described in the main text. Finally, we note that although the coloration of the resonators

is not uniform in either of the structures shown in Figure 5.3a,b or 5.5a, this is simply an

artifact of the fabrication process, and these color differences do not impact their behavior

in any way.

5.3.2 Experimental protocols

The protocol for the acoustic measurements reported in Figure 5.3 and Figure 5.5 was as

follows: Sinusoidal signals of duration 1 s and amplitude of 0.5 V were produced with a

Rigol DG 1022 function generator and applied on a speaker placed in a porthole opened

in a resonator. A dbx RTA-M Reference Microphone with a Phantom Power was inserted

in a porthole opened in the same resonator where the speaker was inserted and acquired

the acoustic signals. The signals were read by a custom LabVIEW code via National

Instruments USB-6122 data acquisition box and the data was stored on a computer for

graphic renderings.

The local densities of states reported in Figure 5.3d and Figure 5.5f,g were obtained

by integrating the local density of states acquired from resonators whose index are the same

as the position of the probe. Same instrumentation was used. The measurements were

repeated with moving the position of the probe. For each measurement, the frequency was

scanned from 4200 Hz to 5200 Hz in 10 Hz steps.

5.3.3 Simulation

The simulations reported in Figs. 5.1, 5.2, 5.3, and 5.5 were performed with the COMSOL

Multiphysics pressure acoustic module. The wave propagation domains shown in Figure

5.1 were filled with air with a mass density 1.3 kg/m3 and the sound’s speed was fixed at 343
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m/s, appropriate for room temperature. Because of the huge acoustic impedance mismatch

compared with air, the 3D printing UV resin material was considered as hard boundary.

5.4 Conclusion

In conclusion, we have demonstrated a topological metal in an acoustic metamaterial and

directly observed its boundary-localized states despite its lack of a bulk band gap. To do

so, we have used the spectral localizer, a local theory of topological materials that is able

to predict topological phenomena, and a measure of topological protection, even in the

absence of a bulk band gap. In addition, we have introduced an experimental protocol

that uses a system’s spectral localizer as its Hamiltonian, providing a direct probe of the

underlying system’s local K-theory. Here, it is worth emphasizing that this protocol can

be applied to any topological system. Although our specific demonstration has leveraged

the system’s symmetries to yield a real-symmetric spectral localizer, the spectral localizer

for any system is, by definition, Hermitian, and as such, it can always be adapted to be an

observable system. Thus, the overall methodology that we have introduced may enable the

prediction and observation of topological metals across a broad array of systems, including

materials that exhibit higher-order topology and those whose topology is determined by its

crystalline symmetries. Finally, as the spectral localizer takes an operator-based, rather than

eigenstate-based, approach to topology, it is potentially broadly applicable to interacting

systems, a class of systems that traditional band theories of topology have had difficulty

gaining traction with.
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CHAPTER 6

SUMMARY

In this dissertation, the role of topological phonons has been investigated in different length

scales and their potential applications in various systems. The dissertation endeavors to

enhance our comprehension of the significance and potential of topological phonons in

diverse systems by exploring two aspects: the acoustic resonator properties of tubulin

proteins in microtubules and the application of topological phonons in the context of

acoustic metamaterials.

In Chapter 2, we established that microtubules are predicted to exhibit characteristics

of naturally occurring topological phononic crystals, with the localization of vibrational

energy playing a crucial role in dynamic instability. The future plan is to explore

the excitation of higher vibrational modes of microtubules to gain a comprehensive

understanding of the complete phonon spectrum. Up until the current stage of the research,

the observed vibrations of microtubules were primarily induced by the thermal energy

present in the surrounding water, limiting our ability to observe higher vibrational modes. To

gain insights into the local mechanical properties of microtubules, including protein-protein

force fields and the effects of various proteins and chemical compounds such as motor

proteins and Taxol, the methods presented in this study can be further enhanced. Achieving

fine-scale measurements necessitates the fabrication of an experimental platform capable

of capturing microtubule movements with micron or even nanometer precision.

In Chapter 3, the initial version of our nanofluidic device was introduced, serving the

purpose of isolating a single microtubule, and the next step will be incorporating electrodes

into the nanofluidic device. This addition enables us to exert precise control over the

vibrations of the isolated microtubule, unlocking new possibilities for mapping its phonon

spectrum with enhanced precision and detail. With electrodes positioned along the sides of
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the device, we gain the ability to selectively stimulate specific vibrational modes and delve

into the diverse range of vibrational behaviors exhibited by the microtubule.By integrating

electrodes into the nanofluidic device, we achieve a notable advancement that empowers us

to manipulate and study the vibrational properties of the microtubule within a controlled

environment. Figure 6.1 shows the microfluidic device that was constructed for experimental

testing purposes. The device features seven pairs of electrodes positioned on each side of

the microchannel. For a detailed depiction of the device layout, refer to Figure 1.3. The

microchannel is intentionally designed to have a width of 1.5 microns in order to avoid the

higher costs associated with using e-beam lithography. This decision allows for a more cost-

effective fabrication process while we were learning how to deposit electrodes and refining

our techniques in working with the electrodes. Given the net charge of tubulin protein,

capacitance sensing could be employed to detect the movement of the microtubule relative

to electrodes positioned along its length. Fabricating a nanofluidic device with electrodes is

within reach, leveraging advancements in e-beam lithography, improved packing techniques

for fluidic platforms, the device will enable us to selectively stimulate specific vibrational

modes and delve into the comprehensive spectrum of vibrational behaviors exhibited by the

microtubule. Through this innovative device, we can gain a deeper understanding of the

intricate dynamics and properties of the microtubule with enhanced precision and control.

In Chapter 4, we investigated the application of topological phonons in the context

of acoustic metamaterials. Acoustic metamaterials are engineered materials designed

to control and manipulate sound waves. By exploring the potential of topological

phonons in acoustic metamaterials, we proposed an experimental approach which offers

a modular platform for coupling acoustic crystals, supporting topologically protected

edge and interface states while preserving desired symmetry. Chapter 5 explores the

application of the same coupling method to a topological acoustic metal system. Inspired

by recent theoretical advancements, this study directly observes topological phenomena

in gapless acoustic crystals and develops an experimental technique to demonstrate their
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Figure 6.1 Microfluidic device with 7 pairs of electrodes. a. On a compact platform, a microfluidic
device is implemented, where the electrodes are securely connected to pins on the platform through
wire bonding. The device incorporates 4 PDMS reservoirs that are firmly attached to serve as inlet
and outlet ports. b. The channel width of the device is approximately 1.5-2 microns, while the width
of the electrodes ranges from 2 to 4 microns. It’s important to note that the slight variation in the
measurements is attributed to the inherent limitations of the lithography process. c. The electrodes
are uniformly spaced at intervals of 20 microns.

73



topology. This technique allows for the observation of robust boundary-localized states,

the reinterpretation of a composite operator as a new Hamiltonian, and the measurement of

topological invariants.

Currently, our research primarily focuses on investigating the topological phonons

in one-dimensional and two-dimensional topological acoustic systems. Nevertheless,

the realization of higher-order topological metamaterials, which are more intricate yet

intriguing, remains a significant challenge. The future plan will involve how to apply the

bottom coupling method in three-dimensional topological acoustic system. The impact of

our research extends to a wide range of applications, including noise control, information

transfer, acoustic-based sensing and imaging, as well as quantum information processing.

By introducing a novel approach for implementing and observing topological excitation

modes solely based on material structures, our work opens up exciting possibilities in

topological acoustics for manipulating and controlling sound in fundamentally innovative

ways. We hope that our efforts will serve as inspiration for the design of even more

captivating topological metamaterials, following the same principles. This emerging field

draws inspiration from remarkable advancements in condensed matter physics, quantum

mechanics, and mathematics, leveraging the unique properties of acoustic metamaterials to

enable novel forms of sound transport. We anticipate that topological acoustics will pave

the way for transformative advancements in sound control, with significant implications for

both fundamental science and practical technologies.
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