

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

DIVERSIFICATION AND FAIRNESS IN TOP-K RANKING
ALGORITHMS

by
Mahsa Asadi

Given a user query, the typical user interfaces, such as search engines and recom-

mender systems, only allow a small number of results to be returned to the user.

Hence, figuring out what would be the top-k results is an important task in

information retrieval, as it helps to ensure that the most relevant results are presented

to the user. There exists an extensive body of research that studies how to score the

records and return top-k to the user. Moreover, there exists an extensive set of

criteria that researchers identify to present the user with top-k results, and result

diversification is one of them. Diversifying the top-k result ensures that the returned

result set is relevant as well as representative of the entire set of answers to the

user query, and it is highly relevant in the context of search, recommendation,

and data exploration. The goal of this dissertation is two-fold: the first goal is

to focus on adapting existing popular diversification algorithms and studying how

to expedite them without losing the accuracy of the answers. This work studies

the scalability challenges of expediting the running time of existing diversification

algorithms by designing a generic framework that produces the same results as the

original algorithms, yet it is significantly faster in running time. This proposed

approach handles scenarios where data change over a period of time and studies how

to adapt the framework to accommodate data changes. The second aspect of the work

studies how the existing top-k algorithms could lead to inequitable exposure of records

that are equivalent qualitatively. This scenario is highly important for long-tail data

where there exists a long tail of records that have similar utility, but the existing top-k

algorithm only shows one of the top-ks, and the rest are never returned to the user.

Both of these problems are studied analytically, and their hardness is studied. The

contributions of this dissertation lie in (a) formalizing principal problems and studying

them analytically. (b) designing scalable algorithms with theoretical guarantees, and

(c) evaluating the efficacy and scalability of the designed solutions by comparing them

with the state-of-the-art solutions over large-scale datasets.

DIVERSIFICATION AND FAIRNESS IN TOP-K RANKING
ALGORITHMS

by
Mahsa Asadi

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology and
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2023

Copyright © 2023 by Mahsa Asadi

ALL RIGHTS RESERVED

APPROVAL PAGE

DIVERSIFICATION AND FAIRNESS IN TOP-K RANKING
ALGORITHMS

Mahsa Asadi

Dr. Senjuti Basu Roy, Dissertation Advisor Date
Associate Professor of Computer Science, NJIT

Dr. Zhi Wei, Committee Member Date
Professor of Computer Science, NJIT

Dr. Yiannis Koutis, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Dimitrios Theodoratos, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Sihem Amer-Yahia, Committee Member Date
Research Director at Centre National de Recherche Scientifique, Grenoble, France

BIOGRAPHICAL SKETCH

Author: Mahsa Asadi

Degree: Doctor of Philosophy

Date: August 2023

Undergraduate and Graduate Education:

� Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2023

� Master of Engineering in Computer Software,
Isfahan University of Technology, Isfahan, Iran, 2018

� Bachelor of Engineering in Computer Software,
Iran University of Science and Technology, Tehran, Iran, 2015

Major: Computer Science

Presentations and Publications:

Md Mouinul Islam, Mahsa Asadi, Sihem Amer-Yahia, and Senjuti Basu Roy, “A
generic framework for efficient computation of top-k diverse results” The
International Journal on Very Large Data Bases (VLDB 2022).

Mahsa Asadi, Md Mouinul Islam, and Senjuti Basu Roy, “Making Top-k Algorithms
Equitable for Long Tail Data” Submitted to Very Large Data Bases Conference
(VLDB 2023).

iv

To my beloved sister Sarina, whose love and memory will
always remain in my heart.

v

ACKNOWLEDGMENTS

First of all, I would like to gratitude my sincerely appreciate to my advisor,

Dr. Senjuti Basu Roy, for her professional and instructively guidance, for her patience,

motivation, and support. I could not have imagined having a better advisor and

mentor for my Ph.D. study.

I would like to thank the rest of my dissertation committee: Drs. Sihem Amer-

Yahia, Zhi wei, Yiannis Koutis, and Dimitri Theodoratos. I am truly honored to have

them as my committee members. Each of the members of my Dissertation Committee

has provided me extensive personal and professional guidance and taught me a great

deal about both scientific research and life in general.

I would like to extend my sincere thanks to the Department of Computer Science

and to the National Science Foundation. It would be impossible for me to complete

my Ph.D. degree without their generous support.

I would also like to thank all my collaborators who are part of this dissertation:

Dr. Sihem Amer-Yahia and Mr. Md Mouinul Islam. I also wish to thank the Big Data

Analytics Lab (BDAL) and my lab members, Dr. Dong Wei, Dr. Mohammadreza

Esfandiari (Payam), Mrs. Sepideh Nikookar, Mr. MdMouinul Islam, Mr. Md Rakibul

Hasan, and Mr. Sohrab Namazinia for their support, help, and research collaboration.

From the bottom of my heart I would like to say big thank you for all the friends and

peers I have met at NJIT, specially my friend Dr. Raina Samuel for the thoughts we

exchanged, the discussions, and the good days we had.

Last but not least, I would like to express my deepest love to my family who

have always been encouraging and supporting me to achieve my dream. My husband

Hossein, my beloved parents, Fereshteh, and Mohammad, my sisters Roza, Roksana

and my brother Amirhossein and my beloved younger sister Sarina. Also I would like

vi

to thank my dearest old friends: Mehrnaz, Zahra, and Setareh for always being there

for me.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Overview . 1

1.1.1 Background and Motivations 3

1.1.2 Contributions . 4

2 RELATED WORK . 7

2.1 Diversification in Top-k . 7

2.1.1 Content based algorithms . 7

2.1.2 Comparison with existing indexes 10

2.2 Fairness in Top-k . 12

2.2.1 Group fairness . 12

2.2.2 Individual fairness . 13

2.2.3 Top-k algorithms . 14

3 ACCESS PRIMITIVE FOR TOP-K DIVERSITY COMPUTATION 15

3.1 Introduction . 15

3.2 Background and Approach . 19

3.2.1 Motivating example and problem definition 19

3.2.2 Approach . 21

3.3 MMR Query Processing with DivGetBatch() 25

3.3.1 MMR Algorithm . 25

3.3.2 Aug-MMR Algorithm . 26

3.4 GMM Query Processing with DivGetBatch() 34

3.4.1 GMM Algorithm . 35

3.4.2 Aug-GMM Algorithm . 35

3.5 SWAP Query Processing with DivGetBatch() 39

3.5.1 SWAP Algorithm . 40

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

3.5.2 Aug-SWAP Algorithm . 41

3.6 I-tree . 49

3.6.1 Index construction . 50

3.6.2 Index maintenance . 52

3.7 Experimental Evaluation . 54

3.7.1 Baselines . 57

3.7.2 Summary of results . 61

3.7.3 Quality analysis . 63

3.7.4 Scalability analysis . 64

3.8 Conclusion . 73

4 TOP-K DIVERSIFICATION CONSIDERING FAIRNESS 74

4.1 Introduction . 74

4.1.1 Demographic parity . 75

4.1.2 Equalized odds . 75

4.1.3 Unawareness . 76

4.1.4 Individual fairness . 76

4.1.5 Counterfactual fairness . 77

4.1.6 Proportionate fairness . 77

4.2 Data Model and Problem Definition 80

4.2.1 Running example . 80

4.2.2 Data model . 81

4.2.3 Problem definition and hardness 83

4.3 Exact Algorithms . 86

4.3.1 Algorithm for θ-Equiv-top-k-Sets 86

4.3.2 Algorithm for MaxMinFair 95

4.4 Approximation Algorithms . 96

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

4.4.1 Algorithm RWalkTop-k-θ 97

4.4.2 Algorithm ARWalkTop-k-θ 100

4.5 Experimental Evaluations . 101

4.5.1 Goal 1: Fairness inside LambdaRank 105

4.5.2 Goal 2: MMSP complements Group-fairness 105

4.5.3 Algorithms for θ-Equiv-top-k-Sets 106

4.5.4 Algorithms for MaxMinFair 111

4.5.5 Summary of results . 112

4.6 Conclusion . 112

5 SUMMARY AND FUTURE WORK . 114

5.1 Summary . 114

5.2 Open and ongoing problems . 115

REFERENCES . 122

x

LIST OF TABLES

Table Page

3.1 Technical Results for Running Time Analysis w.r.t. |CandR| 18

3.2 Technical Results for Running Time Analysis w.r.t. C, m, l 19

3.3 Notations & Interpretations . 23

3.4 Similarity Matrix for Records . 26

3.5 First Two Iterations of DivGetBatch() in Aug-MMR 29

3.6 Dataset Statistics . 55

3.7 Aug-MMR vs MMR Running Time (s) on MakeBlobs with l = 2, m = 6 56

3.8 |CandR| Percentage Returned by DivGetBatch() on MovieLens 65

3.9 |CandR| Percentage Returned by DivGetBatch() Using Different Index
Structures for Aug-MMR on MakeBlobs 65

3.10 Pruning Percentage by DivGetBatch() Using Different Index Structures
for Aug-MMR on MakeBlobs . 66

3.11 Number of Access Percentage for Aug-MMR and SPP on MakeBlobs . . 66

3.12 Index Comparisons . 67

3.13 Aug-MMR vs MMR Running Time on MakeBlobs 100k Records . . . 67

3.14 Aug-MMR vs MMR on Movielens Non-metric Data 67

3.15 I-tree Maintenance on MakeBlobs 10k Records 68

3.16 I-tree Maintenance Algorithm GrMn vs Construction from Scratch Algorithm
NonIncrMn Running Time on MakeBlobs 10k Records 70

4.1 Table of Notations . 85

4.2 Records with Sorted Relevance (Example 4.2.1) 85

4.3 Sorted Diversity List Based on Example 4.2.1 85

4.4 WRMSD Scores of All Set of Sets, Each with Three Movies 85

4.5 Dataset Statistics . 101

xi

LIST OF FIGURES

Figure Page

3.1 Proposed computational framework. 22

3.2 I-tree. 52

3.3 Aug-MMR vs MMR scalability. 54

3.4 Aug-MMR vs MMR varying parameters. 55

3.5 Aug-GMM vs GMM scalability. 57

3.6 Aug-GMM vs GMM performance varying parameters. 58

3.7 Aug-SWAP vs SWAP scalability. 59

3.8 Aug-SWAP vs SWAP varying parameters. 60

3.9 I-tree construction time. 62

3.10 I-tree maintenance time varying |Y |. 63

3.11 Index Construction and Query Processing time for tree baselines and I-tree. 64

3.12 Aug-MMR vs MMR running time on UCI Gas data. 69

4.1 Viewership distribution of top-1000 IMDB movies. 79

4.2 A complete lattice based on Example 4.2.1. 93

4.3 θ-Equiv-top-k-MMSP inside LambdaRank Read source: [20]. 101

4.4 θ-Equiv-top-k-MMSP complements group-fairness. 102

4.5 Recall of RWalkTop-k-θ varying θ. 103

4.6 Recall of ARWalkTop-k-θ varying θ. 103

4.7 Record pruning percentage OptTop-k-θ. 103

4.8 RWalkTop-k-θ vs ARWalkTop-k-θ vs OptTop-k-θ scalability by varying
dataset size N . 106

4.9 RWalkTop-k-θ vs ARWalkTop-k-θ vs OptTop-k-θ scalability by varying k. 107

4.10 RWalkTop-k-θ vs ARWalkTop-k-θ vs OptTop-k-θ scalability by varying θ. 108

4.11 RWalkTop-k-θ scalability for different utility functions. 109

4.12 MaxMinFair approximation factor and scalability. 110

xii

CHAPTER 1

INTRODUCTION

1.1 Overview

Given a user query, the underlying process typically retrieves a large set of candidate

results that could potentially be relevant to the query. However, the traditional user

interfaces can only accommodate a small number of results and not all of those that

the underlying engine returns. There is a need to present the user with a smaller set

of results, which are known as top-k results [72]. To do this, the system typically

scores each candidate based on various criteria such as relevance, diversity, newness,

serendipity, etc. The scores are then used to rank the candidates and select the top-k

with the highest scores [72]. A substantial amount of research has been conducted

to explore the modification and creation of new ranking functions that allow for the

combination of multiple criteria in order to provide results to the user [1, 2, 4, 21, 22,

33,59,71,79,81,82]. Among these criteria is diversification, which is a significant area

of interest that we seek to tackle.

Result diversification in ranking is an important way of deciding the appropriate

top-k to return to the user. Result diversification ensures that the returned top-k

results are relevant to the user query and represent the entire set of answers that could

be returned to the user. Although this existing research has been studying more about

designing effective ranking functions, there does not seem to be much work studying

computational frameworks which can expedite query processing and answering faster

while not changing the results of the original answer. One of our major contributions

in this dissertation is to study this problem. In other words, We investigate how

one can design a generic framework that can make the process of these different

ranking functions, especially those that involve diversification from the computational

1

standpoint, further efficient without compromising the quality of their answers. Our

first studied problem is to propose an access primitive and integrate it inside popular

diversity algorithms to save running time while preserving the same output result.

Instead of comparing the diversity scores of each pair of records separately (which

could be computationally expensive for large sets), the approach is to compute an

aggregate diversity score for a group of records and compare those scores pairwise.

By using aggregate diversity scores, the number of pairwise comparisons needed to

compute diversity scores for a set of records can be reduced, which can improve the

algorithm’s efficiency.

We also realize the existing top-k algorithms have a severe shortcoming while

dealing with long tail data. In other words, the data contains many records which

have similar utility. The existing algorithms are static, and they only return a fixed

top-k to the user query, making the process inequitable to the records with similar

utility and they never get the chance to be returned to the user [11, 19, 31]. This

leads to inequitable exposure and brings in the second dimension of our studying of

the process that we investigate, which we refer to as the process of equitable selection

of the records. Our second studied problem is to argue that given a query, there

are multiple top-k sets that are equivalent in utility, and we create a probability

distribution over those sets. Hence, instead of creating one top-k set as a result, we

are creating multiple top-k sets and giving a chance to other equivalent records having

similar utility to appear in the result set rather than only giving the opportunity to

the fixed specific records. The goal is to ensure that the selection probabilities of

the records in these sets are as uniform as possible, thereby promoting fairness and

reducing the potential for bias or discrimination. This proposed notion is rooted in

the maxmin fairness theory that maximizes the minimum fairness [41].

2

1.1.1 Background and Motivations

The diversification algorithms can be either interchangeable or incremental greedy

algorithms. Interchangeable algorithms first select k relevant records and then

exchange selected records with remaining records to increase the overall diversity. An

example is the SWAP algorithm [95]. Incremental greedy algorithms iteratively build

the top-k set by selecting the best record at each round. Some of the representative

examples are Maximal Marginal Relevance, orMMR [23], Greedy Max-Min orGMM

[44], Max-Sum [43] etc. Although these algorithms are incremental greedy, they are

different in their objective function. For example, MMR computes an objective score

based on two parameters: relevance to the query and diversity with other records.

The algorithm repeats this computation k times to produce top-k. GMM finds

the k most diverse records by selecting the maximum of minimum distances between

undiscovered records and previously selected ones at each iteration, whileMax−Sum

finds the k most diverse records by selecting the maximum of the sum of the distances

between undiscovered records and previously selected ones at each iteration.

The original implementation of these representative algorithms, such as GMM,

MMR, and SWAP that are iterative in nature, do not make any assumptions on the

nature of the diversity functions. Indeed these algorithms decide to update the top-k

set by making a greedy choice based on the current top-k set and the remaining

records that are not yet in the top-k. These representative algorithms go through

the time-consuming step of pairwise diversity computation of records between and

across these two sets even to make a single update in the top-k set. Indeed, for a

large database, this repetitive computation is expensive. Hence, the gap between our

work and previous works is to reduce that computation without making any explicit

assumptions about the diversity function, that is, considering diversity functions

to be fully arbitrary or even non-metric. By using aggregate diversity scores, the

number of pairwise comparisons needed to compute diversity scores for a set of records

3

can be reduced significantly, improving the algorithm’s efficiency and making them

faster. Moreover, unlike other existing baselines, our index can be used in non-metric

functions, considers the records atomic, and has 90% pruning of the original dataset

and searching through only a small fraction of the original dataset.

Our research also focuses on the issue of unequal exposure of datasets that

exhibit a long-tail phenomenon, where only a few popular records receive significant

exposure and are always returned in response to user queries. However, there are

many other niche records that may be just as useful but are not shown as results.

This can lead to the rich-gets-richer phenomenon, where those who already have

advantages are more likely to gain even more over time. We use the example of the

1000 top-rated movies on IMDB [53], which follow a long-tail distribution regarding

the number of views they receive. There is a long tail of movies with almost equal

IMDB ratings, but they have a lower average number of user votes, making them

get less exposure and remain uncovered. This unequal exposure can occur in various

domains, including economics, social networks, and access to information [88].

The gap between our second work and previous existing algorithms is most of

the previous work considers a fixed top-k as a result set [19,35,62,67], while we argue

that it may be beneficial to generate all (or many) top-k sets that are equivalent

in utility and create a probability distribution over those sets. We state that many

top-k sets have a utility score close to each other, but they never get a chance to be

presented to the users.

1.1.2 Contributions

Our proposed research could be broadly categorized in two parts:

� First, we redesign three existing popular diversification solutions, namely MMR
[23], GMM [44], and SWAP [95]. We propose a framework consisting of a unified
indexed data structure and build an index offline where it assumes the records to
be atomic and the diversity function to be arbitrary. We partition the original

4

data into a height-balanced tree data structure and create indexes given to
the augmented algorithms as the input instead of the original data. Then, we
design an access primitive over the proposed indexing structure in the online
phase. It is being used inside our proposed algorithms, leading to the fast
computation of identical top-k diversified results. We provide theoretical proofs
for the quality of the results and computation cost analysis, which verify the
efficiency of our algorithms. This primitive is guaranteed to produce identical
top-k results as of the original diversity algorithms. The fundamental idea is
to make the comparison go over a group of records, as opposed to record pairs,
thereby accelerating the computation. We also evaluate the performance of
our algorithms compared to the original ones over large-scale datasets, which
guarantees the efficiency of our framework. Unlike other existing baselines, our
index can be used in non-metric functions and outperforms with 90% pruning
of the original dataset. We use large real-world datasets, one large publicly
available synthetic dataset to show that the augmented algorithms return results
identical to their originals, while ensuring between a 3× to 24× speedup on large
datasets. We study the effects of different parameters empirically and provide
guidance for appropriate design choice. We empirically present exhaustive
results to pre-process and maintain I-tree. Our empirical results corroborate
our theoretical analyses. Considering that most of the works that studied the
diversity in recommendation and ranking are over static data, and there are few
works that studied diversity over dynamic data, we study data management
challenges of maintaining our framework and data structure over “dynamic
data” and design operations such as batch and individual insertions, deletions,
and updates into our data structure. It is worth mentioning that considering the
huge volume of the data being indexed into our framework, it is not practically
efficient to redo the creation of our data structure over and over again once
new data is inserted into our framework. Thus, it is needed to efficiently design
insertion and deletion operations into our framework. We formally define the
Batch-Insertion problem and solve it using a linear programming model. We
provide experimental evaluations of how effective our procedure is.

� Second, we study how inequitable exposure can propagate in existing top-k
algorithms and how to circumvent those challenges. We formalize our
inequitable exposure problem in two steps: 1) generating equivalent top-k sets
and 2) computing probability distribution over these equivalent top-k sets. We
present an exact solution for producing equivalent top-k sets. We propose an
item lattice data structure that allows efficient computation of the possible
size-k sets and incremental updates of their score bounds by reusing previously
calculated scores. Since the possible size-k set of sets over N records could be
represented as a hierarchically ordered lattice containing

(
N
k

)
nodes, we produce

some of these nodes on the go, instead of discovering them from scratch one
by one. Hence, we design two approximate algorithms, namely random walk
and adaptive random walk, which are highly scalable. Then we evaluate the
efficiency of our algorithms by doing experimental analysis.

5

� Finally, we describe a set of ongoing and open problems and present an overview
of future work.

6

CHAPTER 2

RELATED WORK

2.1 Diversification in Top-k

Result diversification remains to be an active research topic with extensive appli-

cations in recommendation and search [1,2,4,21,33,61,65,71,72,78–80,82,83]. Instead

of simply presenting the k most relevant or popular items, result diversification aims

to provide a variety of items that cover different aspects, preferences, or dimensions

of the search query or user’s interests.

2.1.1 Content based algorithms

Content-based algorithms, which are our primary focus here, are of two kinds:

Interchange algorithms first select k relevant records and then exchange selected

records with remaining records to increase the overall diversity (SWAP [95] is an

example). Incremental greedy algorithms iteratively build the top-k set by selecting

the best record at each round. Notable examples of this latter kind are Maximal

Marginal Relevance (MMR) method [23], Greedy Max-Min (GMM) [44], Max-Sum

[43], which objective is to maximize the sum of the relevance and dissimilarity of the

selected set, IA-SELECT [5], which maximizes the probability that the average user

will find some useful information among the search results , and dLSH [1] which uses

GMM to make LSH diversity aware.

SWAP [95] is a greedy algorithm that produces top-k results based on a given

query Q and a tunable parameter that controls how much relevance could at most

drop between any two records in the top-k results. The algorithm starts by sorting the

records w.r.t. relevance and initializing the top-k result set S with the k-records with

the highest relevance score with Q. It finds a candidate record from the current top-k

set that has the smallest diversity contribution based on Equation (3.15). Indeed, in

7

each iteration, it attempts to swap one record from R \ S with the candidate record.

It starts scanning the remaining sorted relevance list from the top. In every iteration,

it attempts to swap one record from the current top-k set with another from sorted R

if the latter record has a higher contribution to diversity while ensuring the threshold

of relevance drop. The algorithm terminates when the relevance drop is below the

threshold, or R is fully scanned.

Divcont(ri, S) =
∑
rj∈S

Div(ri, rj). (2.1)

Maximal Marginal Relevance (MMR) algorithm is a seminal work on result

diversification [23]. MMR is based on Marginal Relvance (MR) score (Equation 3.1)

that it maximizes in each iteration. Given a query, MR introduces a λ coefficient to

strike a balance between the relevance score, computed between the records and the

query, and the diversity score, computed between the records themselves.

MMR is greedy in nature that grows the size of the top-k set by adding records

one by one in the top-k set by considering the relevance of the record and diversity

with the previously selected records, using the formula below:

MMR(r)← argmaxr∈R\SMR(r),

MR(r)← λsim(r,Q)− (1− λ)maxrj∈Ssim(r, rj), (2.2)

where Q is the query, S is the previously selected items, R is the remaining records

in the dataset, r is a candidate record from R, and rj is another record from S. λ

is a tunable parameter. The time-consuming part of the algorithm lies in computing

the MR score for each r ∈ {R \ S} and returning the one with the highest MR score.

8

The MMR algorithm takes O(|R| × |S|), when we add one new record to set

S, demonstrating that it has an order of N × k. The algorithm repeats k times and

produces top-k results.

GMM [44] tries to find a subset of k most diverse records among N records

by maximizing the minimum pairwise distance. GMM does not require any external

query. Based on the original design, the first two records in the result set S are

provided in constant time by an oracle. Then, the algorithm iteratively goes through

all records in R and finds a record whose minimum diversity (maximum similarity)

with the previously selected records is the largest (smallest). It continues until |S|=k.

The objective function is:

GMM(r)← argmaxr∈R\Sminrj∈SDiv(r, rj), (2.3)

where Div(r, rj) is the diversity score between record r and rj.

SPP [38] is a bounded diversification algorithm that produces same result

as MMR while minimizing the number of accessed records. In [29], Drosou et al.

introduce both greedy and interchange algorithms for the diversity over continuous

data. Drosou and Pitoura [30] propose greedy algorithms for considering diversity

over dynamic data by presenting Insert and Delete operations over the cover tree

indexing structure. They also exploit the GMM algorithm for returning diversified

top-k results. Drosou et al. [28] propose greedy algorithms for diversity over a

representative subset of objects, DisC, which is a mapping of the original data.

They also present a degree of diversification, radius r, instead of k size results. Their

proposed algorithms exploit the M -tree [25] indexing structure.

From a different perspective, one can categorize diversification algorithms into

three groups: record-level, feature-level, and category-level. In record-level algorithms

(MMR, GMM, and SWAP), the input is the distance value between records regardless

9

of which record feature is more important. The score value is calculated based on

an objective function that calculates distances/diversity. The inputs of feature-level

algorithms are record features. Examples are DivGen and GenFilt [7]. The feature

with the highest score is obtained from all records based on a ranking, and the

goal is to skip some features and prune records having low scoring features. In

the category-level algorithms, records are grouped into multiple categories. Such

algorithms apply some constraints that will return no more than one or two records

from the same category [3, 97].

2.1.2 Comparison with existing indexes

Compared to our proposed I-tree, existing indexing techniques are vector space

based methods where coordinate information of the records are used to create data

structures to answer a large spectrum of distance queries, where distance may be

based on Euclidean, cosine similarity, general Lp norms, and so on. Popular solutions

in low to moderate dimensional space include K-B-D-tree [74], kd-tree [16], R-tree [46],

R∗-tree [15], SS-tree [85] or more recent X-tree [17], UB-tree [14], SR-tree [55]. All

these methods use the domain object feature vectors to measure the distance between

objects and create a similarity index. As opposed to that, we consider the records to

be atomic (and not a collection of vectors), and the diversity function could be metric

or not. Therefore, these methods do not extend to solve our problem.

There exists other popular tree data structures like Cover-tree [18], Ball-tree

[58] and M -tree [25] that are used for nearest neighbor search. Unlike our I-tree,

these trees can only be used for metric distance functions.

KD-tree [16]:KD-tree is a multidimensional Binary Search Tree. The tree is

created by bisecting each dimension and finding the median. KD-tree can perform

searches in multidimensional space for efficient nearest neighbor search.

10

Ball-tree [58]: Ball-tree is a binary tree in which every node defines a D-

dimensional hypersphere or ball, containing a subset of the points to be searched.

Each node in the tree defines the smallest ball that contains all data points in its

subtree. This gives rise to the useful property that for a given test point t outside

the ball, the distance to any point in a ball B in the tree is greater than or equal to

the distance from t to the surface of the ball. Ball-tree only supports binary splits.

M-Tree [25]: M -tree is similar to Ball-tree, but supports multiple splits. Every

node n and leaf lf residing in a particular node N is at most distance r from N , and

every node n and leaf lf with node parent N keeps the distance from it. It also has

the similar property of Ball-tree, which is for a given test point t outside the node,

the distance to any point in a node in the tree is greater than or equal to the distance

from t to the surface of the node.

Cover-Tree [18]: The tree is a series of levels arranged in a hierarchical order,

where the highest level includes the root point and the lowest level includes all the

points in the metric space. Each level, denoted by C, corresponds to a specific integer

value i that decreases as one moves down the tree. The cover tree has three significant

characteristics at every level C. (a) Nesting: Ci ⊂ Ci−1. This implies that once a point

p appears in Ci, then every lower level in the tree has a node associated with p. (b)

Covering tree: for every p ∈ Ci−1, there exists a q ∈ Ci that d(p, q) < 2i , and the

node in level i associated with q is a parent of the node in level i− 1 associated with

p. (c) Separation: for all distinct p, q ∈ Ci, d(p, q) > 2i. Hence, we have fewer records

at the higher levels and more records as we go down. The records that are part of the

same node have a certain distance satisfied. The records that are part of the same

node are actually farther from each other than the records that are apart from each

other in two consecutive levels.

In summary, we present an access primitive DivGetBatch() that leverages a

precomputed data structure I-tree to integrate MMR, GMM, and SWAP to expedite

11

their processing time. The design of our primitive is independent of features and

categories and is applicable with any distance measure, making it generic and useful.

We study MMR, GMM, and SWAP, since we believe these are notable choices in the

existing diversity literature space, and many more recent works adapt these algorithms

[1,12,28–30,50,66,73,86,87,93].

2.2 Fairness in Top-k

2.2.1 Group fairness

Most approaches to algorithmic fairness interpret fairness as lack of discrimination [39]

seeking that an algorithm should not discriminate against its input entities based

on attributes that are not relevant to the task at hand. Such attributes are called

protected, or sensitive, and often include among others gender, religion, age, sexual

orientation and race. So far, most work on defining, detecting and removing unfairness

has focused on classification algorithms [96, 99] used in decision making. This

is the notion of group fairness, which has been a major focus on many recent

works [10, 36, 42, 52, 60, 70, 76, 84, 91, 98, 100]. A good survey on this topic focusing

on search and recommendation applications can be found in [69]. We can explain

Group fairness in top-k in the form of constraints on the fraction of records from

some protected groups that should be included in the top-k set for any relevant k. It

ensures that the proportion of protected candidates in the top-k set is proportionate

to the original data distribution. Elisa Celis in [24] expresses fairness requirements by

specifying an upper bound and a lower bound on the number of items with attribute

A that are allowed to appear in the top-k positions of the ranking. Baruah [13]

presents a new notion of group fairness named proportionate fairness or P-fairness,

which is proportionate representation of every group based on a protected attribute in

every position of the ranked top-k. For example If gender is the protected attribute

with 50% representation of male and female,then p-fairness implies 1 male and 1

12

female in the top-2 items. Stoyanovich et al. [91] propose comparing the distributions

of protected and non-protected candidates (for instance, using KL-divergence) on

different prefixes of the list (e.g., top-10,top-20,top-30) and then averaging these

differences in a discounted manner. The discount used is logarithmic, similarly

to Normalized Discounted Cumulative Gain (NDCG, a popular measure used in

Information Retrieval).

2.2.2 Individual fairness

Individual fairness, on the other hand, as proposed by Dwork et al [31], intends

to ensure “similar individuals are treated similarly”. Dwork et al. explain that a

classifier is individually fair if the distance between probability distributions mapped

by the classifier is not greater than the actual distance between the records [31]. Biega

et al. propose measures that identify unfairness at the level of individual subjects

considering position bias in ranking [19]. Mahabadi et al. study the individual fairness

in k-clustering. Their goal is to develop a clustering algorithm of the records so that

all records are treated (approximately) equally [62]. Patro et al. [67] investigate the

fair allocation problem and study individual fairness in two-sided platforms consisting

of producers and customers on opposite sides. Fish et al. study individual fairness in

social network [35] to maximize the minimum probability of receiving the information

for poorly connected users. It has been recognized that group fairness alone has its

deficiencies [37]. In two independent efforts, Flanigan et. al. [36] and Garcia-Soriano

et. al. [41] study how to enable equitable selection probability of the records under

group fairness constraints and propose maxmin-fair distributions of ranking. Zemel

et al. develop a learning algorithm for fair classification that ensures both group

fairness and individual fairness [99]. [11] studies individual fairness in similarity search

to ensure points within distance r from the given query have the same probability to

be returned.

13

2.2.3 Top-k algorithms

Given a user query, a top-k result contains k records that have the highest

scores [72]. Scores are computed based on relevance, diversity, newness, serendipity,

etc. Designing effective scoring functions as well as efficient algorithms [1, 2] lend to

numerous applications in recommendation and search [4, 21, 22, 33, 59, 81, 83] and is

an active area of research.

θ-Equiv-top-k-MMSP is motivated by recent existing works [11, 36, 41], yet it is

unique - we study existing top-k algorithms and redesign them to address a fairness

concern that is prevalent in long tail data.

14

CHAPTER 3

ACCESS PRIMITIVE FOR TOP-K DIVERSITY COMPUTATION

3.1 Introduction

Diversity has a wide variety of applications in search, recommendation [1,2,33,71,79,

82] and data exploration. The goal of diversification algorithms is to return results

that are relevant as well as cover user intent. In the data management community,

returning top-k diverse results of a query has been extensively studied, and there

exists many seminal works [23, 44, 95] that propose objective functions and efficient

algorithms to achieve a trade-off between relevance and diversity.

The original implementation of many representative algorithms, such as, GMM

[44], MMR [44], SWAP [95] that do not make any assumptions on the nature of the

diversity functions are iterative in nature and make the decision of updating the top-k

set by making a greedy choice based on the current top-k set and the remaining records

that are not yet in top-k. These representative algorithms go through the cumbersome

step of pairwise diversity computation of records between and across these two sets

even to make a single update in the top-k set. Indeed, for a large database containing

N records, this repetitive computation is expensive O(N), since typically k << N .

We are also aware of a handful of existing works [38,64] that are specifically designed

on geometric space and avoid this repetitive computation. However, to the best

of our knowledge, most of the existing works assume this expensive computation

to be necessary, when diversity is designed for arbitrary non-metric functions or

even studied in general metric space. Contrarily, our effort here is to reduce that

computation without making any explicit assumptions about the diversity function,

that is, considering diversity functions to be fully arbitrary or even non-metric.

15

Our first contribution lies in identifying one major computational bottleneck

in existing popular diversification algorithms and how to accelerate that process.

We identify the basic ingredients of developing DivGetBatch() as an access

primitive such that it remains agnostic to any specific underlying diversity or distance

computation function. This primitive is also guaranteed to produce identical top-k

results as of the original diversity algorithms. The fundamental idea is to make the

comparison go over a group of records, as opposed to record pairs, thereby accelerating

the computation. In other words, the large number of N records are to be grouped

in a small number of C nodes and some higher level diversity aggregates are to be

maintained between the nodes. Towards that, we develop a generic computation

framework that builds an index I-tree offline and maintains two other auxiliary

data-structures (MinsimMatrixNode and MaxsimMatrixNode) that are highly generic

in nature and suitable to handle updates. Indeed, the design of I-tree is rather simple

and may appear to share resemblance with existing indexing techniques (Section 3.7

contains detailed discussion and empirical evaluation towards that). Our primary

contribution lies in proposing a simple enough indexing technique that could be

easily designed using off-the-shelf popular record partitioning algorithms, such as,

K-Means [47], but study how to make it generic enough to work on a variety of

diversification algorithms over arbitrary diversification functions. In fact, existing

popular indexing techniques, such as K-B-D-tree [74], kd-tree [16], M-Tree [25],

Ball-Tree [58], R-tree [46] assume that coordinate information of the records are

available and used to create data structures to answer a large spectrum of distance

queries, where distance may be based on Euclidean, cosine similarity, or general Lp

norms. However, I-tree assumes the records to be atomic and the diversity

function to be arbitrary.

Our second contribution is to develop query processing algorithms forMMR,

GMM, and SWAP [23, 44, 95] using DivGetBatch() (Sections 3.3, 3.4, 3.5).

16

Fundamentally, we have redesigned the original algorithms to run over pairs of groups

of records as opposed to pairs of records to save up processing time. We make

theoretical claims and proofs on the exactness and the running time of

the augmented algorithms in expectation (assuming uniform data and

query distributions) and in the worst case. As an example, we prove that

augmented SWAP (Aug-SWAP) takes O(N/C ∗ k ∗ log k+N) time in expectation

compared to O(N ∗ k ∗ log k) time of the original algorithm. It is easy to notice

that augmented SWAP is guaranteed to run faster than the original algorithm, as

Max(N/C ∗ k ∗ log k,N) (C is the number of groups) is smaller than N ∗ k ∗ log k.

The summary of the complexity results are presented in Tables 3.1 and 3.2.

Our third contribution is developing principled solutions for creating

and maintaining I-tree (Section 3.6). I-tree is a complete m-ary tree [26]

with height l. There exists many ways to build I-tree (e.g., hierarchical graph

partitioning or clustering could be used). We identify that the main computational

bottleneck of I-tree under batch updates lies in updating MinsimMatrixNode and

MaxsimMatrixNode. Therefore, we formalize the index maintenance problem as an

optimization problem, with the goal of minimizing the number of updates in these

data structures. We present an integer programming-based exact solution OPTMn

for that, and a greedy heuristic GrMn that is highly scalable in nature.

Our final contribution is experimental (Section 3.7). We use large

real-world datasets, one large publicly available synthetic dataset to show that

the augmented algorithms return results identical to their originals, while ensuring

between a 3× to 24× speedup on large datasets. We study the effects of different

parameters empirically and provide guidance for appropriate design choice. We

empirically present exhaustive results to pre-process and maintain I-tree. Our

empirical results corroborate our theoretical analyses.

17

Table 3.1 Technical Results for Running Time Analysis w.r.t. |CandR|

Algorithm Variant Expected time w.r.t |CandR|

MMR
Original

Augmented

O(N ∗ k2)

O(C ∗ k2 +N +
k∑

i=1

|CandRi| ∗ k)

GMM
Original

Augmented

O(N ∗ k)

O(C ∗ k +
k∑

i=1

|CandRi|)

SWAP
Original

Augmented

O(N ∗ k ∗ log k)

O(N +
∑N

i=1
|CandRi|

N
∗ (C + k ∗ log k))

Moreover, we compare the proposed index I-tree with a set of existing indexing

structure, such as, M-Tree [25], KD-Tree [16], and Ball-Tree [58]. These latter trees

are primarily designed for the Euclidean space. Our experimental results unanimously

selects I-tree as the winner. The augmented algorithms implemented using I-tree

is at least 18× faster in query processing and as much as 170× faster for certain

configuration. I-tree achieves more than 1.5× speedup during the index construction

and at times it is more than 20× faster w.r.t. the baselines.

To summarize, we make the following contributions:

� We develop DivGetBatch(), an access primitive and show how to integrate it
inside popular diversity algorithms to save up running time (Sections 3.3, 3.4, 3.5).
We present in depth theoretical analyses of the augmented algorithms.

� We propose a computational framework to supportDivGetBatch()(Section 3.6.
The framework consists of a pre-computed index I-tree and a query processing
step. We also present non-trivial solutions to maintain I-tree under dynamic
updates.

� We run an extensive experimentation that demonstrates the effectiveness of
building and maintaining I-tree and DivGetBatch(), and corroborates our
theoretical claims (Section 3.7).

18

Table 3.2 Technical Results for Running Time Analysis w.r.t. C, m, l

Algorithm Variant Expected time w.r.t C Expected time w.r.t m and l

MMR
Original

Augmented

O(N ∗ k2)

O((N/C + C) ∗ k2 +N)

O(N ∗ k2)

O((N/ml +ml) ∗ k2 +N)

GMM
Original

Augmented

O(N ∗ k)

O(N/C + C) ∗ k)

O(N ∗ k)

O(N/ml +ml) ∗ k)

SWAP
Original

Augmented

O(N ∗ k ∗ log k)

O(N/C ∗ k ∗ log k +N)

O(N ∗ k ∗ log k)

O(N/ml ∗ k ∗ log k +N)

Index Activity Time Space Time Space

I-tree
Construction

Maintenance

O(N ∗ C2 ∗ t+N2)

O(N ∗ |Y |)

O(C2)

O(C2)

O(N ∗m2l ∗ t+N2)

O(N ∗ |Y |)

O(m2l)

O(m2l)

3.2 Background and Approach

This section is organized in two parts. In Subsection 3.2.1, we present the background

of the studied problem and define it. In Subsection 3.2.2, we present the fundamental

ideas of our approach.

3.2.1 Motivating example and problem definition

The basic principle of existing diversification algorithms, such as MMR, GMM, and

SWAP is either to incrementally build a top-k set of diverse results or to greedily

replace records in a top-k list to find the most diverse ones. In both cases, the leading

cost directly depends on the number of pairwise record comparisons. Imagine a toy

database D containing N = 10 records. Since the records are considered atomic,

Table 3.4 shows a record-record similarity matrix, simMatrixRecord, normalized

between [0-1] for our example. Diversity between ri, rj is simply 1 − sim(ri, rj).

Given a query Q, in order to produce k = 2 results, an algorithm such as MMR [23]

first assigns all 10 records in D to a potential candidate set R. Then it iterates over

all 10 records once to find the best record in terms of MR score (based on diversity

and relevance), and adds that to the result set S and discards that from R. It repeats

19

the same process once more to produce the resulting set S = {r10, r8}. In particular,

there is a repeated pairwise computation of the following kind:

While k ≤ 2 :

rec← R[1]

For i = 2; i <= |R|; i++

i f MR(Q ,R[i], S) ≥ MR(Q , rec, S)

rec← R[i]

EndFor

S ← S
⋃

rec, R← R− rec

k ← k + 1

EndWhile

Problem Definition 1. Develop an access primitive DivGetBatch() and integrate

it inside existing popular diversity algorithms.DivGetBatch() satisfies the following

three criteria:

� It guarantees identical top-k results as that of the original algorithms.

� It is generic, i.e., it works for any diversity functions - diversity being metric
or not. A function is metric if it satisfies three properties: identity, symmetry,
and triangle inequality.

� When integrated inside existing algorithms, it accelerates the computation and
returns the results faster.

The proposed primitive simplifies the aforementioned implementation as follows

- instead of iterating over the entire R set (which is O(N)), it returns potentially a

much smaller set of records CandR, from which the result set S would be updated.

20

CandR← DivGetBatch(R,Q,S)

While k ≤ 2 :

rec←Max(MR(CandR,Q, S))

S ← S
⋃

rec, CandR← CandR− rec

k ← k + 1

EndWhile

3.2.2 Approach

DivGetBatch() is designed by developing a computational framework, described in

Figure 3.1. The basic idea is to store “higher level aggregates”’, such as minimum

and maximum diversity scores of a group of records instead of keeping individual

pairwise diversity scores between the records. We formally define the minimum and

maximum diversity scores as bounds in later sections. As an example, if the same set

of records are grouped in three nodes, as shown inside the indexing box of Figure 3.1

and the maximum and minimum diversity scores are preserved between them, node2

and node3 can be discarded in the first iteration of processing of MMR pruning 6

out of the 10 records and returning only {r1, r2, r4, r10} in R. This indeed leads to a

significant speedup.

Offline vs. Online.

In this work, we assume that both data and query follow uniform distributions.

A keen reader may notice that to accelerate diversity computation using I-tree, one

has to “group” records and maintain some higher level aggregates between them.

Grouping a large database of N records is time-consuming, as that would require

partitioning them based on pairwise diversity. Indeed, this process of grouping must

happen once and offline.

21

Data

Indexing

Design

Augmented

Algorithms

+

DivGetBatch

API

Top-k

Results

Diversity

Algorithms

Offline Phase Online Phase

Node 2

{r3, r8,
r9}

Node 1

{r1, r2,
r4, r10}

Node 3

{r5, r6,
r7}

Min

sim:

0.065

Max

sim:

0.075

Min

sim:

0.047

Max

sim:

0.063
Min sim:

0.092
Max sim:

0.116

Figure 3.1 Proposed computational framework.

Precisely because of this, we resort to pre-process the records to group them

and develop index I-tree, and use that later for processing diversity queries. This is

the offline computation of the proposed framework.

Just like DivGetBatch(), I-tree is a general purpose complete tree like

structure and could be designed in more than one way. It needs to satisfy three

properties.

� I-tree has m arity and l height or levels (user inputs).

� Two highly important auxiliary data structures maintain similarity bounds
between the nodes in I-tree: MinsimMatrixNode and MaxsimMatrixNode for
maintaining minimum and maximum similarity bounds 1.

� For three nodes n, n′, and nj in I-tree, if n is a parent of n′, and nj is part of
a different subtree and at the same level as n, the following relationship holds:
Min sim(n, n′) ≥ Min sim(n, nj), and Max sim(n, n′) ≥ Max sim(n, nj),
(basically nodes that are part of the same subtree have higher min and max
similarity bounds compared to the nodes that are not).

The indexing algorithm BuildTree (Algorithm 5) partitions (refer to the

Subroutine Partition) the records. It also maintains additional data structures that

contain similarity scores between nodes for efficient query processing. An example of

1Diversity between a pair of records is simply 1− similarity between them.

22

Table 3.3 Notations & Interpretations

Notations

D Database containing N records

S Result set

Z Set of nodes that contain S

R Remaining records in the dataset

Q Query

k Number of records in resulting set

m, l Arity & Total number of levels in the I-tree

C Number of nodes in the I-tree

CandR Candidate record set returned by API

Y A batch of new records to be updated in I-tree

a two-level index tree is shown in Figure. 3.2. At the first level, BuildTree creates

a root node containing all N records and m children of the root node. From the

point of abstraction, it is not important at this stage to describe how the data is

partitioned. Basically, the goal is to keep similar records together while separating

non-similar ones. There are multiple off-the-shelf techniques such as clustering and

graph partitioning to carry out this task.

In our implementation, we use the popular k-means algorithm [47] for parti-

tioning. The algorithm repeats the partitioning procedure until it reaches l levels.

We refer to Section 3.6 for further details.

Next, we present the generic recipe of using DivGetBatch() online or during

the query processing time.

Generic Online Algorithm using DivGetBatch() The inputs to

DivGetBatch() is I-tree, query Q, current candidate set of answers S, remaining

records R, as well as the algorithm specific objective function f . The output is

23

Algorithm 1 Generic DivGetBatch() API

1: Inputs: I-tree, S, R, Q, f

2: Outputs: CandR: remaining eligible set of records for next iteration

3: for y = 1 to l do

4: for n in I-tree [y].nodes do

5: uB, lB ← Calculate-Bounds(I-tree, n, y, f , S, Q, R)

6: uBs ←
⋃

uB, lBs ←
⋃

lB

7: end for

8: M ← Skip-Nodes(I-tree, y, uBs, lBs)

9: V ← { I-tree [y].nodes−M}

10: end for

11: CandR = {r | r ∈ n, n ∈ V }

12: return CandR

CandR, a set of candidate records that cannot be eliminated and require further

processing by the original algorithm. DivGetBatch() explores I-tree level by level

during query time and exploits two of its higher-level constructs: a. Calculate-

Bounds: it computes similarity bounds 2 between Q and the nodes in I-tree based

on a specific algorithm and objective function f . In particular, it computes an upper

and a lower bound of diversity scores of the node. The goal is to decide if it is

beneficial to go inside the node and explore the subtree under it. b. Skip-Nodes:

based on the previous decision, the algorithm either skips the node and its entire

subtree or explores the node.

Algorithm 1 shows the pseudo-code of the DivGetBatch() API.

2Please note diversity could be easily calculated from similarity bounds.

24

3.3 MMR Query Processing with DivGetBatch()

The first algorithm we study isMMR [23] algorithm. We describe the original version

of the algorithm and our augmented version and provide theoretical analysis on how

our augmented version outperforms the original one.

3.3.1 MMR Algorithm

Maximal Marginal Relevance (MMR) algorithm is a seminal work on result

diversification [23]. MMR is based on Marginal Relvance (MR) score (Equation 3.1)

that it maximizes in each iteration. Given a query, MR introduces a λ coefficient to

strike a balance between the relevance score, computed between the records and the

query, and the diversity score, computed between the records themselves.

MMR is greedy in nature that grows the size of the top-k set by adding records

one by one in the top-k set by considering the relevance of the record and diversity

with the previously selected records, using the formula below:

MMR(r)← argmaxr∈R\SMR(r),

MR(r)← λsim(r,Q)− (1− λ)maxrj∈Ssim(r, rj), (3.1)

where Q is the query, S is the previously selected items, R is the remaining records

in the dataset, r is a candidate record from R, and rj is another record from S. λ

is a tunable parameter. The time-consuming part of the algorithm lies in computing

the MR score for each r ∈ {R \ S} and returning the one with the highest MR score.

The MMR algorithm takes O(|R| × |S|), when we add one new record to set

S, demonstrating that it has an order of N × k. The algorithm repeats k times and

produces top-k results.

25

Table 3.4 Similarity Matrix for Records

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 Q

r1 1.000 0.979 0.065 0.989 0.105 0.110 0.092 0.066 0.068 0.969 0.187

r2 0.979 1.000 0.070 0.992 0.107 0.112 0.092 0.071 0.074 0.999 0.190

r3 0.065 0.070 1.000 0.068 0.057 0.061 0.048 0.982 0.986 0.071 0.052

r4 0.989 0.992 0.068 1.000 0.111 0.116 0.096 0.069 0.072 0.986 0.180

r5 0.105 0.107 0.057 0.111 1.000 0.976 0.880 0.055 0.058 0.106 0.039

r6 0.110 0.112 0.061 0.116 0.976 1.000 0.783 0.059 0.063 0.112 0.041

r7 0.092 0.092 0.048 0.096 0.880 0.783 1.000 0.047 0.049 0.092 0.036

r8 0.066 0.071 0.982 0.069 0.055 0.059 0.047 1.000 0.986 0.072 0.054

r9 0.068 0.074 0.986 0.072 0.058 0.063 0.049 0.986 1.000 0.075 0.054

r10 0.969 0.999 0.071 0.986 0.106 0.112 0.092 0.072 0.075 1.000 0.191

3.3.2 Aug-MMR Algorithm

Aug-MMR algorithm is designed to circumvent this aforementioned time consuming

computation by leveraging DivGetBatch(). The general idea is to return a small

subset of records, as opposed to all |R| records (which is O(N)) in each iteration,

thereby saving computation. The rest of the algorithm is identical to its original

version and is presented in Algorithm 2.

We now describe subroutine 2, how DivGetBatch() exactly works in Aug-

MMR. Inputs toDivGetBatch() are I-tree, S, R, Q, and f (i.e., objective function

of MMR). The output is CandR, the candidate set of records for which MR scores

are to be computed to retain the best record. Based on Algorithm 1, we now describe

the specifics of two higher-level constructs for Aug-MMR.

Calculate-Bounds: This function leverages

MinsimMatrix-Node and MaxsimMatrixNode to calculate lower (lBMR) and

upper bounds (uBMR), respectively. The bounds essentially represent the score

of a node based on f (Equation 3.1) and mathematically can be expressed as follows:

lBMRnode ← λMin sim(node,Q)−

maxnode′∈Z(1− λ)Max sim(node, node′), (3.2)

26

Algorithm 2 Aug-MMR

Inputs: I-tree, D, MMR, Q, k

Outputs: S: final top-k result set.

1: R← D, S = ϕ

2: for t = 1 to k do

3: CandR ← DivGetBatch(I-tree, R, S, Q, MMR)

4: S = {S
⋃

MMR(r)r∈CandR}

5: end for

6: return S

uBMRnode ← λMax sim(node,Q)−

minnode′∈Z(1− λ)Min sim(node, node′), (3.3)

where Z is the set of nodes that contain S,

Min sim(node,Q) and Max sim(node,Q) are the minimum and the maximum

similarity between any records in node andQ, respectively, andMin sim(node, node′)

and Max sim(node, node′) are the minimum and the maximum similarity between

any two records in node and node′, respectively. Since lBMR is the smallest score

of node, it is calculated by taking the minimum of sim score in the first part of the

equation and subtracting that from the maximum of sim score in the second part.

Contrarily, uBMR refers to the maximum MR score of node (Equation 3.3) and can

be calculated by reversing the min and max of the (Equation 3.2).

Skip-Nodes: The argument of node skipping is simple - if the uBMR score

of a node is not larger than the lBMR of another node, then the former node and

its entire subtree could be pruned. The records from the remaining nodes form the

27

CandR set.

CandR← {N − {r ∈ I− tree.n | uBMRn < (3.4)

max
∀n′

(lBMRn′)}}

this is done by finding the maximum value of lBMRn′ of all nodes and

then discard ones with uBMR less than it. Running Example: A step by

step calculation of DivGetBatch() is shown in Table 3.5. The maximum and

minimum similarity between node1 and query Q is 0.180 and 0.191. In first iteration

of Calculate-Bounds, lower bound of MR of node1 which is lBMRnode1 =

0.8 ∗ 0.180− (1− 0.8) ∗ 0 = 0.144, and upper bound of MR of node1, uBMRnode1 =

0.8 ∗ 0.191 − (1 − 0.8) ∗ 0 = 0.153. Similarly, lBMRnode2 , uBMRnode2 , lBMRnode3 ,

and uBMRnode3 are −0.047, 0.044, 0.029, and 0.033, respectively. In Skip-Nodes,

the maximum of all lBMRs is found 0.144 which is lBMRnode1 .

uBMRnode2 and uBMRnode3 are smaller than

lBMRnode1 . Therefore, node2 and node3 are discarded from further calculation in

iteration 1. Records of node1 {r1, r2, r4, r10} are returned by DivGetBatch() to

Aug-MMR algorithm. Aug-MMR performs calculation similar to original MMR

on {r1, r2, r4, r10} which results in S = {r10}. Likewise, the maximum and minimum

similarity between node1 and node1 are 0.969 and 1.0. In the second iteration of

Calculate-Bounds, lBMRnode1 = 0.8 ∗ 0.180 − (1 − 0.8) ∗ 0.969 = −0.050 and

uBMRnode1 = 0.8 ∗ 0.191 − (1 − 0.8) ∗ 1.0 = −0.047. Similarity, lBMRnode2 ,

uBMRnode2 , lBMRnode3 , and uBMRnode3 are 0.028, 0.029, 0.010, and 0.009,

respectively. In Skip-Nodes, the maximum of all lBMRs is lBMRnode2 = 0.028.

uBMRnode1 and uBMRnode3 are smaller than lBMRnode2 . Thus, node1 and node3

are discarded from further calculation in iteration 2. Records of node2 {r3, r8, r9}

are returned by DivGetBatch() to Aug-MMR algorithm. Aug-MMR performs

calculation similar to original MMR on {r3, r8, r9} which results in S = {r10, r8}

28

Table 3.5 First Two Iterations of DivGetBatch() in Aug-MMR

Functions Nodes Bounds Iteration 1 Iteration 2

Calculate-Bounds

node1
lBMR 0.8 ∗ 0.180− (1− 0.8) ∗ 0 = 0.144 −0.050

uBMR 0.8 ∗ 0.191− (1− 0.8) ∗ 0 = 0.153 −0.047

node2
lBMR 0.8 ∗ 0.0191− (1− 0.8) ∗ 0 = 0.0152 0.028

uBMR 0.8 ∗ 0.054− (1− 0.8) ∗ 0 = 0.044 0.029

node3
lBMR 0.8 ∗ 0.036− (1− 0.8) ∗ 0 = 0.029 0.010

uBMR 0.8 ∗ 0.041− (1− 0.8) ∗ 0 = 0.033 0.009

Skip-Nodes

lBMR array: 0.144, 0.041, 0.029

uBMR array: 0.153, 0.044, 0.033

node2, node3 are skipped.

CandR= {r1, r2, r4, r10}.

MMR(r1, r2, r4, r10)← r10

Number of records discarded is 6

lBMR array:

-0.050, 0.028, 0.010

uBMR Array:

-0.047, 0.029 , 0.009

node1, node3 are skipped.

CandR = {r3, r8, r9}

MMR(r3, r8, r9)← r8

top-2 set = {r10, r8}

Aug-MMR algorithm proofs

Claim 1. Aug-MMR returns identical top-k results as that of original MMR.

Proof. The proof is constructed using one helper lemma and one observation:

Lemma 8 proves that DivGetBatch() never prunes a record that is part of

the original top-k; Observation 1 shows that once the control comes back from

DivGetBatch(), Aug-MMR works exactly as the original MMR in each iteration.

Combining these lemma and observation, Aug-MMR returns identical top-k results

as that of the original MMR.

Lemma 1. DivGetBatch() never prunes a record that is part of the original top-k.

Proof. As part of this proof, we first prove that Skip-Nodes never discards the record

which has the highest MR score in that iteration.

Recall Property 1 and note that for every two nodes n and n′ in the same

subtree, if n is a parent of n′, then n contains all records in n′, thereby having larger

29

uBMR and lBMR values. Therefore, if a node n is skipped, any child of n is also

safe to be skipped.

We use helper Lemma 7 to prove that the actual MR score of any record in a

node node is bounded between uBMRnode and lBMRnode. Let us assume, the next

desired record rd ∈ noded produces maximum MR value among all R \ S records.

MRrd is greater than minMRnode for ∀node. Using Equation 3.6:

MRrd ≥ maxnode∈I−tree[l].nodesminMRnode

≥ maxnode∈I−tree[l].nodes(lBMRnode),

Using Equation 3.6, MRrd = MaxMRnoded ≤

uBMRnoded . As a result,

uBMRnoded ≥MRrd

≥ maxnode∈I−tree[l].nodes(lBMRnode). (3.5)

According to Equations (3.5) and (3.4), noded will not be discarded, and all records

inside noded including rd will be returned by DivGetBatch() or send to the next

level for further processing. This logic extends for all the iterations. Therefore,

DivGetBatch() never prunes a record that is part of the original top-k.

Lemma 2. MR score of any record r ∈ node (say MRr) is bounded by upper and

lower bound uBMRnode and lBMRnode, respectively. That is,

lBMRnode ≤MRr∈node ≤ uBMRnode. (3.6)

Proof. We will first prove that maximum relevance value (say MRrmax) of any record

(say rmax ∈ node) is less than equal to uBMRnode. Where, MRrmax can be expressed

as:

MRrmax = λsim(rmax, Q)− (1− λ)maxrj∈Ssim(rmax, rj)]. (3.7)

30

First part of the Equation (3.7) is always less than equals to first part of the

Equation (3.3). That is:

λsim(rmax, Q) ≤ λmaxri∈nodesim(ri, Q)

= λMax sim(node,Q),

(3.8)

Next, we show that second part of the Equation (3.7) is always greater than

second part of the Equation (3.3).

Let us assume; rw ∈ S produces max value for the second part of Equation (3.7).

That second part can be rewritten as (1 − λ)sim(rmaxnode
, rw). Let us assume, rw ∈

nodew where nodew ∈ Z. For any node′ ∈ Z, we can write:

(1− λ)sim(rmax, rw) ≥ (1− λ)minri∈node,rj∈node′

sim(ri, rj)

≥ minnode′∈Z(1− λ)Min sim(node, node′),

(3.9)

From these two inequalities (3.8) and (3.9), we can conclude MRrmax ≤

uBMRnode or, MRr∈node ≤ uBMRnode.

Similarly, the lower bound lBMRnode can be shown as follows: lBMRnode ≤

minMRnode.

Thus, any record in node is certain to have MR value in between uBMRnode

and lBMRnode.

Observation 1. Once the control comes back from DivGetBatch(), Aug-MMR

works exactly as the original MMR in each iteration.

Aug-MMR has identical MR score calculation and MMR selection as that of

the original MMR.

Claim 2. Aug-MMR requires O((N/C + C) ∗ k2 +N) time in expectation.

31

Proof. In the original MMR algorithm, each iteration for finding one record takes

O(N ∗k) times. For k iterations, the overall running time is therefore O(N ∗k2). The

running time of Aug-MMR does not need to go over all N records in each iteration.

Instead, it relies on DivGetBatch() to obtain a smaller set CandR records.

Part 1. Running time of the API: A single iteration of DivGetBatch() needs

to go over all the nodes in I-tree and takes O(C ∗ k) time. DivGetBatch() has to

compute two subroutines:

Calculate-Bound and Skip-Nodes. To compute these two functions, it takes O(N)

time. Therefore, the overall running time is O(C ∗ k2 + N), where C is the total

number of nodes.

Part 2. Running time of the rest of computation: The rest of the computation

depends on the size of CandR. Let us assume, DivGetBatch() returns |CandRi|

records in the i-th iteration. Accordingly, we have:

TAug−MMR = O(C ∗ k2 +N +
k∑

i=1

|CandRi| ∗ k).

The expected case analysis basically delves deeper into the analysis of Part 2

and studies the expected running time considering different size of CandRi and its

corresponding probability.

Let us assume, in iteration i, the |CandRi| records touch x number of nodes in

I-tree. Indeed, xi is the number of nodes with |CandRi| records in I-tree, that the

augmented algorithms have to access during the query processing. Let us also assume

node ni contains vi records. We start the proof assuming there is only one level in

I-tree (i.e., l = 1), and then generalize it later on. If l = 1, the expected running

time of Part 2 calculation of Aug-MMR in the i-th iteration is:

E = O(
C∑
i=1

prob(xi)× computation costAug−MMR(xi)).

32

Now, probability of returning x nodes =
(
C
x

)
* probability of x nodes getting

selected * probability of (C − x) nodes not getting selected.

We assume that both data and query follow uniform distributions, thereby,

each node has an equal probability of getting selected or skipped. The probability of

choosing a node is 1/C. Therefore, the probability of not getting selected is (1−1/C).

The size of the returned record set, i.e., |CandR|, if x = i nodes are accessed:

|CandR|i = (1/C)i ∗ (1− 1/C)C−i ∗ [(v1 + v2 + ...+ vi)

+ (v1 + v3 + ...+ vi+1) + (v2 + v3 + ...+ vi+1)

+ (v3 + v4 + ...+ vi+2) + . . .]

= (1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)
∗ (v1 + v2 + . . .+ vC)

= (1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)
∗N.

Therefore, the overall expected cost of Part 2 is:

|CandR| = N ∗
C∑
i=1

(1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)

= N ∗ (1/C)/(1− 1/C) ∗
C∑
i=1

(1/C)i−1∗

(1− 1/C)C−(i−1) ∗
(
C − 1

i− 1

)
.

Let j = i− 1 :

= N ∗ (1/C)/(1− 1/C) ∗
C−1∑
j=0

(1/C)j∗

(1− 1/C)C−j ∗
(
C − 1

j

)
= N ∗ (1/C)/(1− 1/C) ∗ (1− 1/C)∗

33

C−1∑
j=0

(1/C)j ∗ (1− 1/C)(C−1)−j ∗
(
C − 1

j

)
= N ∗ (1/C)/(1− 1/C)∗

(1− 1/C) ∗ (1/C + 1− 1/C)C−1 = N/C.

Expected running time of Aug-MMR algorithm considering both Part 1 and Part

2 computation is:

EAug−MMR = O((N/C + C) ∗ k2 +N).

Now consider the case when l > 1. Probability of selecting a node in first level

is 1/m, given m is the arity of I-tree. Probability of selecting a node in second level

= probability of selecting that node out of m node in that branch * probability of

selecting it’s parent = 1/m2. Similarly, Probability of selecting a node at leaf node

is 1/ml = 1/C. Thus, in the general case, when l > 1, expected running time of

Aug-MMR is O((N/C + C) ∗ k2 +N), which is same as before.

Worst-case Aug-MMR . In the worst-case, all N records are returned by

DivGetBatch() in each iteration, which makes
k∑

i=1

|CandRi| = N ∗ k. Thus, the

worst-case running time is O((N + C) ∗ k2).

3.4 GMM Query Processing with DivGetBatch()

The second algorithm we study is GMM algorithm. We describe the original version

of the algorithm and our augmented version and similar to the previous section. We

also provide proofs on how our augmented version outperforms the original one.

34

3.4.1 GMM Algorithm

The next algorithm we study is GMM [44] that tries to find a subset of k most diverse

records among N records by maximizing the minimum pairwise distance. GMM does

not require any external query. Based on the original design, the first two records

in the result set S are provided in constant time by an oracle. Then, the algorithm

iteratively goes through all records in R and finds a record whose minimum diversity

(maximum similarity) with the previously selected records is the largest (smallest).

It continues until |S|=k. The objective function is:

GMM(r)← argmaxr∈R\Sminrj∈SDiv(r, rj), (3.10)

where Div(r, rj) is the diversity score between record r and rj. A keen reader may

notice that GMM uses diversity (Div) in the objective function, whereas, in our

study, we store similarity between records. Unless specified otherwise, Div = 1−sim.

The two similarity matrices, one that captures the similarity between every pair of

records, and the other that captures that of between nodes, could be used to calculate

Div.

3.4.2 Aug-GMM Algorithm

Aug-GMM leverages the DivGetBatch() API to reduce the number of records

to iterate on. Algorithm 3 describes the pseudo-code, where the DivGetBatch()

returns a small subset of records CandR which later on is fed to the original GMM

algorithm to get the nextBest record.

Calculate-Bounds: This function keeps track of the upper and lower bounds

of scores between nodes (uBGMM and lBGMM , respectively) using the same

principles as that of the original GMM objective function (Equation 3.10).

35

lBGMMnode ← minnode′∈Z minDiv(node, node′), (3.11)

uBGMMnode ← minnode′∈Z maxDiv(node, node′), (3.12)

where Z is the set of nodes containing S, minDiv(node,

node′) and maxDiv(node, node′) are the minimum and the maximum diversity scores

between any two records in node and node′, respectively. In Equation 3.11, minimum

of the minimum diversity over all nodes in Z ensures the lower bound of GMM , such

that all records in node will have equal or greater value than lBGMMnode. Conversely,

in Equation 3.12, minimum of the maximum diversity over all nodes in Z ensures the

upper bounds, such that all records in node will have equal or lower GMM value

than uBGMMnode.

Skip-Nodes : This function is identical to Skip-Nodes of MMR in principle.

The skip-rationale of Aug-GMM is:

CandR← {N − {r ∈ I− tree.n | uBGMMn < (3.13)

max
∀n′

(lGMMn′)}}

Running Example: Let us assume k = 3 and the first two records of S are

arbitrarily chosen as r1 and r3. Initially, S = {r1, r3}. From Figure 3.1, r1 and r3

are inside node1 and node2, respectively. Hence, Z = {node1, node2}. Node-Node

diversity Div(node, node′) can be calculated using Div = 1 - Sim. Div(node3, node1)

= (0.884, 0.908) and Div(node3, node2) = (0.937, 0.9530). By using Equations (3.11)

and (3.12), lBGMMnode3 = 0.884 (as min of min div) and uBGMMnode3 = 0.908 (as

min of max div). Similarly, lBGMMnode1 , uBGMM

node1 , lBGMMnode2 , and uBGMMnode2 are 0, 0.031, 0, and 0.018. lBGMMnode3

(0.884) is greater than uBGMM

36

node1 (0.031) and uBGMMnode2 (0.018). Using Equation 3.13, node1 and node2 can

be discarded. Obtaining records from node3 , candR = {r5, r6, r7} is returned from

DivGetBatch(). Finally, GMM(r5, r6, r7) = r5 is called and the result set S =

{r1, r3, r5} is achieved.

Aug-GMM algorithm proofs

Claim 3. Aug-GMM returns identical top-k results as that of original GMM .

Proof. Akin to MMR proof, this proof is also constructed using one helper lemma and

one observation: Lemma 3 proves that DivGetBatch() never prunes a record that is

part of the original top-k; Observation 2 shows that in each iteration, once the control

comes back fromDivGetBatch(), Aug-GMM works exactly as the original GMM .

Combining these lemma and observation, Aug-GMM returns identical top-k results

as that of the original GMM .

Lemma 3. DivGetBatch() never prunes a record that is part of the original top-k.

Proof. As part of this proof, we first prove that Skip-Nodes never discards the record

which has the highest GMM score in that iteration.

We use helper Lemma 4 to prove that the actual GMM score of any record in a

node node is bounded between uBGMMnode and lBGMMnode. The rest of the proof

is identical to Lemma 8 of Aug-MMR.

Lemma 4. GMM score of any record r ∈ node (say GMMr) is bounded by upper

and lower bound

uBGMMnode and lBGMMnode, respectively. That is,

lBGMMnode ≤ GMMr∈node ≤ uBGMMnode.

Proof. Let us first consider uBGMMnode, by assuming

F (node, rj) = maxri∈nodeDiv(ri, rj), it can be re-written as:

37

uBGMMnode ← minnode′∈Z [maxrj∈node′F (node, rj)], (3.14)

Let us assume, maximum GMM value produced by any record in node is

maxGMMnode. According to Equation 3.10, maxGMMnode is expressed as follows:

maxGMMnode = maxri∈node[minrj∈SDiv(ri, rj)],

= minrj∈S[maxri∈nodeDiv(ri, rj)],

= minrj∈SF (node, rj),

≤ minnode′∈Z [maxrj∈node′F (node, rj)],

= uBGMMnode, [using equation 3.14].

similarly, it can be proved that, minGMMnode ≥ lBGMMnode.

Observation 2. Once the control comes back from DivGetBatch(), Aug-GMM

works exactly as the original GMM in each iteration.

Aug-GMM does exactly same calculation as the original GMM does on a

set of records as a result it will produce the same record as GMM does in a single

iteration.

Claim 4. Aug-GMM requires O(N/C + C) ∗ k) time in expectation.

Proof. In the GMM algorithm, each iteration for finding one record takes O(N)

times. For k iteration, the overall running time is O(N ∗ k). Similar to Aug-MMR,

Aug-GMM does not need to go over all N records in each iteration, instead relies

on DivGetBatch() to obtain a smaller set CandR records.

Part 1. Running time of the API: A single iteration of DivGetBatch() needs

to go over all the nodes in I-tree and takes O(C) time. DivGetBatch() has to

38

compute two subroutines:

Calculate-Bound() and Skip-Nodes(). To compute these two functions, it takes O(C)

time. Therefore, the overall running time is O(C ∗ k), where C is the total number

of nodes.

Part 2. Running time of the rest of computation: Similar to Aug-MMR,

The rest of the computation depends on the size of CandR. Let us assume,

DivGetBatch() returns |CandRi| records in the i-th iteration. Hence, we have:

TAug−GMM = O(C ∗ k +
k∑

i=1

|CandRi|).

The expected case analysis basically delves deeper into the analysis of Part 2

and studies the expected running time considering different size of CandRi and its

corresponding probability. By performing similar calculation as that of Aug-MMR

as shown before, the expected cost of Aug-GMM is:

EAug−GMM = O((N/C + C) ∗ k).

Worst-case Aug-GMM . In the worst-case, all N records are returned by

DivGetBatch() in each iteration, which makes
k∑

i=1

|CandRi| = N ∗ k. Then the

worst-case running time is: O((N + C) ∗ k).

3.5 SWAP Query Processing with DivGetBatch()

The last algorithm we study is SWAP [95]. We describe the original version and our

proposed augmented version. Similar to the previous sections, we provide theoretical

analysis.

39

Algorithm 3 Aug-GMM

Inputs: I-tree, D, GMM , k

Output: S: final top-k result set

1: S ← two records selected by an oracle

2: R← {D − S}

3: for t = 1 to k − 2 do

4: CandR ← DivGetBatch(I-tree, R, S,GMM)

5: S = {S
⋃

GMM(r)r∈CandR}

6: end for

7: return S

3.5.1 SWAP Algorithm

SWAP [95] is a greedy algorithm that produces top-k results based on a given query

Q and a tunable parameter that controls how much relevance could at most drop

between any two records in the top-k results. The algorithm starts by sorting the

records w.r.t. relevance and initializing the top-k result set S with the k-records with

the highest relevance score with Q. It finds a candidate record from the current top-k

set that has the smallest diversity contribution based on Equation (3.15). Indeed, in

each iteration, it attempts to swap one record from R \ S with the candidate record.

It starts scanning the remaining sorted relevance list from the top. In every iteration,

it attempts to swap one record from the current top-k set with another from sorted R

if the latter record has a higher contribution to diversity while ensuring the threshold

of relevance drop. The algorithm terminates when the relevance drop is below the

threshold, or R is fully scanned.

Divcont(ri, S) =
∑
rj∈S

Div(ri, rj). (3.15)

40

3.5.2 Aug-SWAP Algorithm

Aug-SWAP is identical to the SWAP, i.e., it scans the sorted relevance list R, after

initializing the top-k set S. It calls the DivGetBatch() API to retrieve a smaller

set of candidate records CandR. These CandR records are eligible to be considered

during the next swap. If a record in R is not in CandR, then it is skipped. The rest

of the process is identical to the original SWAP algorithm. Algorithm 4 contains the

pseudo-code.

Calculate-Bounds: Once the records are sorted w.r.t. relevance score, the

diversity computation becomes query independent, and only between the records.

This function calculates the upper and lower bounds of diversity contribution of

nodes by leveraging

MinsimMatrixNode and MaxsimMatrixNode considering the set of nodes Z that

contains S, as below:

uBSWAPnode ←
∑

node′∈Z

maxDiv(node, node′), (3.16)

lBSWAPnode ←
∑

node′∈Z

minDiv(node, node′), (3.17)

where maxDiv(node, node′) and minDiv(node, node′) are the max and the min

diversity between node and node′. Naturally, the maximum (minimum) diversity

is the maximum (minimum) of node diversities between node and the nodes in Z.

Skip-Nodes: This function will then check if

uBSWAPnode is less than the diversity contribution of the candidate record (3.18);

If the condition is true, it will prune the node and the entire subtree under it. In

such a case, none of the records inside this node are eligible for swap because they

will not increase the overall diversity of S. DivGetBatch() returns the records for

41

all non-pruned nodes:

CandR← {N − {r ∈ I− tree.n | uBSWAPn < (3.18)

minri∈S
∑
rj∈S

Div(ri, rj)}}

Running Example: Lets say, k = 2, UB = 0.9, sortedR= {r8, r7, r2, r1, r4, r9, r3, r6, r10},

and initial top-2 records selected as S={r8, r7}. Using Equation 3.15, Divcont(r7, S)

= 0.953 and the candidate is r7. From Figure 3.1, Z = {node2, node3}. Using

Equations (3.16), (3.17), and Figure 3.1, if Div = 1 - sim, we have:

uBSWAPnode1 = maxDiv(node1, node2) = 0.935,

lBSWAPnode1 = minDiv(node1, node2) = 0.925.

Then, Equation 3.18 is applied and node1 is discarded, node2, node3 are returned by

DivGetBatch(), and CandR = {r3, r9, r5, r6}. Next record in the sorted list is r2,

which is not in CandR. As a result, r2 will be skipped.

Aug-SWAP algorithm proofs

Claim 5. Aug-SWAP returns identical top-k results as that of original SWAP.

Proof. This proof is constructed using one helper lemma and one observation.

Lemma 5 proves that DivGetBatch() does not skip a record that has a higher

diversity contribution than that of the candidate record. Observation 3 shows that

once all records returned in CandR, Aug-SWAP is identical to SWAP . Combining

these lemma and observation, Aug-SWAP returns identical top-k results as that of

the original SWAP .

Lemma 5. DivGetBatch() never prunes a record that is part of the original top-k.

42

Algorithm 4 Aug-SWAP

Inputs: I-tree, D, UB, k, SWAP

Output: S: final top-k result set.

1: R ← Sort D on score;

2: S ←topkItems(R, k)

3: candidate← argminri∈SEquation 3.15

4: CandR ← R

5: pos ← k + 1

6: while candidate.score - R[pos].score < UB do

7: if R[pos] in CandR then

8: if Divcont(R[pos], S) > Divcont(candidate, S) then

9: S ← {S − candidate
⋃
R[pos]}

10: CandR ← DivGetBatch(I-tree, R, S, Q, SWAP)

11: candidate← argminri∈SEquation 3.15

12: end if

13: end if

14: pos++

15: end while

16: return S

Proof. As part of this proof, we first prove that in each iteration Skip-Nodes

never discards a record which has the higher diversity contribution than that of the

candidate record. Let us assume, rcand ∈ S has lowest diversity contribution in S.

Divcont(rcand, S) = minri∈S
∑
rj∈S

Div(ri, rj)}

= minri∈SDivcont(ri, S).

43

We use helper Lemma 6 to prove that the actual DivCont score of any record

in a node node is bounded between uBSWAPnode and lBSWAPnode. Let us assume,

rd ∈ noded is a record inside node, therefore,

uBSWAPnoded ≥ Divcont(rd, S)

≥ Divcont(rcand, S)

= minri∈S
∑
rj∈S

Div(ri, rj),

as a result,

uBSWAPnoded ≥ minri∈S
∑
rj∈S

Div(ri, rj). (3.19)

From Equations (3.18) and (3.19), it is evident that noded containing rd will not be

skipped by Skip-Nodes. This logic extends to all the iterations Skip-Nodes calls.

Hence the proof.

Lemma 6. Divcont score of any record r ∈ node is bounded by upper and lower

bound uBSWAPnode and lBSWAPnode respectively. That is,

lBSWAPnode ≤ Divcont(r, S)r∈node ≤ uBSWAPnode. (3.20)

Proof. By replacing the value of maxDiv(node, node′), the upper bound can be

written as:

uBSWAPnode ←
∑

node′∈Z

maxri∈node,rj∈node′Div(ri, rj). (3.21)

For any record r ∈ node and rj ∈ S, rj ∈ noded and nodej ∈ Z,

Div(r, rj) ≤ maxri∈nodeDiv(ri, rj),

Or, ∑
rj∈S

Div(r, rj) ≤
∑

node′∈Z

maxri∈node,rj∈node′Div(ri, rj),

44

As a result, Divcont(r, S) ≤ uBSWAPnode. similarly, we can prove: Divcont(r, S) ≥

lBSWAPnode.

Observation 3. Once the control comes back from DivGetBatch(), Aug-SWAP

works exactly as the original SWAP does in each iteration.

Aug-SWAP performs identical calculation of SWAP on the records that are

not pruned by DivGetBatch().

Claim 6. Aug-SWAP requires O(N/C ∗ k ∗ log k +N) time in expectation.

Proof. In the original SWAP algorithm, each iteration to select a new record to be

swapped with the candidate record takes O(k ∗ log k) time. Therefore, for going over

all records in R, it takes O(N ∗ k ∗ log k). Aug-SWAP does not need to perform

O(N ∗ k ∗ log k), instead relies on DivGetBatch() to obtain a smaller set CandR

records.

Part 1. Running time of the API: A single iteration of DivGetBatch() needs

to go over all the nodes in I-tree. DivGetBatch() has to compute two subroutines:

Calculate-Bound and Skip-Nodes. By updating only the most recent swapped records

and using dynamic programming, the two subroutines’ overall running time is O(C),

where C is the total number of nodes. However, how many times the API gets called

depends on the number of times the swap condition gets satisfied (recall lines 8-10 in

Aug-SWAP algorithm).

Part 2. Running time of the rest of computation: The other major computation

of this algorithm is the running time of a record be swapped, which is O(k ∗ log k)

and Divcont running time in the Algorithm 5 line 8, which is O(k). How many times

Divcont gets executed depends on Line 7 in the Aug-SWAP algorithm is satisfied.

The number of times SWAP gets executed depends on swap condition, which is Line

8 in the Aug-SWAP algorithm. Finally, the entire R needs to be exhausted (as long

45

as the bound drop threshold is satisfied), which takes O(N) time. As a result, we

have:

TAug−SWAP = O(Number of times swap is satisfied

∗DivGetBatch() runtime+

Number of times swap is

satisfied ∗ SWAP runtime+

number of times line 7 is satisfied∗

Divcont runtime+N).

By considering running time of single Divcont,

SWAP , and DivGetBatch() call, overall running time of Aug-SWAP becomes:

TAug−SWAP = O(Number of times swap is satisfied

∗ C +Number of times swap is satisfied

∗ k ∗ log k + number of times line 7

is satisfied ∗ k +N).

= O(
N∑
i=1

[probability of swap satisfied

∗ C + probability of swap satisfied

∗ k ∗ log k + probability ofnumber of

times line 7 is satisfied ∗ k] +N)

Expected size of CandR is
∑N

i=1
|CandRi|

N
. Probability of line 7 satisfied =

probability that R[pos] is in CandR =
∑N

i=1
|CandRi|

N

N
. Without further information,

46

the probability of a record getting swapped is 1/2 (same as not getting swapped).

Probability of SWAP = 1/2∗line 7 is satisfied = 1/2∗
∑N

i=1
|CandRi|

N

N
. Expected running

time (cost) of Aug-SWAP is:

EAug−SWAP =
N∑
i=1

[1/2 ∗
∑N

i=1
|CandRi|

N

N
∗ (C + k ∗ log k)

+

∑N
i=1

|CandRi|
N

N
∗ k] +N

= 1/2 ∗
N∑
i=1

|CandRi|
N

∗ (C + k ∗ log k)

+
N∑
i=1

|CandRi|
N

∗ k +N

= O(
N∑
i=1

|CandRi|
N

∗ (C + k ∗ log k) +N)

First, we study the Part 2 computation having two costs associated with it, cost of

Divcont and cost that of SWAP . Based on Line 7 of Algorithm 5, if CandR is

large, it is likely to have R[pos] inside it. In fact, if CandR contains all R records,

R[pos] will always be there. For the purpose of illustration, let us assume, in the i-th

iteration, |CandRi| records touch x number of nodes in I-tree and node ni contains

vi records. Therefore, the probability that R[pos] is in CandRi =
∑x

q=1 vq

N
.

The expected running time of SWAP in terms of C is:
(
C
x

)
* probability of x

nodes getting selected * probability of (C−x) nodes not getting selected * probability

of R[pos] is in CandRi * probability of swap * cost of swap.

The probability of x = i and R[pos] is in CandRi is:

= (1/C)i ∗ (1− 1/C)C−i ∗ [(v1/N + v2/N + · · ·+ vi/N)

+ (v1/N + v3/N + · · ·+ vi/N) + . . .

+ (vC−i/N + · · ·+ vC/N)]

= (1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)
∗ (v1 + v2 + · · ·+ vc

N
).

47

= (1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)
.

Therefore, the expected running time (cost) of SWAP is,

ESWAP = 1/2 ∗N ∗ k ∗ log k ∗
C∑
i=1

(1/C)i ∗ (1− 1/C)C−i∗(
C − 1

i− 1

)
= 1/2 ∗N/C ∗ k ∗ log k.

Expected running cost of Divcont is
(
C
x

)
* probability of x nodes getting selected *

probability of (C−x) nodes not getting selected * probability of R[pos] is in CandRi

* cost of Divcont. Therefore, the expected running time (cost) of Divcont is:

EDivcont = N ∗ k ∗
C∑
i=1

(1/C)i ∗ (1− 1/C)C−i ∗
(
C − 1

i− 1

)
= N/C ∗ k.

The expected cost of Part 2 becomes:

EPart2 = 1/2 ∗N/C ∗ k ∗ log k +N/C ∗ k.

The expected running time (cost) of Part 1 is =
(
C
x

)
* probability of x nodes getting

selected * probability of (C − x) nodes not getting selected * probability of R[pos] is

in CandRi * probability of swap * cost of DivGetBatch(). Using similar calculation

as above, expected cost of part 1 is:

Epart1 = 1/2 ∗N ∗
C∑
i=1

(1/C)i ∗ (1− 1/C)C−i∗(
C − 1

i− 1

)
∗ C = N/2.

Expected running time of Aug-SWAP algorithm considering both Part 1 and Part

2 computation is:

48

EAug−SWAP = 1/2 ∗N/C ∗ k ∗ log k +N/C ∗ k +N/2

+N = O(N/C ∗ k ∗ log k +N)

Now consider the case when l > 1 for Aug-SWAP. Probability of selecting a

node in first level is 1/m, givenm is the arity of I-tree. Probability of selecting a node

in second level = probability of selecting that node out of m node in that branch *

probability of selecting it’s parent = 1/m2. Similarly, Probability of selecting a node

at leaf node is 1/ml = 1/C. As the records are only returned from leaf nodes,

the expected probability that R[pos] is in CandRi does not change for l > 1. The

running time of DivGetBatch() = O(ml) = O(C) also stays same . The rest of the

computation does not directly depend on l. As a result, expected running time of

Aug-SWAP for l > 1 is same as before.

Worst-case Aug-SWAP. In the worst-case, none of the records are skipped, so the

number of swap isO(N). Therefore, the worst-case running time is: O(N∗C∗k∗log k).

Our technical results are summarized in Tables 3.1 and 3.2.

3.6 I-tree

The index is a hierarchical complete tree-like structure [56] that partitions D into

multiple groups of records. Each node in I-tree consists of a group of similar records.

The index structure maintains a higher level aggregate similarity between nodes 3.

I-tree is applicable not only to the studied three algorithms, but also to any content-

based algorithm that is either based on replacing items in the top-k or building the

top-k in an incremental fashion.

3Diversity between a pair of records is simply 1− similarity between them.

49

Algorithm 5 Indexing Algorithm BuildTree(node)

Inputs: database D of N records, m: arity of the tree, l: number of levels,

Outputs: I-tree, simMatrixNode: node-node similarity matrix, recordMap: a

mapping of all records and their belonging node id for each level.

1: rootnode ← N records, y = 0

2: nodelist[y] ← rootnode

3: while y ≤ l do

4: for node in nodelist[y] do

5: cnodes ← Partition(node, m)

6: I-tree [y][node].addChild(cnodes)

7: w ←
⋃

cnodes

8: recordMap[y][r] ← node id containing record r in y

9: end for

10: MinsimMatrixNode[y][i][j] ← Use Equation 3.23

11: MaxsimMatrixNode[y][i][j] ← Use Equation 3.24

12: nodelist[y] ← w

13: y ← y + 1;

14: end while

3.6.1 Index construction

The input to the indexing step is a N × N matrix, named simMatrixRecord. It

represents the similarity scores between every pair of records, ri and rj, in the database

and two additional parameters, l and m, which are the number of levels and arity of

the tree, respectively. The output is a complete m-ary tree with l levels, referred to

as I-tree.

The indexing algorithm BuildTree (Algorithm 5) partitions (refer to the

Subroutine Partition) the records. It also maintains additional data structures that

contain similarity scores between nodes for efficient query processing. An example of

50

a two-level index tree is shown in Figure. 3.2. At the first level, BuildTree creates

a root node containing all N records and m children of the root node. From the

point of abstraction, it is not important at this stage to describe how the data is

partitioned. Basically, the goal is to keep similar records together while separating

non-similar ones. There are multiple off-the-shelf techniques such as clustering and

graph partitioning to carry out this task.

In our implementation, we use the popular k-means algorithm [47] for parti-

tioning. The algorithm repeats the partitioning procedure until it reaches l levels.

Therefore, I-tree contains a total of C nodes such that:

C =
l∑

i=0

mi =
ml+1 − 1

m− 1
= O(ml) (3.22)

Inside I-tree, additional data structures are maintained:

a. A recordMap of size N × l that maps the id of a record with the id of its node in

each level from 1 . . . l. b. MinsimMatrixNode and MaxsimMatrixNode that contain

inter-node minimum and maximum similarities between any two nodes in the same

level, respectively. Particularly, for two nodes n and n′ in level y, MinsimMatrixNode

and MaxsimMatrixNode contain:

MinsimMatrixNode[i, j] = Minr∈i,r′∈jsim(r, r′), (3.23)

MaxsimMatrixNode[i, j] = Maxr∈i,r′∈jsim(r, r′), (3.24)

where, r ∈ n, r′ ∈ n′. Figure 3.1 contains these scores for 3 nodes of our running

example.

51

{r2, r10} {r1} {r3}{r4} {r5} {r6} {r7}{r8} {r9}

Node

2 1

Node

2 2

Node

2 3

Node

2 4

Node

2 5

Node

2 6

Node

2 7

Node

2 8

Node

2 9

Node 1 1 Node 1 2 Node 1 3

Root node

{r1, r2,
r3,…, r10}

{r1, r2,
r4, r10}

{r3, r8,
 r9}

{r5, r6,
 r7}

Level 0

Level 1

Level 2

Figure 3.2 I-tree.

3.6.2 Index maintenance

Even for a single insertion or deletion, I-tree requires the following two activities: a.

insertion/deletion of that record from/into I-tree; b. updating MinsimMatrixNode

and MaxsimMatrixNode, if these insertion/deletion require updating the minimum

and maximum similarity scores between nodes. One can easily see that (a) could be

achieved in a constant time when l =1 and O(l) when l greater than 1. However, a

single insertion/deletion may require as many as 2 × (C − 1) updates in these two

matrices.

Batch Update We study how to maintain I-tree considering both insertions and

deletions.

Batch Deletion. Let us assume a batch of R records are to be deleted from

I-tree. The process deletes these R records one by one and then checks how many

entries in MinsimMatrixNode and MaxsimMatrixNode need update (if the deleted

records contribute to these aggregate values, then that require updates in those two

matrices, else not). The overall process takes O(|Y | × C ×N) time.

Batch Insertion. This problem is more complicated. If the records are inserted

arbitrarily inside I-tree, then, each insertion may potentially cause a total of 2×(C−

52

1) updates in theMinsimMatrixNode andMaxsimMatrixNode data structures. This is

the leading computational cost of batch insertion. Moreover, when a batch of records

are inserted, it is possible to have multiple records to get inserted inside the same node,

and that should not be double-counted in the process. Finally, one needs to insert

the records to those nodes, such that the aggregates stored in MinsimMatrixNode

and MaxsimMatrixNode remain “tight” to enable effective pruning. These nuances

are explored in formalizing the batch insertion problem.

Problem Definition 2. (Batch Insert.) Let Minsim

MatrixNode[i, j] (similarly MaxsimMatrixNode[i, j]) denote the value after |Y |

insertions at the [i, j]-th entry at the MinsimMatrixNode (similarly MaxsimMatrix

Node matrix). Let Minsimij and Maxsimij be two binary variables, such that which

Minsimij = 1 (similarly Maxsimij) , if it requires an update after insertions,

0 otherwise. Our goal is to insert a batch of records Y such that, it minimizes∑
i,j Minsimij +

∑
i,j

Maxsimij, i.e., the total number of updates in these two matrices.

Algorithms. We present an integer programming-based solution OPTMn

for solving the batch insert problem. While OPTMn indeed produces the optimal

solution, due to its exponential nature, it does not scale to a very large dataset

considering a large number of insertions. As an alternative, we present GrMn

a greedy heuristic algorithm which makes greedy choices and indirectly attempts

to minimize the number of updates in MinsimMatrixNode and MaxsimMatrixNode

matrices. The idea is to make a greedy decision by inserting each of the incoming

records to that node which it is closest to (based on the underlying similarity measure)

and then check if that insertion requires any updates in MinsimMatrixNode and

MaxsimMatrixNode matrices. The running time of this algorithm is O(|Y | ×N).

53

5 k 1 0 k 2 0 k 6 0 k 1 0 0 k
0

5

1 0

1 5

2 0

D a t a s e t s i z e
Ru

nni
ng

tim
e (

s) A u g - M M R
 M M R

(a) Yelp

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

5 0

1 0 0

1 5 0

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s) A u g - M M R

 M M R

(b) MakeBlobs

1 M 2 M 5 M 1 0 M
0

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0 A u g - M M R

 M M R

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s)

(c) MakeBlobs, large scale

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

5 0

1 0 0

1 5 0

D a t a s e t s i z e
Ru

nni
ng

tim
e (

s) A u g - M M R
 M M R

(d) MovieLens

Figure 3.3 Aug-MMR vs MMR scalability.

3.7 Experimental Evaluation

Our experimental evaluations have three primary goals. First, we analyze if the

augmented algorithms return identical results to their original counterparts using

multiple large-scale datasets. Second, we examine the efficiency and scalability of

the augmented algorithms and compare them with multiple baselines. Finally, we

empirically study the cost of building and maintaining I-tree. For brevity, we present

a subset of results that are representative.

Experimental setup. All algorithms are implemented in Python 3.8. All

experiments are conducted on a cluster server OSL machine with 32GB RAMmemory,

OS: Scientific Linux release 7.8 (Nitrogen), CPU: Intel(R) Xeon(R) CPU E3-1245 v6

@ 3.70GHz. Obtained results are the average of three separate runs. 4

4The code and data could be found at https://github.com/MouinulIslamNJIT/divGetBatch,
Retrieved on 4/7/2023

54

0 1 0 2 0 3 0 4 0 5 0
0

1 0

2 0

3 0

4 0

5 0

Ru
nni

ng
tim

e (s
)

k

 A u g - M M R
 M M R

(a) Varying k

1 2 3 4 5
1 0

2 0

3 0

4 0

5 0

Ru
nni

ng
tim

e (
s)

l

 A u g - M M R

(b) Varying l

1 0 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 01 . 5

2 . 0

2 . 5

3 . 0

Ru
nni

ng
tim

e (
s)

m

 A u g - M M R

(c) Varying m

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
2
4
6
8

1 0
1 2
1 4
1 6

Ru
nni

ng
tim

e (
s)

�

 A u g - M M R
 M M R

(d) Varying λ

Figure 3.4 Aug-MMR vs MMR varying parameters.

Table 3.6 Dataset Statistics

Dataset Size
#Total

features

#Features

used

Dataset

type

Yelp 112,686 12 3 Real

MovieLens 1,000,209 3 2 Real

MovieLens non-metric 8,453 3 2 Real

UCI Gas dataset 13,911 128 128 Real

MakeBlobs 10,000,000 varied 20 Synthetic

55

Table 3.7 Aug-MMR vs MMR Running Time (s) on MakeBlobs with l = 2, m =
6

Dataset Size

Algorithm 5k 10k 50k 10k

Aug-MMR 4.33 8.69 43.57 306.11

MMR 19.77 40.16 197.28 1206.90

Diversity and Similarity. We use normalized Euclidean distance (dist)

as diversity to validate our designed solutions in the geometric space, Cosine

similarity [47] in general metric space. For non-metric distance, we use Movielens

datasets and quantify the diversity between a pair of movies as the number of users

who have rated either of these two movies but not both. We additionally use an

arbitrary diversity function generated synthetically on Makeblobs dataset, such that

it does not satisfy triangle inequality. Thus, diversity values are atomic for the last two

cases, and are not derived from the feature vectors. For all these cases, sim = 1−dist.

Query selection. In our experiments, queries are chosen randomly.

Performance Measures. We measure precision@k [47] for qualitative

analysis. Efficiency of the proposed method is demonstrated with |CandR|/N

× 100, pruning = 1− |CandR|/N × 100, as well as by presenting the running times

of the algorithms in seconds and computing speedup as follows:

speedup =
Toriginal−algorithm

Taugmented−algorithm
(3.25)

where T denotes running time in seconds. Finally, we present time to build I-tree

and the space required for that.

56

5 k 1 0 k 2 0 k 5 0 k 1 0 0 k
0

1

2

3

D a t a s e t s i z e
Ru

nni
ng

tim
e (

s) A u g - G M M
 G M M

(a) Yelp

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

5

1 0

1 5

2 0

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s) A u g - G M M

 G M M

(b) MakeBlobs

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

5

1 0

1 5

2 0
 A u g - G M M
 G M M

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s)

(c) MovieLens

Figure 3.5 Aug-GMM vs GMM scalability.

Datasets. Experiments are conducted on five datasets, four real and one

publicly available synthetic data. For real datasets, we useYelp5, UCI Gas dataset 6

that is high dimensional, MovieLens 1M records, and MovieLens non-metric

dataset7. For synthetic data, we use MakeBlobs from the sklearn package.8 An

overview of the datasets is given in Table 4.5.

3.7.1 Baselines

In this section, we introduce diversity-based algorithms and index structure baselines

that we compare to our proposed solutions.

5https://www.yelp.com/dataset/documentation/main, Retrieved on 4/7/2023
6https://archive.ics.uci.edu/ml/datasets/gas+sensor+array+drift+dataset,
Retrieved on 4/7/2023
7https://grouplens.org/datasets/movielens/,Retrieved on 4/7/2023
8https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_

blobs.html,Retrieved on 4/7/2023

57

5 1 0 1 5 2 0 3 0 4 0 5 0
0

1

2

3

Ru
nni

ng
tim

e (s
)

k

 A u g - G M M
 G M M

(a) Varying k

1 2 3 4 5
0

2

4

6

8

Ru
nni

ng
tim

e (
s)

l

 A u g - G M M

(b) Varying l

1 0 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0
0 . 1 2

Ru
nni

ng
tim

e (
s)

m

 A u g - G M M

(c) Varying m

Figure 3.6 Aug-GMM vs GMM performance varying parameters.

Diversity Baselines For diversity-based methods, three representative algorithms

are implemented.

MMR [23]: computes an objective score based on two parameters: relevance

to the query and diversity with other records. As shown in Equation (3.1), they

are combined in a linear expression with a λ coefficient. The algorithm repeats this

computation k times to produce top-k.

GMM [44]: finds the k most diverse records by selecting the maximum of

minimum distances between undiscovered records and previously selected ones at

each iteration (Equation 3.10). Like MMR, it also iteratively builds the top-k set.

SWAP [95]: This greedy algorithm first finds the initial top-k records, then

greedily interchanges records that are part of the current top-k with the ones that

are remaining, if the swap improves diversity contribution (Equation 3.15).

SPP [38]: Space Partitioning and Probing (SPP in short) is an algorithm that

minimizes the number of accessed objects while finding exactly the same result as

58

1 0 k 2 0 k 4 0 k 6 0 k 1 0 0 k

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5
 A u g - S W A P
 S W A P

D a t a s e t s i z e
Ru

nni
ng

tim
e (

s)

(a) Yelp

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

5

1 0

1 5

2 0

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s) A u g - S W A P

 S W A P

(b) MakeBlobs

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0
5

1 0
1 5
2 0
2 5
3 0
3 5

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s) A u g - S W A P

 S W A P

(c) MovieLens

Figure 3.7 Aug-SWAP vs SWAP scalability.

MMR. SPP belongs to a family of algorithms that rely only on score-based and

distance-based access methods, and does not require retrieving all the relevant objects.

SPP is designed only for the geometric space.

Index Structure Baselines We implement three additional baselines to compare

against I-tree. These indexing techniques are limited to metric space, and can not

be applied on arbitrary diversity function not satisfying triangular inequality.

KD-tree [16]:KD-tree is a multidimensional Binary Search Tree. The tree is

created by bisecting each dimension and finding the median. KD-tree can perform

searches in multidimensional space for efficient nearest neighbor search.

Ball-tree [58]: Ball-tree is a binary tree in which every node defines a D-

dimensional hypersphere or ball, containing a subset of the points to be searched.

Each node in the tree defines the smallest ball that contains all data points in its

59

5 1 0 1 5 2 0 3 0 4 0 5 0
0
1
2
3
4
5

Ru
nni

ng
tim

e (s
)

k

 A u g - S W A P
 S W A P

(a) Varying k

1 2 3 4 50 . 0

0 . 5

1 . 0

1 . 5

2 . 0

Ru
nni

ng
tim

e (
s)

l

 A u g - S W A P

(b) Varying l

1 0 0 2 0 0 5 0 0 1 0 0 0
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4

Ru
nni

ng
tim

e (
s)

m

 A u g - S W A P

(c) Varying m

Figure 3.8 Aug-SWAP vs SWAP varying parameters.

subtree. This gives rise to the useful property that for a given test point t outside

the ball, the distance to any point in a ball B in the tree is greater than or equal to

the distance from t to the surface of the ball. Ball-tree only supports binary splits.

The arity of the tree in both KD-tree and Ball-tree is fixed to 2.

M-Tree [25]: M -tree is similar to Ball-tree, but supports multiple splits. Every

node n and leaf lf residing in a particular node N is at most distance r from N , and

every node n and leaf lf with node parent N keeps the distance from it. It also has

the similar property of Ball-tree, which is for a given test point t outside the node,

the distance to any point in a node in the tree is greater than or equal to the distance

from t to the surface of the node.

We are incorporating Node-Node distance matrix to these baseline tree index

structures so that they can be used for I-tree API.

Cover-Tree [18]: Another popular indexing structure is cover tree which is used

to enable efficient nearest neighbor search in metric space. To be able to work with

60

DivGetBatch(), the indexing technique must work in a fashion that the parent

nodes of the index structure (in this case a tree) covers the records that are present

in their sub-tree. This allows us to effectively maintain the inter-diversity bounds

across the nodes and when a node gets pruned, all its children also does. Contrarily,

in a cover tree, only the leaf nodes together contain and cover all the records and

no other intermediate/ higher level nodes does. Therefore, it is not obvious how to

adapt this indexing technique and integrate it inside our proposed access primitive.

Index Maintenance Baselines OPTMn and GrMn are compared with two

baselines.

NonIncrMn Algorithm: In NonIncrMn, I-tree is built from scratch after

every |Y | insertions. NonOlMn Algorithm: This algorithm makes a local decision

to insert each record based on Problem 2, without accounting for overlapping updates

inside the same node in I-tree.

3.7.2 Summary of results

Our first set of experiments verify that our results from all three augmented algorithms

are identical to their original counterparts. We measure precision@k [47] for different

k, and our empirical results obtain 100% precision score.

Our next set of experimental results demonstrate that the running time of the

augmented algorithms are consistent with our theoretical analyses. We achieve a

19× and 24× speedup for Aug-MMR and Aug-GMM, on Makeblobs 10M and

MovieLens 1M data, respectively. We achieve a 3× speedup for Aug-SWAP on

MakeBlobs 1M dataset. These results corroborate that our proposed framework

is suitable to scale on large datasets. We also show that I-tree works on any

arbitrary distance functions while other baselines are designed for only metric

distance functions. We have conducted experimental analysis on two different

non-metric distance functions (one obtained from the real data), these experimental

61

0 2 0 k 4 0 k 6 0 k 8 0 k 1 0 0 k0

5 0

1 0 0

1 5 0

2 0 0
 I - t r e e

D a t a s e t s i z e
Ru

nni
ng

tim
e (

s)

(a) Yelp

5 k 1 0 k 5 0 k 1 0 0 k 5 0 0 k 1 M
0

2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0

1 0 0 0 0 I - t r e e - M o v i e L e n s
 I - t r e e - M a k e B l o b s

D a t a s e t s i z e

Ru
nni

ng
tim

e (
s)

(b) MovieLens, MakeBlobs

1 2 3 4 50

2 0

4 0

6 0

8 0

1 0 0
 Y e l p
 M o v i e L e n s

l

Ru
nni

ng
tim

e (
s)

(c) varying l

1 0 0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0

0

1 0 0

2 0 0

3 0 0

Ru
nni

ng
tim

e (
s)

m

 Y e l p
 M o v i e L e n s

(d) varying m

Figure 3.9 I-tree construction time.

results demonstrate that Aug-MMR attains 82% pruning compared to the baseline

solutions, resulting in about 2.7 times speed up on an average. On the other hand,

the results obtained from high dimensional UCI Gas dataset demonstrate that the

proposed framework is still effective even in higher dimension, as Aug-MMR attains

about 1.7 speed up on an average.

Figures 3.11 demonstrate the index construction and the query processing

time trade-off of I-tree and we compare that with our implemented baseline

indexes, KD-tree, Ball-Tree, M-Tree. These results convincingly demonstrate that

I-tree enables the fastest query processing time, while requiring comparable index

construction time. The results demonstrate that I-tree is always more than 18×

faster in query processing and as much as 170× faster for certain configurations.

For preprocessing, it is always more than 1.5× faster and at times it is more than

20× faster. We also present |CandR| percentage and pruning percentage of I-tree

62

1 0 1 0 0 1 k 1 0 k 1 0 0 k
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

| Y |
Ru

nni
ng

tim
e (

s) G r M n
 N o n O l M n
 N o n I n c r M n

(a) MakeBlobs

1 0 1 0 0 1 k 1 0 k 1 0 0 k
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

| Y |

Ru
nni

ng
tim

e (
s) G r M n

 N o n O l M n
 N o n I n c r M n

(b) MovieLens

Figure 3.10 I-tree maintenance time varying |Y |.

compared to other index baselines in Tables 3.9 and 3.10 which shows that I-tree

outperforms all baselines with having 90% pruning.

The results convincingly demonstrate that I-tree is lightweight to compute and

space efficient (for the largest dataset, it takes 109 minutes to build the index, which

is acceptable because it is done offline and only once). Finally, we demonstrate that

our proposed solution OPTMn is an ideal choice for incremental index maintenance,

while the greedy heuristic GrMn is highly scalable while being not too inferior from

the optimal solution OPTMn qualitatively. GrMn takes 22 minutes to insert

100k data into 1M dataset, while building I-tree from scratch is unrealistic as

NonIncrMn takes 2 hours.

3.7.3 Quality analysis

The goal of these experiments is to empirically validate if the augmented algorithms

produce the same results as their original counterparts. Additionally, we present how

effective DivGetBatch() is in pruning records by presenting the size of CandR.

We have calculated precision@k while varying k from 10 to 50, considering the

original and augmented algorithms. We obtain the precision@k equal to 100% always.

63

5 k 1 0 k 5 0 k 1 0 0 k
0

5

1 0

1 5

2 0

2 5 w . r . t . K D - t r e e
 w . r . t B a l l - t r e e
 w . r . t . M - t r e e

I-tr
ee

Pre
pro

ces
sin

g S
pee

dup

D a t a s e t S i z e

(a) I-tree Index Preprocessing
speedup w.r.t baselines

5 k 1 0 k 5 0 k 1 0 0 k
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0

I-tr
ee

que
ry

pro
ces

sin
g S

pee
dup w . r . t . K D - t r e e

 w . r . t B a l l - t r e e
 w . r . t . M - t r e e

D a t a s e t S i z e

(b) I-tree Query Processing
speedup w.r.t baselines

Figure 3.11 Index Construction and Query Processing time for tree baselines and
I-tree.

3.7.4 Scalability analysis

We run two types of scalability experiments. (i) demonstrate the efficacy of the

augmented diversification algorithms and compare them appropriately with the

baselines; (ii) demonstrate the efficacy of the indexing technique - present index

construction and maintenance time, and compare them appropriately with the

baselines. Additionally, we also present the memory requirements of I-tree. We

analyze these effects by increasing dataset size and other pertinent parameters.

Augmented Diversification Algorithms We first vary dataset size, then additional

parameters that impact the query processing time. To demonstrate efficacy,

we present two things. (1) The percentage of remaining records returned by

DivGetBatch(), which is which is |CandR|/N×100 and pruning (1−|CandR|/N×

100. (II) Query processing time in seconds.

Effectiveness in Pruning. In Table 3.8, we present the number of remaining

records returned by DivGetBatch(), which is |CandR| using MovieLens dataset.

We can observe that there is a remarkable reduction compared to the original dataset.

For example, Aug-MMR returns only 814 records. The biggest number is for Aug-

SWAP with 66513 records, but still returning only 6% of the records.

64

Table 3.8 |CandR| Percentage Returned by DivGetBatch() on MovieLens

Dataset Size

Algorithm 5k 10k 50k 100k 500k 1M

Aug-MMR 13% 5.21% 0.56% 0.09% 0.08% 0.08%

Aug-GMM 59.96% 15.48% 4.16% 2.67% 0.31% 0.4%

Aug-SWAP 14.96% 28.11% 10.07% 48.74% 9.27% 0.66%

Table 3.9 |CandR| Percentage Returned by DivGetBatch() Using Different Index
Structures for Aug-MMR on MakeBlobs

Dataset Size

Algorithm 5k 10k 50k 100k

I-tree 10% 10% 10% 10%

KD-tree 96.72% 96.72% 96.87% 97.34%

Ball-tree 96.7% 95.62% 96.56% 96.56%

M-tree 97.92% 97.19% 98.32% 98.07%

Table 3.9 and Table 3.10 show |CandR| and pruning percentage returned by

DivGetBatch() for Aug-MMR algorithm using different index structures and

MakeBlobs dataset. We can see that by fixing C = 32, KD-tree, Ball-tree, and

M -tree pruning are below 5%, while I-tree pruning considerably outperforms all

baseline which is 90%.

Effectiveness in Number of Accesses. In order to perform a fair comparison

between our augmented algorithms and SPP , we compare the number of I/O accesses

SPP does and present that number for Aug-MMR (SPP is designed to optimize

that access). We calculate the number of accesses in DivGetBatch() by counting

the distinct records present in CandR in k rounds. The results are presented in Table

3.11. We can see that Aug-MMR has less number of access. For example on 100k

data, I-tree has 2799 number of access while SPP has 26521 number of access.

65

Table 3.10 Pruning Percentage by DivGetBatch() Using Different Index Structures
for Aug-MMR on MakeBlobs

Dataset Size

Algorithm 5k 10k 50k 100k

I-tree 90% 90% 90% 90%

KD-tree 3.3% 3.3% 3.1% 2.6%

Ball-tree 3.3% 4.3% 3.4% 3.4%

M-tree 2% 2.8% 1.6% 1.9%

Table 3.11 Number of Access Percentage for Aug-MMR and SPP on MakeBlobs

Dataset Size

Algorithm 5k 10k 50k 100k

I-tree 10% 10% 5.2% 2.79%

SPP 20.44% 9.57% 27.31% 26.52%

Varying Dataset. Figures 3.3, 3.5, and 3.7 compare the running times of our three

augmented algorithms and their baselines using our three datasets. As N increases,

the running times of each algorithm and its baseline increase, but we observe that

our algorithms are consistently faster and they scale significantly better. Figure 3.3

shows Aug-MMR’s scalability on all three datasets. We fix m to 1000, k = 20 and

l = 1 for all dataset sizes while N is increased from 5000 up to 1M. We can see that

on MovieLens, varying N from 5000 to 1M, Aug-MMR is 5× faster than MMR.

Figure 3.5 shows Aug-GMM ’s scalability. On MovieLens, varying N from 5000 to

10M, Aug-GMM is 24× faster than GMM. Consistent with the theoretical analysis,

Aug-GMM is faster than Aug-MMR for the same settings because Aug-MMR

has an additional k term in the expected cost equation. Figure 3.7 showsAug-SWAP

’s scalability on all three datasets. For the 1M data of MakeBlobs we obtain a 3×

speedup over SWAP. We obtain a 1.33× speedup for Movielens because the total

number of swaps in MovieLens are higher.

66

Table 3.12 Index Comparisons

Index Metric Functions Non metric Functions 90% Pruning

I-tree ✓ ✓ ✓

KD-tree [16] ✓ × ×

Ball-tree [58] ✓ × ×

M-tree [25] ✓ × ×

Table 3.13 Aug-MMR vs MMR Running Time on MakeBlobs 100k Records

Distance function

Algorithm Euclidean Cosine Non-metric

Aug-MMR 3.08 4.64 13.06

MMR 13.12 15.36 15.27

We also measure the scalability of Aug-MMR compared to MMR using large

scale data sizes of 2M, 5M, and 10M using makeBlobs dataset. The results are shown

in Figure 3.3(c) in which with m = 1000 and l = 1, we have up to 19× speedup.

Moreover, we runAug-MMR on high-dimensional euclidean distance considering

more number of features using 1M and 2M makeBlobs dataset. for 1M data, 1M and

20 features, MMR takes 12492.64 (s), and Aug-MMR takes 2817.14 (s). For 2M

data and 20 features, MMR takes 25812.43 9 (s), Aug-MMR takes 6317.20 (s)

which in both case show 4× speedup.

Additionally, Figure 3.12 presents the scalability of the proposed Aug-MMR

algorithm compared to MMR using UCI Gas dataset with 10k records and 128

Table 3.14 Aug-MMR vs MMR on Movielens Non-metric Data

Algorithm Running time (s) Average Pruning

Aug-MMR 0.19 82.66%

MMR 0.52 0

67

Table 3.15 I-tree Maintenance on MakeBlobs 10k Records

|Y | Algorithm # updates running time (s)

10

OPTMn 14 3.59

GrMn 76 0.007

NonOlMn 14 0.29

NonIncrMn 2446 1.30

100

OPTMn 59 512.42

GrMn 76 0.05

NonOlMn 142 2.97

NonIncrMn 2447 1.44

1000

OPTMn 59 18768.68

GrMn 76 0.43

NonOlMn 1068 34.58

NonIncrMn 2449 1.45

features. We set λ = 0.8 and vary k from 10 to 25. By increasing k, Aug-MMR

shows more scalability than MMR. Aug-MMR is about 1.7 times faster than the

baseline implementation.

Finally, we run Aug-MMR on l more than 1 to show the efficiency of our

proposed algorithm using multi-level I-tree. Table 3.7 shows that for l=2, Aug-

MMR speedup is almost 4× for all dataset sizes.

Varying Parameters. We study the effect of different parameters on running time.

Some parameters belong to the offline indexing algorithm, such as the number of levels

(l) and arity of I-tree (m) and the total number of nodes (C). Other parameters are

part of the online augmented algorithms. For example, k for the number of returned

records and λ coefficient forAug-MMR . In Figures 3.4, 3.6, 3.8, we vary parameters

using Yelp dataset with a fixed size of 50000 records. In our experiment, optimum

68

1 0 1 5 2 0 2 50

2 0

4 0

6 0
 M M R
 A u g - M M R

Ru
nn

ing
 tim

e (
s)

k
Figure 3.12 Aug-MMR vs MMR running time on UCI Gas data.

parameter settings for offline indexing are obtained by performing multiple runs and

selecting the best. The index created using those parameter settings can be used in

multiple runs of the online phase.

Varying k. Figures 3.4(a), 3.6(a), and 3.8(a) present how running time

changes as we vary k from 5 to 50 for different baselines while fixing l, m, and λ

to 1, 500, and 0.8, respectively. The running time increases quadratically for MMR

and Aug-MMR, linearly for GMM and Aug-GMM, and in O(k ∗ log k) fashion

for SWAP and Aug-SWAP. These results are as consistent with our theoretical

analysis, because of the presence of k2 term in the MMR and Aug-MMR’s expected

cost, k in GMM and Aug-GMM’s expected cost, and k ∗ log k of that of SWAP

and Aug-SWAP. Varying m. Figures 3.4(c), 3.6(c), and 3.8(c) show the impact of

varying m on the running time of the three algorithms. While varying m, we fix other

parameters: k = 20, l = 1. The choice ofm depends on the distribution of the dataset.

As we increase m, the bounds for augmented algorithms become tighter while time

for DivGetBatch() increases. We can see that there is a drop in running time and

which indicates the optimum value for m for these three algorithms. For example, in

Aug-MMR and Aug-GMM, the ideal value is m = 500 and for Aug-SWAP, it

is m = 100.

Varying l. Figures 3.4(b), 3.6(b), and 3.8(b) show the impact of varying l

on the running time of the three algorithms. We fix other parameters: k = 20,

69

Table 3.16 I-tree Maintenance Algorithm GrMn vs Construction from Scratch
Algorithm NonIncrMn Running Time on MakeBlobs 10k Records

|Y | Insertion Algorithm Preprocessing time-offline (s) query processing time-online (s)

10
GrMn

NonIncrMn

0.007

1.30

1.25

0.55

100
GrMn

NonIncrMn

0.05

1.44

1.33

0.60

1000
GrMn

NonIncrMn

0.43

1.45

1.96

0.80

10000
GrMn

NonIncrMn

1.02

4.65

8.18

1.61

and setting m to 2. C, the total number of nodes in I-tree becomes 2, 7, 15, 31, 63,

respectively for l = 1, 2, 3, 4, 5. In general, by fixing m and increasing l, C increases,

and overall running time decreases. This is consistent with our theoretical analysis,

as the expected running time contains a 1/C term.

Varying λ. Figures 3.4(d), 3.6(d), and 3.8(d) show that varying λ in MMR and

Aug-MMR does not significantly change the running time. We have fixed k = 20,

l = 1, and m = 500. The result is evident by observing the expected cost equations

of MMR and Aug-MMR algorithms which do not contain a λ term. Though MR

scores changes with λ, it has very little effect on the overall running time of MMR

and Aug-MMR algorithms.

Varying diversity Functions Table 3.13 shows the results for Aug-MMR

compared to MMR using different distance measures: euclidean distance measure,

cosine similarity as general metric, and a non-metric distance function. Using 100k

data from MakeBlobs dataset and m= 1000, l = 1 and number of features = 2, we

can see that Aug-MMR performs 4× better than MMR using both euclidean and

cosine similarity metrics. For non-metric arbitrary distance function, the distance

between records do not satisfy triangular inequality. Using this method, we see 15%

70

improvement, since the relevance and diversity scores are created arbitrarily and the

result depends on the data distribution.

Table 3.12 shows overall comparison for I-tree and other baselines. SPP uses

KD-tree as its index so we did not add it to the table. We can see that, unlike

other baselines, I-tree can be used in non-metric functions and outperforms with

90% pruning of the original dataset.

Table 3.14 shows the results for Aug-MMR compared to MMR using non-

metric distance function computed from MovieLens non-metric dataset. The total

number of movies is 8,453, λ = 0.8, and k = 20. The diversity between a pair of

items (movies) is calculated as the number of users that have rated either of those

movies, but not both. Table 3.14 demonstrates that Aug-MMR outperforms MMR

with 82.66% pruning of the original dataset, resulting in about 2.7 times speed up on

an average.

Index construction and maintenance

Comparison with Baselines - Index Construction vs. Query Processing.

In these set of experiments, we compare the index construction and query processing

time trade-off of I-tree and compare that with of KD-tree, Ball-tree, and M -tree

considering Aug-MMR. We adapt k-means and k-medoids [47] for building I-tree

with number of iterations set to 300. The dataset that is used in this experiments is

MakeBlobs. Figure 3.11 presents the I-tree speedup compared to other baselines for

index preprocessing and query processing time. The results demonstrate that I-tree

is always more than 18× faster in query processing and as much as 170× faster for

certain configurations. For preprocessing, it is always more than 1.5× faster and at

times it is more than 20× faster.

71

Index Construction. Now that it is obvious that I-tree outperforms the other

indexing baselines, we further profile its efficacy.

In Figures 3.9(a) and (b), we vary dataset size and fix other parameters,

m = 1000, l = 1. As we can observe in Figure 3.9(a), on the 100K Yelp dataset,

indexing time is 172.69 seconds. In Figure 3.9(b), indexing time is 105 minutes on the

1M MakeBlobs dataset, and 109 minutes on the 1M MovieLens. Figures 3.9(c)

and (d) show that the running time increases linearly when parameters m and l are

systematically increased. In Figure 3.9(c), by varying l, we fix dataset size to 50000,

and m to 2 (since C = ml, by increasing l, the total number of nodes will increase).

Finally, in Figure 3.9(d), we vary m, while fixing dataset size to 50000 and l = 1.

These figures demonstrate that the preprocessing time increases linearly with varying

parameters. I-tree takes 253 MB of space for 1M data with m = 1000 and l = 1.

Index Maintenance. For analyzing the index maintenance, we use two datasets,

MakeBlobs and MovieLens. We compare OPTMn and its efficient counterpart

GrMn with the baselines NonOlMn, and NonIncrMn. As expected, OPTMn

has the least number of updates, but due to its inherent exponential nature, it does

not scale beyond 10k dataset size with more than |Y | = 1000 records. Table 3.15

presents these results. We also seeGrMn, even though not the optimal one, but stays

consistently close to OPTMn. This table also shows that GrMn is better than the

baselines in both running time and number of updates.Figures 3.10(a) and (b) present

running time comparisons on very large datasets. GrMn is highly scalable, and the

other two baselines take more time than GrMn. These results corroborate that

GrMn is a suitable alternative to solve the index maintenance problem.

Incremental Index Maintenance vs Maintenance from Scratch. Table 3.16

shows comparison between GrMn and NonIncrMn index update algorithms. We

present index preprocessing time in the offline phase, and query processing time in

72

the online phase for the Aug-MMR algorithm. Clearly, GrMn requires smaller

preprocessing time and higher query processing time compared to NonIncrMn. As

it could be seen from Table 3.16, with 10,000 updates, the query processing time

of GrMn becomes almost 5× slower than that of NonIncrMn. Contrarily, the

preprocessing time of GrMn is about 4.5× faster than that of NonIncrMn at that

setting. Since query processing time is more important and must be optimized, it

seems, for 10,000 updates, it is better to build the index from scratch instead of

maintaining it incrementally.

3.8 Conclusion

We propose an access primitiveDivGetBatch() to expedite diversification algorithms

while returning their exact top-k results. We present a computational framework to

develop DivGetBatch() that contains a pre-computed index structure I-tree and

describe how to rewire popular diversification algorithms using DivGetBatch().

Unlike existing indexes that primarily work on vector spaces (assuming the records

have co-ordinates), we consider the records to be atomic as opposed to a collection

of vectors. We make rigorous theoretical analysis of the exactness and running times

of the augmented algorithms. We present principled solutions to maintain I-tree

under batch updates. Our experiments on large real-world datasets corroborate

our theoretical analysis, and show that our solution yields a 24× speedup on large

datasets.

In the future, we are interested to study how to enable approximate top-k result

diversification with guarantees leading to even faster running times. We also intend

to explore how to adapt our proposed framework if diversity is assumed to satisfy

metric property, in particular, the triangle inequality.

73

CHAPTER 4

TOP-K DIVERSIFICATION CONSIDERING FAIRNESS

4.1 Introduction

The proliferation of e-commerce platforms such as Amazon.com, Netflix, and

Spotify.com has given rise to the so-called “infinite-inventory”, which offer an order

of magnitude more records (products, movies, songs) than their brick-and-mortar

counter-parts [8]. This result in a long-tail market, where a handful of records

get heavily exposed to the end users and a long tail of “niche” records remain

relatively unknown. As a concrete example, the top-1000 highest rated movies in

IMDB [53] follow a long tail distribution in terms of number of views (refer to Y-axis in

Figure 4.1), even though they all have highly similar (average rating between 8.34 and

7.9)“utility” (IMDB ratings). The problem gets further exacerbated by downstream

applications in ranking and recommendation, such as Learning-to-Rank (LTR) [88,92]

framework or Collaborative Filtering (CF) [57] that consume user-feedback (explicit

or implicit) on the top-k results to re-evaluate the utility scores of the records. The

process makes a small set of records getting heavily exposed to the end users and

these records continue to “upgrade” their utility scores compared to the rest. This

inequitable exposure of the records conforms to the rich-gets-richer dynamics [88].

We advocate that for such long tail data, it is better to return one of the

equivalent top-k sets to the users, as opposed to a fixed one (although how much

change in the top-k answers the users experience must also be tunable). Imagine

a toy instance on the top-1000 IMDB movies, where all 1000 movies have highly

similar ratings. Based on a user query, imagine there are 4 sets of top-3 movies that

are equivalent in utility and any of these four could be returned to the user. These

are s1: {r1, r2, r3}, s2: {r2, r3, r4}, s3: {r2, r3, r5}, and s4: {r3, r4, r5}. However, if the

74

probability of returning any of these sets to the users is uniform (i.e., 1/4), then, the

popular movie r3’s selection probability is 1 (no matter which set is selected, r3 will

always be present), whereas, a niche movie r1’s selection probability is only 1/4 (r1

is only present in s1). Clearly, this process leads to inequitable and unfair selection

probability of the movies (users will get to experience popular record r3 many more

times than niche r1) hurting their equitable exposure. Our focus is to redesign the

existing top-k algorithms to address this unequal exposure concern. To the best of our

knowledge, we are the first to study this aspect of fairness inside top-k algorithms.

There is no single general definition of fairness, and it varies among different

scenarios. In the next subsections, we gathered most popular categories of fairness

definitions that most problems will belong to. We will explain each category based

on hiring example.

4.1.1 Demographic parity

Consider two groups, one majority and one minority group. Demographic Parity or

Statistical Parity states that the acceptance rate of the candidates from both groups

should be equal. Geyik et al. [42] describes demographic parity such that the predictor

outcome Y’ be independent of the protected attribute A, that is:

P (Y ′|A = 0) == P (Y ′|A = 1).

Singh et al. [76] defines it based on exposure and says the average exposure of

items in two groups must be equal. In Pitoura et al. definition [68] demographic

parity ensures that the proportion of each part of a protected group (e.g., gender)

should receive the positive outcome at identical rates.

4.1.2 Equalized odds

Equalized odds states that the protected and unprotected groups should have the

same rates for true positives and false positives. Unlike demographic parity, in

75

equalized odds Y’ depends on the protected attribute A but only via the target

variable Y [49]. It can be formulated as:

P (Y ′ = 1|A = 0, Y = y) == P (Y ′ = 1|A = 1, Y = y).

In the binary case and many applications such as hiring, we care more about

the true positive rate (Y = 1) rather than true negative rate. Hence, we focus on the

relaxed version of the previous formula:

P (Y ′ = 1|A = 0, Y = 1) == P (Y ′ = 1|A = 1, Y = 1).

this is called Equality of Opportunity. In our example, it is equivalent to hiring

equal proportion of applicants from the ”qualified” selection of each group.

Demographic Parity and Equalized Odds fall into a larger category named

“group fairness”.

4.1.3 Unawareness

This definition simply says we should not consider the sensitive attribute as a feature

in the train set. This notion is also called as disparate treatment. Consider c is binary

classifier that decides hiring based on X un protected features (such as college GPA)

and A is protected attribute (such as sex) then the formulation is as follow:

c(X,A) = c(X)

4.1.4 Individual fairness

Individual fairness states that any two similar individuals should receive the same

outcome. In [31] this definition is expressed as interpreting the goal of “mapping

similar people similarly”. The formulation is then:

D(M(X),M(X ′)) ≤ d(X,X ′),

where X, X’ are two input feature vectors, and D and d are two metric functions

on the input and the output space, respectively.

76

4.1.5 Counterfactual fairness

It states that a decision for an individual should be the same in both the actual

world and a counterfactual world, where the individual is assigned to a different

demographic group. The formulation is:

P [Y ′A←0 = y|X,A = a] = P [Y ′A←1 = y|X,A = a]

4.1.6 Proportionate fairness

Baruah et al. [13] introduced a new notion of fairness in resource allocation for periodic

scheduling problems, named proportional fairness or P-Fairness. They defined p-

fairness by introducing a notion named ’lag’ that measures the difference between the

number of resource allocations that task x should have received and the number that

it actually received. In their definition, a schedule S is P-fair if and only if for all

tasks x and periods t:

−1 < lag(S, x, t) < 1.

Our work in inspired by the individual fairness notion and we try to be fair to

the products which have almost similar score but are under-represented.

Problem Motivation and Models. To address such fairness concern over long

tail data, we adapt a political theory, namely, the Sortition Act [27, 77] and redesign

existing top-k algorithms to have them compute a set S of multiple top-k sets that are

equivalent in utility as opposed to a fixed top-k set. Given S, an end user still draws

one of the sets at random. Hence, the goal is to assign a probability distribution over

S, i.e., PDF (S), such that after many such draws from many end users, the records

returned inside the top-k sets have as uniform selection probability as possible. To

that end, we formalize the notion of θ-Equiv-top-k-MMSP that finds for a given

query and a scoring function F . Each set s ∈ S contains k number of records

whose score is at most θ%-smaller than the optimum top-k score, and the PDF (S)

is computed such that the selection probabilities of the records in it are as uniform as

77

possible. Enabling equal selection probabilities of the records ensure that each record

is equally likely to be returned to the end users and promotes fairness. This proposed

notion rooted on maxmin fairness theory that maximizes the minimum fairness. We

are aware of a few related works that we borrows inspiration from. [11] studies how to

enable fairness in similarity search by returning points within distance r from the given

query with the same probability. Both [36, 41] study how group fairness alone can

hurt equitable exposure of the records and thus define computational frameworks that

enable equal selection probability of the records in conjunction with group fairness

constraints. These existing works do not have any easy extension to our problem -

although we study how θ-Equiv-top-k-MMSP can complement group fairness.

Technical Contributions. We formalize key definitions, such as, θ-equivalent

top-k sets, selection probability of records, and present θ-Equiv-top-k-MMSP

that has two steps (Section 4.2). (A) θ-Equiv-top-k-Sets generates S, the set

of θ equivalent top-k sets (where θ is a tunable parameter that can control how

much changes is desirable across different top-k sets for different applications), (B)

MaxMinFair computes PDF (S) such that the minimum selection probability of a

record is maximized. We prove that the counting problem involved in θ-Equiv-top-

k-Sets is #P-hard, which makes θ-Equiv-top-k-MMSP an NP-Complete problem.

We first present an exact algorithm OptTop-k-θ that produces S, all θ-

equivalent top-k sets and is exact in nature. The algorithm is inspired by the

celebrated NRA algorithm [34] that only allows sorted accesses on the input lists

and returns exact answers as long as the scoring function is monotonic. At the

heart of the process, OptTop-k-θ intends to maintain a set of candidate top-k sets,

efficiently compute and maintain their best and worst possible scores through upper

and lower bounds, and decide if it is safe to terminate and produce the exact S

without having to read any more records. However, there are several non-trivial

computational challenges that it has to deal with, mainly because the number of

78

8 . 3 4 6 7 . 9 7 6 7 . 9 2 4 7 . 9 0 5 7 . 9 1 7 7 . 8 9 4 7 . 9 2 2 7 . 8 9 3 7 . 9 0 7 7 . 9 1 8

0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

A
ver

ag
e u

ser
 vo

tes

A v e r a g e I M D B R a t i n g

Figure 4.1 Viewership distribution of top-1000 IMDB movies.

possible size-k sets increases exponentially with new records being read. Therefore,

OptTop-k-θ leverages an efficient data structure based on the concept of item lattice

that allows efficient computation of the possible size-k sets and incremental updates

of their score bounds by reusing previously calculated scores. For producing PDF (S),

we present a linear programming-based exact solution Opt-SP.

We present RWalkTop-k-θ is highly scalable to solve both θ-Equiv-top-k-

Sets and MaxMinFair. We realize that the possible size-k set of sets over N records

could be represented as a hierarchically ordered lattice containing
(
N
k

)
nodes. Hence

an efficiency opportunity lies in producing some of these nodes on the go, as opposed

to discovering them from scratch one-by-one. We leverage this intuition in designing

a probabilistic algorithm based on random walk that is backed by the Good Turing

Test [40]. Good Turing Test is often used in population studies to estimate the number

of unique species in a large unknown population [40], which we use to determine when

RWalkTop-k-θ could stop and still discover all θ-equivalent top-k sets with high

probability. Given S, RWalkTop-k-θ calls a highly efficient greedy solution Gr-SP

to produce a probability distribution over it.

We finally design ARWalkTop-k-θ, an adaptive random walk based approach

that solves θ-Equiv-top-k-Sets and MaxMinFair at the same time. The intuition

comes from the fact (that we formally prove) that if S contains records that only

appears in one and exactly one set s ∈ S, then PDF (S) is a uniform probability

79

distribution which ensures equal selection probabilities for all records. ARWalkTop-

k-θ is similar to the random walk described inRWalkTop-k-θ, except it performs the

random walk adaptively, by lowering the probability of the records that are already

part of some valid s, and boosting the probability of the remaining records that have

not been part of any valid s yet. After that, PDF (S) becomes a uniform probability

distribution over the sets produced during the adaptive random walk.

Experimental Evaluations (Section 4.5). Our final contributions is empirical.

We first demonstrate how the proposed problem becomes critical inside existing

Learning-to-Rank(LTR) framework and compare that against existing group fairness

notion. We also empirically demonstrate how our proposed notion of fairness

complements group fairness. We use 4 different large scale real world datasets and two

large synthetic datasets to extensively evaluate our designed solutions and compare

them against several intuitive baseline algorithms. Our experimental evaluations also

corroborate our theoretical analysis, it terms of the quality and the scalability of the

designed solutions.

4.2 Data Model and Problem Definition

In this section, we present a running example, introduce key notations used

throughout the chapter (Table 4.1), describe our data model, present key definitions,

formalize θ-Equiv-top-k-MMSP, and study its hardness.

4.2.1 Running example

Consider the IMDB dataset D contains a large number of movies. The attributes are

movie name, IMDB rating, year, genre, and director. Assume that a user searches

for top-3 movies (k = 3) released in year 2022.

Given a threshold θ = 0.02, the goal is to return a set S containing a set of sets,

where each set s contains 3 movies, and the score of each set is at most 2% smaller than

80

the score of the set of 3-movies with the highest utility score. Let the scoring/utility

function F be the weighted relevance and max sum diversity (WRMSD in short), as

proposed below (with λ = 0.5). After that, compute a probability distribution over

S, i.e., PDF (S). Given PDF (S), an end user draws one of these sets s randomly

with probability P (s). Thus, design PDF (S), such that, after many such draws from

many end users, the records returned inside the top-k sets have as uniform selection

probabilities as possible.

Imagine only 5 movies as described in Table 4.2 are released in 2022. Therefore,

the size-3 sets are only constructed from those 5 movies. Let IMDB rating reflect

the relevance scores of the records. Let diversity be computed considering genre and

director score. The sorted pairwise diversity score list is given in Table 4.3.

The maximum utility score is = 19.85 and the goal is to create a set S of sets,

each s contains 3 movies such that, each s has utility score ≥ (19.85−[0.02×19.85]) =

19.45. It is easy to notice that even with only 5 records, there are three sets that

satisfy this condition (Table 4.4). After that, produce PDF (S).

4.2.2 Data model

Database. A database D contains N records, where each record is represented as r.

Utility Based Scoring Functions. Given a query q and D, a utility based scoring

function F scores each record with utility value F(r, q) and produces F(s, q), r ∈

s, |s| = k, which is the the aggregated utility score of set s with k records.

� Relevance: F(r, q) = Rel(r, q), where Rel is the relevance between record r and
query q.

� Diversity: Diversity is the dissimilarity between any two records, Div(ri, rj)
that is used to capture results that are representative of the population.

81

The attributes of the records could be used to calculate these values. Tables 4.2, 4.3

have some of those for Example 4.2.1.

Representative F . Some representative utility functions appear as follows.

� Sum-relevance. F(s, q) = Σr∈sRel(r, q)

� Weighted relevance and max sum diversity (WRMSD).
F(s, q) = λ× Σr∈sRel(r, q) + (1− λ)× Σr∈sMaxr,rj∈{s−r}
Div(r, rj), where λ is a weight between [0, 1].

� Maximal marginal relevance [23] or MMR. F(s, q) = λ × Σr∈sRel(r, q) + (1 −
λ)× Σr∈sMinr,rj∈{s−r}Div(r, rj)

Top-k Algorithms Given D, q, and an integer k, return a set s of k records from

D that has the highest F(s, q), i.e.,

� |s| = k;

� s has the highest utility score, i.e., for any other set of k records s′, F(s, q) ≥
F(s′, q).

Promoting Fairness inside Top-k Algorithms It is easy to see that there could

be more than one set of k-records that have highly similar utility score. To that end,

we define the notion of equivalent size-k sets.

Definition 1. Equivalent size k sets. Given a threshold θ, a query q and size k,

two sets si and sj each with k records are equivalent if the score of the set with lower

score is not smaller than a predefined threshold θ% of that with the higher score, i.e.,

si ≡ sj if F(si, q) ≥ (1− θ)×F(sj, q), when F(si, q) < F(sj, q)

Running Example. Considering the example from Section 4.2.1 again,

considering θ = 0.02 and WRSMD as the scoring function, s1: {r1, r2, r3}, s3:

{r2, r3, r5} are two equivalent size k sets with scores 19.7 and 19.85, respectively.

82

Definition 2. Probability Distribution over size k sets. Given a set S of sets,

each with k records, a probability distribution PDF (S) assigns a probability P (s) to

each s ∈ S, such that
∑
s∈S

P (s) = 1.

Definition 3. Selection probability of a record. Given a probability distribution

PDF (S) of a set S containing many size k sets, the selection probability [36] of a

record r is the sum of probability values of all the sets that contain r.

P(r) =
∑

r∈s,s∈S

P (s) (4.1)

Running Example. If s1:{r1, r2, r3}, s2:{r2, r3, r4}, and s3:{r2, r3, r5}, and

P (s1) = P (s2) = P (s3) = 1/3, selection probability P(r1) = P (s1) = 1/3, whereas,

P(r3) = P (s1) + P (s2) + P (s3) = 1. Indeed, no matter which set the end users

draw, r3 will be always returned, whereas, r1 will be returned only 1/3 of the time.

4.2.3 Problem definition and hardness

Our overarching goal is to produce top-k set of sets that are “equivalent” in utility

w.r.t. the set with the highest utility (i.e., the optimum top-k set), and ensure

that all records present in any of the equivalent top-k sets have an equal selection

probability. Generally speaking, we adapt the Egalitarian Social Welfare notion [32],

which maximizes the lowest selection probability of a record present in any top-k sets.

Problem Definition 3. (θ-Equiv-top-k-MMSP)Maximize Minimum Selection

Probability in θ-Equivalent Top-k Sets.

Given a database D with N records, scoring function F , threshold θ, query q, and

integer k, produce a set S of equivalent top-k sets and a probability distribution

PDF (S) over S, such that, the minimum selection probability of a record present

in any s ∈ S is maximized. Specifically, we define the following two sub-problems.

83

� θ-Equiv-top-k-Sets. Produce a set S of all θ-equivalent top-k sets, such that,
s ∈ S satisfies:

F(s, q) ≥ (1 − θ)× argmaxs′∈SF(s′, q)

� MaxMinFair. Compute probability distributions S such that the smallest
selection probability P(r) of a record r ∈ s, s ∈ S is maximized. That is:

Maximize Min P(r), r ∈ s, s ∈ S, (4.2)

In general, our proposed framework can accommodate any scoring function.

However, when the scoring function is non-monotone, such as, MMR [23], the designed

solutions become approximation.

Theorem 1. The problem of finding the number of θ-Equiv-top-k-Sets is #P-hard.

Proof. We show a polynomial time reduction from the problem of computing all

maximal frequent itemsets of size at most t [45, 90] to the problem of computing all

θ-equivalent top-k sets, that has a simple mapping between the number of solutions.

This suffices since the problem of finding the number of σ-frequent maximal itemsets

(threshold σ ∈ [0, 1]) with at most t items of a given 0-1 database D is known to be

#P-hard [90].

We take an instance of such 0-1 database with m transactions over N items.

The σ is set to be 1/m. Given one such instance of a 0-1 database, we create an

instance of our problem as follows: each item becomes a unique record r, such that

F(r, q) = 1, for an arbitrary query q. F(s, q) = Σ∀r∈sF(r, q). θ is set to be any

number between [0, 1]. A set of items is σ-frequent maximal itemset of size at most k,

iff the set of records corresponding to the itemset forms a set s with score F(s, q) = k.

Therefore, the number of θ-equivalent top-k sets is at least as many as the number

of σ frequent maximal itemsets of size at most k. This completes the reduction.

Theorem 2. The θ-Equiv-top-k-MMSP problem is NP-Complete.

84

Proof. (sketch) We omit the details for brevity. Intuitively, the hardness comes from

the fact that θ-Equiv-top-k-MMSP needs to enumerate all θ-equivalent top-k sets,

which is at least as hard as counting all such sets that is proved to be #P-hard.

Table 4.1 Table of Notations

Symbol Definition

N # records in D

k, q size of result sets, query

θ,s, S equivalence threshold, a top-k set, θ-equivalent top-k sets

C, L, F candidate set, sorted input lists, scoring function

P(r) selection probability of record r

Table 4.2 Records with Sorted Relevance (Example 4.2.1)

Record Movie Name IMDB Score

r1 Top Gun: Maverick 8.6

r2 K.G.F: Chapter 2 8.5

r3 Everything Everywhere All at Once 8.3

r4 RRR 8.1

r5 The Batman 7.9

Table 4.3 Sorted Diversity List Based on Example 4.2.1

Pair of records (r2,r3) (r3,r5) (r1,r3) (r3,r4) (r1,r4) (r4,r5) (r1,r2) (r2,r4) (r2,r5) (r1,r5)

Diversity Score 5 5 4 4 2 2 2 2 1 1

Table 4.4 WRMSD Scores of All Set of Sets, Each with Three Movies

sets {r1,r2, r3} {r1,r2, r4} {r1,r2,r5} {r1,r3,r4} {r1,r3,r5} {r1,r4,r5} {r2,r3,r4} {r2,r3,r5} {r2,r4,r5} {r3,r4,r5}

Utility Score 19.7 15.6 14.5 18.5 19.4 15.3 19.45 19.85 15.25 19.15

85

4.3 Exact Algorithms

We first describe an exact solution that solves both the sub-problems θ-Equiv-top-

k-Sets and MaxMinFair exactly, thereby ensuring exact solution for θ-Equiv-top-

k-MMSP.

The framework is described in Algorithm 6. To solve θ-Equiv-top-k-Sets, it

runs in a loop and finds the i-th best top-k set in the i-th iteration - that is, F(s, q) =

TopkSets(i) ≥ F(s′, q) = TopkSets(j), where i < j. It maintains all records that

are seen throughout. This process continues until the utility score of a top-k set

falls θ% below from the optimum top-k. After that, it calls the MaxMinFair S to

produce PDF (S).

In Section 4.4.2, we will show how these two steps could be combined to design

a highly scalable solution.

4.3.1 Algorithm for θ-Equiv-top-k-Sets

Our proposed algorithm OptTop-k-θ borrows inspiration from the celebrated NRA

(No Random Access) algorithm [34]. It runs in a loop by performing sorted

accesses over the input lists through a cursor movement by calling DivGetBatch(),

gradually produces TopkSets(i) sets whose scores monotonically decreases, and

finally terminates when all θ equivalent top-k sets are found. Since NRA requires

the scoring functions to be monotonic, we demonstrate OptTop-k-θ using one of the

representative function WRMSD described in Section 4.2.2. It performs three key

operations.

1. Generates and maintains a candidate set (C, i, j) of top-k sets as it reads j-th
records from the cursors. (C, i, j) is needed for deciding TopkSets(i).

2. Local stopping: if the TopkSets(i) is present in (C, i, j).

3. Global stopping: if all θ Equivalent top-k Sets are found.

86

Algorithm 6 Generic Framework for θ-Equiv-top-k-MMSP

Inputs: q, k, θ, database D, F

Outputs: PDF (S): probability distribution over a set S of top-k sets

1: S ← {}

2: flag = 0

3: Opt =∞

4: s = TopkSets(1)(F , D, k)

5: Opt = s.score, Score = Opt

6: S ← S
⋃

s

7: i ← 2

8: while (Score ≥ (1-θ)×Opt)and(flag ̸= 1) do

9: s = TopkSets(i)(F , D, k)

10: S ← S
⋃

s

11: Score = s.score, i← i+ 1

12: end while

13: PDF (S)←MaxMinFair(S)

Generate i-th best top-k set The first two operations are done inside Algorithm

TopkSets(i), whose pseudo-code is presented in Algorithm 7. TopkSets(i) is

responsible for generating the i-th best top-k set. Without loss of generality, we

assume there exists only one unique top-k set in each round. The argument extends

when that is not true. Given the set L of sorted input lists, the algorithm sets a cursor

on each list, and fetches the next record from those lists through L DivGetBatch()

calls. As an example, if the input lists consist of both relevance and diversity, then

DivGetBatch() fetches the next record from sortedRelList list as well as that from

the sortedDivList list and their corresponding scores. The cursor points to the

current position in the lists (let us assume that position to be j). It keeps track of the

87

all seen records upto j-th position. Then createNewSets creates all possible size-k

sets (lines 1-4).

Algorithm 7 TopkSets (i)

Inputs: a set L of input lists, i, F , k, TopkSets(i− 1).score, θ, Opt

Outputs: nextBest: i-th best set

1: cursor ← 0, seenR← ∅

2: for j = cursor to Maxl∈LLen(l) do

3: seenR = {seenR
⋃

DivGetBatch()(l1(j)),DivGetBatch()(l|L|(j))}

4: (C, i, j)← createNewSets(seenR[j])

5: for s in (C, i, j) do

6: lb(s), ub(s) ← LowerBound(s), UpperBound(s)

7: end for

8: threshold[j] ← max(ub)

9: if threshold[j] < Opt× (1− θ) then

10: nextBest = argmax(C, i, j), flag = 1

11: return nextBest

12: end if

88

13: for s in (C, i, j) do

14: if lb[s] ≥ max(ub((C, i, j)− s)) then

15: nextBest ← s

16: return nextBest

17: end if

18: if ub[(C, i, j)] ¡ max(lb((C, i, j)− s)) then

19: Prune {(C, i, j)− s}

20: end if

21: end for

22: if max(lb[(C, i, j) ≥ min(threshold[j], TopkSets(i− 1).score then

23: nextBest ← argmax(lb(C, i, j))

24: Break

25: end if

26: cursor ← j + 1

27: end for

28: return nextBest

In order to accomplish (2), the other challenge involves score computations

of size-k sets that are encountered so far. Since, OptTop-k-θ performs only sorted

accesses, it may not be able to produce the exact score of a set of k records immediately

- rather has to consider upper and lower bounds of score to argue if this set is a

possible candidate for TopkSets(i). Upper bound score of a set s, ub(s) (similarly

lower bound score lb(s)) is the the maximum possible (similarly the smallest) possible

score s can get. Moreover, when more records are being read, these bounds are to be

updated as well. Section 4.3.1 describes how that could be done efficiently.

Lower and upper bound score of a set. Clearly, the lower bound (upper bound)

score of a set s, lb(s) (similarly ub(s)) is the minimum (similarly maximum) possible

89

score of s that LowerBound and UpperBound calculate. LowerBound(s) is

calculated based on an objective function F and using the scores of any unseen

component of F(s) by the smallest possible value. UpperBound(s) is done

analogously, except the unseen component is replaced by the cursor reading at the

j-th position. Lines 6-7 do that task.

Illustration using WRMSD. Imagine F is (weighted rel, max div). In that case

L consists of two lists - a sorted relevance list sortedRelList and a sorted pairwise

diversity lists sortedDivList in decreasing order of relevance and diversity values,

respectively. Imagine the cursor is at the 2nd position of both these lists (i.e., j = 2)-

therefore, so far it has seen rel(r1), rel(r2), div(r2, r3), div(r3, r5). Clearly, 4 records

are seen so far, but all of their scores are not known - 3 different size-k (k = 3) sets

could be produced. But, because of sorted access, the score of none of these sets could

be calculated exactly. As an example, ub(r1, r2, r3) = 8.6+ 8.5+ 8.5+ 5+5+5 if the

weight λ is ignored. However, when the cursor reads another record, either from the

relevance or from the diversity list, the ub of all sets need to be updated.

Deciding the i-th top-k set. Line 9 of TopkSets(i) produces and maintains a

threshold and lines 10-14 decide if it needs to continue the computation any further

or it is safe to terminate.

Definition 4. Threshold is the maximum utility score of any unseen top-k set.

threshold[j] = Max[ub(C, i, j)]

Given the cursor is at the j-th position of the input lists, if threshold[j] falls

below Opt×(1-θ), there is no point of looking any further,TopkSets(i) can terminate

by returning the best set present in (C, i, j).

Lemma 7. s = TopkSets(i), if s = argmax(lb(C, i, j)) and lb(s) ≥ max(ub(C, i, j)−

s))

90

Lines 15-19 make another key calculation based on Lemma 7. It checks if there

exists a set s in (C, i, j) with the maximum lower bound, such that the lb(s) is not

smaller than the upper bound scores of all other remaining sets in (C, i, j). In that

case, s is the i-th best set and TopkSets(i) terminates upon returning that set and

its values. Indeed, when F is monotonic, no other unseen sets can have higher score

than s.

Lemma 8. s = TopkSets(i), if s = argmax(lb(C, i, j)) and lb(s) ≥

min(threshold[j],TopkSets (i− 1).score)

Similarly, based on Lemma 8, the algorithm makes another important decision

in Lines 24-27. If the maximum lb(s) of s is not smaller than the minimum of

threshold[j] and the score of the top-k set seen in the i − 1-th iteration, then lb(s)

is the top-k set in the i-th iteration. This lemma holds good, since the scores of the

returned top-k sets decrease monotonically over iterations.

Pruning sets. Even when TopkSets(i) can not terminate, it checks if all sets in

(C, i, j) are potential candidates to be the i-th best set - clearly, if the upper bound

score of a set s in (C, i, j) is not larger than the lower bound scores of all other sets

in C, s could be pruned.

Subroutine createNewSets Given N ′ < N number of items that are encountered

by TopkSets(i) already, when a new item r is read through a DivGetBatch() call,

OptTop-k-θ has to to perform some hefty tasks.

� It needs to update (C, i, j) by adding additional size k sets that involve r.

� More importantly, it needs to update the lower and upper bound scores of the
sets in (C, i, j) - or see if the score could be calculated exactly, if all required
scores are read.

91

A naive idea is to regenerate all size
(
(N ′+1)

k

)
sets from scratch, which is computa-

tionally wasteful and exponential. To that end, we abstract the representation of the

size k sets over a hierarchically ordered space as a lattice, and store ub and lb scores

of the record sets there. This data structure offers a great benefit for doing both of

these aforementioned tasks efficiently enabling incremental computation.

Data Structure. Given N ′ seen records, the lattice data structure maintains all(
N ′

1

)
,
(
N ′

2

)
, . . .

(
N ′

k

)
sets, as well as their utility score. A node in the lattice represents

a possible set, singletons, pairs, triples, ..., size k sets, and so on. An edge represents

the membership between two size l and l+1 sets. A complete lattice for our running

example is shown in Figure 4.2 given N = 5, although the data structure only stores

information upto size k sets. The set {r1, r2, r3} at level three is created by union

of three sets in level two, which are {r1, r2}, {r1, r3}, {r2, r3}. Hence the edges

represent the connection between these sets in level l and l + 1.

Maintaining the structure. This data structure is updated incrementally as new

records are read by OptTop-k-θ. Take the running example again and imagine

rel(r1), and div(r2, r3) is read. So far, the data structure have the following nodes r1,

r2, r3, {r1, r2}, {r2, r3}, {r1, r3}, and {r1, r2, r3}. Next, imagine it reads div(r3, r5),

thus a new record r5 is encountered. This creates a singleton, 4 new pairs, and 3

additional size-3 sets. Clearly, r5 will include the following three additional size-k

sets in (C, i), {r1, r2, r5}, {r2, r3, r5}, {r1, r3, r5}.

Efficient bound computation and maintenance Imagine the cursor on the

diversity list now moves to the third position and reads div(r1, r3) = 4. The

upper bound scores of all of these following sets. {r1, r2, r3}, {r1, r2, r5}, {r2, r3, r5},

{r1, r3, r5} are to be updated now. One can naively calculate these bounds from the

scratch - but there exists an opportunity of reusing previously done computation that

is clearly more efficient.

92

r1 r2 r3 r4 r5

{r1,r2} {r1,r3} {r1,r4} {r1,r5} {r2,r3} {r2,r4} {r2,r5} {r4,r5}{r3,r4} {r3,r5}

{r1,r2,r3} {r1,r2,r4} {r1,r2,r5} {r1,r3,r4} {r1,r3,r5} {r1,r4,r5} {r2,r3,r4} {r2,r3,r5} {r2,r4,r5} {r3,r4,r5}

{r1,r2,r3,r4} {r1,r2,r3,r5} {r1,r3,r4,r5} {r2,r3,r4,r5}{r1,r2,r4,r5}

{r1,r2,r3,r4,r5}

Figure 4.2 A complete lattice based on Example 4.2.1.

After reading div(r1, r3) = 4, our representation updates the score of the node

{r1, r3} in the lattice. All nodes that have a direct or indirect edge to {r1, r3}, their

scores are also updated.

Similar situation occurs, when a new record r is encountered - the lattice

representation allows us to quickly identify the new nodes that now contains r, as

well as how to efficiently reuse the previously computed score of a set s′ of size smaller

than k to compute score of set {s′
⋃
r}.

F(s′
⋃

r, q) = F(s′, q) + F(r, q) (4.3)

Formally, our effort is to study score update as an incremental process and reuse

sub-computations that are done before. We express the score (lb, ub, or exact) of a

set as a summation of scores over the subsets and retrieve the previously computed

scores and reuse it, as opposed to calculating the scores from scratch every time.

93

Indeed, the lattice representation over the seen records allows us to decompose the

score of a set as an aggregation over the sub-sets and reuse what has been done before.

Score reuse for WRMSD. Imagine an instance of OptTop-k-θ and

the DivGetBatch() call has just returned the second row in the diversity list,

namely div(r3, r5) = 4 and the goal is to produce top-k sets, where k = 4. A

brand new record r5 is just seen and this will add three additional size-3 sets

{r1, r2, r5}, {r2, r3, r5}, {r1, r3, r5}, four size-2 sets {r1, r5}, {r2, r5}, {r3, r5}, and

one singleton r5 on the lattice. The lattice structure facilitates score calculation

of WRMSD({r1, r2, r3, r5}) by reusing the scores that are calculated before. For the

purpose of illustration, lets just consider the diversity component of the WRMSD

calculation WRMSD−Div({r1, r2, r3, r5}) and see how upper bound of scores could

be calculated incrementally.

ub− div({r1, r2, r3, r5}) = Maxdiv[(r1, {r2, r3, r5})]

+Maxdiv[(r2, {r1, r3, r5})]

+Maxdiv[(r3, {r1, r2, r5})]

+Maxdiv[(r5, {r1, r2, r3})].

Now consider Maxdiv[(r3, {r1, r2, r5})] and note that this could simply be

expressed as follows:

Maxdiv[(r3, {r1, r2, r5})] = Max(div(r3, r5),Maxdiv[(r3, {r1, r2})] (4.4)

Maxdiv[(r3, {r1, r2})] is pre-calculated. Hence, Equation (4.4) could be efficiently

computed by taking a maximum over Maxdiv[(r3, {r1, r2})] score and div(r3, r5).

This allows sharing computation across sets.

94

Global stopping OptTop-k-θ halts when all θ-equivalent top-k sets are produced.

This is checked by when one of the following two conditions is satisfied; (i). the last

score received from TopkSets(i) is smaller than (1 − θ) × Opt, or (ii). the latest

threshold fell below (1− θ)×Opt (which sets a flag to 1). It is guaranteed that there

is no future unseen sets with score at most θ% smaller than the best top-k sets. At

that point, OptTop-k-θ safely terminates and produces the exact solution.

Theorem 3. OptTop-k-θ is an exact solution for θ-Equiv-top-k-Sets .

Proof. (sketch). Given a monotonic scoring function, it is easy to see that

TopkSets(i) produces the i-th best top-k set in the i-th iteration. OptTop-k-θ

maintains all records across iteration, forms all potential top-k sets. Finally, when

OptTop-k-θ terminates, the global stopping condition guarantees that no unseen set

of k records will be θ-equivalent of the top-k set. Hence the proof.

Running time of OptTop-k-θ. In Section 4.2, we prove that the counting

problem involved in θ-Equiv-top-k-Sets is #P-hard. In reality, the running time

is dominated by the number of records OptTop-k-θ reads before termination and is

dominated by the factor
(

seen records
k

)
.

4.3.2 Algorithm for MaxMinFair

The last line of Algorithm 6 calls Algorithm MaxMinFair, which maximizes the

minimum selection probability of the records present in S. We propose a linear

programming based optimum solution Opt-SP that takes the set of sets S as input,

and produces PDF (S), such that MaxMinFair optimizes. The problem is formally

defined as,

Maximize: x

subject to:

95

P(ri) =
∑

∀ri∈s,s∈S

P (s)

P(ri) ≥ x, ri ∈ s, s ∈ S∑
∀s∈S

P (s) = 1

Given the linear objective function and constraints this could be solved using an

off-the-shelf linear programming solver using Simplex or Ellipsoid method.

Running Time. Opt-SP involves solving a linear program using Simplex or

Ellipsoid method. Since the feasible region of thee objective function is a polytope,

these algorithms take polynomial time to the input size N and |S|.

4.4 Approximation Algorithms

We realize that the possible size-k set of sets over N records could be represented as a

hierarchically ordered lattice containing
(
N
k

)
nodes. Hence an efficiency opportunity

lies in producing some of these nodes on the go, as opposed to discovering them

from scratch one-by-one. We present two approximate solutions to that end. The

first one is RWalkTop-k-θ. To solve θ-Equiv-top-k-Sets, instead of designing a

deterministic exact solution that could be exponential, it leverages a random walk

based approach on the item lattice that is highly efficient and is backed by probability

theory. To solve MaxMinFair, it presents an highly efficient greedy solution Gr-SP.

ARWalkTop-k-θ solves both θ-Equiv-top-k-Sets and MaxMinFair at the same

time through an adaptive random walk.

96

Algorithm 8 RWalkTop-k-θ

Inputs: query q, D, k, F , θ

Outputs: PDF (S)

1: while true do

2: s = {}, S = {}

3: while |s| ≤ k do

4: pick a uniform random r ∈ {D − s},

5: s← {s
⋃

r}

6: end while

7: if F(s, q) ≥ (1− θ)×Opt then

8: S ← {S
⋃

s}

9: end if

10: visit.s← visit.s+ 1

11: if visit.s ≥ 2,∀s ∈ S then

12: break

13: end if

14: end while

15: PDF (S)← Gr-SP(S)

4.4.1 Algorithm RWalkTop-k-θ

Algorithm 8 leverages probabilistic computation for producing θ-Equiv-top-k-Sets

by making random walks on the item lattice. Following that, it solves MaxMinFair

using a greedy technique.

Inputs to the algorithm are the query, k, objective function F , θ, and the items

in D. Additionally, it takes the optimum top-k set and its corresponding score from

TopkSets 1. It starts by assigning each record a uniform probability of 1/N . At

each step it does uniform random sampling without replacement to select a record

97

and repeats the process until a set has k records. This completes a single random

walk on the item lattice, where the walk consists of the edges that are traversed. After

it retrieves a size k set s, it computes F(s, q) and retains s, if F(s, q) ≥ Opt − θ. It

keeps repeating the process and stops when each retained s is visited atleast twice in

the process.

Termination Condition of the Random Walk The termination condition used

for random walk is inspired by the Good Turing Test that is often used in population

studies to determine the number of unique species in a large unknown population [40].

Consider a large population of individuals drawn from an unknown number of species

with diverse frequencies, including a few common species, some with intermediate

frequencies, and many rare species. Let us draw a random sample of Nsamp individuals

from this population, which results in n1 individuals that are the lone representatives

of their species, and the remaining individuals belong to species that contain multiple

representatives in the sample population. Then, P0, which represents the frequency

of all unseen species in the original population can be estimated as follows:

Lemma 9. Lemma 1 (Good Turing Test). P0 = n1/Nsamp .

The assumption here is that the overall probability of hitting one rare species

is high while the probability of hitting the same rare species is low. Therefore, the

more the sample hits the rare species multiple times, the less likely there are unseen

species in the original population. We apply Lemma 9 to the θ-equivalent top-k

sets construction, where a valid θ-equivalent top-k sets maps to the species and the

probabilities of finding each such set in RWalkTop-k-θ are the frequencies. The set

of θ-equivalent top-k sets discovered during RWalkTop-k-θ is the sample population.

By ensuring this process visits each constructed set at least twice, we are essentially

ensuring that n1 is 0. Thus, using Lemma 9, P0 can be estimated to be 0, which

means it is highly likely that all θ-equivalent top-k sets are discovered.

98

Illustrative Example. Figure 4.2 shows the complete lattice involving Example 4.2.1.

To solve θ-Equiv-top-k-Sets, the algorithm uniform randomly adds a record and

continues the process until a size-3 is obtained. This way the set s1:{r1, r2, r3} is

formed. If s1 is a valid answer, it is retained. The process continues until all valid

sets are discovered at least twice.

Subroutine Gr-SP Subroutine Gr-SP is designed by leveraging the following

lemma.

Lemma 10. If every record r in S appears in only one set s ∈ S, the PDF (S) is a

uniform distribution that guarantees equal selection probability of the records.

Proof. Lemma 10 demonstrates an ideal scenario, where a record r ∈ s, s ∈ S appears

in only one s. If the PDF (S) is a uniform distribution, that is, P (s) = 1/|S|,∀s ∈ S,

by leveraging the definition of selection probability of a record (Definition 3), then,

P(r) = 1/|S|. Clearly, this guarantees that each records r to have the same selection

probability.

Basically, the greedy algorithm is iterative and attempts to select a subset of

sets from S that contains different records. Those subset of sets become part of O

and gets a non-zero probability value. Specifically, It selects a set s from S in each

iteration and adds to O, which includes the highest number of records that are not yet

present in O but present in S. The process terminates when O contains all records in

S. After that, each set that is present in O gets uniform probability of 1
|O| . Any set

s ∈ {S − O}, gets probability 0. We conjecture that this simple yet highly efficient

algorithm accepts a 2-approximation factor, the formal proof is left to be explored in

the future.

Illustrative Example. Imagine S contains the following 5 sets (k = 2), s1: {r1, r2},

s2: {r3, r4}, s3: {r1, r5}, s4: {r3, r5}, s5: {r1, r3}. If Gr-SP first adds s1 to O, then,

in the next iteration it will add s2, and finally s3/s4. One possible solution will be

99

O = {s1, s2, s3}. Each of these sets will get a probability of 1/3 and the remaining

two sets will have probability 0. The minimum selection probability of the records

will be 1/3.

Running time. With an appropriate data structure, such as bucket queue, Gr-SP

takes O(N × |S|) to run.

4.4.2 Algorithm ARWalkTop-k-θ

The last algorithm ARWalkTop-k-θ we discuss does not separately compute θ-

Equiv-top-k-Sets, and then, MaxMinFair - instead, solves these two problems

together. It makes use of Lemma 10 to design an adaptive random walk.

The adaptive random walk based algorithm ARWalkTop-k-θ is similar to the

random walk part of RWalkTop-k-θ, except it performs the random walk adaptively,

by lowering the probability of the records that are already part of some valid s, and

boosting the probability of the remaining records that have not been part of any valid

s yet. The goal is to discover θ-equivalent top-k sets where the same record r repeats

as few times as possible across the sets - ideally appears in one and only one s. The

stopping condition is still guided by the Good Turing Test as described above. Once

the process terminates, each set s in S gets uniform probability, and accordingly the

selection probability of the records are calculated.

For each record r ∈ N , the algorithm keeps track of the sets in S that contain r

(r.seenCnt). Instead of picking a record uniformly at random, it then, selects r with

a probability that is inversely proportional to r.seenCnt. The intuition is that if a

record r has already appeared in many s ∈ S, picking it again will hurt the minimum

selection probability of other records r′ that did not appear as frequently. Therefore,

in the i-th iteration of the random walk, it is likely to discover a set of k records that

contains new records that are not present in S yet.

100

Table 4.5 Dataset Statistics

Dataset Size Used Attributes

Yelp 112,686 latitude, longitude, review count

IMDB-top 1000 1,000 numVotes, genre,rating

IMDB 10,000 numVotes

Airbnb 39,882 price

Synthetic 10,000 random samples from uniform distribution

Makeblobs 1,000,000 random samples from guassian distribution

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0 3 0 0 0 0

0 . 4 5

0 . 5 0

0 . 5 5

0 . 6 0

0 . 6 5

Me
an

 Ab
sol

ute
 Er

ror

U s e r s

 M a x M i n F a i r
 U n i f o r m R a n d o m
 U n i f o r m R a n d o m G r o u p F a i r

Figure 4.3 θ-Equiv-top-k-MMSP inside LambdaRank
Read source: [20].

Illustrative Example. Imagine Example 4.2.1 again and assume that s1: {r1, r2, r3}

is discovered. After that, the r1.seenCnt, r2.seenCnt, r3.seenCnt are increased

to 1, and the probabilities of these records are readjusted proportional to their

1/r.seenCnt. Consequently r1, r2, r3 now have smaller probabilities, whereas, r4, r5

have higher probability. Then the random walk is repeated again and the process

terminates based on the Good Turing Test. Once S is obtained, each s ∈ S is

assigned uniform probability to produce PDF (S).

4.5 Experimental Evaluations

Our experimental evaluations have four primary goals.

Goal (1). How θ-Equiv-top-k-MMSP promotes fairness in compelling downstream

applications, such as, Learning-to-Rank(LTR) [20].

101

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

N
orm

aliz
ed

 cli
cks

M o v i e s

 b e g i n n i n g
 a f t e r 1 0 k
 a f t e r 2 0 k
 a f t e r 3 0 k

(a) Only group-fairness

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

N
orm

aliz
ed

 cli
cks

M o v i e s

 b e g i n n i n g
 a f t e r 1 0 k
 a f t e r 2 0 k
 a f t e r 3 0 k

(b) θ-Equiv-top-k-MMSP
+ group-fairness

Figure 4.4 θ-Equiv-top-k-MMSP complements group-fairness.

Goal (2). How θ-Equiv-top-k-MMSP complements existing group fairness

criteria.

Goal (3). Examine the quality of our designed solutions and compare them with

baselines.

Goal (4). Investigate scalability of the proposed algorithms and compare them with

baselines.

1. Experimental setup. All algorithms are implemented in Python 3.8. All

experiments are conducted on a server machine with 128GB RAM memory, OS:

windows server 2019 datacenter, version: 1809, CPU: Processor 11th Gen Intel(R)

Core(TM) i9-11900K @ 3.50GHz, 3504 Mhz, 8 Core(s), 16 Logical Processor(s).

Obtained results are the average of three separate runs. Github has the code and

data [9].

2. Datasets. Experiments are conducted on six datasets, four real and two synthetic

data. For real datasets, we use Yelp [94], IMDB-top 1000 [53], IMDB [51],

and Airbnb [6]. For one of the synthetic data, we generate random samples for

relevance and diversity scores from uniform distributions. The other synthetic data is

MakeBlobs [63] from the sklearn package that produces data points from a normal

distribution. Table 4.5 has an overview.

102

0.001 0.005 0.01 0.015 0.02

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
ca

ll

 IMDB
 Airbnb
 Yelp
 Synthetic

q
Figure 4.5 Recall of RWalkTop-
k-θ varying θ.

0.001 0.005 0.01 0.015 0.02
0.0

0.2

0.4

0.6

0.8

1.0
 IMDB
 Airbnb
 Yelp
 Synthetic

q

Re
ca

ll

Figure 4.6 Recall of
ARWalkTop-k-θ varying θ.

0.001 0.005 0.01 0.015 0.02

99

99.2

99.4

99.6

99.8

100

 IMDB
 Airbnb
 Yelp
 Synthetic

q

R
ec

or
d

Pr
un

in
g

Pe
rc

en
ta

ge

Figure 4.7 Record pruning
percentage OptTop-k-θ.

3. Implemented Algorithms.

To evaluate fairness consideration using Learning-to-Rank(LTR) applications, we

implement three different solutions inside LambdaRank [20]. (1) How θ-Equiv-

top-k-MMSP promotes fairness inside LambdaRank. (2) Group fairness. How

LambdaRank [20] behaves when top-k set satisfies only demographic parity constraints [75].

(3) No fairness. How LambdaRank [20] behaves with classical top-k solutions without

any fairness consideration.

Additionally, we implement and compare the following Algorithms. We note

that existing works [11,36,41] do not have an easy extension to solve θ-Equiv-top-k-

MMSP because the solution frameworks do not adapt to solve θ-Equiv-top-k-Sets.

� θ-Equiv-top-k-Sets. We compare the exact algorithm OptTop-k-θ with the

two approximate solutions RWalkTop-k-θ and ARWalkTop-k-θ.

103

� MaxMinFair. We implement a simple baseline H-SP first. It goes over the

sets in S one by one and checks if all records in a set s are present in other

sets in {S − s}. If yes, s is deleted from S. After that, the remaining sets are

returned, each associated with uniform probability. We compare the LP-based

exact solutions Opt-SP, with approximate solutions Gr-SP and H-SP.

4. Representative utility functions.

1. Maximize relevance. Σ∀r∈sRel(r, q)

2. Weighted relevance and max sum diversity (WRMSD)
Maximize λ×Σr∈sRel(r, q) + (1− λ)×Σr∈sMaxr,rj∈{s−r}Div(r, rj), where λ is
a weight between [0, 1].

3. Maximize diversity. Maximize Σr∈sMaxr,rj∈{s−r}Div(r, rj)

5. Query & Parameters. Queries are selected randomly. Unless specified, the

default parameters are N = 10k, k = 5, F = WRMSD with λ = 0.99, θ = 0.01.

6. Evaluation Measures.

� Goal (1), we present the mean absolute error (MAE) of a popular LTR model
LambdaRank [20] and argue why equal exposure is necessary, compared to
existing group fairness notion [75].

� Goal (2), we present #clicks (min-max normalized) made by the users.

� Goal (3), for θ-Equiv-top-k-Sets , we present recall [48] of the efficient
alternativesRWalkTop-k-θ andARWalkTop-k-θ compared toOptTop-k-θ.
For MaxMinFair, we present approximation factors (objective function of
approximate solution/ objective function of exact solution) of Gr-SP and
H-SP wrt Opt-SP.

� Goal (4), for θ-Equiv-top-k-Sets, we present pruning capabilities of OptTop-
k-θ , as well as study the scalability of the different algorithms designed for
θ-Equiv-top-k-Sets and MaxMinFair varying pertinent parameters.

104

4.5.1 Goal 1: Fairness inside LambdaRank

In this experiment, the mean absolute error (MAE) of a LambdaRank [20] model is

measured, where top-k results are returned satisfying three different considerations (θ-

Equiv-top-k-MMSP, group-fairness, and no-fairness) while varying user exposure

using the top-1000 IMDB movies that satisfy long tail distribution (recall Figure 4.1).

The dataset is first split into train and test set. LambdaRank is built on the train

set with the following input features: (i) number of views, (ii) action, (iii) horror, to

predict its utility (IMDB rating). All three algorithms return all θ-equivalent top-k

sets on the test data, where θ = 0.30. θ-Equiv-top-k-MMSP assigns probability

based on its proposed fairness criteria, whereas, the other two assigns equal probability

to each set. Group fairness is imposed based on genre: drama, action, or neither. The

total number of views for a movie is then updated as previous number of views +

viewing probability × number of users. After modifying the test dataset based on

updated views, the new features are passed on to trained LambdaRank model as

input, and MAE is calculated. As Figure 4.3 demonstrates, θ-Equiv-top-k-MMSP

ensures equal exposure leading to MAE having no effect for varying number of users

(shown as a flat line). On the contrary, MAEs of group-fairness and no-fairness

significantly increase (LTR model performs poorly) with the increase of number of

users. This validates the necessity of θ-Equiv-top-k-MMSP for long tail data.

4.5.2 Goal 2: MMSP complements Group-fairness

Figures 4.4 show exposure of IMDB-1000 movies (as normalized clicks) considering

group-fairness [75] alone and that of when θ-Equiv-top-k-MMSP is implemented

inside group-fairness [75] considering different numbers of times it is returned to the

end users. Group-fairness is imposed using the genre attribute. It is clear when

the top-k records are returned based on θ-Equiv-top-k-MMSP, while satisfying

105

1k 5k 10k 20k 50k
0

50

100

150

200

250 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

Dataset Size

Ru
nn

in
g

tim
e

(s
)

(a) Airbnb

10k 100k 500k 1M

0

5000

10000

15000

20000

25000

30000 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

Dataset Size

Ru
nn

in
g

tim
e

(s
)

(b) MakeBlobs

1k 10k 50k 100k 200k
0

50

100

150

200

250

Dataset Size

Ru
nn

in
g

tim
e

(s
)

 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

(c) Yelp

1k 2k 5k 10k
0

20
40
60
80

100
120
140 RWalkTop-k-q

 ARWalkTop-k-q
 OptTop-k-q

Dataset Size
Ru

nn
in

g
tim

e
(s

)

(d) IMDB

Figure 4.8 RWalkTop-k-θ vs ARWalkTop-k-θ vs OptTop-k-θ scalability by varying
dataset size N .

group-fairness [75], the exposure of the records remain unchanged (Figure 4.4(b)),

whereas, records get inequitable exposure when only group-fairness is ensured. Thus,

our proposed problem complements existing fairness definition.

4.5.3 Algorithms for θ-Equiv-top-k-Sets

In this section, we study the algorithms designed for θ-Equiv-top-k-Sets ,

qualitatively and scalability-wise.

Goal 3: Quality analysis: Recall We present recall results first.

A. Vary θ, RWalkTop-k-θ . We measure the quality of RWalkTop-k-θ by

comparing the returned sets to the exact solution OptTop-k-θ . We present

Recall percentage [48], which is the percentage of equivalent top-k sets returned by

RWalkTop-k-θ algorithm w.r.t. OptTop-k-θ. Figure 4.5 shows the Recall value of

RWalkTop-k-θ algorithm. It is encouraging to see that the recall of RWalkTop-k-θ

106

5 10 15 20 25
0

100
200
300
400
500
600
700
800
900

k

 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

Ru
nn

in
g

tim
e

(s
)

(a) Airbnb

5 10 15 20 25
0

20

40

60

80

100

Ru
nn

in
g

tim
e

(s
)

 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

k

(b) MakeBlobs

5 10 15 20 25
0

25

50

75

100

125

150

175

200
 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

Ru
nn

in
g

tim
e

(s
)

k

(c) Yelp

5 10 15 20 25
0

20
40
60
80

100
120
140
160
180

Ru
nn

in
g

tim
e

(s
)

k

 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

(d) IMDB

Figure 4.9 RWalkTop-k-θ vs ARWalkTop-k-θ vs OptTop-k-θ scalability by varying
k.

is mostly above 80%, for almost all real datasets. At some point it becomes as high

as 91%. When data distribution is uniform (synthetic data), clearly RWalkTop-k-θ

becomes more effective with increasing θ, which is unsurprising.

B. Vary θ, ARWalkTop-k-θ. Figure 4.6 shows the Recall value for ARWalkTop-

k-θ algorithm. As expected, ARWalkTop-k-θ is inferior to solve θ-Equiv-top-k-

Sets compared to RWalkTop-k-θ , as it only produces sets that are highly different

from each other, giving rise to fewer number of sets. ARWalkTop-k-θ reaches up

to 60% recall for Airbnb dataset.

Goal 4: Scalability analysis We present computational efficiency here.

A. Pruning Effectiveness. We show thatOptTop-k-θ solves θ-Equiv-top-k-Sets

by accessing a very few records in the sorted lists. Figure 4.7 shows effective

record pruning of OptTop-k-θ varying θ. Record pruning percentage is =

(N − number of seen records)

N
. OptTop-k-θ is able to prune 99% of the dataset

107

0.01 0.05 0.1 0.2

0

10

20

30

40

50

q

Ru
nn

in
g

tim
e

(s
)

 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

(a) Airbnb

0.01 0.05 0.1 0.2
0

10

20

30

40
 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

q

Ru
nn

in
g

tim
e

(s
)

(b) MakeBlobs

0.01 0.05 0.1 0.2
10
15
20
25
30
35
40
45
50

 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

q

Ru
nn

in
g

tim
e

(s
)

(c) Yelp

0.01 0.05 0.1 0.2
5

10
15
20
25
30
35
40
45
50

q
Ru

nn
in

g
tim

e
(s

)

 RWalkTop-k-q
 ARWalkTop-k-q
 OptTop-k-q

(d) IMDB

Figure 4.10 RWalkTop-k-θ vs ARWalkTop-k-θ vs OptTop-k-θ scalability by varying
θ.

to exactly solve θ-Equiv-top-k-Sets. Also with θ, more equivalent sets are to be

found, OptTop-k-θ needs to read more records, thereby pruning percentage slightly

decreased by increasing θ.

B. Running time varying N . Figure 4.8 shows the scalability of the three

proposed algorithms for θ-Equiv-top-k-Sets by increasing N . As expected, due

to the exponential nature of θ-Equiv-top-k-Sets , OptTop-k-θ is not scalable

over large value of N . In contrast, the other two proposed algorithms are scalable.

ARWalkTop-k-θ is more scalable than RWalkTop-k-θ since it finds less number

of sets because of its adaptiveness, it stops earlier. With 1M records in MakeBlobs,

ARWalkTop-k-θ takes only a few minutes to finish.

C. Running time varying k. Figure 4.9 demonstrates the scalability of the three

proposed algorithms by varying k. As expected, OptTop-k-θ does not scale well.

108

1k 5k 10k 20k 30k

0

10

20

30

40
 WRMSD
 Sum-Relevance
 Sum-Diversity

Dataset Size

Ru
nn

in
g

tim
e

(s
)

(a) Varying dataset size N

0.001 0.01 0.05 0.1 0.2
10

15

20

25

30

35
 WRMSD
 Sum-Relevance
 Sum-Diversity

q

Ru
nn

in
g

tim
e

(s
)

(b) Varying θ

5 10 15 20 25
0

50

100

150
 WRMSD
 Sum-Relevance
 Sum-Diversity

k

Ru
nn

in
g

tim
e

(s
)

(c) Varying k

Figure 4.11 RWalkTop-k-θ scalability for different utility functions.

Consider Figure 4.9(c) using Yelp dataset. When k = 5, OptTop-k-θ takes 34.02

seconds to run, and the number of seen records is 28.
(
28
5

)
= 98280 sets are generated

and examined only to produce 12 final top-k sets. Now consider that it is increased

to k = 10. This may end up producing
(
28
10

)
= 13123110 sets even with only 28 seen

records, which is 133× larger than before. This exponential increase is expected

due to the computational nature of θ-Equiv-top-k-Sets. On the other hand,

RWalkTop-k-θ and ARWalkTop-k-θ are highly scalable, and not very sensitive

to increasing k.

D. Running time varying θ. Figure 4.10 demonstrates the scalability of the

three proposed algorithms by varying θ. Increasing θ increases the size of |S|. As

expected, OptTop-k-θ is highly sensitive to this parameter and does not scale

well. In comparison, the random walk based algorithms RWalkTop-k-θ and

109

100 1k 5k 10k
0.4
0.5
0.6
0.7
0.8
0.9
1

|S|

Ap
pr

ox
im

at
io

n
fa

ct
or

 Gr-SP
 H-SP

(a) Approx factor varying |S|

5 10 15 20 25
0.4
0.5
0.6
0.7
0.8
0.9
1

Ap
pr

ox
im

at
io

n
Fa

ct
or

k

 Gr-SP
 H-SP

(b) Approx factor varying k

1k 5k 10k 20k

0

100

200

300

400

500 Opt-SP
 Gr-SP
 H-SP

|S|

Ru
nn

in
g

tim
e

(s
)

(c) Scalability by varying |S|

5 10 15 20 25
0

1

2

3

4

5

k
Ru

nn
in

g
tim

e
(s

)

 Opt-SP
 Gr-SP
 H-SP

(d) Scalability by varying k

Figure 4.12 MaxMinFair approximation factor and scalability.

ARWalkTop-k-θ are less sensitive and scale reasonably well with increasing θ.

E. Running time varying F . In Figure 4.11 we present the running time

of RWalkTop-k-θ using the three representative utility functions, described at

the beginning of the Section 4.5: Figure 4.11(a), Figure 4.11(b), Figure 4.11(c)

demonstrate the scalability by varying parameters N , θ and k. As we can see, the

running times of all three objective functions increase by increasing N , k, θ. However,

the nature of the underlying objective function does not as such impact the running

time. Similar observation holds for ARWalkTop-k-θ (the graphs are not presented

for brevity). This is highly encouraging, as it demonstrates the effectiveness of our

designed solutions across different objective functions.

110

4.5.4 Algorithms for MaxMinFair

In this section, we present the quality and scalability analysis of the three algorithms

designed for MaxMinFair.

Goal 3: Quality analysis We present qualitative analysis first.

A. Approximation Factor. We calculate the approximation factor by dividing

the minimum selection probability of the records returned by Gr-SP with that of

Opt-SP. Since MaxMinFair is a maximization problem, hence the approximation

factor is always ≤ 1. Similarly, the approximation factor of H-SP is also computed.

As we shall demonstrate in Section 4.5.4, despite being an exact solution, Opt-SP

is not highly scalable, since it involves a linear program. Figure 4.12 (a) shows

the approximation factor using the sets returned by RWalkTop-k-θ algorithm for

Gr-SP and H-SP. Since minimum selection probability for Gr-SP is higher than

H-SP, its approximation factor is larger. The approximation factors demonstrate

an encouraging facts. the minimum approximation factor value for Gr-SP is 0.74

and that of H-SP is 0.68, where as the maximum is 0.84 and 0.75, respectively.

Figure 4.12 (b) present the approximation factor by varying k on 1000 sets returned

by RWalkTop-k-θ algorithm for Gr-SP and H-SP. The minimum value of

approximation factor of Gr-SP is 0.77, and for H-SP is 0.60, and the maximum

values are 0.81 and 0.74, respectively.

Goal 4: Scalability analysis We evaluate the scalability varying |S|, N , k.

A. Running time varying |S|. Figure 4.12 (c) shows running time of the

Opt-SP, Gr-SP, H-SP with k = 5. The heuristic H-SP exhibits the highest

scalability among all and the linear programming based exact algorithm Opt-SP

has the least scalability, as expected. Similar observation holds when N is varied.

Nevertheless, both Gr-SP and H-SP are highly scalable and the results corroborate

their theoretical running time.

111

B. Running time varying k. Figure 4.12 (d) shows the scalability with varying

k and |S| = 1000. Similar observation holds as before that agorithms Gr-SP and

H-SP are highly scalable to increasing k. This observation is also consistent to their

theoretical analysis.

4.5.5 Summary of results

(a) Our most impactful observation is that θ-Equiv-top-k-MMSP is equipped

to promote equitable exposure of records inside long tail data and benefits LTR

models, compared to existing group fairness criteria. (b) θ-Equiv-top-k-MMSP

complements group-fairness [75]. (c) Our third observation demonstrates the

computational effectiveness of OptTop-k-θ - despite the fact θ-Equiv-top-k-

MMSP is computationally intractable, our designed solution OptTop-k-θ is highly

effective in pruning the vast majority of the records from the input database to

produce the exact solution for θ-Equiv-top-k-Sets. The pruning effectiveness is

at times as high as 99%. (d) We experimentally observe that RWalkTop-k-θ is a

highly scalable algorithm that is several order of magnitude faster than the exact

solutions OptTop-k-θ and Opt-SP, yet the produced results are highly comparable

qualitatively. This solution achieves high recall, sometime, as high as 91% recall value.

These results demonstrate the efficiency as well as effectiveness of RWalkTop-k-θ to

be used and deployed inside real world applications. (e) Our final observation is that

ARWalkTop-k-θ is a highly efficient solution that can easily scale to a very large

N with millions of records, and is suitable for applications that can accommodate

modest inaccuracy.

4.6 Conclusion

We formalize θ-Equiv-top-k-MMSP to redesign existing top-k algorithms for long

tail data to ensure fairness. Given a query, θ-Equiv-top-k-MMSP computes a

112

set of top-k sets that are equivalent and assigns a probability distribution over

these sets, such that, after many users draw a set from these sets according to its

assigned probability, the selection probabilities of the records present in these sets

are as uniform as possible. We present multiple algorithmic results with theoretical

guarantees as well as present extensive experimental evaluation. We demonstrate

how our proposed notion of fairness positively impacts compelling downstream

applications, and complements group fairness.

This work opens up many interesting directions - one of the directions that we

are currently exploring lies in understanding pre-processing techniques that can speed

up the computation of θ-Equiv-top-k-Sets.

113

CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Summary

In this dissertation, we focus on two broadly defined challenges related to top-k results:

First, we study how to expedite existing diversification algorithms. We propose

a computational framework that consists of two phases: offline and online phase. In

the offline phase, we design an index structure over the groups of records instead of

individual records, keeping similar records together in a node and dissimilar records

separate. We keep minimum similarity and maximum similarity between nodes in a

tree-based data structure named I-tree. Then in the online phase, we redesign three

representative diversity algorithms to leverage this index to expedite their running

times without losing the accuracy of the results. We design an API DivGetBatch(),

which uses the index I-tree to prune the nodes which do not have the potential to

be returned as the answer. We calculate the lower and upper bounds for each node

and only select the node having the potential records as the result. After calling API

and returning only a small number of records, we call original diversity algorithms to

find the top-k. We also provide maintenance of our data structure over the dynamic

data. Our goal is to insert a record to a node that minimizes the number of updates

in the index, which is minimum similarity and maximum similarity between nodes.

We provide an integer programming solution and a greedy solution for the insertion

problem. Our index assumes the records to be atomic and the diversity function to

be arbitrary, even metric or non-metric functions. We achieve up to 24× speedup

and 90% pruning of the original dataset.

Second, we study the problem of equitable exposure of records. We study the

long-tale data phenomenon where there exists a long sequence of records having equal

114

utility. However, given the existing algorithms, which are static, they only return a

fixed top-k to the user query and making the process inequitable to the records which

have similar utility. However, they never get the chance to be returned to the user.

Then we show that there exist multiple equivalent top-k sets as the result that have

similar utility, and we perform a probability distribution over these sets such that

each record in these sets has an almost equal opportunity to be presented as a result.

We present exact and approximate algorithms and provide proofs with theoretical

guarantees as well as present extensive experimental evaluation. We present how

the proposed notion of equitable exposure impact downstream applications, such

as, Learning-to-Rank framework, and compare that against existing group fairness

criteria. We run extensive experiments using multiple datasets and design intuitive

baseline algorithms that corroborate our theoretical analysis.

5.2 Open and ongoing problems

This dissertation opens up several new problems, some of which are being investigated

currently and some left for future work. Based on the current dissertation, we have

identified three subproblems that we are currently working on.

Adaptation of other index data structures. One ongoing work is to study

the adaptation of other index data structures in our DivGetBatch() framework.

For instance, we want to study R-tree [46]. The R-tree data structure organizes

spatial objects into a hierarchical structure of nested rectangles, where each rectangle

corresponds to a node in the tree. Each node can contain multiple objects, and

each object is contained in exactly one node. The rectangles of a node overlap to

some degree, and they are chosen to minimize the overlap between adjacent nodes.

R-trees support efficient queries for finding all objects that intersect with a given query

region. The search algorithm starts at the root node and traverses the tree recursively,

following the branches that intersect with the query region. The algorithm terminates

115

when it reaches a leaf node that contains objects that intersect with the query region.

The similarity between our I-tree and R-tree is that both are height-balanced, and

they group nearby objects in one node. This index is easily adaptable, and in order

to use it, we need to calculate min and max distances between nodes and create

SimMatrixNode. We are interested in doing experiments to see if using R-tree can

help to prune or not. Another index structure that we intend to study which has

non-trivial adaptation is Cover tree [18]. The tree is a series of levels arranged in a

hierarchical order, where the highest level includes the root point and the lowest level

includes all the points in the metric space. Each level, denoted by C, corresponds

to a specific integer value i that decreases as one moves down the tree. The cover

tree has three significant characteristics at every level C. (a) Nesting: Ci ⊂ Ci−1.

This implies that once a point p appears in Ci, then every lower level in the tree

has a node associated with p. (b) Covering tree: for every p ∈ Ci−1, there exists a

q ∈ Ci that d(p, q) < 2i , and the node in level i associated with q is a parent of

the node in level i − 1 associated with p. (c) Separation: for all distinct p, q ∈ Ci,

d(p, q) > 2i. Hence, we have fewer records at the higher levels and more records as

we go down. The records that are part of the same node have a certain distance

satisfied. The records that are part of the same node are actually farther from each

other than the records that are apart from each other in two consecutive levels. We

can find the node ID of the records and also the first node that this record appears.

We can calculate the diversity between records using a cover tree based on the first

level (first time) that these two records appear because we can ensure that the actual

distance is more than the level gap, which is 2i. The cover tree can be adapted in

SWAP algorithm. In SWAP , we go down the sorted relevance list until a threshold

is satisfied. So by calling a getNext() interface, it gives the next best record that

has the highest relevance with the query. Then it finds a candidate record from the

current top-k set that has the smallest diversity contribution, and in each iteration,

116

it attempts to swap one record from the remaining records with the candidate record.

DivGetBatch() calculates the upper bound and lower bound swap score between each

node and the nodes of the current result set. So leveraging the cover tree in SWAP

process is that every time we read a new record, we can probe the cover tree and

find out what would be the maximum and minimum diversity score that this new

record can give rise to based on the distance criteria given in the cover tree. If this

new record’s lower bound of diversity contribution is not smaller than the maximum

diversity contribution of the current set of nodes, then this record is swappable.

Modifying MMR needs more change in DivGetBatch() API it is non-trivial since the

cover tree does not give monotonic access to diversity, and we will continue that in

future work.

Adaptation of other top-k criteria: Serendipity. In our second problem,

we are interested in studying the adaptation of other top-k criteria, such as

serendipity. The serendipity criterion measures how surprising or unexpected the

selected records are. A top-k algorithm that prioritizes serendipity will aim to select

items that are not only relevant but also unexpected, creating a sense of delight

or surprise for the user. It is commonly agreed that serendipity consists of two

components: surprise and relevance. The concept of serendipity in recommendation

systems is still a relatively new and evolving area of research, and there is not yet

a universally accepted definition or metric for measuring it. The idea of an item

being surprising or unexpected is subjective and difficult to quantify [54]. We study

the notion of serendipity from [101], where a record is considered to be serendipitous

to a user if it is both relevant and unexpected. Based on an existing work [89], we

define relevance and unexpectedness to define serendipity. The concept of relevance

in recommendation systems is personalized and refers to a user’s interest in items.

To determine relevance, we compare a user’s rating of an item to their average rating

of all items. An item i is relevant if the rating given on i is greater than the average

117

value of all ratings provided. Given a returned list L of size N , the following metric

defines the relevance of L as the ratio between the size of the subset of L that contains

relevant items and the size of L:

Relevance@N =

∑
i∈L

R(i)

N

where R(i) = 1 if i is relevant, and 0 otherwise.

The popularity of the item i is defined as the ratio between the number of users

who rated i and the total number of users in the dataset. The item i is unexpected

if its popularity score is below the average popularity computed across all the items

in the dataset. This means that the average value of popularity allows splitting

items in the dataset into two parts: the short head, containing the most popular

(and expected) items, and the long tail, containing the less popular (and unexpected)

items. The Unexpectedness@N metric defines the unexpectedness of set L as the

ratio between the size of the subset of L that contains just unexpected items and the

size of L:

Unexpectedness@N =

∑
i∈L

U(i)

N

where U(i) = 1 if i is unexpected, and 0 otherwise.

Finally, Serendipity@N defines the serendipity of L as the ratio between the

size of the subset of L that contains serendipitous items, i.e., those relevant and

unexpected at the same time, and the size of L:

Serendipity@N =

∑
i∈L

S(i)

N

where S(i) = 1 if i is serendipitous, and 0 otherwise.

So the objective function is:

Serendipity(r) = argmaxr∈NλRelevance(r, q) + (1− λ)unexpectedness(r)

where λ is a balancing coefficient between 0 and 1.

So our problem is to maximize serendipity in the top-k, which is to maximize

the relevance and unexpectedness of the records in the top-k at the same time. Since

calculating the relevance is dependent on the query, which is online, we need to go

118

through all records to select the maximum relevance, which is O(N). Our challenge is

how to use efficient indexing and preprocessing of some of the calculations offline to

expedite the running time. One general solution is to precalculate the unexpectedness

of all records since it is not query dependent, and the unexpectedness of a record does

not depend on that of other records. We can precalculate and sort the unexpectedness

in decreasing order and use it in the online phase when we have sorted lists of relevance

and unexpectedness in decreasing order and access the records of each of these lists

in sequential order like NRA algorithm [34]. We can set the threshold to be the

aggregate(or minimum) of the scores seen in current access, and we stop when the

scores of the top-k are greater or equal to the threshold. So using an NRA-based

algorithm and this simple index, we can stop earlier and not go through all N records.

Adaptation of other notions of result diversification and other notions

of fairness. As another ongoing work, the adaptation of other notions of result

diversification and other notions of fairness that are relevant are being explored. One

of the popular notions of diversification is attribute-aware diversification, which is not

studied in this dissertation. In this definition, the diversity of a list is defined by how

much each item in the list differs from the others in terms of their attribute values.

For example, in [102], it can be defined on the attributes of each movie, including

genre, actor, and director. Similarly, group fairness constraint in top-k results, such

as demographic parity in top-k, is not studied in this dissertation. Group fairness

is usually expressed in the form of constraints on the fraction of records from some

protected groups that should be included in the top-k set for any relevant k. It ensures

that the proportion of protected candidates in the top-k set is proportionate to the

original data distribution [98]. For example, if the protected attribute is race and

in original data 20% are African-American, 50% are Caucasian, and 30% are Asian,

it means out of k = 10, the result will include 2 African-Americans, 5 Caucasian,

and 3 Asian. These two definitions of attribute-aware diversification and group

119

fairness based on demographic parity can be treated similarly from a computational

standpoint since they are the same but are defined on different types of attributes.

Attribute-aware diversification ensures a certain percentage of variety in the top-k,

for example, a certain value of genre, production company, and language, which are

diversification attributes, while in demographic parity, the result needs to satisfy

certain representation of protected attributes in the top-k. Hence, in our ongoing

work, we are interested in making our DivGetBatch() API group fairness aware and

studying how the result of existing diversity algorithms can satisfy the group fairness

constraint, such as demographic parity. The problem is a constraint optimization

problem which is to find the top-k set result satisfying the group fairness constraint

as well as to maximize the diversification objective function. One naive solution and

brute force is to create all possible k sets that satisfy this group fairness constraint

and calculate its score based on the objective function, whether it is MMR or GMM

and select the one with the highest score. This solution is exponential to the number

of possible k sets that satisfy group fairness criteria. A possible efficiency opportunity

comes through preprocessing by creating an index structure corresponding to some

attribute values. Consider protected attribute gender having two values, male and

female, then in the highest level, the records will be divided into two large partitions,

male and female, and each of these partitions can be divided into more partitions.

These nodes are created to ensure how many records are required from each group to

be represented in the top-k set. Then inside each node, the DivGetBatch() framework

is applied as is and keeps track of min and max distances between nodes inside each

protected attribute value node. Hence, the algorithmic solution can stay the same,

except that to ensure the number of records getting from each of these nodes is driven

by the group fairness criteria. It is also challenging to understand how many nodes

are to be created on the modified index structure, as it could generate an exponential

120

number of nodes if every unique attribute value is preserved as a node. We continue

to explore it closely in our ongoing work.

121

REFERENCES

[1] Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, and Sepideh Mahabadi. Real-time
recommendation of diverse related articles. In Proceedings of the 22nd
International Conference on World Wide Web, pages 1–12, 2013.

[2] Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, Sepideh Mahabadi, and Kasturi R
Varadarajan. Diverse near neighbor problem. In Proceedings of the Twenty-
ninth Annual Symposium on Computational Geometry, pages 207–214, 2013.

[3] Zeinab Abbassi, Vahab S Mirrokni, and Mayur Thakur. Diversity maximization under
matroid constraints. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 32–40, 2013.

[4] Pankaj K Agarwal, Stavros Sintos, and Alex Steiger. Efficient indexes for diverse top-k
range queries. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pages 213–227, 2020.

[5] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong.
Diversifying search results. In Proceedings of the Second ACM International
Conference on Web Search and Data Mining, pages 5–14, 2009.

[6] Airbnb. Dataset, san francisco, ca, 2023. Available at: http://insideairbnb.com/
get-the-data, retrieved on 4/7/2023.

[7] Albert Angel and Nick Koudas. Efficient diversity-aware search. In ACM SIGMOD
International Conference on Management of Data, pages 781–792, 2011.

[8] Robert Armstrong. The long tail: Why the future of business is selling less of more.
Canadian Journal of Communication, 33(1):127, 2008.

[9] Mahsa Asadi, 2023. Codes and data are available at: https://anonymous.

4open.science/r/FairSelectionInsideTopk-2F4F/README.md, Retrieved
on 4/7/2023.

[10] Abolfazl Asudeh, HV Jagadish, Julia Stoyanovich, and Gautam Das. Designing
fair ranking schemes. In Proceedings of the 2019 International Conference
on Management of Data, pages 1259–1276, 2019.

[11] Martin Aumuller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, and Francesco
Silvestri. Fair near neighbor search via sampling. ACM SIGMOD Record,
50(1):42–49, 2021.

[12] Krisztian Balog, Filip Radlinski, and Shushan Arakelyan. Transparent, scrutable and
explainable user models for personalized recommendation. In Proceedings of
the 42nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 265–274, 2019.

122

[13] Sanjoy K Baruah, Neil K Cohen, C Greg Plaxton, and Donald A Varvel.
Proportionate progress: A notion of fairness in resource allocation. In
Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of
Computing, pages 345–354, 1993.

[14] Rudolf Bayer. The universal b-tree for multidimensional indexing: General concepts.
In International Conference on Worldwide Computing and Its Applications,
pages 198–209. Springer, 1997.

[15] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The
R*-tree: An efficient and robust access method for points and rectangles.
In Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data, pages 322–331, 1990.

[16] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 1975.

[17] S Berchtold, D Keim, and HP Kriegel. The X-tree: An efficient and robust access
method for points and rectangles. In Proceedings of 1996 International
Conference Very Large Data Bases, pages 28–39, 1996.

[18] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest
neighbor. In Proceedings of the 23rd International Conference on Machine
Learning, pages 97–104, 2006.

[19] Asia J Biega, Krishna P Gummadi, and Gerhard Weikum. Equity of attention:
Amortizing individual fairness in rankings. In The 41st international ACM
SIGIR Conference on Research and Development in Information Retrieval,
pages 405–414, 2018.

[20] Christopher JC Burges. From ranknet to lambdarank to lambdamart: An overview.
Learning, 11(23-581):81, 2010.

[21] Zhi Cai, Georgios Kalamatianos, Georgios J Fakas, Nikos Mamoulis, and Dimitris
Papadias. Diversified spatial keyword search on rdf data. The Very Large
Data Bases Journal, pages 1–19, 2020.

[22] David Campos, Tung Kieu, Chenjuan Guo, Feiteng Huang, Kai Zheng, Bin Yang,
and Christian S Jensen. Unsupervised time series outlier detection with
diversity-driven convolutional ensembles–extended version. arXiv preprint
arXiv:2111.11108, 2021.

[23] Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for
reordering documents and producing summaries. In Proceedings of the 21st
annual international ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 335–336, 1998.

[24] L Elisa Celis, Damian Straszak, and Nisheeth K Vishnoi. Ranking with fairness
constraints. arXiv preprint arXiv:1704.06840, 2017.

123

[25] Paolo Ciaccia et al. M-tree: An efficient access method for similarity search in metric
spaces. In Very Large Data Bases, volume 97, pages 426–435, 1997.

[26] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2009.

[27] Gil Delannoi and Oliver Dowlen. Sortition: Thoery and Practice, volume 3. Andrews
UK Limited, 2016.

[28] Marina Drosou et al. Disc diversity: result diversification based on dissimilarity and
coverage. arXiv preprint arXiv:1208.3533, 2012.

[29] Marina Drosou and Evaggelia Pitoura. Diversity over continuous data. IEEE Data
Eng. Bull., 32(4):49–56, 2009.

[30] Marina Drosou and Evaggelia Pitoura. Diverse set selection over dynamic data. IEEE
Transactions on Knowledge and Data Engineering, 26(5):1102–1116, 2013.

[31] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. Fairness through awareness. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, pages 214–226, 2012.

[32] Ulle Endriss. Lecture notes on fair division. arXiv preprint arXiv:1806.04234, 2018.

[33] Mohammadreza Esfandiari, Ria Mae Borromeo, Sepideh Nikookar, Paras Sakharkar,
Sihem Amer-Yahia, and Senjuti Basu Roy. Multi-session diversity to improve
user satisfaction in web applications. In Proceedings of the Web Conference
2021, pages 1928–1936, 2021.

[34] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for
middleware. Journal of Computer and System Sciences, 66(4):614–656, 2003.

[35] Benjamin Fish, Ashkan Bashardoust, Danah Boyd, Sorelle Friedler, Carlos
Scheidegger, and Suresh Venkatasubramanian. Gaps in information access
in social networks? In The World Wide Web Conference, pages 480–490,
2019.

[36] Bailey Flanigan, Paul Gölz, Anupam Gupta, Brett Hennig, and Ariel D Procaccia.
Fair algorithms for selecting citizens’ assemblies. Nature, 596(7873):548–552,
2021.

[37] Will Fleisher. What’s fair about individual fairness? In Proceedings of the 2021
AAAI/ACM Conference on AI, Ethics, and Society, pages 480–490, 2021.

[38] Piero Fraternali, Davide Martinenghi, and Marco Tagliasacchi. Top-k bounded
diversification. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 421–432, 2012.

124

[39] Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. The (im)
possibility of fairness: Different value systems require different mechanisms for
fair decision making. Communications of the ACM, 64(4):136–143, 2021.

[40] William A Gale and Geoffrey Sampson. Good-turing frequency estimation without
tears. Journal of Quantitative Linguistics, 2(3):217–237, 1995.

[41] David Garćıa-Soriano and Francesco Bonchi. Maxmin-fair ranking: individual fairness
under group-fairness constraints. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 436–446, 2021.

[42] Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. Fairness-aware
ranking in search and recommendation systems with application to linkedin
talent search. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 2221–2231, 2019.

[43] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result diversi-
fication. In Proceedings of the 18th International Conference on World Wide
Web, pages 381–390, 2009.

[44] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293–306, 1985.

[45] Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Sanjeev Saluja, Hannu
Toivonen, and Ram Sewak Sharma. Discovering all most specific sentences.
ACM Transactions on Database Systems (TODS), 28(2):140–174, 2003.

[46] Antonin Guttman. R-trees: A dynamic index structure for spatial searching,
volume 14. ACM, 1984.

[47] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining concepts and techniques
third edition. The Morgan Kaufmann Series in Data Management Systems,
5(4):83–124, 2011.

[48] Jiawei Han, Jian Pei, and Hanghang Tong. Data mining: Concepts and Techniques.
Morgan Kaufmann, 2022.

[49] Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in supervised
learning. arXiv preprint arXiv:1610.02413, 2016.

[50] Tom Hope, Joel Chan, Aniket Kittur, and Dafna Shahaf. Accelerating innovation
through analogy mining. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
235–243, 2017.

[51] IMDB. Dataset, 2023. Available at: https://www.kaggle.com/datasets/

isaactaylorofficial/imdb-10000-most-voted-feature-films-041118,
Retrieved: 4/7/2023.

125

[52] Zhongjun Jin, Mengjing Xu, Chenkai Sun, Abolfazl Asudeh, and HV Jagadish.
Mithracoverage: a system for investigating population bias for intersectional
fairness. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, pages 2721–2724, 2020.

[53] Kaggle. Top-1000 IMDB Movies. https://www.kaggle.com/datasets/

harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows,

Retrievedon4/7/2023.

[54] Marius Kaminskas and Derek Bridge. Diversity, serendipity, novelty, and coverage: a
survey and empirical analysis of beyond-accuracy objectives in recommender
systems. ACM Transactions on Interactive Intelligent Systems (TiiS), 7(1):1–
42, 2016.

[55] Norio Katayama and Shin’ichi Satoh. The sr-tree: An index structure for high-
dimensional nearest neighbor queries. ACM SIGMOD Record, 26(2):369–380,
1997.

[56] Donald E. Knuth. The Art of Computer Programming, volume 1 of Fundamental
Algorithms. Addison Wesley Longman Publishing Co., Inc., 3rd edition, 1998.
(book).

[57] Yehuda Koren, Steffen Rendle, and Robert Bell. Advances in collaborative filtering.
Recommender Systems Handbook, pages 91–142, 2022.

[58] Neeraj Kumar et al. What is a good nearest neighbors algorithm for finding similar
patches in images? In European Conference on Computer Vision, pages 364–
378. Springer, 2008.

[59] Chang Li, Haoyun Feng, and Maarten de Rijke. Cascading hybrid bandits: Online
learning to rank for relevance and diversity. In RecSys 2020: The ACM
Conference on Recommender Systems, pages 33–42. ACM, September 2020.

[60] Yunqi Li, Hanxiong Chen, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. User-
oriented fairness in recommendation. In Proceedings of the Web Conference
2021, pages 624–632, 2021.

[61] Rischan Mafrur, Mohamed A Sharaf, and Hina A Khan. Dive: diversifying view
recommendation for visual data exploration. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management, pages
1123–1132, 2018.

[62] Sepideh Mahabadi and Ali Vakilian. Individual fairness for k-clustering. In
International Conference on Machine Learning, pages 6586–6596. PMLR,
2020.

[63] Makeblobs. Dataset, 2023. Available at: https://scikit-learn.org/stable/

modules/generated/sklearn.datasets.make_blobs.html.

126

[64] Kyriakos Mouratidis. Geometric aspects and auxiliary features to top-k processing.
In 2016 17th IEEE International Conference on Mobile Data Management
(MDM), volume 2, pages 1–3. IEEE, 2016.

[65] Sepideh Nikookar, Mohammadreza Esfandiari, Ria Mae Borromeo, Paras Sakharkar,
Sihem Amer-Yahia, and Senjuti Basu Roy. Diversifying recommendations on
sequences of sets. The Very Large Data Bases Journal, pages 1–22, 2022.

[66] Francisco Parreño, Ramón Álvarez-Valdés, and Rafael Mart́ı. Measuring diversity. a
review and an empirical analysis. European Journal of Operational Research,
289(2):515–532, 2021.

[67] Gourab K Patro, Arpita Biswas, Niloy Ganguly, Krishna P Gummadi, and Abhijnan
Chakraborty. Fairrec: Two-sided fairness for personalized recommendations
in two-sided platforms. In Proceedings of The Web Conference 2020, pages
1194–1204, 2020.

[68] Evaggelia Pitoura, Georgia Koutrika, and Kostas Stefanidis. Fairness in rankings and
recommenders. In International Conference on Extending Database Technology
(EDBT), pages 651–654, 2020.

[69] Evaggelia Pitoura, Kostas Stefanidis, and Georgia Koutrika. Fairness in rankings and
recommendations: an overview. The Very Large Data Bases Journal, pages
1–28, 2021.

[70] Evaggelia Pitoura, Panayiotis Tsaparas, Giorgos Flouris, Irini Fundulaki, Panagiotis
Papadakos, Serge Abiteboul, and Gerhard Weikum. On measuring bias in
online information. ACM SIGMOD Record, 46(4):16–21, 2018.

[71] Shameem A Puthiya Parambath, Nicolas Usunier, and Yves Grandvalet. A
coverage-based approach to recommendation diversity on similarity graph. In
Proceedings of the 10th ACM Conference on Recommender Systems, pages
15–22, 2016.

[72] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. Diversifying top-k results. arXiv preprint
arXiv:1208.0076, 2012.

[73] Pengjie Ren, Zhumin Chen, Zhaochun Ren, Furu Wei, Jun Ma, and Maarten de Rijke.
Leveraging contextual sentence relations for extractive summarization using a
neural attention model. In Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 95–
104, 2017.

[74] John T Robinson. The KDB-tree: a search structure for large multidimensional
dynamic indexes. In Proceedings of the 1981 ACM SIGMOD International
Conference on Management of Data, pages 10–18, 1981.

[75] Babak Salimi, Bill Howe, and Dan Suciu. Database repair meets algorithmic fairness.
ACM SIGMOD Record, 49(1):34–41, 2020.

127

[76] Ashudeep Singh and Thorsten Joachims. Fairness of exposure in rankings. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 2219–2228, 2018.

[77] Peter Stone. Sortition, voting, and democratic equality. Critical review of
international social and political philosophy, 19(3):339–356, 2016.

[78] Chun-Hua Tsai and Peter Brusilovsky. Beyond the ranked list: User-driven
exploration and diversification of social recommendation. In 23rd International
Conference on Intelligent User Interfaces, pages 239–250, 2018.

[79] Saúl Vargas, Linas Baltrunas, Alexandros Karatzoglou, and Pablo Castells. Coverage,
redundancy and size-awareness in genre diversity for recommender systems.
In Proceedings of the 8th ACM Conference on Recommender Systems, pages
209–216, 2014.

[80] Saúl Vargas and Pablo Castells. Rank and relevance in novelty and diversity metrics
for recommender systems. In Proceedings of the fifth ACM Conference on
Recommender Systems, pages 109–116, 2011.

[81] Sanne Vrijenhoek, Gabriel Bénédict, Mateo Gutierrez Granada, Daan Odijk, and
Maarten de Rijke. Radio – rank-aware divergence metrics to measure
normative diversity in news recommendation. In RecSys 2022: The ACM
Conference on Recommender Systems. ACM, September 2022.

[82] Dongjing Wang, Shuiguang Deng, and Guandong Xu. Sequence-based context-aware
music recommendation. Information Retrieval Journal, 21(2-3):230–252, 2018.

[83] Lina Wang, Xuyun Zhang, Tian Wang, Shaohua Wan, Gautam Srivastava, Shaoning
Pang, and Lianyong Qi. Diversified and scalable service recommendation with
accuracy guarantee. IEEE Transactions on Computational Social Systems,
2020.

[84] Dong Wei, Md Mouinul Islam, Baruch Schieber, and Senjuti Basu Roy. Rank aggre-
gation with proportionate fairness. In Proceedings of the 2022 International
Conference on Management of Data, pages 262–275, 2022.

[85] David A White and Ramesh Jain. Similarity indexing with the ss-tree. In Proceedings
of the Twelfth International Conference on Data Engineering, pages 516–523.
IEEE, 1996.

[86] Wen Wu, Li Chen, and Yu Zhao. Personalizing recommendation diversity based on
user personality. User Modeling and User-Adapted Interaction, 28(3):237–276,
2018.

[87] Yingying Wu, Yiqun Liu, Fei Chen, Min Zhang, and Shaoping Ma. Beyond greedy
search: pruned exhaustive search for diversified result ranking. In Proceedings
of the 2018 ACM SIGIR International Conference on Theory of Information
Retrieval, pages 99–106, 2018.

128

[88] Himank Yadav, Zhengxiao Du, and Thorsten Joachims. Fair learning-to-rank from
implicit feedback. In SIGIR, 2020.

[89] Sadok Ben Yahia and Imen Ben Sassi. Poi based serendipitous recommender
algorithm.

[90] Guizhen Yang. The complexity of mining maximal frequent itemsets and maximal
frequent patterns. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 344–353, 2004.

[91] Ke Yang and Julia Stoyanovich. Measuring fairness in ranked outputs. In Proceedings
of the 29th International Conference on Scientific and Statistical Database
Management, pages 1–6, 2017.

[92] Tao Yang and Qingyao Ai. Maximizing marginal fairness for dynamic learning to
rank. In Proceedings of the Web Conference 2021, pages 137–145, 2021.

[93] Jin-ge Yao, Xiaojun Wan, and Jianguo Xiao. Recent advances in document
summarization. Knowledge and Information Systems, 53(2):297–336, 2017.

[94] Yelp. Dataset, 2023. Available at: https://www.yelp.com/dataset/

documentation/main.

[95] Cong Yu, Laks Lakshmanan, and Sihem Amer-Yahia. It takes variety to make a
world: diversification in recommender systems. In Proceedings of the 12th
international Conference on Extending Database Technology: Advances in
Database Technology, pages 368–378, 2009.

[96] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P
Gummadi. Fairness beyond disparate treatment and disparate impact:
Learning classification without disparate mistreatment. In Proceedings of the
26th International Conference on World Wide Web, pages 1171–1180, 2017.

[97] Michele Zanitti et al. A user-centric diversity by design recommender system for
the movie application domain. In Companion Proceedings of WWW, pages
1381–1389, 2018.

[98] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Megahed,
and Ricardo Baeza-Yates. Fa* ir: A fair top-k ranking algorithm. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pages 1569–1578, 2017.

[99] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning
fair representations. In International Conference on Machine Learning, pages
325–333. PMLR, 2013.

[100] Hantian Zhang, Xu Chu, Abolfazl Asudeh, and Shamkant B Navathe. Omnifair: A
declarative system for model-agnostic group fairness in machine learning. In
Proceedings of the 2021 International Conference on Management of Data,
pages 2076–2088, 2021.

129

[101] Mingwei Zhang, Yang Yang, Rizwan Abbas, Ke Deng, Jianxin Li, and Bin Zhang.
Snpr: A serendipity-oriented next poi recommendation model. In Proceedings
of the 30th ACM International Conference on Information and Knowledge
Management, pages 2568–2577, 2021.

[102] Cai-Nicolas Ziegler, Sean MMcNee, Joseph A Konstan, and Georg Lausen. Improving
recommendation lists through topic diversification. In Proceedings of the 14th
International Conference on World Wide Web, pages 22–32, 2005.

130

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgments (1 of 2)
	Acknowledgments (2 of 2)

	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Related Work
	Chapter 3: Access Primitive for Top-K Diversity Computation
	Chapter 4: Top-K Diversification Considering Fairness
	Chapter 5: Summary and Future Work
	References

	List of Tables
	List of Figures

