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ABSTRACT

BACTERIAL MOTION AND SPREAD IN POROUS
ENVIRONMENTS

by
Yasser Almoteri

Micro-swimmers are ubiquitous in nature from soil and water to mammalian bodies

and even many technological processes. Common known examples are microbes

such as bacteria, micro-algae and micro-plankton, cells such as spermatozoa and

organisms such as nematodes. These swimmers live and have evolved in multiplex

environments and complex flows in the presence of other swimmers and types, inert

particles and fibers, interfaces and non-trivial confinements and more. Understanding

the locomotion and interactions of these individual micro-swimmers in such impure

viscous fluids is crucial to understanding the emergent dynamics of such complex

systems, and to further enabling us to control and direct this dynamics.

The focus is on studying through mathematical modeling, analysis and computer

simulations, the collective dynamics and chemotactic aggregation of a suspension of

micro-swimmers immersed in a fluid that also contains inert impurities or stationary

obstacles. Such an environment can be regarded as a wet porous medium. A

continuum model for micro-swimmers in such a wet porous medium that accounts

for the presence of the impurities or obstacles through the Brinkman approximation,

which encompasses their e↵ect using a resistance or friction parameter in the fluid

flow equations is presented. This resistance introduces supplementary friction in the

individual locomotion and alters the way each swimmer disturbs the surrounding

fluid and the hydrodynamic interaction with its neighbors. The analysis of the

linearized system reveals that the resistance a↵ects and hinders the hydrodynamic

interactions and collective swimming. Asymptotic analysis and the numerical solution

of the dispersion relations help compose a parameter phase space for four predicted



and distinct types of dynamics: hydrodynamic collective swimming, chemotactic

aggregation, dynamic aggregation, and uniform motion. Simulations of the full

nonlinear system show that resistance impacts the collective dynamics for each of

these dynamics states.

Firstly, resistance inhibits the collective motion of the swimmers. In an

environment where resistance is strong, the swimmers find it challenging to synchronize

their movements and form cohesive groups. The presence of obstacles and the

associated resistance disrupt the fluid flow patterns collectively generated by the

swimmers, leading to a less organized or coherent collective behavior.

Secondly and surprisingly, resistance hampers the chemotactic behavior of

swimmers. Chemotaxis is the process by which micro-swimmers respond to chemical

gradients and move towards regions of higher concentration; if the chemical is

produced by the swimmers themselves as in quorum sensing scenarios, this leads to

aggregation. However resistance hinders the ability of pusher swimmers to aggregate

and form dense clusters because it impedes their ability to e�ciently navigate towards

chemotactic cues and assemble into concentrated populations. Simulations also reveal

unexpected dynamics far from the parameter regimes predicted by the linear analysis,

ultimately showcasing the nonlinear couplings in this complex system.

Lastly, resistance restricts the spreading of an already accumulated swimmer

suspension, for example a bacterial cluster. When swimmers are already clustered or

perhaps introduced into a specific region, resistance impedes their ability to disperse

to other areas of the medium, e↵ectively detaining them to localized regions and

reducing their ability to spread out and cover larger distances. These findings show

that complex emergent dynamics also depends on the initial state of the system, and

ultimately help towards better understanding of recent experimental observations.
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CHAPTER 1

INTRODUCTION

1.1 Micro-swimmers and Their Environment

Micro-swimmers, or microscopic objects that are ”active” and have the ability to

swim, are naturally found in many environments in our world, from phytoplankton

in the oceans, to microbes in soil and volcanic hot springs, to microbes in the

bodies of plants and animals [93, 135, 141, 112, 149, 160]. Micro-swimmers such

as bacteria are important in many phenomena such as nutrient recycling, digestion,

fermentation, bioremediation, fixation of nitrogen from the atmosphere, and some

pathogenic ones cause many infectious diseases. Micro-swimmers such as algae can

produce the oxygen we consume. Micro-swimmers such as spermatozoa are a crucial

step in the propagation of many species of animals. Examples of micro-swimmers

can also be artificial active particles such as phoretic colloids or driven colloids

[132, 119, 47, 76]. Given their ubiquity and importance in nature and technology,

studying microorganisms’ behavior, locomotion, collective dynamics, interactions

with each-other and other particles, their response to nutrients or toxins, is of

paramount importance to understanding many of the phenomena they are involved

in. Better understanding of their emerging dynamics and the factors that lead to it

and a↵ect it can lead to better understanding ways of controlling and directing it.

Microscopic swimmers naturally live and move through complex fluids and

environments [160, 114, 98]. The ability of microorganisms to move through

such complex fluids is of great significance in various biological processes such as

fertilization and infection, but the environment complexity and inhomogeneity is also

being recognized as significant e↵ect for artificial active particles which have great

potential for technological applications [11].
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Microorganism locomotion and at the micron scale are dominated by viscous

dissipation over inertia. Their study has been a vibrant and active research field for

theoreriticians for a long time [102, 140, 93, 178, 50, 92, 160]. Such microorganisms

have relatively slow propulsion, which determines that their dynamics are in the slow

viscous flow or low Reynolds numberregime. Such micro-swimmer needs swimming

mechanisms that are irreversible in time, e.g. non-reciprocal breast-strokes for the

micro-algae [45]. There exist numerous models that are utilized to comprehend the

hydrodynamics of micro-swimming. One such model is the squirmer model, which was

initially examined by Lighthill and Blake [20] as an idealized representation of ciliary

propulsion. In this model, the movement of cilia is represented by surface velocities on

the spherical cell body [134]. Despite the fact that various types of micro-swimmers

employ distinct propulsion mechanisms, there are certain commonalities that exist in

the hydrodynamics they induce. Specifically, a micro-swimmer produces a propulsive

force on the fluid in its immediate vicinity, which is countered by the drag force

generated by the fluid.

Theoretically, many micro-swimmers are classified based on the disturbance

fluid flow they induce as they propel, the most known of these pullers and pushers.

For instance, a swimmer is considered a pusher if it generates thrust from the rear

end, a puller if it generates impetus from its front end [93, 145, 92, 36], though other

motility modes such as rotation also exist [137]. In addition, the experimentally

observed fluid flow pattern around a swimming Bacilus subtilis shows that the fluid

moves away from the front and back of the micro-swimmer and towards its sides.

This behavior characterizes micro-swimmers typically known as pushers [44], as we

can see in Figure 1.1.a. For puller micro-swimmers the propulsive mechanism is at

the front; e.g., the two front flagella in micro-algae Chlamydomonas reinhardtii pull

it towards the front in a motion similar to breaststroke [138, 55, 45]. Time-averaged

over one breast-stroke, the fluid flow looks largely as in the sketch in Figure 1.1.b.
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Figure 1.1 Sketch of the disturbance fluid flow by (a) pusher and (b) puller micro-
swimmer in Stokes flow as observed in experiments [44, 138, 55, 45]. (c) The flow
generated by an extensional Stokes force dipole resembles the pusher flow in (a).

To leading order, the forcing exerted by a micro-swimmer on the fluid can be

approximated in the far-field by a force dipole, which is the flow field resulting from

the action two close-point forces in opposite directions, as seen in Figure 1.1c. The

disturbance flow that is created by the dipole forcing has universal characteristics

in the far-field for various types of micro-swimmers or other active particles, from

pushers like swimming bacteria and spermatozoa [44] to pullers like micro-algae [138,

55, 45, 118], to even artificial active micro-particles that can be manufactured to

be of either or neither type [26, 25]. This feature is at the foundation of many

mathematical models and simulations built to study individual and collective micro-

swimmer dynamics [57, 68, 64, 65, 67, 66, 170, 146, 147, 56, 163, 164, 6, 158, 52, 107,

108, 159, 97, 174, 106, 118].

Micro-swimmers’ morphology and locomotion have evolved to adapt to their

environments [100, 101, 177, 53] in order to complete vital tasks such as migration

or accumulation into clusters with others. These organisms can detect changes in

the environment and respond to the signals they sense, be they temperature changes,

nutrients, poisons, and more. In a process called chemotaxis, they are able to move

toward the source of a beneficial chemical, for example a nutrient like oxygen, or

flee from harmful toxins. A typical bacterium such as E. coli is observed to achieve

chemotaxis though a modulation in the frequency of seemingly random tumbles or

3



re-orientations between a series of straight swims, or runs [15, 14]. It can execute

a tumble or re-orientation by counter-rotating one or more of its flagella. As they

are unable to detect spatial chemical gradients directly, bacteria rely on temporal

changes in their environment along their trajectories to adjust their movement and

direction[13, 14, 109]. The tumbling frequency decreases if the swimmer is moving

spots with increasing attractant concentration, and remains the same if not. Overall,

this random walk strategy results in a drift in the favored direction [15, 13, 87]. Other

microorganisms, such as spirochetes [29], micro-algae like Chlamydomonas reinhardtii

[138], or spermatozoa [80, 24], also achieve a chemotactic response by modulating their

frequency of turning or undulation to respond to the local changes in the attractant

concentration.

Microorganisms are known to use the chemotactic process to also ”commu-

nicate” with each other using chemical cues [7, 142]. This occurs when individuals

respond to signals from the others in the colony and will often aggregate toward them

and cluster. This form of quorum sensing is important to the formation of biofilms

in bacterial colonies[144], among other things, and it may change the behavior of the

population. Bacteria E. coli and amoeba cell Dictostelium discoideum (slime mold)

are known organisms that exhibit aggregation as a result of such extracellular signals.

Many experiments have studied how microorganisms or other “active” particles

a↵ect the fluid they live in, and how they interact with each-other through it.

A ”suspended” swimming microorganism disturbs the fluid as it moves, and this

fluid can move and rotate the other microorganisms, in e↵ect interacting with them

hydrodynamically. In suspension of many such ”active” particles interesting collective

dynamics is known to emerge, with macroscopic patterns and chaotic flows in which

transport and mixing properties are altered by the micro-swimmers locomotion.

Colonies of swimming bacteria like Escherichia coli or Bacillus Subtilis are able to

form large-scale structures with chaotic vortices and jets exhibiting speeds larger
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than individuals [176, 43, 84, 169, 32, 156, 157, 179, 116]. These structures are

believed to emerge as a result of hydrodynamic interactions and collisions between

the micro-swimmers, which depend on the type of swimmer and its locomotion mode

[146, 147, 149, 107, 108]. The structures however can be influenced by other things,

for example chemical cues, temperature and other environmental changes, and these

can be utilized to direct or control the collective behavior [85].

Artificial micro-swimmers, for example those that move due to surface catalytic

reactions [46, 132, 133, 131, 153, 26, 25] can perform something akin to chemotaxis

when put in a gradient of H2O2 as they swim toward its source [62, 99]. Such artificial

micro-swimmers may be utilized in future technologies to perform various tasks, such

as mix material in microfluidics or deliver cargo [73, 165]. It is thus of interest to the

scientific community to study the collective behavior of such non-biological motile

suspensions as well in order to learn how it can be controlled by use of chemical

gradients, electro-magnetic forces, etc [111].

Though most theoretical or computational studies of micro-swimmers tend to

focus on an individual’s dynamics or a pair’s interaction [93, 68, 96], there has been a

significant amount of work on the micro-swimmer collective dynamics emerging due

to hydrodynamic or chemotactic interactions, including continuum models [58, 5, 147,

6, 163, 61, 136, 164, 52, 48, 88, 161, 120, 181] and simulations of many interacting

swimmers [41, 63, 57, 67, 146, 57, 64, 65, 67, 66, 170, 56, 150, 107, 108, 50, 174, 180,

161]. More recently there have been several studies looking at the combined e↵ects of

hydrodynamic and chemotactic interactions, continuum models [51, 78, 105, 79, 104,

106, 3, 121, 172] and particle simulations [143, 168, 115].

1.2 Micro-swimmer Motion in Porous Media

Even though in nature bacteria can be found in and navigate non-trivial environments

and confinements such as tissues, soils and sediments, most experimental studies of
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such microbes focus on homogeneous environments such as bulk liquid or flat surfaces.

As such, we do not yet have a full understanding of how microorganisms move in such

complex geometries, how their self-propulsion or ”activity” impacts migration through

a wet inhomogeneous medium, and thus cannot we are not yet able to devise ways

to direct and control them for applications ranging from drug delivery to chemical

sensing [73, 165, 111].

Swimmers’s natural habitats are complex structured or random environments,

which are fluid environments that have surfaces or obstacles with di↵erent sizes. We

can think of these structured environments as divided into three categories depending

on the confinement’s relative size to the swimmer. The first one is when structure

or obstacle is much bigger than the swimmer, as in Figure 1.2a, with examples being

studies of confinements such a large drops or racetracks or pillar forests where the

boundary curvature a↵ects the stability and topology of collective dynamics [95, 155,

175, 108, 174, 130, 39, 40]. The second case is when the structure scale is close to the

swimmer scale, as in Figure 1.2b, with examples being experimental studies with E.

coli navigating porous environments consisting of hydrogel beads [18, 19] or swimmers

among cylindrical pillars [110, 33, 154, 74]. The last case is when the structure scale

is significantly smaller than the swimmer scale, as in Figure 1.2c, and this is the scale

we will focus on in this dissertation.

Figure 1.2 Illustration of a micro-swimmer in di↵erent structured environments:
(a) structure scale is much bigger than the swimmer scale, (b) structure scale is
approximately the same as the swimmer scale, and (c) structure scale is much smaller
than the swimmer scale.
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Studies of micro-swimmers in relatively large confinements have shown that

the confinement size and geometry a↵ects the emerging swimmer organization,

for example in 2D structured environments where in size-dependent motion and

transport are promoted in ordered media but hindered in disordered media such as an

environment packed with obstacles [173, 39, 40, 110, 114]. Recent experiments have

shown that 3D pore-scale confinement strongly a↵ects micro-swimmer locomotion

and migration [18, 19, ] and it alters the dynamics and morphology of the migrating

bacterial population [17, 16, 110, 113, ]. Theoretical and computational studies of

chemotactic motion in wet porous environments are also lagging behind, though

recent work has incorporated the porosity e↵ects by modifying the standard motility

parameters substantially from their bulk liquid values [17, 1].

The di�culty with theoretical and computational modeling of active matter in

such complex confinements rests with the impossible task of properly and resolving the

hydrodynamical interactions as well collisions with the swimmers with each-other and

any non-trivially-shaped surface or obstacle in their surrounding. Continuum models

are more appropriate to model population dynamics, however one cannot faithfully

include the e↵ects of the swimmer collisions, which are crucial in determining the

confined dynamics [175, 108, 174, 130]. Numerical simulations of the coupled

dynamics of individually-traced micro-swimmers on the other hand are often not

feasible for realistic numbers of swimmers because the di�culty and computational

cost involved in resolving the non-local interactions such as hydrodynamical ones.

Approximations can be made in special cases, e.g. individual swimmers in

viscoelastic or power-law flows [38, 37, 86], or collective behavior in complex or

viscoelastic flows when the intra-swimmer and swimmer-boundary interactions are

not included [22, 23, 97, 162, 98, 166, 89]. An extra special case is Brinkman flow

which due to its linearity has made possible studies of squirmer or flagellar swimmers

moving through it [94, 122, 124, 126, 123, 70].
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To the best of our knowledge, there have not yet been any studies on micro-

swimmer collective dynamics or on chemotactic migration in Brinkman fluid, hence

we will consider these questions in this dissertation.

1.3 Viscous Flow and Its Singularities

The motion of an incompressible Newtonian fluid is described by the Navier-Stokes

Equations:

⇢

✓
@u

@t
+ u ·ru

◆
= �rp+ µr2u+ f , (1.1)

r · u = 0. (1.2)

Here ⇢ is the density of the fluid, u is the fluid velocity, p is the pressure, µ is the

viscosity of the fluid, and f is a force applied to the fluid. In Equation (1.1), the first

term is the unsteady inertial component, which is the acceleration of the flow. The

second term is the non-linear inertial term. On the right-hand side, the first term

is the pressure gradient, the second term describes viscous dissipation, and the final

term is the force applied to the fluid by an immersed body. Equation (1.2) is the

incompressibility condition. Non-dimensionalizing Equations (1.1) and (1.2), we get

Re

✓
@u

@t
+ u ·ru

◆
= �rp+r2u+ f , r · u = 0,

where Re = ⇢UL

µ
is the dimensionless Reynolds number, and where U denotes a typical

flow speed and L is the characteristic length scale of the flow. The Reynolds number

is the ratio of inertial forces to viscous forces.

Viscous dissipation dictates the fluid flow generated by the activity of microor-

ganisms [140], for which Re ⌧ 1 [93, 92]. Equations (1.1) and (1.2) in the case of
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Re = 0 are known as the Stokes Equations:

�rp+ µr2u+ f = 0, r · u = 0. (1.3)

In Equation (1.3), pressure, viscosity, and body force balance instantaneously.

Note that Stokes Equations are linear, which allows superposition solutions [139].

Let us consider a point force applied at x0 i.e., �(x�x0)f , in a Stokes flow. The

fluid flow satisfies

�rp+ µr2u+ �(x� x0)f = 0, r · u = 0. (1.4)

We can write the solution for this scenario as:

u(x) = G(r)f , (1.5)

where x0 is the point where f is applied, and x is the field point, and r = x � x0.

Physically, this solution represents the velocity field due to a concentrated point force

of constant strength f at the point x0 [139]. The free-space Green function, known

as the Stokeslet or Oseen’s tensor [21, 139, 93, 158, 92], is

G(r) =
1

8⇡µ
(
I

r
+

rrT

r3
), (1.6)

where r = |x � x0|. The Stokeslet is the fundamental singularity of translational

motion at zero Reynolds number [21]. From the fundamental solution of Equation
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(1.5), the higher order singularities for viscous flow can be obtained by di↵erentiation

of the Stokeslet [59].

1.4 Brinkman Equations and its Singularities

In Section (1.2), we mentioned structured environments where the scale of the

structure is smaller than that of the swimmer. This is particularly important

because microorganisms often encounter viscous environments that are heterogeneous

and contain stationary obstacles or inert impurities within the fluid medium. For

instance, certain spirochetes are capable of swimming through heterogeneous media

and crossing the blood-brain barrier to infect the brain. Another example is bacteria

living in saturated soil in nature [72]. In such scenarios, to depict the flow of a viscous

fluid through spherical particles that are smaller than the flow’s characteristic length

scale [34], one can utilize the Brinkman approximation, which can be viewed as the

incorporation of a lower-order resistance term into the Stokes equations [124, 126].

The Brinkman Equations to describe viscous flow in a such porous medium are:

µr2u�rp� µ

KD

u = 0, r · u = 0 (1.7)

where µ is the viscosity, u is the fluid velocity, p is the fluid pressure, and KD > 0 is

the constant Darcy permeability. After non-dimensionalization with lengthscale L as

the particle length scale, U the velocity scale and µU

L
is the pressure scale, we obtain

r2u�rp� ⌫2u = 0, r · u = 0 (1.8)

where ⌫ = Lp
k
is the ratio of the particle dimension to the permeability length of the

medium [34]. We will refer to ⌫ as the resistance parameter.
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Let’s consider a Brinkman Flow with a force applied at a sole point x0 i.e.

�(x� x0)f . The fluid flow generated by this point-force satisfies Equations (1.8)

r2u�rp� ⌫2u+ �(x� x0)f = 0, r · u = 0 (1.9)

whose solution is given by

u(x) = B(r)f . (1.10)

Here B is the Green’s function for the Brinkman Equations (1.9), commonly referred

to as the Brinkmanlet [34]:

B(r) = H1(r)I+H2(r)rr
T (1.11)

with I the identity matrix, r = |x� x0| and

H1(r) =
e�⌫r

4⇡r

✓
1

⌫2r2
+

1

⌫r
+ 1

◆
� 1

4⇡⌫2r3
,

H2(r) = � e�⌫r

4⇡r3

✓
3

⌫2r2
+

3

⌫r
+ 1

◆
+

3

4⇡⌫2r5
.

The formula given in Equations (1.10, 1.11) can be used in free-space domains

for a point-force, though modifications can be sometimes achieved for half-space

domains [126, 35]. A regularized Brinkmanlet solution can be derived for a “blob”

or regularized force [34, 94] In periodic domains it is possible to solve the Brinkman
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Equations with a more general force [125], and we outline how to do so in Appendix

A as we will make use of this formula in our analysis and simulations.

Figure 1.3 Fluid velocity generated when the force f = (1, 0, 0) is applied at point
x0 = (0, 0, 0) in a Brinkman flow with di↵erent hydrodynamic resistances: ⌫ = 0, 1, 4.
The vector field indicates u, whereas the field color represents log|u|.

When a point force is applied to a viscous fluid or Stokes flow, the velocity

disturbance that follows it decays as 1/r with distance r, as seen in the formula for

the Stokeslet in Equation (1.6). However in a Brinkman medium the decay of the

velocity disturbance is significantly altered at large distances and decays much faster,

at a rate of 1/r3 [49] because a new length-scale has been introduced into the problem.

The e↵ects of the resistance on the fluid flow generated from a single force are visible

in the plots shown in Figure 1.3: the disturbance fluid flow is not as long-ranged as

in the Stokes case.

Figure 1.4 Fluid velocity generated by two closely-applied opposite forces in
Brinkman flow with di↵erent hydrodynamic resistances: ⌫ = 0, 1, 4. The vector
field indicates u, whereas the field color represents log|u|.
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When a point force is applied to a viscous fluid or Stokes flow, the velocity

disturbance that follows it decays as 1/r with distance r, as seen in the formula for

the Stokeslet in Equation (1.6). However in a Brinkman medium the decay of the

velocity disturbance is significantly altered at large distances and decays much faster,

at a rate of 1/r3 [49] because a new length-scale has been introduced into the problem.

The e↵ects of the resistance on the fluid flow generated from a single force are visible

in the plots shown in Figure 1.3: the disturbance fluid flow is not as long-ranged as

in the Stokes case.

In Figure 1.4 we plot the fluid flow generated by a force dipole (two opposite

direction forces applied at an o↵set distance) in Brinkman flow of various resistance.

We notice that the fluid flow generated by this force dipole, representative of

disturbance fluid flow generated by a micro-swimmer moving through it, is also visibly

a↵ected by the medium resistance. Notably, the fluid flow becomes more localized

and its e↵ects are not felt as far as in a pure viscous flows.

1.5 Questions Motivating this Study

The fluid flows generated by each micro-swimmer can advect and rotate neighboring

and further swimmers in a suspension, and this hydrodynamic interaction is known to

be a crucial factor in the emergence of the self-organization and collective dynamics

of pusher micro-swimmers like motile bacteria [108, 174]. Thus the di↵erences in the

fluid flow fields seen in Figure 1.4 motivate the questions behind this research project:

• How does the environment heterogeneity, and in particular the resistance

resulting from the present impurities, alter the collective motion of microswimmers?

• Does this resistance a↵ect chemotactic dynamics and aggregation?

• Can we gain some insight into the phenomena observed in experiments by

modeling the environment resistance through the Brinkman approximation?
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• Can we provide a framework to predict and control the dynamics and migration

of bacteria specifically, and active matter generally, in porous and inhomo-

geneous environments?

1.6 Overview of the Dissertation

Here we provide a brief overview of the contents of the dissertation and highlight its

key findings on micro-swimmers collective motion in porous media. environments.

In Chapter 1, we introduce the concept of slow viscous environments, which are

commonly found in nature and are inhabited by microorganisms such as bacteria and

algae. We also discuss low Reynolds number flow singularities, which are important

physical phenomena that arise in these environments due to the high viscosity and

low fluid velocity. The chapter provides a brief introduction to the topic and sets

the stage for the subsequent chapters, which delve deeper into the mechanics and

dynamics of micro-swimmers and their interactions with their environment.

In Chapter 2, we delve into the details of a continuum model of swimmers

in Brinkman flow. To lay the foundation, we start by deriving some important

concepts that form the basis of the model. We then present the continuum

model in Stokes-Brinkman flow, the non-dimensionalization of the system. We

perform analyses of the entropy and the linearized system to understand its stability

characteristics. These analysis provide valuable insights into the behavior of the model

for particular parameters. We present computer simulation of the full nonlinear model

for a variety of resistance strength values and analyze them through measurements of

quantities like active power, maximal fluid flow speed and swimmer concentration. We

summarize and discuss our findings from the continuum model, stability analysis, and

nonlinear simulations to conclude that resistance hinders the emergence of collective

dynamics in pusher swimmer suspensions. Overall, this chapter is an essential piece of

the dissertation, as it establishes the foundation necessary for the subsequent chapters.
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Chapter 3 of the dissertation focuses on auto-chemotaxis and the e↵ect that

hydrodynamic resistance has on chemotactic aggregation and clustering. The chapter

starts by introducing the concept of chemotaxis, which is the ability of bacteria

to move towards or away from chemical gradients. We then present a continuum

model of chemotaxis with tumbling and describe how it can be used to study

micro-swimmers spread. Analysis of the The model is then used to perform numerical

simulations, which allow us to investigate the behavior of swimmers in di↵erent porous

environments. The results of the simulations are discussed, providing insights into

how micro-swimmers spread can be a↵ected by the properties of the porous material.

Overall, this chapter provides an examination of the role of hydrodynamic resistance

in the chemotactic dynamics and clustering of swimmers.

Chapter 4 of the dissertation provides an exploration of swimmers’ spread in

inhomogeneous or porous environments from an initially accumulated state. By

systematically varying various factors such as auto-chemotaxis, hydrodynamics,

resistance, and externally-supplied nutrients, we get a better understanding how

all these factors interact and give rise to the complex emerging dynamics. This

chapter also elucidates the role of the initial conditions, and in this case we find

that hydrodynamic resistance hinders micro-swimmer spread and di↵usion into the

surrounding area.

Lastly, in Chapter 5 we summarize our findings in this dissertation and discuss

possible future projects that can stem from it.
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CHAPTER 2

CONTINUUM MODEL OF SWIMMERS IN BRINKMAN FLOW

2.1 Derivation of Continuum Theory

2.1.1 Propulsive rod in linear background flow

We focus now on deriving kinematic equations that pertain to a slender swimmer

immersed in a Brinkman fluid, adapting from similar derivations for a slender object or

swimmer immersed in Stokes flows [8, 83, 71, 60]. The swimmer here is characterized

by its centerlineY(s, t) [8, 83, 71]. Using the local slender-body-theory approximation

[60] to the centerline velocity V(s, t), we obtain:

⌘[V(s, t)�U(Y, t)] = (I+YsY
T

s
)f , (2.1)

where U(Y, t) is the background fluid flow, c = ln(l✏2) with ✏⌧ 1 being the swimmer

aspect ratio and we defined ⌘ = 8⇡µ
�c

. In Equation (2.1), f is the force per unit length

exerted by the rod upon the fluid.

Figure 2.1 An ellipsoidal rod with propulsive stress on its body’s posterior half.

Figure (2.1) depicts a basic model of a motile slender rod where the propulsive

stress is applied to half of the rod’s length and a no-slip condition applied to the

front half. The model represents a pusher micro-swimmer, for which the thrust is

generated at the rear end through the rotary motion of its flagellar bundle.

Now, we are going to add the fluid background and derive the kinematic

equations. Note that V(s, t) = Yt(s, t) = Ẏ(s, t). Now, for simplicity, consider a
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rod of fixed length l described by its center of mass and orientation. Then,

Y(s, t) = Xc(t) + sp(t),

where � l

2  s  l

2 and |p| = 1. Note that, Ys = p. Taking the background flow as

linear: U(Y) = AY = A(Xc + sp) with tr(A) = 0, then the velocity will be

V(s, t) = Ẏ(s, t) = Ẋc + sṗ,

Plugging the above equations in Equation (2.1), we obtain

⌘[Ẋc + usp+ sṗ�A(Xc + sp)] = (I+ ppT )f1(s), � l

2
 s  0 (2.2)

⌘[Ẋc + sṗ�A(Xc + sp)] = (I+ ppT )f2(s), 0  s  � l

2
. (2.3)

Note that, we need to determine Ẋc, which is the center of mass change, ṗ, which

is the direction change, and f(s), which is the force per unit length. In order to

do that, we have to use the zero total force i.e.
⇣R l

2

� l
2

f(s)ds = 0
⌘
and zero torque

⇣R l
2

� l
2

f(s)⇥ pds = 0
⌘
.

So we integrate Equations (2.2) and (2.3) with respect to s, we get

⌘

Z 0

� l
2

[Ẋc + usp+ sṗ�A(Xc + sp)]ds =

Z 0

� l
2

(I+ ppT )f1(s)ds. (2.4)

⌘

Z l
2

0

[Ẋc + sṗ�A(Xc + sp)]ds =

Z l
2

0

(I+ ppT )f2(s). (2.5)
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Recall that Ẋ, ṗ, X, p, and A are not dependent on s. Therefore, From the zero-

torque condition, both f1 and f2 are in the p-direction. Therefore, we set f1 = (f0 +

f1s)p and f2 = (f2 + f3s)p [60].Upon integration of Equations (2.2) and (2.3) with

respect to arc length, we obtain the kinematic equation of the center of mass,

Ẋc = AXc �
us

2
p. (2.6)

The zero torque condition gets satisfied if f1 = ↵p. Therefore,

⌘[ṗ�Ap] = 2↵p (2.7)

Now, by taking the dot product of the last equation with p, (pre-multipliying by

pT ) and using the fact that |p|2 = 1, or pTp = 1 and @

@t
|p|2 = 0. We can find

↵ = �⌘

2(p
TAp). Plug this back into Equation (2.7), we obtain

ṗ = (I� ppT )Ap.

The kinematic equations for a propulsive rod in linear Brinkman flow then are:

Ẋc = AXc �
us

2
p. (2.8)

ṗ = (I� ppT )Ap

f = �⌘
2
s(pTAp).
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2.1.2 Extra stress created by rods

The Kirkwood formula enables us to calculate the extra stress produced by particles,

such as micro-swimmers or rods, that are suspended in a Newtonian fluid [42, 91].

We assume � is the microscopic stress evaluated on the surfaces @Bm of N bodies.

Then in a volume V , the extra stress in a suspension[9] is

�(p) =
1

V

NX

m=1

Z

@Bm

dA[�fXT � µ(un̂T + n̂uT )]. (2.9)

We denote by f = ��n̂ the force that the particle exerts on the fluid. Here, n̂ is the

unit outward normal to the surface, and u is the velocity on the surface. The surface

integral containing u = u(s) vanishes since, for slender bodies, the surface velocity

is only a function of the arc length along the centerline. As a result, Equation (2.9)

will become the following:

�(p) = � 1

V

NX

m=1

Z

@Bm

dsfXT . (2.10)

The Kirkwood formula given by Equation (2.10) leads to the calculation of the extra

stress generated by a single rod and then by a suspension of such rods. Applying

Equation (2.9) to Equation (2.10) for a propulsive rod gives the contribution to the

stress from a single swimmer

S = �k1l
3gppT = ��0ppT , (2.11)

where k1 = ⇡✏

2 is another geometric constant and the units of �0 = k1l3g are force

times length; note these are the units of the strength of a stresslet, or force dipole.
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Next, we combine Equations (2.10) and (2.11) to find the volume-averaged extra

stress in a box of volume L3 containing N such swimmers. We assume that there

are M swimmers in a smaller control volume L3
M

and that the rate-of-strain tensor

is constant over this smaller volume. Furthermore, we suppose a separation of scales

(l  LM  L). After some manipulation, we find

�(p) = �n��0
1

M

MX

m=1

ppT , (2.12)

where n = N/L3 is the number density and � = (M/L3
M
)/(N/L3) is the local

concentration.

As explained by [60], for large M , the weighted sum converges to the

configurational average with respect to  M , the probability density function for

finding a rod with a given center-of-mass position and orientation in the small volume.

Going from the local distribution function and concentration to the macroscopic

distribution function, we write  M =  /� and the extra stress becomes �(p) =

�n�0 < ppT >. Redefining  as n , we obtain the extra stress generated by a

suspension of rear-activated swimmers

�(p) = ��0 < ppT >= ��0
Z Z

dxdp ppT . (2.13)

Applying the kinematic equations (2.12) to a general disturbance flow whose

rate-of-strain tensor is constant, namely u is a linearized velocity field around the

swimmer’s body, and taking the limit for a large number of swimmers M , we arrive
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at the following equations for the particle fluxes for the center-of-mass and direction:

ẊC = Up+ u� dxrx(ln ) (2.14)

ṗ = (I� ppT ) [(�E+W)p]� drrp(ln ), (2.15)

Here we introduced translational and rotational di↵usion processes with phase space

(not particle) di↵usion coe�cients dx and dp, respectively [42, 60].

The Equations (2.13, 2.14, 2.15) lie at the heart of many continuum descriptions

of active suspensions [147], including the one presented next.

2.2 Continuum Model of Micro-swimmers in Stokes-Brinkman Flow

The probability distribution function  (x,p, t) represents the configuration of micro-

swimmers modeled as ellipsoidal particles, where x denotes the swimmer center of

mass and p denotes the direction with (|p| = 1). The dynamic behavior of swimmers

in suspension is described by a conservation equation that takes into account fluid

advection and rotation as well as the di↵usion of particles:

@ 

@t
= �rx · [ (U0p+ u)]�rp ·

⇥
 (I� ppT (�E+W)p

⇤
+Dr2

x
 + drr2

p
 .

(2.16)

The conservation Equation (2.16) involves flux velocities in the center of mass

x and orientation p that have to be specified:

ẋ = U0p+ u�Drx(ln ) (2.17)

ṗ = (I� ppT ) [(�E+W)p]� drrp(ln ). (2.18)
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In Equation (2.17), the translational velocity of a particle is expressed as the sum of

the background fluid velocity x and the swimming speed U0 with orientation p. We

model isotropic translational di↵usion with a constant D. Here rp is the gradient

operator on the sphere. Equation (2.18) is Je↵ery’s equation[69] and models the

angular velocity ṗ in terms of the fluid rate-of-strain E = (ru+rTu)/2 and vorticity

tensorW = (ru�rTu)/2 and of a shape parameter �1  �  1. The term (I�ppT )

captures the rotation of an anisotropic particle in the local flow. Angular di↵usion is

included through a rotational di↵usion coe�cient dr[147, 145, 106].

Microscopic organisms encounter varying fluid environments that contain

networks of stationary obstacles suspended within them. The flow of viscous fluid

through these porous materials can be modeled by adding an additional hydrodynamic

resistance or friction term, µ

KD
u, to the Stokes-Brinkman equations. The Brinkman

equation was developed specifically to model the flow through a porous material

containing scattered spherical particles [31, 49, 94].

When micro-swimmers are present, the fluid velocity u(x, t) satisfies the Stokes-

Brinkman equations with an extra active stress due to the swimmers’ motion in it.

�µr2
x
u+rxq +

µ

KD

u = rx · ⌃p, (2.19)

rx · u = 0. (2.20)

Here µ is the viscosity, q is the fluid pressure, and KD > 0 the constant Darcy

permeability, and ⌃p is the active stress, as derived in Equation (2.13)

⌃p(x, t) = �0

Z
 (x,p, t)(ppT � I/3)dp. (2.21)
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The active stress ⌃p is the average configuration of the active stress �0(ppT�I/3) that

exerted on the fluid by the particles over all possible orientations p[148, 145, 9, 178]. If

we ignore particle interactions and only consider the contribution from single-particle

swimming, we can estimate the initial strength of the stresslet �0 by focusing on the

first moment of the force distribution on the particle surface [145, 146]. Various studies

have demonstrated that this approach is valid from a micro-mechanical perspective

on swimming [148, 145, 146]. Lastly,

�0 = U0µl
2↵, (2.22)

where l is the characteristic length of the particles and ↵ is an O(1) dimensionless

constant whose value depends on the mechanism of swimming and swimmer geometry.

One way to classify swimmers is based on their propulsion mechanism. Swimmers

that use a force around their tail, like sperm, are called pushers, and have a negative

initial stresslet strength �0, which in turn implies a negative value for ↵. In contrast,

swimmers that use their heads to pull themselves forward, like C. reinhardtii, are

called pullers, and have a positive �0, indicating a positive value for ↵ [147, 145, 106].

We define a local swimmer concentration �(x, t) and the mean swimmer director

director < p(x, t) >

�(x, t) =

Z
 (x,p, t)dp, < p(x, t) > =

Z
p (x,p, t)dp. (2.23)

2.2.1 Non-dimensionalization of the system

We non-dimensionalize Equation (2.16) using the distribution-, velocity-, length- and

time-scales  c = n, uc = U0, lc = (nl2)�1, tc = lc/uc, with lc = (V/Vp)l and Vp = Nl3

the e↵ective volume taken by N swimming particles in the fluid volume V of a cube
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with length L [147]. n is the mean number density of the micro-swimmers in the

volume V . This choice of non-dimensionalization normalizes the distribution function

1

V

Z

V

dx

Z
dp (x,p, t) = 1

with  0 = 1/4⇡ the probability density for the uniform isotropic state.

We also non-dimensionalize the di↵usions as D0 = Dtc/l2c , d0
r

= drtc.The non-

dimensionalized swimmer distribution equation becomes:

@ 

@t
= �rx · [ (p+ u)]�rp · [ (I� pp)(�E+W)p] +Dr2

x
 + drr2

p
 . (2.24)

The fluid equations are non-dimensionalized using ↵ = �0/(U0µl2c) for ↵ a non-

dimensional O(1) constant whose sign tells whether the micro-swimmers are pushers

(↵ < 0), pullers (↵ > 0)[147, 106]. The non-dimensional permeability parameter

is ⌫ = lc/
p
KD, and we will refer to is as the hydrodynamic resistance. The

non-dimensional Stokes-Brinkman fluid equations are

�r2
x
u+rxq + ⌫2u = ↵rx ·

Z
 (x,p, t)(ppT � I/3)dp, (2.25)

rx · u = 0. (2.26)

2.2.2 The system in two dimensions

Since the numerical simulations that will be presented later are performed for a two-

dimensional (2D) system, we briefly discuss how the equations in this system are

di↵erent from those in a three-dimensional (3D) system.

In 2D, we have only one orientation angle, ✓ 2 [0, 2⇡] with p = (cos ✓, sin ✓). The 2D
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model does not di↵er much in appearance from the 3D one in Equation (2.16) except

that in 2D, we have the isotropic state  0 = 1/2⇡.

@ 

@t
= �rx · ( ẋ)� @✓( ✓̇) (2.27)

✓̇ = p? · (�E+W)p� dr@✓(ln )

ẋ = p+ u�Drx(ln )

⌃p = ↵

Z 2⇡

0

 (x, ✓, t)(pp� I/2)d✓.

Here p? = (� sin ✓, cos ✓) is the unit vector perpendicular to the particle orientation.

These are coupled to the fluid equations with active particle stress and additional

hydrodynamic resistance or friction in the Stokes-Brinkman equations,

�r2
x
u+rxq + ⌫2u = rx · ⌃p, (2.28)

rx · u = 0. (2.29)

2.3 The System Entropy

The total entropy S, defined as

S =

Z
dxs =

Z
dx

Z
dp
 

 0
ln(
 

 0
), (2.30)

with  0 = 1
4⇡ . Note that S =

R
dxs(x, t) � 0 and S realizes its minimum value of

zero only for  =  0, the homogeneous and isotropic state.
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Di↵erentiating the equation for s =
R
dp( / 0) ln( / 0) with respect to time

and assuming f =  
 0

yields,

st =

Z
dpft(ln f + 1)

=

Z
dp(ln f + 1)[�rx · ((p+ u)f)�rp · (((I� ppT )rxup)f)

+Dr2
x
f +rp · (drrpf)]

= �u ·rxs+

Z
dp[�p ·rx(f ln f)� frp · ((I� ppT )rxup)

+D(ln f + 1)r2
x
f � dr|rp ln f |2f ].

Using rp · ((I� ppT )rxup) = �3pTrxup = �3ppT : E, we obtain

st + u ·rxs+rx ·
Z

dpp f ln f = Dr2
x
s+ 3

✓Z
dpfppT

◆
: E (2.31)

�
Z

dp
�
D|rx ln f |2 + dr|rp ln f |2

�
f.

The momentum equation can be integrated over the fluid domain to obtain:

2

Z
dxE : E+ ⌫2

Z
dx|u|2 = �

Z
dxE : ⌃p. (2.32)

Integrating Equation (2.31) in x and using the above Equation (2.32) results in:

DtS = 3

Z
dxE :

Z
dpfppT � ⌫2

Z
dx|u|2 �

Z
dx

Z
dpf [D|rx ln f |2 + dr|rp ln f |2]

=
�6

↵

Z
dxE : E� ⌫2

Z
dx|u|2 �

Z
dx

Z
dpf [D|rx ln f |2 + dr|rp ln f |2].
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Therefore we obtain an exact equation for the evolution of the entropy:

4⇡DtS =
�6

↵

Z
dxE : E� ⌫2

Z
dx|u|2 �

Z
dx

Z
dp [D|rx ln |2 + dr|rp ln |2].

(2.33)

We note the three distinctive contributions in Equation(2.33) from the hydro-

dynamics, resistance, and di↵usive processes.

The first term in the right hand side of Equation(2.33) contains the rate of

viscous dissipation
R
dxE : E which is positive definite, hence, in the absence of any

external forcing or boundaries, for suspensions of pullers (↵ > 0) any fluctuations

from the isotropic state as measured by the entropy are expected to monotonically

dissipate, whereas for suspensions of pushers (↵ < 0) there is a feedback loop where

fluctuations create velocity gradients which further increase fluctuations [147]. These

are eventually balanced by the di↵usive processes in the system, seen here in the third

term in the right hand side of Equation (2.33).

Last, but not least, the hydrodynamic resistance makes an appearance in the

second term of Equation (2.33). As
R
dx|u|2 is positive definite and ⌫2 � 0, it is

clear that the resistance is expected to dampen any fluctuations from the isotropic

state, thus having a stabilizing e↵ect on the system. This expectation is supported

out by the results of our linear stability analysis of the isotropic state, as well as by

the results of our nonlinear simulations, both presented in subsequent sections.

2.4 Linear Stability Analysis

2.4.1 The eigenvalue problem

We now consider the stability of a nearly uniform and isotropic suspension. Let the

swimmer’s suspension be a perturbation about the uniform isotropic state  =  0 =
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1/4⇡ and zero fluid flow u0 = 0, |✏| << 1

 (x,p, t) = 1/4⇡ + ✏ 0(x,p, t), u(x,p, t) = 0+ ✏u0(x,p, t).

For simplicity, we neglect angular di↵usion dr = 0 but we retain translational di↵usion

D. Substituting these into Equation (2.16) and keeping only O(✏) terms, we get the

linearized equations for the distribution and the fluid

@ 0

@t
= �p ·rx 

0 + 3� 0p
TE 0p+Dr2

x
 0 + drr2

p
 0. (2.34)

�r2u0 +rq0 + ⌫2u0 = ↵r ·
Z
 0(x,p, t)(ppT � I/3)dp, (2.35)

r · u0 = 0. (2.36)

We consider plane wave perturbations for the distribution function and for all

the other perturbation variables:

 (x,p, t) = 1/4⇡ + ✏ 0(x,p, t) = 1/4⇡ + ✏ ̃(p,k) exp(ik · x+ �t)

u(x,p, t) = 0+ ✏u0(x,p, t) = 0+ ✏ũ(p,k) exp(ik · x+ �t),

with |✏| << 1, k the wavenumber and �(k) the growth rate. Substituting these into

Equation (2.34), we get an equation that is linear in  ̃:

(� + ip · k+Dk2) ̃ =
3

2
i� 0p

T(ũkT + kũT )p.
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Let k = kk̂. We solve the fluid equations for the fluid velocity

ũ =
ik

k2 + ⌫2
(I� k̂k̂T )⌃̃pk̂, (2.37)

⌃̃p = ↵

Z
 ̃0p0p0Tdp0. (2.38)

We plug this into the  ̃ equation and simplify, to obtain

(� + ip · k+Dk2) ̃ = � 3�k2

4⇡(k2 + ⌫2)
pT (I� k̂k̂T )⌃̃pk̂k̂Tp. (2.39)

Without loss of generality, we let k̂ = ẑ, p = [sin ✓ cos�, sin ✓ sin�, cos ✓] and dp =

sin ✓d✓d� for ✓ 2 [0, ⇡] , � 2 [0, 2⇡). Then, we can write

(� + ik cos ✓ +Dk2) ̃ = � 3�↵k2

4⇡(k2 + ⌫2)
cos ✓ sin ✓[cos�F1 + sin�F2],

where for simplicity we have defined the following integral operators of  ̃

F1( ̃) =

Z 2⇡

0

cos�0
Z

⇡

0

sin2 ✓0 cos ✓0 ̃(✓0,�0)d✓0d�0

F2( ̃) =

Z 2⇡

0

sin�0
Z

⇡

0

sin2 ✓0 cos ✓0 ̃(✓0,�0)d✓0d�0

Equation (2.39) constitutes a linear eigenvalue problem for the perturbation mode  ̃

and the growth rate �. Applying the operator F1 to  ̃ in Equation (2.39) we obtain:

F1 = � 3�↵k2

4⇡(k2 + ⌫2)

Z
⇡

0

sin3 ✓ cos2 ✓

(� + �0 + ik cos ✓ +Dk2)
d✓F1.
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with the same equation for F2. Canceling F1 gives an integral equation for �:

1 = � 3�↵k2

4⇡(k2 + ⌫2)

Z
⇡

0

sin3 ✓ cos2 ✓

(� + �0 + ik cos ✓ +Dk2)
d✓. (2.40)

Letting a = (� +Dk2)/ik, we can evaluate the integral and obtain

1 = � 3↵�k2

4(k2 + ⌫2)

1

ik


2a3 � 4

3
a+ (a4 � a2) log

✓
a� 1

a+ 1

◆�
, (2.41)

which we rewrite as

0 = F(�, k) :=
�4ik

3(�↵�)
k2 + ⌫2

k2
+


2a3 � 4

3
a+ (a4 � a2) log

✓
a� 1

a+ 1

◆�
. (2.42)

Equation (2.42) is the dispersion relation for the growth rate �(k) in terms of

wave-numbers k. If Re(�(k)) � 0 for a particular k indicates some perturbation from

the uniform isotropic state will grow in time.

Note that for the case of no resistance, ⌫ = 0, the dispersion relation reduces

to that found by many groups studying collective dynamics of micro-swimmer

suspensions, e.g. [147, 163, 164]

2.4.2 Small-wavenumber asymptotic approximation

The dispersion relation shown in Equation (2.42), F(�, k) = 0 cannot be solved

exactly for the growth rate �(k). To gain insight into the behavior of the system, we

look for long-wave (small wave-number k) asymptotic solutions. For this calculation,

we assume the resistance is on the same order as the small wave-number, ⌫ = ⌧k.
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We assume a power series expansion � = �0 + �1k+ �2k2 + ... for small k. The

coe�cients �0, �1, �2, ..., can be determined from systematically solving the equations

F0(�) = 0,F1(�) = 0,F2(�) = 0, ..., where these equations arise from a power series

expansion in k of the dispersion relation Equation (2.42) as in F(�, k) = F0(�) +

F1(�)k + F2(�)k2 + .... The Maple calculations are shown in the Appendix B.1.

We obtain two distinct asymptotic solutions, or branches, for the growth rate:

�H1 =
(�↵�)

5(1 + ⌧ 2)
+


�15(1 + ⌧ 2)

7(�↵�) �D

�
k2 +

17875(1 + ⌧ 2)3

147(�↵�)3 k4 +O(k5), (2.43)

�H2 =


(1 + ⌧ 2)

(�↵�) �D

�
k2 � 3(1 + ⌧ 2)2⇡

4(�↵�)2 k3 +
3(1 + ⌧ 2)3(3⇡2 � 8)

8(�↵�)3 k5 +O(k6). (2.44)

We observe that both branches of �H(k) are negative for pullers (↵ > 0) for any

swimmer shape �, which means the puller suspension is stable under perturbations.

Translational di↵usion with rate D also has an unsurprising stabilizing e↵ect for any

type of suspension.

For pushers (↵ < 0) however, �H(k) term may be positive for non-spherical

swimmers (� > 0 and has its maximum of �↵/5 at k = 0 for elongated pusher

swimmers � = 1 in flows with no resistance ⌧ = 0 = ⌫; for increasing ⌫ or ⌧ , the

value of �H1(k = 0) decreases. The next term in the �H1 series shows a decrease from

this maximum, with the decrease being higher for non-zero resistance ⌧ . For a given

wave-number k that is very small, we see that overall non-zero resistance lowers the

value of �H1(k), so resistance has an overall stabilizing e↵ect on this branch of the

growth rate for perturbations of pusher suspensions.

2.4.3 Numerical solution of the dispersion relation

We numerically solve the dispersion relation Equation (2.42), F(�(k, ⌫), k) = 0 for

the growth rate �(k, ⌫) for each ⌫ and then each wavenumber k by using an iterative
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quasi-Newton solver (e.g., Matlab’s fsolve with a trust-region search). We start with

⌫ = 0 and then advance for small ⌫ increments d⌫, and for each ⌫ we advance in small

k increments dk. For small small k and small ⌫, we use as initial guess the asymptotic

expansions from Equation (2.42). More generally, when solving for �(k + dk, ⌫ + d⌫)

we use as an initial guess the average of �(k, ⌫ + d⌫) and �(k + dk, ⌫).

The solution to the hydrodynamics dispersion relation for elongated (� = 1)

swimmers with various ⌫ is shown in Figures (2.2) and (2.3).

We start the description of the solutions with the result for homogeneous flow

i.e. ⌫ = 0, and D = 0 in Figure 2.2. We see �H1(k = 0) = 0.2 and �H2(k = 0) = 0. At

km(⌫ = 0) ⇡ 0.18, (subscript m is for merge), the real parts of the two branches of �H

merge, then decrease together until they cease to be positive for k+(⌫ = 0) ⇡ 0.57.

The imaginary parts of �H branches are zero for k < km(⌫ = 0) and for k > km(⌫ = 0),

they are non-zero and increase in magnitude for increasing wavenumber k.

For simplicity, we define the variables k� and k+ and the wavenumbers where

Re(�H(k)) > 0 for k� < k < k+. We define kb(⌫) and km(⌫) as the wavenumber

where the two branches of Re(�H) separate and merge respectively.

The real parts of the two �H branches become positive for k > k�(⌫), then

separate at kb(⌫) (subscript b for bifurcation) and merge again at km(⌫), then decrease

together for increasing k until they cease to be positive for k > k+(⌫). The imaginary

parts of the two �H branches are nonzero for k�(⌫) < k < kb(⌫) and merge to zero

for kb(⌫) < k < km(⌫), then separate into conjugate parts for k > km(⌫). In Figure

2.4 we show a plot of critical wavenumbers k�, kb, km, k+ with varying ⌫.

For ⌫ 6= 0 but small, both branches of �H start at 0, hence �H1(k = 0, ⌫ 6= 0) = 0

and �H2(k = 0, ⌫ 6= 0) = 0.

At ⌫c ⇡ 0.075, we have kb(⌫) = km(⌫) and the real parts of the two �H branches

merge and stay merged for ⌫ > ⌫c, whereas their imaginary parts are nonzero and

conjugates.
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Figure 2.2 Real and imaginary parts of the numerical solution of the relation (2.42)
for the growth rate �H(k), ⌫ = 0, 0.025, 0.05, 0.075.

33



0 0.2 0.4
k

0

0.1

0.2
R

e(
H

 (k
))

 = 0.1

0 0.2 0.4
k

-0.2

0

0.2

Im
(

H
 (k

))

 = 0.1

0 0.2 0.4
k

0

0.1

0.2

R
e(

H
 (k

))

 = 0.15

0 0.2 0.4
k

-0.2

0

0.2

Im
(

H
 (k

))
 = 0.15

0 0.2 0.4
k

0

0.1

0.2

R
e(

H
 (k

))

 = 0.2

0 0.2 0.4
k

-0.2

0

0.2

Im
(

H
 (k

))

 = 0.2

0 0.2 0.4
k

0

0.1

0.2

R
e(

H
 (k

))

 = 0.25

0 0.2 0.4
k

-0.2

0

0.2

Im
(

H
 (k

))

 = 0.25

0 0.2 0.4
k

0

0.1

0.2

R
e(

H
 (k

))

 = 0.025

0 0.2 0.4
k

0

0.1

0.2

R
e(

H
 (k

))

 = 0.025

Figure 2.3 Real and imaginary parts of the numerical solution of the relation (2.42)
for the growth rate �H(k), ⌫ = 0.1, 0.15, 0.2.
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Figure 2.4 Plots of the critical wavenumbers k�, kb, km, k+ with varying ⌫.

At ⌫z ⇡ 0.275 we have k�(⌫) = k+(⌫) and the real parts of the two �H branches

no longer have any positive parts for any wavenumber k. Hence linear theory tells

us that ⌫ > ⌫z turns o↵ the hydrodynamic instability for pusher suspensions for any

wavenumber k, thus any system size.

Lastly, in Figure 2.5, we plot the maximum of Re(�(k)) for varying ⌫. We will

later use the plot’s information to determine parameters for which we can stabilize

this system or a similar one.
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Figure 2.5 Maximum of Re(�(k)) with varying ⌫.

2.4.4 Linear analysis and dispersion relation in 2D

We now consider the system in two-dimensions, as in Equations (2.27), where we have

only one orientation angle ✓ 2 [0, 2⇡) and p = [cos ✓, sin ✓]. Similar to the 3D case

in the previous sections, we can analyze the stability of nearly-uniform and isotropic
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suspension in 2D where  0 = 1/2⇡. For simplicity, we consider zero di↵usions,

D = 0 = dr. The linearized distribution equation is

@ 0

@t
= �p ·r 0 + 2� 0p

TE0p. (2.45)

We consider plane-wave perturbations for the distribution

 (x,p, t) = 1/2⇡ + ✏ ̃(p,k) exp(ik · x+ �t), (2.46)

with |✏| << 1, k the wavenumber and � the growth rate.

Substituting the solution for ⌃̃p and the fluid velocity, we obtain

(� + ik sin ✓) ̃ =
�↵�k2

⇡ik(k2 + ⌫2)
sin ✓ cos ✓

Z 2⇡

0

 ̃0 sin ✓0 cos ✓0d✓0, (2.47)

where k = kk̂. This is a linear equation for  ̃:

 ̃ =
�↵�
⇡ik

k2

(k2 + ⌫2)

sin ✓ cos ✓

(� + ik sin ✓)

Z 2⇡

0

 ̃0 sin ✓0 cos ✓0d✓0. (2.48)

Multiplying both sides by sin ✓ cos ✓ and then integrating in ✓, we obtain:

1 =
�↵�
ik⇡

k2

(k2 + ⌫2)

Z 2⇡

0

sin2 ✓ cos2 ✓

(� + �0 + ik sin ✓)
d✓ (2.49)

which is an implicit integral equation for �.
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Letting a = �/ik, we can evaluate the integral and the result is

1 =
�↵�
ik

k2

(k2 + ⌫2)

h
2a3 � a± 2a2

p
a2 � 1

i
(2.50)

which can be re-arranged as

0 = F(�, k) :=
�ik

�↵�
(k2 + ⌫2)

k2
+
h
2a3 � a± 2a2

p
a2 � 1

i
(2.51)

This is the hydrodynamic dispersion relation in 2D. It is a cubic equation for a and

can be solved exactly for a and thus for �, though we have to take care that the

solution satisfies the integral relation in Equation (2.49). From the two cases arising

from the ±, only the minus case is feasible [61, 103]. We obtain these roots

�H1 = �A

�
+

B�

A
+
�

12

�H2 =
A

2�
� 2B�

A
+
�

12
± i

p
3

2

✓
� A

2�
� B�

A

◆
(2.52)

where for simplicity of the formula we have let � = (�↵�)/(1 + ⌧ 2) and

A =
1

12

h
��4 + 36�2k2 � 216k4 + 24�2k3

p
�3�2 + 81k2

i1/3

B =
1

6


k2 � �2

24

�
.
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For small wavenumber k and ⌫ = ⌧k, these branches become

�H1 ⇡
�↵�

4(1 + ⌧ 2)
� 2(1 + ⌧ 2)

�↵� k2 +O(k3)

�H2 ⇡ �(1 + ⌧ 2)

↵�
k2 +O(k3) (2.53)

Note that for these bear many similarities to the asymptotic solutions in 3D. The first

branch however is slightly di↵erent in magnitude: here �H1(k = 0, ⌧ = 0) = 1/4 for

elongated pushers with�↵� = 1, whereas in 3D we would get �H1(k = 0, ⌧ = 0) = 1/5

because �H1 ⇡ (�↵�)/5 +O(k2).
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Figure 2.6 Real and imaginary parts of the numerical solution of the 2D dispersion
relation Equation (2.51) for the growth rate �H(k), ⌫ = 0 : 0.025 : 0.35.

The solutions to the dispersion relation for various resistance values ⌫ are shown

in Figure 2.6. We notice that the real and imaginary parts of �(k) in the 2D problem

bear significant qualitative similarities, e.g. in overall shape, to those from the 3D

problem, except that the magnitudes and the critical values k�, kb, km, k+ are slightly

di↵erent. For example, here Re(�H1(0) = 1/4), whereas in 3D it was 1/5. Here

Re(�H1 > 0 for ⌫  0.36, whereas in 3D it was ⌫  0.27.
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2.5 Nonlinear Simulations and Results

2.5.1 Numerical method

Linear stability analysis suggested parameters for which perturbations from the

uniform isotropic state will grow for given domain sizes, but it does not tell us what

the dynamics will look like. To investigate the dynamics of the motile suspensions,

we perform numerical simulations of the full nonlinear system, Equations (2.24) and

(2.25).

Since a full 3D system is computationally heavy due to three space variables and

two orientation variables, we focus instead a periodic 2D system in which the particles

are constrained to move and rotate in the (x, y)-plane with orientation parameterized

by one angle ✓ 2 [0, 2⇡), so that the direction is p = (cos ✓, sin ✓, 0). The domain is

discretized uniformly with typically M = 128� 256 points in the x and y directions

and M✓ = 32 points in the angle direction. We use second-order accurate finite

di↵erences to calculate the flux terms in the conservation equation. The trapezoidal

rule is used to compute the integrals in orientation ✓, e.g. for the active particle

stresses ⌃p, swimmer density �.

As the computational domain is periodic, we can employ spectral methods,

specifically Fast Fourier Transforms, to solve the fluid equations (2.25) by using the

Hasimoto solutions as shown in Equations (A.4) and (2.37).

Once the fluid velocity is known, we integrate the conservation Equation (2.24)

using a second order Adams-Bashforth scheme with su�ciently small time-step to

keep the calculations stable.

The initial condition is chosen to be a random perturbation around the uniform

isotropic state, as also used in forerunner studies [147, 105, 106]:

 (x, ✓, 0) =
1

2⇡

"
1 +

X

i

✏i cos(k0 · x+ ⇠i)Pi(✓)

#
, (2.54)
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where ✏i 2 [�0.01, 0.01]) are randomly-chosen small coe�cients, ⇠i is a random

phase, and Pi(✓) is a third order polynomial of sin(✓) and cos(✓) with random O(1)

coe�cients.

The results presented here are for elongated pusher swimmers with � = 1 and

↵ = �1. We choose a periodic square box with side L = 25, a size which allows for

enough unstable modes according to our linear stability analysis results. Translational

and rotational di↵usions are included with coe�cients D = dr = 0.01 to ensure that

the distribution function remains bounded in time.

2.5.2 The e↵ect of the Brinkman resistance

Figures 2.7 to 2.12 present simulations of the dynamics of an initially isotropic

suspension for various values of the hydrodynamic resistance parameter, ⌫ 2 0..0.25,

suggested from the linear stability analysis. The simulations consider pushers that

are initially uniformly distributed and pointing in random directions, resulting in an

initial fluid flow perturbation around zero.

For small ⌫ at short times we obtain the dynamics observed for Stokesian

swimmer suspensions [147]. The fluctuations decay and the concentration field

becomes smoother. The mean director field and the velocity field also change and

quickly become smooth and correlated on scales on the order of the box size. At longer

times the concentration field begins to develop strong fluctuations at wavelengths on

the order of the box size, whereas the director and velocity fields remain correlated

over large scales. The strong fluctuations are not steady in time: their magnitude

stabilizes due to di↵usion but their shape and position keep evolving, with dense

concentration bands regions constantly merging, breaking up, and reorganizing.

As we increase the hydrodynamic resistance parameter ⌫, we notice a visible

delay in the onset of the instability and a decrease in the magnitude of the

concentration bands. Specifically, at (⌫ = 0.1), we observe that the onset of the
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instability is delayed, and the concentration band magnitudes are lower compared to

the case with lower resistance (⌫ = 0). At (⌫ = 0.15), the onset of the instability is

further delayed and the concentration bands are lower, indicating a dampening e↵ect

of the hydrodynamic resistance on the fluctuations. Finally, at high hydrodynamic

resistance (⌫ = 0.25 and further), the instability is considerably suppressed, and

the perturbations decay to zero. This result suggests that pushers have di�culties

accumulating and moving collectively due to the higher frictional resistance.

The observed e↵ects can be explained by considering the competition between

the tendency of pushers to accumulate and form concentration bands and the damping

e↵ect of the fluid flow resistance. As the resistance parameter ⌫ is increased, the

frictional forces acting on the fluid and bacteria become stronger, leading to a

decrease in the amplitude of the concentration bands and a delay in the onset of

the instability. Moreover, at higher values of ⌫, the damping e↵ect dominates over

the tendency of bacteria to form concentration bands, resulting in the suppression of

the hydrodynamic instability and a decrease in the collective motion of bacteria.
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Figure 2.7 The swimmer director < p >, concentration � and fluid velocity u at
times t = 0, 100, 200, 300 for ⌫ = 0.
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Figure 2.8 The swimmer director < p >, concentration � and fluid velocity u at
times t = 0, 100, 200, 300 for ⌫ = 0.05.
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Figure 2.9 The swimmer director < p >, concentration � and fluid velocity u at
times t = 0, 100, 200, 300 for ⌫ = 0.1.
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Figure 2.10 The swimmer director < p >, concentration � and fluid velocity u at
times t = 0, 100, 200, 300 for ⌫ = 0.15.
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Figure 2.11 The swimmer director < p >, concentration � and fluid velocity u at
times t = 0, 100, 200, 300 for ⌫ = 0.2.

46



Figure 2.12 The swimmer director < p >, concentration � and fluid velocity u at
times t = 0, 100, 200, 300 for ⌫ = 0.25.

47



2.5.3 Quantifying the e↵ect of the Brinkman resistance

In last section, we noted the impact of the Brinkman resistance on an initially isotropic

pusher suspension. We will now quantify this e↵ect in more detail.

To quantify the e↵ect of the resistance, in Figure 2.13 we present the evolution

of three metrics in time, namely max(�), mean(|u|), and max(|u|), which give

information about the magnitude of the concentration bands, local fluids flows and

overall averaged fluid flows. Analysis of the data presented in Figure 2.13 reveals a

clear trend: as the resistance is increased, the values of these metrics decrease. This

trend continues until reaching a resistance value of ⌫ = 0.25, beyond which max(�),

mean(|u|), and max(|u|) approach nearly zero values. It is evident that resistance

has a dampening e↵ect on the measured quantities, indicating its inhibitory influence.
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Figure 2.13 Comparisons of max(�), mean(|u|), and max(|u|) for di↵erent ⌫.
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Next, in Figure 2.14, we use three other quantities, namely < u · n >, the

entropy S(t) as introduced in Equation (2.30), and the global input power P (t), to

investigate the impact of resistance on the system dynamics. Here we also observe

a consistent pattern: as the resistance parameter increases, there is a noticeable

decrease in the values of these metrics, persisting until resistance value at ⌫ = 0.25,

beyond which the metrics exhibit a substantial reduction, approaching almost zero

values. Resistance has a pronounced dampening e↵ect on these measured quantities,

indicating its ability to hinder the dynamics of the system.
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Figure 2.14 Comparisons of < u · n >, entropy S(t), power P (t) for di↵erent ⌫.
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As we noticed in Figures 2.7 to 2.12 a correlation between the fluid velocity u

and the swimmer director < p > fields, we look at the spatially-averaged contraction:

hu · ni(t) =
Z

dx (x, t)u(x, t) · n(x, t), (2.55)

with n defined by �(x, t)n(x, t) =< p >. It has been known [147] that that for

pushers, the initially small < u · n > (t), grows to reach a plateau, suggesting that

pushers tend to align in the local disturbance flow and swim in the direction of

the flow. Alignment with the flow was anticipated since the particles align in the

local shear according to Je↵ery’s Equation (2.18), but here we see they on average

tend to swim in the direction of the local fluid velocity. This preferred alignment

and orientation result in an increase in the e↵ective swimming velocity for pusher

swimmers.

Comparisons of this spatially-averaged contraction < u · n > over time for

di↵erent values of ⌫ show that the hydrodynamic resistance decreases it, with the

e↵ect being more pronounced with increased value of ⌫.

Recall the system entropy S(t), as defined in Equation (2.30), for which we

obtained the exact evolution dynamics encapsulated in Equation (2.33). Entropy is

a thermodynamic quantity that measures the degree of disorder or randomness in a

system. It is related to the availability of energy to do work and is a fundamental

concept in thermodynamics, and can be used to study the behavior of fluids, such as

in the context of turbulence and mixing, and is important in the study of fluid flow

in complex systems [90, 12, 28].

Comparisons of the entropy S(t) for di↵erent values of resistance ⌫ also reveal

interesting trends as we can see in Figure 2.14. In the absence of hydrodynamic

resistance, the system experiences instability, and as a result, the entropy grows
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rapidly. However, as time progresses, the entropy growth rate eventually saturates,

and the system enters a state of statistical equilibrium. As we introduce hydro-

dynamic resistance by increasing the value of ⌫, we observe a decrease in the system

entropy. This is due to the damping e↵ect that the resistance has on the system, which

reduces the degree of disorder and randomness of the particles. When ⌫ = 0.25, the

e↵ect of hydrodynamic resistance is significant enough to prevent any instability from

taking place, and the entropy decays over time as we can see in Figure 2.14.

Swimmers convert their consumed energy into motion, and this can be quantified

in terms of the input power into the system. By examining the input power generated

by the swimming particles, we can gain a better understanding of how they contribute

to the system dynamics. Recalling Section (2.3), we rewrite Equation (2.32) as

2

Z
dxE : E+ ⌫2

Z
dx|u|2 = �

Z
dx

Z
dp(↵p · E · p) . (2.56)

The left-hand side of the equation represents the rate of viscous dissipation in the

fluid, while the right-hand side represents the active input power generated by the

particles. The global input power P (t) is then deduced from this equation:

P (t) = �↵
Z Z

dxdp(p · E · p) . (2.57)

A consequence of Equation (2.56) is that for pushers (↵ < 0) the input power is

largest when the particles are aligned with the axes of extension of the rate-of-strain

tensor. This alignment occurs any particle whose orientation dynamics is governed

by Je↵ery’s Equation (2.18), thus we can expect the input power to grow in time in

agreement with the existence of an instability [].
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It is clear in Figure 2.14 that when there is no Brinkman resistance, P (t) is

initially small and increases with time as the hydrodynamic instability takes place,

eventually reaching a plateau indicating that the system has entered a state of

statistical equilibrium. When Brinkman resistance is introduced, we observe that

the global input power decreases, indicating that the system requires less power to

maintain the fluid flow and dynamics. The Brinkman resistance to the flow of the

fluid reduces the velocity and, hence, the kinetic energy of the fluid. As the value

of ⌫ increases, the e↵ect of the hydrodynamic resistance becomes more pronounced,

and the global input power quickly decays to zero.

2.6 Summary and Discussion

We investigated through mathematical modeling, analysis, and numerical simulations,

the collective motion of micro-swimmers in a fluid with resistance.

We derive and use a continuum model to describes the collective dynamics of

micro-swimmers. The swimmers’ motion is coupled to the dynamics of the fluid which

is modeled through a Stokes-Brinkman equation with an added active stress.

We analyzed the entropy equations of the full system, as well as the stability

of the linearized system to see that the Brinkman hydrodynamic resistance has a

dampening e↵ect on the dynamics of a pusher micro-swimmer suspension. The linear

stability of the uniform isotropic state reveals that the suspension transitions from a

long-wave instability to a finite range one one where the collective swimmer chaotic

motion is weakened. The linear analysis also suggested parameter ranges for which

we could expect to see the growth of fluctuations in a system of a particular size.

Numerical simulations of the full nonlinear system of equations were performed

to observe the emergent dynamics in an initially uniform isotropic pusher suspension.

As expected from the analyses, for low resistance the simulations reveal the emergence

of swimmer concentration bands that dynamically form, merge and break up in

52



quasi-periodic fashion, and are accompanied by a mixing fluid flow. Resistance tends

to inhibit the motion of the swimmers and the formation of these concentration

bands. As resistance increases, the emergence of hydrodynamic instability in the

pusher suspension is suppressed. In fact, for su�ciently large resistance values, the

dynamics can be completely suppressed to the uniform state. The resistance acts

as a hindering factor in the movement of the swimmers, inhibiting the development

of coherent structures and organized behavior. It disrupts the fluid flow patterns

and the hydrodynamic interactions between swimmers, impending the emergence of

macroscopic collective motion.
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CHAPTER 3

CHEMOTAXIS IN POROUS WET MEDIA

Chemotaxis, defined as a sensing and directed motion of organisms in response

to signaling molecules or chemical stimuli in their surrounding, is a fundamental

biological process exhibited by many organisms, including bacteria, in which they

move in response to chemical gradients in their environment. Micro-organisms

utilize chemotaxis not only to navigate towards nutrient-rich regions and away from

toxins [13, 14, 15], but also to communicate with each other through chemical cues

and aggregate into clusters [142, 7, 117, 128]. Chemotaxis plays a crucial role in

various biological phenomena, such as immune response, wound healing, and microbial

colonization.

Many continuum theories have been developed to study chemotactic motion,

most notably the Keller-Segel one [81, 82], though there are an increasing number of

mean-field theories modeling the run-and-tumble behavior have also have also been

popular to study bacterial aggregation, e.g in [2, 10, 30, 127, 129, 152, 151]. These

latter studies include a conservation equation for the swimmer configurations. On

the other hand, there has been a significant amount of work studying the emerging

collective dynamics in micro-swimmer suspensions, e.g. [163, 6, 164, 48, 149, 161, 181].

Many of these theories couple the conservation equation of the swimmer configurations

to the fluid dynamics using a force dipole exerted by the swimming particles on the

surrounding fluid. Historically chemotactic behavior was studied mostly and in the

absence of fluid or chemo-attractant dynamics, but recent work has coupled these two

schools of thought and studied their compound e↵ects on the swimmer suspensions

[105, 51, 78, 79, 104, 106].
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Despite many of the biological micro-swimmers living and having evolved

porous habitats like soils, sediments and tissues, our understanding of micro-swimmer

chemotactic migration in inhomogeneous environments is still in its infancy because

many experimental studies of chemotactic behavior have been performed in bulk

liquid [17]. Recent experiments have shown that pore-scale confinement is a strong

regulator of migration [18, 19], and it markedly alters the dynamics and morphology

of the migrating bacterial population [17, 16, 113]. Theoretical and computational

studies of chemotactic motion in wet porous environments are also lagging behind,

though recent work has incorporated the porosity e↵ects by modifying the standard

motility parameters substantially from their bulk liquid values [17, 1]. But as the

environment a↵ects the hydrodynamic interactions among swimmers and the strength

of the collectively-generated fluid flows, it stands to reason that it would a↵ect the

transport and di↵usion of the chemo-attractants in it, thus impacting chemotactic

motion and migration.

In this chapter then we will study the e↵ects of the environment inhomo-

geneity, specifically resistance, in the emerging collective dynamics of micro-swimmer

suspension that is able to respond to chemical cues generated by the other swimmers.

We modify our prior model to include chemotactic responses of micro-swimmers

to the collectively-generated chemo-attractant, as well as the dynamics of the

chemo-attractant by coupling the aforementioned run-and-tumble and hydrodynamic

continuum theories [105, 106]. We model the inhomogeneous wet porous environment

through a hydrodynamic resistance term in fluid flow equations, as done in the

previous chapter. Analysis of the linearized system and simulations of the full

nonlinear system will be presented.
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3.1 Model of Chemotaxis in Wet Porous media

Following the previous chapter, we represent the configuration of ellipsoidal micro-

swimmers by a distribution function  (x,p, t) of the center of mass position x

and orientation vector p (|p| = 1). The suspension dynamics is described by a

conservation equation that includes a run-and-tumble chemotactic response as well

fluid advection, rotation and di↵usion of swimmers:

@ 

@t
= �rx · [ (p+ u)]�rp · [ (I � ppT )(�E+W)p]

+


 �(p)� 1

4⇡

Z
 (p0)�(p0)dp0

�
+Dr2

x
 + drr2

p
 .

The third term on the right hand side of the above equation (inside square brackets)

is new and describes run-and-tumble chemotaxis for bacteria micro-swimmers.

Here �(p) represents a chemical gradient-dependent tumbling rate, indicating the

probability of a bacterium undergoing a tumbling event within a given time interval.

This tumbling rate is influenced by the local chemical concentration experienced by

the bacterium, thereby modulating the frequency of tumbling behaviors exhibited by

the microorganism. We employed a linearized biphasic form for the tumbling response

in our model [30, 105].

�(p) =

8
>><

>>:

�0 (1� �DtC) if DtC > 1/�

�0 otherwise,

(3.1)

where

DtC =
@C

@t
+ u ·rC + U0p ·r (3.2)
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represents the rate of change of the chemo-attractant along the path of the micro-

swimmer. It quantifies how the chemo-attractant concentration varies as the swimmer

moves through its environment. �0 is a non-dimensionalized parameter that represents

the basic tumbling rate, which determines the rate at which the bacterium undergoes

tumbling in the absence of chemotaxis. The dimensionalized chemotactic strength

is denoted by � and influences the responsiveness of the bacterium to the chemo-

attractant gradient. C(x, t) represents the chemo-attractant concentration [104].

The translational and angular velocities are included here the same way as in

Chapter 2. The local swimmer concentration �(x, t) and the mean swimmer director

director < p(x, t) > are defined as before in Equations (2.23).

The chemo-attractant has its own dynamic behavior and is influenced by both

fluid advection and molecular di↵usion. It evolves as

@C

@t
+ u ·rC = Dcr2C � �1C + �2�. (3.3)

In Equation (3.3),Dc is the non-dimensional di↵usion constant. This equation has two

essential terms that govern the behavior of the chemo-attractant field in the presence

of micro-swimmers. The first term, -�1C, accounts for the degradation of chemo-

attractant occurring at a constant rate �1. This term represents the gradual reduction

of chemo-attractant concentration over time. The second term, �2�, captures the

localized consumption or production of the chemo-attractant by the swimmers. When

�2 < 0 the swimmers are consuming chemo-attractant from the surrounding, thereby

lowering its concentration. Conversely, when �2 > 0 is positive, the term indicates

the production of chemo-attractant by the swimmers, leading to an increase in its

concentration nearby [103, 105, 106].
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Lastly, the fluid dynamics is governed by the Stokes-Brinkman Equations with

an additional active stress due to the swimmers moving in it and remains unchanged

from Equation 2.25 presented in the previous Chapter.

3.2 Linear Stability Analysis

3.2.1 The eigenvalue problem

Similar to Section (2.4.1), we study the stability of the suspension around the uniform

and isotropic state  0 = 1
4⇡ . We assume that there is no swimmer di↵usion (D =

dr = 0) and that the chemo-attractant field is quasi-static:

Dcr2C � �1C + �2� = 0. (3.4)

We focus on auto-chemotactic suspensions described by Equation (3.3), where �1 and

�2 are both positive, specifically the swimmer produce the chemo-attractant. By

studying the linear stability of the system, we can identify the parameter regimes and

conditions for which perturbations in the system will either grow or decay over time.

To analyze the dynamics of the system, we study the perturbations of the system

around the uniform isotropic state  0 = 1/4⇡ for the swimmer distribution and

steady-state for the chemo-attractant concentration C̄ = �2/�1�̄ = �2/�1.

 (x,p, t) = 1/4⇡ + ✏ 0(x,p, t), C(x, t) =
�2
�1

+ ✏C 0(x, t),

with |✏| << 1. By making this choice, the tumbling rate is simplified to

�(DtC) = �0(1� �p ·rC).
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The linearized distribution equation then is

@ 0

@t
= �pTr 0 +

3�

4⇡
pTE 0p� �0 

0 +
�0�

4⇡
pTrC 0 +

�0
4⇡

Z
 0dp0. (3.5)

We proceed by examining a perturbation in the form of a plane wave for the

distribution function, where  0(x,p, t) =  ̃(p,k) exp(ikTx + �t), along with other

relevant quantities. The parameter k = kk̂ represents the wavenumber and k = |k|.

By utilizing the quasi-static chemo-attractant form of Equation (3.4), we can

solve for the chemo-attractant concentration in terms of the swimmer concentration

� and thus the swimmer distribution  :

C̃ =
�2

�1 + k2Dc

Z
 ̃0dp0. (3.6)

The fluid velocity perturbation ũ found as in Chapter 2, namely Equation (2.37).

Substituting the expressions for rũ and C̃ in Equation (3.5), we obtain

� ̃ = �ikpT k̂ ̃� 3�↵k2

4⇡(k2 + ⌫2)
pT (I� k̂k̂T )

Z
p0p0T  ̃(p0)dp0 k̂k̂Tp

� �0 ̃+
�0
4⇡

 
1 +

�2� ik pT k̂

�1 + k2Dc

!Z
 ̃(p0)dp0. (3.7)

Without loss of generality, we let k̂ = ẑ, p = [sin ✓ cos�, sin ✓ sin�, cos ✓] and dp =

sin ✓d✓d� for ✓ 2 [0, ⇡] , � 2 [0, 2⇡). Then, we can write

(� + �0 + ik cos ✓) ̃ = � 3�↵k2

4⇡(k2 + ⌫2)
cos ✓ sin ✓[cos�F1 + sin�F2]

+
�0
4⇡


1 +

�2�

�1 + k2Dc

ik cos ✓

�
G, (3.8)
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where for simplicity we have defined the following integral operators of  ̃

F1( ̃) =

Z 2⇡

0

cos�0
Z

⇡

0

sin2 ✓0 cos ✓0 ̃(✓0,�0)d✓0d�0

F2( ̃) =

Z 2⇡

0

sin�0
Z

⇡

0

sin2 ✓0 cos ✓0 ̃(✓0,�0)d✓0d�0

G( ̃) =

Z 2⇡

0

Z
⇡

0

sin ✓0 ̃(✓0,�0)d✓0d�0.

We can derive the eigenvalue relations for the perturbation mode  ̃ and the growth

rate � by solving the linear eigenvalue problem given in Equation (3.8). To do this,

we apply the operators F1 and G to  ̃ in Eq.(3.8), obtaining for F1( ̃) and G( ̃):

F1 = � 3�↵k2

4⇡(k2 + ⌫2)

Z
⇡

0

sin3 ✓ cos2 ✓

(� + �0 + ik cos ✓)
d✓F1

G = ��0
2

Z
⇡

0

sin ✓

(� + �0 + ik cos ✓)
d✓G.

The equation for F2 is identical to that for F1. Canceling F1 and G, we obtain two

separate integral dispersion relations:

1 = � 3↵k2

4⇡(k2 + ⌫2)

Z
⇡

0

sin3 ✓ cos2 ✓

(� + �0 + ik cos ✓)
d✓

1 = ��0
2

��2ik

(�1 + k2Dc)

Z
⇡

0

sin ✓ cos ✓

(� + �0 + ik cos ✓)
d✓ � �0

2

Z
⇡

0

sin ✓

(� + �0 + ik cos ✓)
d✓.
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Letting a = (� + �0)/(ik), R = ��2/(�1 + k2Dc) and evaluating the integrals

give us two uncoupled dispersion relations that are implicit equations for �(k):

1 = � 3�↵k2

4(k2 + ⌫2)

1

ik


2a3 � 4

3
a+ (a4 � a2) log

✓
a� 1

a+ 1

◆�
, (3.9)

1 =
�0
2
R


2 + a log

✓
a� 1

a+ 1

◆�
� �0

2

1

ik
log

✓
a� 1

a+ 1

◆
, (3.10)

which we re-write as

0 = F(�, k) =
�4ik

3(�↵�)
k2 + ⌫2

k2
+


2a3 � 4

3
a+ (a4 � a2) log

✓
a� 1

a+ 1

◆�
, (3.11)

0 = G(�, k) = �2ik

�0
+ 2Rik + (aRi(k � 1)) log

✓
a� 1

a+ 1

◆
. (3.12)

We will refer to the Equation (3.11) is referred to as the Brinkman Hydrodynamics

dispersion relation due to the presence of hydrodynamics-related variables like �,↵,

and we refer to Equation (3.12) as the Chemotaxis run-and-tumble dispersion relation

based on the presence of chemotaxis parameters like R,�, �1, �2.

The hydrodynamics relation is like the dispersion relation in Equation (2.42) of

Chapter 2, but here it also features the basal tumbling parameter �0 in the definition

of a = (�+�0)/(ik). Notice that the hydrodynamic resistance parameter ⌫ shows up

only in Equation (3.11), and, according to the linear theory, it should not be a↵ecting

the chemotaxis.

The autochemotactic dispersion is exactly that found by Lushi et al. [105, 104,

106] for auto-chemotactic micro-swimmer suspensions. This relation is una↵ected by

both hydrodynamics and the swimming mechanism, as noted by the absence of the

dipole strength parameter ↵. The auto-chemotactic relation primarily relies on the
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dynamics of the chemo-attractant, as indicated by the presence of the chemotactic

term R.

Notably, the resistance does not appear anywhere in Equation (3.15), and at

least in the linearized system, it does not impact the chemotactic instability.

3.2.2 Small-k asymptotic solutions of dispersion relations

The dispersion relations described by Equations (3.11) and (3.12) cannot be solved

analytically for the growth rate �(k). These equations, which govern the relationship

between the wavenumber and the growth rate in the given system, do not have closed-

form solutions that can be obtained analytically.

Following the same steps as in Section (2.4.2), we find small k asymptotic

solutions �(k) = �0 + �0 + �1k + �2k2 +O(k3) for both dispersion relations.

For the hydrodynamic dispersion relation Equation (3.11), we obtain:

�H1 = ��0 +
(�↵�)

5(1 + ⌧ 2)
+


�15(1 + ⌧ 2)

7(�↵�) �D

�
k2 +

17875(1 + ⌧ 2)3

147(�↵�)3 k4 +O(k5),

(3.13)

�H2 = ��0 +

(1 + ⌧ 2)

(�↵�) �D

�
k2 � 3(1 + ⌧ 2)2⇡

4(�↵�)2 k3 +
3(1 + ⌧ 2)3(3⇡2 � 8)

8(�↵�)3 k5 +O(k6).

(3.14)

The two solutions we obtain, shown in Equations (3.13, 3.14 ), are similar to

the Equations (2.43, 2.44) that we found in Section 2.4.1, but the basal tumbling �0

is now present. Both of these branches are now decreased exactly by �0, so basal

tumbling has a stabilizing e↵ect. Translational di↵usion with rate D also has an

unsurprising stabilizing e↵ect. We observe that both branches of �H(k) are negative

for pullers (↵ > 0) for any basal tumbling value and any swimmer shape, which means

the puller suspension perturbation is stable.
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For pushers (↵ < 0) however, the �H(k) term may be positive depending on

the balance of the terms: �H1(k = 0) = ��0 + (�↵�)/5(1 + ⌧ 2) and is positive only

if (�↵�)/(1 + ⌧ 2) > 5�0. The maximum of this branch is 1/5 and is obtained at

k = 0 for elongated � = 1 non-tumbling �0 pusher swimmers ↵ = �1 in Stokes flow

conditions ⌧ = 0 = ⌫, and for increasing ⌫ or ⌧ , the value of �H1(k = 0) decreases.

For a given wave-number k that is very small, we see that non-zero resistance lowers

the value of �H1(k), so resistance has a stabilizing e↵ect.

We also seek an asymptotic solution for the auto-chemotactic relation Equation

(3.12), following the previous steps and those for Stokesian chemotactic suspensions

in [105, 104, 106]. Note R = �̄/(1 + D̄ck2) ⇡ �̄(1 � D̄ck2 + D̄c

2
k4 + ...) for small k

where �̄ = (��2)/�1, and D̄c = Dc/�1. As shown in the Appendix B.2, we find:

�C(k) =
�̄�0 � 1

3�0
k2 �


�̄D̄c

3
+

(5�0�̄� 1)(�̄�0 � 1)

45�30

�
k4 +O(k5). (3.15)

Equation (3.15) shows that �C(0) = 0, and for very small k the growth rate

�C(k) grows quadratically in the positive direction if �̄�0� 1. Hence Equation (3.15)

also shows that to obtain �C > 0 and have a chemotactic instability, we need ��0 > 1,

or more specifically ��2�0/�1 > 1. The chemo-attractant di↵usion comes in at the

next order term in Equation (3.15) and has a stabilizing e↵ect.

3.2.3 Numerical solutions of the dispersion relations

Similar to Section 2.4.3 in Chapter 2, we solve the dispersion relations Equations

(3.11) and (3.12) with an iterative quasi-Newton solver.

In Figure 3.1 we show the numerical solution of the hydrodynamic dispersion

relation Equation (3.13), and specifically highlight the di↵erence from Figures 2.2 and

2.3 that results from the presence of basal tumbling �0. The imaginary part of the

Im(�H(k) is una↵ected by �0 as they are identical to the respective plots in Chapter 2.
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But the e↵ect of basal tumbling is obvious on the branches of Re(�H(k)): specifically

tumbling has shifted them downwards by �0 in comparison to the non-tumbling result

in Chapter 2. This shows that tumbling per se has a stabilizing e↵ect on the system.

Moreover, as �0 � 0.2 shifts the entire Re(�H(k)) to non-positive values, then �0 � 0.2

su�ces to turn o↵ the hydrodynamic instability for any wavenumber k.

Figure 3.1 The real and imaginary parts of the numerical solution of the dispersion
relation Equation (3.13) with �0 = 0.025, ⌫ = 0, 0.05, ..., 0.3.

Figure 3.2 shows the numerical solution for �C(k) of Equation(3.12) for two

di↵erent parameter sets �0,�, �1, �2, Dc. We notice �C(k) is real-valued, �C(0) = 0,

and, consistently with the asymptotic results of Equation (3.15), �C(k) > 0 for small

k if ��2/�1 � 1/�0 > 0. The initially-upward curve of �C(k) turns and comes down

to zero and eventually becomes negative for some larger k-value because chemo-

attractant di↵usion has a stabilizing e↵ect at O(k4). In all, for auto-chemotactic

swimmer suspensions, there is a finite band of unstable modes when ��2/�1 > 1/�0,

and its width is controlled by chemo-attractant di↵usion. [105].

The linear stability analysis of chemotactic suspensions in two dimensions is

included in the Appendix C. As in the 3D analysis presented above, we found two

distinct dispersive relations, for the hydrodynamics and chemotaxis respectively. The

hydrodynamic dispersion relation is the same as that found in Section 2.4.4 for non-

chemotactic suspensions but with the addition of basal tumbling in a similar manner
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Figure 3.2 Numerical solution for the growth rate �C(k) of the auto-chemotactic
dispersion relation Equation (3.12) for two sets of parameters �, �1, �2, Dc.

to the 3D case here. The chemotaxis dispersion relation is also qualitatively similar

to the 3D version here.

3.2.4 Phase diagram of complex dynamics

The asymptotic analysis and the numerical solutions to the dispersion relations

provide valuable information about parameter ranges. From Equation (3.13) and

Figure 3.1 we see that �0 � 0.2 turns o↵ the hydrodynamic instability for any

wavenumber, hence system size [105]. From Equation (3.15) we see that to have

a chemotactic instability, i.e. �C(k) > 0, we need ��2/�1 > 1/�0. Lastly, upon

examining Figures 3.1 and (2.5), along with the dispersion relation for hydrodynamics

described by Equation (3.12), we see that �0 � �0(⌫) := max(�(k, ⌫)) from the plot

e↵ectively disables the hydrodynamic instability for any system size.

Building upon this information gathered from the linear theory, we plot the

surfaces �0 = 0.2, ��2/�1 = 1/�0 and �0 = �0(⌫) on a 3D plot with axis ⌫, �0,

and ��2/�1, shown in Figure 3.3. By examining the 3D regions resulting from the

surfaces’ intersections and where a parameter set is situated with respect to them,
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we can gain insight on which instabilities would likely arise, and thus gain insight on

the combined e↵ects of the hydrodynamics, auto-chemotaxis and resistance.

Figure 3.3 3D phase diagram of parameter regions for expected dynamics
depending on the presence of resistance, hydrodynamic and auto-chemotactic insta-
bilities. The dots note parameter values for nonlinear simulations: the blue ones for
those already presented in Chapter 2, magenta and red ones for parameters from
stability plots in Figures 3.1 and 3.2 and presented next in this chapter.

To better visualize these 3D regions, we show 2D slices phase diagram for various

resistance parameters ⌫ = 0, 0.1, 0.2, 0.3 in Figure 3.4. These slices help us observe

how the system’s dynamics evolve under di↵erent resistance conditions.

The phase diagram obtained for the case where ⌫ = 0.0 and shown in Figure 3.4a

is that found by Lushi et al., [105, 104, 106] for auto-chemotactic pusher suspensions

in homogenous viscous fluids. This diagram reveals four distinct regions of dynamics,

which we have labeled as follows: hydrodynamic collective swimming (�0 < 0.2,

��2/�1 < 1/�0), chemotactic aggregation (�0 > 0.2, ��2/�1 > 1/�0), dynamic

aggregation or mixed dynamics (�0 < 0.2, ��2/�1 > 1/�0), and the uniform state

without hydrodynamic or chemotactic instabilities (�0 > 0.2, ��2/�1 < 1/�0).
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Figure 3.4 Phase diagram of parameter regions and expected dynamics for ⌫ =
0, 0.1, 0.2, 0.3. The dots note parameter values utilized in nonlinear simulations.

When resistance is introduced (⌫ > 0), a hydrodynamic instability can still

occur if �0 < �0(⌫), where �0(⌫) is defined as the maximum value of �(⌫) obtained

from the curve in Figure 2.5. Essentially, as ⌫ increases, the boundary for the

hydrodynamic instability, which was initially at �0(⌫ = 0) = 0.2, shifts to the

left. This can be observed in the Figure 3.4, where the regions corresponding to

hydrodynamic collective swimming and dynamic aggregation shrink with increasing

⌫. Eventually, these regions disappear entirely for ⌫ ⇡ 0.27, as indicated by

max(�H⌫ ⇡ 0.27) = 0. It is worth noting that the stability criterion used in

constructing the phase diagram was �0(⌫) = max(Re�(⌫)), which is valid for all
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k. However, a more accurate criterion could be derived if the specific domain or

length-scale size L was known, such as �0(⌫) = Re(⌫ = 0.2, k = 2⇡/L).

Finally, the dots in Figures 3.3 and 3.4 denote the parameter values employed

in the nonlinear simulations. The blue dots represent the parameters used in the

figures presented in Chapter 2, while the magenta and red dots correspond to the

simulations to be showcased in this chapter. These dots serve as reference points,

linking the theoretical analysis and the numerical simulations, and provide insights

into the specific parameter combinations explored in the study.

3.3 Nonlinear Dynamics

In Chapter 2, we analyzed the e↵ect of resistance in the absence of chemotaxis

and tumbling. Here we investigate the impact of resistance on the dynamics

regions identified through the linear stability analysis and depicted in Figure 3.4,

namely the hydrodynamic collective swimming, the dynamic aggregation, and the

auto-chemotactic aggregation states. The simulation details and the initial conditions

for the distribution function  are as in Chapter 2: . In addition, the initial

chemo-attractant distribution is taken to be C(x, 0) = �2/�1.

3.3.1 Resisting hydrodynamic collective swimming

To further explore the influence of resistance on the hydrodynamic collective

swimming state, we consider tumbling but non-chemotactic pusher suspensions with

basic tumbling rate �0 = 0.025. These parameter set is noted as magenta dots in the

phase diagrams of Figures 3.3 and 3.4. From Figure 3.1, we expect a hydrodynamic

instability for this parameter set.

Figures 3.5 - 3.7 show simulations of the dynamics of an initially isotropic pusher

suspension with varying hydrodynamic resistance parameters ⌫.
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Figure 3.5 The average swimmer director< p >, concentration � and fluid velocity
u at times t = 0, 100, 200, 300 for ⌫ = 0.

69



t=0

t=100

t=200

t=300

! = 0.1, ' = 0.025, * = 0

Figure 3.6 The average swimmer director< p >, concentration � and fluid velocity
u at times t = 0, 100, 200, 300 for ⌫ = 0.1.
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Figure 3.7 The average swimmer director< p >, concentration � and fluid velocity
u at times t = 0, 100, 200, 300 for ⌫ = 0.2.
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For low ⌫, we observe the emergence of bacteria concentration bands that exhibit

bending, folding, and intricate patterns, accompanied by a fluid flow that promotes

mixing. For increasing ⌫, we observe a visible delay in the onset of the instability

compared to the case with (⌫ = 0). This delay suggests that higher resistance hinders

the development of the instability, resulting in a slower evolution of the concentration

bands.

For high hydrodynamic resistance reaches ⌫ = 0.2, we observe a significant

suppression of the instability, with the initial perturbations decaying to zero and

resulting into a stabilized and uniform dynamics. This suggests that strong

hydrodynamic resistance can e↵ectively suppress the emergence of concentration

bands and the hydrodynamic collective swimming state.

Lastly, at ⌫ = 0.3 and higher (not shown), the initial perturbations are quickly

and completely suppressed, resulting in a uniform distribution of the swimmers

without the formation of concentration bands or any visible instabilities, which is

to be expected because this particular parameter falls under the uniform dynamics

region in the phase diagrams of Figures 3.3-3.4.

As in Section 2.5.3, we can quantify the impact of Brinkman resistance by

employing the same metrics. Figure 3.8 the maximum concentration max(�), and

maximum fluid velocitymax(|u|) and mean fluid velocitymax(|u|) over time, whereas

Figure 3.9 presents < u · n >, the entropy S(t), and the global input power P (t).

For easier comparisons and discernment of the e↵ects of basic tumbling, we also

include in Figures 3.8 and 3.9 these quantities for non-tumbling suspensions �0 = 0,

whose parameters are shown as blue dots in the phase diagrams of Figures 3.3-3.4.
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Figure 3.8 Comparisons over a long time of max(�), max(|u|), and mean(|u|) for
�0 = 0, 0.025 and di↵erent ⌫.

Without tumbling, we observe a decrease in the overall magnitude of all these

quantities for increasing resistance ⌫. Upon introducing tumbling into the system,

we see a decrease in the magnitudes of all these quantities for the purely-tumbling as

compared to the non-tumbling case. Basic tumbling per se, as anticipated from the

linear stability analysis and Figure 3.1, acts as a stabilizer on the system and dampens

the hydrodynamic instability and thus the emergence of the hydrodynamic collective

swimming state. The hydrodynamic resistance further suppresses the hydrodynamic

instability.
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Figure 3.9 Comparisons over a long time of < u · n >, S(t), and P (t) for �0 =
0, 0.025 and di↵erent ⌫.

3.3.2 Resisting dynamic aggregation

To see the e↵ect of resistance on the dynamic aggregation state, we examine the

dynamics of auto-chemotactic pusher suspensions with parameters �0 = 0.025, � =

50, �1 = 0.25, �2 = 0.25, and Dc = 0.05 for which there is both a hydrodynamic

instability and an auto-chemotactic instability for the chosen domain size L = 25, as

shown in Figures 3.2. This parameter set is denoted as red dots in the phase space

diagrams, Figure 3.3, are carefully chosen to reside within the dynamic aggregation

region for ⌫ = 0, ⌫ = 0.1, and ⌫ = 0.2, but not for ⌫ = 0.3.
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Consistent with our linear stability analysis, we choose the initial chemo-

attractant distribution to be C(x, 0) = �2/�1 = 1 for all simulations.

Figures 3.10 to 3.12 present snapshots of the dynamics that allow us to observe

firstly the predicted dynamic aggregation state, and secondly the changes in the

suspension dynamics as we increase the hydrodynamic resistance parameter ⌫.

First, we describe the dynamics pertaining to the dynamic aggregation state

without resistance, as also studied by [106]. The micro-swimmers produce chemo-

attractant as well as aggregate towards it. A strong mixing flow emerges, and

it advects both the swimmers and the chemo-attractant, resulting in dynamic

aggregation of swimmers occurring due to their local auto-chemotactic tendency.

This e↵ect is seen from the sharper and narrower concentration bands in the

auto-chemotactic suspension in Figure 3.10 compared to the non-chemotactic or just

tumbling cases presented earlier for same ⌫ = 0.

In the rest of the figures, we can clearly see the impact of increasing resistance

on the swimmer suspension dynamics. One noticeable e↵ect is the visible delay in the

onset of the instability as we move from lower resistance (⌫ = 0) to higher resistance

(⌫ > 0). This delay indicates that the higher resistance hinders the development of

the instability, resulting in a slower evolution of the concentration bands.

It is interesting to note that for ⌫ = 0.2, despite the parameter set falling within

the dynamic aggregation region, we observe uniform dynamics instead of the expected

aggregation behavior. This occurrence highlights the concept of marginal stability due

to the proximity of the parameter set location to both the region boundary surfaces

�0 = �0(⌫ = 0.2) and 1/�0 = ��2/�1. It also reminds us us that linear theory alone

cannot predict the nonlinear system dynamics.

Lastly, for ⌫ = 0.3 and higher (not shown), we obtain the uniform dynamics

state, as expected from the results of linear analysis.
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Figure 3.10 The average autochemotactic swimmer director < p >, concentration
� and fluid velocity u at times t = 0, 100, 200, 300. Parameters are �0 = 0.025,� =
50, �1 = 0.25 = �2, and ⌫ = 0.
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Figure 3.11 The average autochemotactic swimmer director < p >, concentration
� and fluid velocity u at times t = 0, 100, 200, 300. Parameters are �0 = 0.025,� =
50, �1 = 0.25 = �2, and ⌫ = 0.1.
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Figure 3.12 The average autochemotactic swimmer director < p >, concentration
� and fluid velocity u at times t = 0, 100, 200, 300. Parameters are �0 = 0.025,� =
50, �1 = 0.25 = �2, and ⌫ = 0.2.
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As before, we can quantify these observed e↵ects by comparing quantities like

the maximum concentration, maximum and mean fluid velocity, entropy and global

input power, shown in Figures 3.13 and 3.14). We also include the quantities for a

non-chemotactic suspension with the same basic tumbling rate.

Comparing the chemotactic suspension to the purely tumbling ones for the same

⌫, we observe an overall higher magnitude of all the measured quantities. Notably,

at the onset of the instability, the quantities’ high’s and lows seem to occur at the

same time, supporting the idea that in this regime auto-chemotaxis reinforces the

dynamics induced by the hydrodynamics.
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Figure 3.13 Comparisons of max(�), max(|u|), and mean(|u|) for swimmers in
the “dynamic aggregation” regime for di↵erent ⌫.
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Figure 3.14 Comparisons of max(�), max(|u|), and mean(|u|) for swimmers in
the “dynamic aggregation” regime for di↵erent ⌫.

As we increase the hydrodynamic resistance, ⌫, we notice that the aggregation

instability induced by chemotaxis decreases. This can be attributed to the resistance’s

damping e↵ect to the overall swimmer motion, which in turn a↵ects aggregation due

to the nonlinear coupling of the terms.

Lastly, even though linear theory gave separate hydrodynamic and chemotactic

instabilities and predicted resistance to only a↵ect the former, here we can clearly

see that it a↵ects both processes in the dynamic aggregation regime as they are

nonlinearly coupled.
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3.3.3 Resisting auto-chemotactic aggregation

In this section, we focus on investigating the e↵ects of resistance on the auto-

chemotactic aggregation regime of Figures 3.3, where according to the linear theory

only the chemotactic instability is present. We select parameters �0 = 6,� = 2, �1 =

0.1 = �2, and Dc = 0.4. These parameter values are of particular interest as

they approximate conditions from experimental studies involving E. Coli bacteria

[106, 151].

The selected parameter values yield a chemotactic instability according to

the linear stability analysis as shown in the plot of �C in Figure 3.2, hence we

expect aggregation and clustering of the swimmers. Note however that �0 = 6.0,

is considerably larger than the threshold value of �0 = 0.2 associated with fully

suppressing the hydrodynamic collective swimming state derived from the linear

stability analysis in the phase diagram, Figure 3.3.

In Figures 3.15 to 3.18 we present snapshots of the average swimmer director,

concentration field, and also generated fluid flows (not to scale) for various resistance

parameters ⌫.

First, let us explain the aggregation dynamics that emerges in the absence of

resistance, Figures 3.15. The perturbations in the pusher suspension slowly merge in

clusters. These clusters soon become quasi-elliptical in shape, then start to move and

become dynamic clusters that continuously change shape, move around the domain,

and may merge with other motile clusters [106]. Despite this parameter set being

located far from the hydrodynamic instability region in the parameter phase space, the

fluid flows in these aggregates are nontrivial due to the high swimmer concentration

there and the nonlinear coupling. These fluid flows contribute to the deformation of

the clusters as well as their motility.
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Figure 3.15 The average swimmer director < p >, concentration � and fluid
velocity u at times t = 0, 100, 200, 300 for autochemotactic swimmers with �0 =
6.0,� = 2.0, �1 = 0.1 = �2 and ⌫ = 0.
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Figure 3.16 The average swimmer director < p >, concentration � and fluid
velocity u at times t = 0, 100, 200, 300 for autochemotactic swimmers with �0 =
6.0,� = 2.0, �1 = 0.1 = �2 and ⌫ = 0.1.
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Figure 3.17 The average swimmer director < p >, concentration � and fluid
velocity u at times t = 0, 100, 200, 300 for autochemotactic swimmers with �0 =
6.0,� = 2.0, �1 = 0.1 = �2 and⌫ = 0.2.
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Figure 3.18 The average swimmer director < p >, concentration � and fluid
velocity u at times t = 0, 100, 200, 300 for autochemotactic swimmers with �0 =
6.0,� = 2.0, �1 = 0.1 = �2 and ⌫ = 0.3.
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Examining snapshots of the dynamics in Figures 3.15 to 3.18, we observe that

resistance appears to inhibit auto-chemotactic aggregation. As the hydrodynamic

resistance parameter ⌫ increases, the aggregates become weaker, with their magnitude

diminishing. This inhibitory e↵ect becomes more pronounced at ⌫ = 0.3 where the

aggregates are barely visible, even though present.

We quantify these observed e↵ects of the Brinkman resistance in the formation

and sustenance of these motile pusher aggregates in Figures 3.19 and 3.20.
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Figure 3.19 Comparisons over a long time of max(�), max(|u|), and mean(|u|)
for autochemotactic swimmers with �0 = 6.0,� = 2.0, �1 = 0.1 = �2 for various ⌫.
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Figure 3.20 Comparisons over a long time of < u · n >, S(t), and P (t) ↵or
autochemotactic swimmers with �0 = 6.0,� = 2.0, �1 = 0.1 = �2 for various ⌫.

It is important to note that in the linear theory analysis, resistance was

solely present in the hydrodynamic dispersion relation while being absent from the

chemotactic dispersion relation. This decoupling implied that resistance primarily

influenced the hydrodynamic collective swimming state. However, in the full system

where the resistance, hydrodynamics and chemotaxis becomes intricately coupled, we

see that resistance also significantly impacts the chemotactic aggregation. Resistance

hinders the formation of clusters by impeding the hydrodynamic interaction and the

motion of swimmers, and ultimately a↵ects the swimmers ability to aggregate.
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3.4 Summary and Discussion

In this chapter, we considered the dynamics of a pusher swimmer suspension that

undergoes chemotaxis. We presented a continuum model that coupled run-and-

tumble chemotaxis to the flows generated by collective swimming.

Tumbling alone typically acts as a stabilizer of pusher suspension dynamics.

It introduces a rotational motion that counteracts the formation and persistence

of concentration bands. This tumbling behavior disrupts the fluid flow patterns

generated by the swimmers, leading to a more stable and less chaotic suspension.

Auto-chemotaxis, on the other hand, introduces another instability in the

swimmer suspension known as aggregation. This occurs due to the swimmers’

tendency to move towards the chemo-attractants produced by the colony. The

gradient of the chemo-attractants serves as a guiding force, causing the swimmers

to aggregate and form clusters within the suspension.

Linear stability analysis of a uniform and isotropic auto-chemotactic pusher

suspension with quasi-static chemo-attractant revealed two separate dispersion

relations, due to hydrodynamics and chemotaxis processes respectively. Resistance

appears only in the hydrodynamic dispersion relation as it a↵ects only the hydro-

dynamic interactions.

The results from linear theory help us identify parameter ranges for instabilities

and nontrivial system states. From these parameter ranges we construct a phase

diagram of the expected dynamics of auto-chemotactic pusher suspensions. We

identify four distinct dynamics states depending on the presence of either hydro-

dynamic or chemotaxis instabilities: hydrodynamic collective swimming, dynamical

aggregation, auto-chemotactic aggregation, and uniform. Resistance acts as a

suppressor for all of these dynamical states, and for su�ciently large resistance values

it can completely suppress them.
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Through full simulations, we observe that the hydrodynamic and auto-chemotaxis

instabilities can enhance each other when present. This interaction leads to the

dynamical aggregation of pusher swimmers, resulting in the formation of larger and

more coherent clusters within the suspension. However, resistance inhibits swimmer

motion and thus aggregation, acting as a suppressor for dynamics resulting from

either the hydrodynamic or auto-chemotactic instabilities, or their combined e↵ects.

In addition, resistance inhibits chemotactic accumulation in initially isotropic

pusher suspensions. It impedes the movement of swimmers towards chemo-

attractants and disrupts the formation of concentration gradients, thus hindering

the accumulation of swimmers in specific regions.

The interplay between hydrodynamics, tumbling, auto-chemotaxis and resistance

is intricate. These factors contribute to the formation and evolution of the

concentration bands and clusters in ways that linear theory alone cannot predict.

Studying these processes through nonlinear simulations separately and together gives

more insights into their e↵ects on the stability and dynamics of chemotactic pusher

swimmer suspensions.
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CHAPTER 4

BACTERIAL SPREAD IN A POROUS WET MEDIUM

We previously examined the collective swimming and auto-chemotactic aggregation

in pusher suspensions whose initial configuration was a perturbation from the

uniform isotropic state. Here we consider a di↵erent starting configuration where

the micro-swimmers are already accumulated and arranged in a line. We aim to

observe and analyze the subsequent spread of the swimmers into the surrounding

domain its properties. This di↵erent initial state provides another opportunity to

investigate the interplay of hydrodynamic, auto-chemotaxis and resistance.

The inspiration for the work comes from the recent experiments in the Datta

lab to study the migration and chemotaxis of E. coli bacteria in porous environments

consisting of hydrogel beads [18, 19, 17, 16, 1, 113]. The group found that the run-

and-tumble motility is dramatically altered in a porous medium as cells navigate

the porous space where they are intermittently trapped, and in the long terms the

cells exhibit di↵usive behavior [18, 19]. Bacteria is injected in the porous hydrogel

matrix in a line-like formation, and from there it spreads into the 3D domain. Auto-

chemotactic bacterial populations smooth out large-scale perturbations in their overall

morphology allowing the cells to better migrate together and spread [17, 16, 1]. The

interplay of competition for nutrients with growth-driven colony expansion, can lead

to morphological instabilities and roughening into broccoli-like fronts [113].

Though the pore-scale confinement in the experiments is of a di↵erent scale from

what we can model with in our Brinkman approximation, we try simulations approx-

imating experimental setup to gain some insight into the e↵ects of hydrodynamic

collective swimming, auto-chemotaxis, nutrients, and resistance on the emergent

behavior of such a complex system.
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4.1 Spread of a Bacterial Accumulation

We consider first the case of a non-chemotactic non-tumbling pusher suspension (↵ =

�1, � = 1), in a periodic box with size L = 25. We take the initial configuration to

be a perturbation with random orientations about a Gaussian line concentration in

space centered at x = L/2 and satisfying  (x,p, t) =  0. In Figures 4.1-4.4 we show

snapshots of the evolution of the concentration field for various resistance values ⌫.

Without resistance in Figure 4.1, the swimmers spread throughout the domain

via di↵usion, eventually resulting in the quasi-chaotic dynamics studied in Chapter

2. Resistance alters the collective dynamics when the swimmers are already clustered

primarily by restricting the swimmer spread away from the cluster into the rest of the

domain. This inhibition arises from the resistance’s hindrance to swimmer motion.

The swimmer cluster starts to spread out and away from the center in both

directions, though non-uniformly for low ⌫, reflecting the random perturbations of the

starting state. With increasing resistance ⌫ the perturbations in the spreading fronts

tend to smooth out and the concentration field becomes quasi-one-dimensional and

also symmetrical about the initial mean position. Moreover, we see the emergence

of distinct several concentration waves trailing the initial spreading fronts. Higher

resistance visibly delays the advancement of the first fronts and gives an opportunity

to the trailing concentration waves to catch up. The first fronts collide at t ⇡ 15,

and, as the system is periodic, continue in their respective directions towards another

imminent collision near x = L/2. The magnitude of the concentration profile

continues to diminish due to di↵usion.

Interestingly, resistance has a significant e↵ect on this system’s dynamics for

values of ⌫ much larger than the ⌫ ⇡ 0.27 that linear theory predicted to fully

suppress hydrodynamic instabilities in an initially uniform isotropic suspension. This

examples is another reminder on the system’s nonlinearity and the initial condition’s

crucial and di�cult-to predict e↵ects on the emergent dynamics.
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Figure 4.1 The spreading swimmer concentration �(x, y) at di↵erent times for
⌫ = 0, 0.1, 0.3.
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Figure 4.2 The spreading swimmer concentration �(x, y) at di↵erent times for
⌫ = 0.5, 1, 1.5.
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Figure 4.3 The spreading swimmer concentration �(x, y) at di↵erent times for
⌫ = 2, 3, 4.
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Figure 4.4 The spreading swimmer concentration �(x, y) at di↵erent times for
⌫ = 5, 10, 15.
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4.2 E↵ects of auto-chemotaxis on the bacterial spread

When considering an auto-chemotactic suspension (C(x, 0) = �2/�1�(x, 0)) in

the case of no resistance, an intriguing behavior emerges, as seen in Figure 4.5.

Since the swimmers are already clustered, they tend to further aggregate and form

accumulations with a characteristic length-scale determined by the specific parameters

of the system [106]. However, in regions where the concentration of pusher swimmers

is high, the collectively generated fluid flows become nontrivial. These fluid flows

exert forces on the aggregate, causing it to break apart and undergo movement. As

a consequence, the aggregates exhibit motility and take on a ”squiggly” appearance,

as observed in Chapter 3 Figures 3.15 to 3.18. This behavior highlights the interplay

between auto-chemotaxis, fluid flows, and the formation and motion of aggregates.

From Chapter 3, we know resistance inhibits swimmer motion and auto-

chemotactic aggregation in initially uniform isotropic pusher suspensions. In this

context, as seen in Figures 4.5 to 4.8, resistance not only restricts the di↵usive

spread of the pusher swimmers, but also hinders the breaking of the line aggregate.

By suppressing the hydrodynamic instability that would otherwise yield ”squiggly”

aggregates, resistance plays a significant role in maintaining the integrity of the

aggregate and inhibiting its movement from the center. Consequently, the e↵ects

of resistance extend beyond impeding swimmer motion and aggregation; they also

dampen the dynamic behavior and motility of the aggregates themselves. Moreover,

for higher resistance ⌫, the line aggregate of swimmers eventually breaks o↵ into

circular clusters of size similar to those auto-chemotaxis would induce in the absence

of hydrodynamics [106].

These examples, though not modeling the setup and environments in the

experiments [17, 16, 1], still show that resistance tends to smooth out the morphology

of the spreading micro-swimmer front.
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Figure 4.5 The spreading of auto-chemotactic swimmers, their concentration
�(x, y) at di↵erent times for ⌫ = 0, 0.1, 0.3.
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Figure 4.6 The spreading of auto-chemotactic swimmers, their concentration
�(x, y) at di↵erent times for ⌫ = 0.5, 1, 1.5.
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Figure 4.7 The spreading of auto-chemotactic swimmers, their
concentration�(x, y) at di↵erent times for ⌫ = 2, 3, 4.
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Figure 4.8 The spreading of auto-chemotactic swimmers, their concentration
�(x, y) at di↵erent times for ⌫ = 5, 10, 15.
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4.3 E↵ects of nutrients on the bacterial spread

Lastly, we consider the e↵ect of an externally-supplied chemo-attractant, e.g., a

nutrient, on an accumulation of pusher micro-swimmers that are tumbling with a

basic tumbling rate but not generating their own chemo-attractant. The example is a

relevant exercise because most experiments are performed in environments containing

agar, and moreover the bacterial colonies need to consume oxygen to move.

We consider the initial swimmer configuration with Gaussian-line concentration

profile as before. We use parameters �E = 2.0,�0 = 6.0, �1 = 0.1, Dc = 0.4, but �2 =

�0.5 < 0, denoting consumption of the nutrient in proportion to the local swimmer

concentration. We take an initial nutrient profile CE(x, t) = 5 = |�2/�1|� that is

constant and uniform throughout the domain. This initial supply of the nutrient

is not replenished and can only diminish due to the degradation with constant rate

�1, di↵usion with constant Dc, and most importantly consumption by the swimmers.

However, it can be advected by any collectively-generated fluid flows.

In Figures 4.9 to 4.11 we show the dynamics of the swimmer concentration in

time for various resistance values ⌫. We also show the y-direction averaged profiles

of the swimmer concentration and the chemo-attractant field.

Unsurprisingly and in line with intuition, we see that in the absence of resistance,

the swimmers quickly spread in both directions to consume the nutrient. Chasing the

nutrient which is still available in the untravelled areas, tends to help the swimmer

spread, as can be seen by the sharper concentration fronts and also the disappearance

of the trailing waves. Resistance inhibits the spread of the swimmers and smooths

out the fluctuations in the spreading concentration fronts, leading to quasi-1D and

more symmetric concentration profiles. The competition between these two factors

gives rise to the curious dynamics seen here.
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Figure 4.9 The swimmer concentration �(x, y), its averaged profile < � >y (green
line), and the nutrient averaged profile < CE >y (red line) for ⌫ = 0, 0.1, 0.3.
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Figure 4.10 The swimmer concentration �(x, y), its averaged profile < � >y(green
line), and the nutrient averaged profile < CE >y (red line) for ⌫ = 0.5, 1, 1.5.
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Figure 4.11 The swimmer concentration �(x, y), its averaged profile < � >y(green
line), and the nutrient averaged profile < CE >y (red line) for ⌫ = 2, 3, 4.
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4.4 Summary and Discussion

We studied the spread on a line accumulation of pusher micro-swimmers in

environments of increasing resistance for the cases when the swimmers are non-

tumbling non-chemotactic, auto-chemotactic, and in the presence of a nutrient they

consume.

In the absence of auto-chemotaxis and nutrients, the swimmers spread away

from the line cluster into the domain due to di↵usion, and resistance tends to hinder

this spread. Resistance smoothes out the perturbations in the spreading concentration

front and overall stabilizes these fronts into quasi-1D and symmetric profiles.

Auto-chemotaxis, the process where the swimmers respond to self-generated

chemo-attractant gradients and results in aggregation, has the curious e↵ect of

producing a “squiggling” accumulation line for zero or low resistance. We notice

the emergence of transverse movement in the swimmers’ accumulation line due to the

swimmers auto-chemotactic tendency to cluster into circular spots. The clustering is

countered by the di↵usive processes that encourage outward spreading. Increasing

resistance inhibits swimmer motion and smooths out the concentration fronts.

The competing processes of auto-chemotactic clustering, di↵usion and resistance

give curious results: for intermediate resistance we see the formation of non-line

non-circular accumulations that did not manage to spread far before “solidifying”,

see Figures 4.5 to 4.6, and for very high resistance we see the line accumulation break

into centered circular spots, see Figures 4.7 to 4.8.

Externally supplied nutrient can act as an incentive for swimmers to move away

from the initial accumulation, and thus enhances spreading expected by di↵usive

processes alone. Resistance counters both these factors by hindering the spread.

Note that the e↵ects are dependent on the amount of the initially-supplied nutrient

and the parameters for its evolution dynamics, however the example highlights that

nutrients can a↵ect the micro-swimmer spread and can perhaps be used to control it.
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The examples considered here show that we see that bacterial spreading and

eventual state depend delicately on the balance of all these factors: auto-chemotaxis

ability of the colony, the presence of nutrients, as well as the resistance encountered

in the porous environment. Understanding of the e↵ects of each one of these factors

can help us understand their contributions to the dynamics observed in experiments.

Better understanding of these processes and their non-trivial interactions can help

us fine-tune their e↵ects and perhaps can suggest ways to control the dynamics and

spread of micro-swimmer colonies.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Summary

The dissertation primarily focuses on studying micro-swimmers and their collective

behavior in inhomogeneous viscous environments. In Chapter 1, we introduce the

concept of these environments and their prevalence in nature, particularly among

microorganisms like bacteria and algae. We also discuss the significance of low

Reynolds number flow singularities, which arise due to the high viscosity and low

fluid velocity in such environments.

In Chapter 2, we focus on understanding the collective motion of micro-

swimmers in a fluid with resistance using mathematical modeling, analysis, and

numerical simulations. A continuum model is presented to describe the collective

dynamics of micro-swimmers, where their motion is coupled to the fluid dynamics

through a Stokes-Brinkman equation with an active stress term.

The analysis of the entropy equations and stability of the linearized system

reveals that Brinkman hydrodynamic resistance dampens the dynamics of a pusher

micro-swimmer suspension. The suspension undergoes a transition from a long-wave

instability to a finite-range instability, leading to weakened collective motion. The

linear analysis also provides insights into parameter ranges that can result in

fluctuations in the system of a specific size.

Numerical simulations of the full nonlinear system show that low resistance

leads to the emergence of concentration bands of swimmers that dynamically form,

merge, and break up in a quasi-periodic manner, accompanied by mixing fluid flow.

However, as resistance increases, the motion of the swimmers and the formation

of these concentration bands are inhibited. High resistance values can completely
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suppress dynamics, leading to a uniform state. Resistance hinders the movement of

swimmers, disrupts fluid flow patterns, and impedes hydrodynamic interactions, thus

suppressing macroscopic collective motion.

Chapter 3 explores the dynamics of a pusher swimmer suspension undergoing

chemotaxis, utilizing a continuum model that couples run-and-tumble chemotaxis

with the flows generated by collective swimming. Tumbling behavior acts as a

stabilizer, counteracting the formation of concentration bands and leading to a more

stable suspension. On the other hand, auto-chemotaxis introduces an instability

known as aggregation, causing swimmers to move towards chemo-attractants and

form clusters within the suspension.

Linear stability analysis of an auto-chemotactic pusher suspension identifies

two separate dispersion relations for hydrodynamics and chemotaxis processes,

with resistance a↵ecting only the hydrodynamic interactions. A phase diagram

is constructed, showing four distinct dynamic states depending on the presence of

hydrodynamic or chemotaxis instabilities, all of which are suppressed by resistance

at su�ciently high values.

Full simulations reveal that hydrodynamic and auto-chemotaxis instabilities

can mutually enhance each other, leading to the aggregation of swimmers. However,

resistance acts as an inhibitor, suppressing dynamics resulting from these instabilities

or their combined e↵ects. Additionally, resistance hinders chemotactic accumulation

in initially isotropic pusher suspensions by disrupting the movement of swimmers

towards chemo-attractants and the formation of concentration gradients.

The interplay between hydrodynamics, tumbling, auto-chemotaxis, and resistance

is complex and impacts the formation and evolution of concentration bands and

clusters. Nonlinear simulations provide deeper insights into their e↵ects on the

stability and dynamics of chemotactic pusher swimmer suspensions.
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Chapter 4 explores the spread of a line accumulation of pusher micro-swimmers

in environments with increasing resistance. Three scenarios are considered: non-

tumbling non-chemotactic swimmers, auto-chemotactic swimmers, and swimmers in

the presence of a nutrient they consume.

In the absence of auto-chemotaxis and nutrients, swimmers spread away from

the line cluster due to di↵usion, and resistance hinders this spread, stabilizing the

fronts into quasi-1D and symmetric profiles.

Auto-chemotaxis leads to a ”squiggling” accumulation line for low resistance,

with swimmers clustering into circular spots and di↵usive processes promoting

outward spreading. Increasing resistance inhibits swimmer motion and smoothes

out concentration fronts, resulting in non-line and non-circular accumulations for

intermediate resistance and centered circular spots for very high resistance.

Externally supplied nutrients incentivize swimmers to move away from the

initial accumulation, enhancing spreading driven by di↵usion. However, resistance

counters both factors, hindering the spread. Understanding the delicate balance of

auto-chemotaxis, nutrients, and resistance is crucial for controlling the dynamics and

spread of micro-swimmer colonies.

5.2 Future Directions

In the current study, we investigate the collective motion of micro-swimmers in a

fluid with resistance. The continuum model we employ describes the dynamics of

these swimmers, with parameters such as swimming speed, chemotactic sensitivity,

and tumbling frequency assumed to be constant to simplify the analysis. However, it

is worth noting that in experimental settings, these parameters have been observed

to exhibit non-linear dependencies on factors such as swimmer and chemo-attractant

concentrations. Experimental studies have shown that a micro-swimmer’s individual

velocity is dependent on the local concentration of chemo-attractant, denoted as U0 =
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U0(C). The swimmers’ velocity increases with higher chemo-attractant concentration

until reaching a saturation point [157]. These non-linear dependencies on chemo-

attractant concentration can have significant e↵ects on the overall behavior of the

swimmer colony e.g., Karmakar et al., [77] demonstrated that the swimming speed

of bacteria increases with higher concentrations of repellent, consequently enhancing

the drift velocity. As stated before, in our current model, we treat certain variables,

such as the chemotactic parameters �1, �2, and �, as constants. However, in reality,

these variables may exhibit variations and dependencies on other factors [167]. To

provide a more comprehensive analysis, it is necessary to consider these variables as

functions that can capture the nuanced influences and complexities of the system.

By incorporating variable dependencies, we can potentially capture more realistic

and dynamic behaviors of the swimmers, enabling a deeper understanding of their

collective motion and response to chemo-attractant gradients [167].

Collective motion in systems of micro-swimmers is a fascinating phenomenon

that has been the subject of extensive research [141, 164, 171, 112, 149, 1, 88]. While

hydrodynamic interactions have been shown to play a crucial role in explaining some

aspects of collective behavior, it is important to recognize that experiments often

involve high volume fractions where steric interactions between neighboring swimmers

become significant and cannot be overlooked. These close interactions can have a

profound impact on the dynamics and emergent properties of the system. But these

are di�cult to model properly in continuum theories, so various approximations of

various e↵ectiveness are often employes. For example, Ezhilan et al. [50] approximates

the e↵ects of steric collisions between swimmers by using an aligning potential,

and studies how this aligning impacts the emerging collective swimmer dynamics.

Other active matter models include various aligning interactions; more examples and

discussions on them can be seen in these reviews and articles [141, 112, 48, 1].
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The continuum model considered in this dissertation does not consider the

close interactions between swimmers, or the swimmers and obstacles and other

structures. This simplified approach still allowed us to gain insights into the e↵ects of

inhomogeneity on the collective motion of swimmers at a macroscopic level, capturing

the overall emerging behavior and patterns. However, it is known that collisions

and direct interactions between swimmers and other structures are crucial, especially

in confined environments [108, 33, 174], so to better understand confined collective

dynamics one should consider alternative approaches that explicitly account for these

close interactions. Therefore, direct simulations of micro-swimmer suspensions are

preferred to understand collective dynamics, but they are computationally challenging

and expensive. Numerical simulations, like boundary integral methods [75], dumbbell

models [57], slender-body models [143], immersed boundary [107, 108, 174] or

Lattice-Boltzmann approaches [161] and Stokesian dynamics [64] include particle-fluid

interactions and often particle-particle interactions have been considered to study

micro-swimmer suspensions, with many of them obtain qualitative features observed

in experiments. By accounting for both the hydrodynamic and steric interactions at

a microscopic level, particle-level simulations can provide a more comprehensive view

of the system’s behavior and allow us to investigate the intricate interplay between

hydrodynamics, steric e↵ects, and emergent collective phenomena.

Previous studies have explored the motion of individual swimmers in various

environments, for example 2D obstacle arrays [109] and 3D Brinkman media [93].

More recently, there has been a growing interest in understanding the behavior

of active matter in structured or unstructured environments [159, 139, 161]. For

example, active matter flow can be controlled by macroscopic boundaries [108, 130]

or micro-patterned structures [166], and the navigation of micro-swimmer colonies can

be routed through 2D structured porous media [42]. More thorough description of

recent advances and open questions on this topic can be found in the review articles,
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for example on micro-swimmers in Newtonian or complex fluids [93, 60, 149, 50, 54,

92, 98, 160], soft active matter and active turbulence [141, 112, 1], collective motion

and emergent behavior of active particles [171, 180], active particles and matter in

complex environments [11, 114, 27].

Building upon the work in this dissertation and the aforementioned studies, we

will study micro-swimmer collective navigation through spaces with heterogeneous

resistance or friction, whether these structures are organized or randomly distributed.

To do so, we can make the hydrodynamic resistance or friction term ⌫ depend

on space, ⌫(x), and, as we can no longer use Fourier methods to solve the fluid

equations, would need to develop alternative numerical schemes, e.g. finite di↵erence

or element ones [162]. As swimmers or active particles can more easily move through

areas of lower friction, one could consider various questions, e.g. how to optimize

the geometry of micro-structured environments to modulate and direct or active

flow, see for example the sketch in Figure (5.1). As 3D porous environments with

controllable properties can be realized in the labs [4], it may become feasible to design

environments of variable porosity and study micro-swimmer navigation through them.

By studying the influence of resistance and friction in particular, and heterogenous

environments in general, we can gain better insight into how the presence of structured

obstacles or varying frictional properties a↵ects the collective motion and emergent

behavior of the swimmers and other types of active particles. Moreover, this insight

will guide us into developing better strategies to control and direct the micro-swimmer

motion and active matter flow for future technological applications.
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Figure 5.1 Examples of space-dependent friction, e.g., a square or hexagonal lattice
of circular Gaussians (left), a square lattice of ellipsoidal Gaussians (top-right) and
a random forest distribution for ⌫(x, y). Possible paths for the flow of an active
suspension are indicated.
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APPENDIX A

BRINKMAN EQUATIONS IN PERIODIC DOMAINS

We outline how to solve the Brinkman equations for the fluid velocity in a periodic

domain. This solution or its idea is used in our analyses and simulations.

The Brinkman equations with a general force are

�r2u+rq + ⌫2u = f , r · u = 0. (A.1)

Taking the divergence of the momentum equations and using the incompressibility

condition yields a Laplace’s Equation for the pressure r2q = r · f . Applying the

Fourier transform to this equation, we can solve for the Fourier mode q̂ for the pressure

q:

�k2q̂ = ikT f̂ =) q̂ =
�i

k2
kT f̂ . (A.2)

Applying Fourier transform to the momentum Equation (A.1), we obtain

k2û+ ikq̂ + ⌫2û = f̂ . (A.3)

Putting all these results together,

(k2 + ⌫2)û = f̂ � ikq̂ =

✓
I� kkT

k2

◆
f̂ ,
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and hence

û =
1

k2 + ⌫2

✓
I� kkT

k2

◆
f̂ . (A.4)

We make use of this result or related ones in our linear analysis and also numerical

simulations in periodic domains, specifically to solve for the fluid flow generated by

a suspension micro-swimmers immersed in environments with various resistance.
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APPENDIX B

ASYMPTOTIC SOLUTIONS

B.1 Asymptotic Solution of the Hydrodynamic Dispersion Relation

Below we present theMaple scripts for how to find asymptotic solutions for the growth

rate �(k) from the dispersion relation Equation (2.42). Figures B.1 to B.4 show how

to solve for the two branches Equations (2.43) and Equation (2.44). Asymptotic

solutions of Equations (3.13) and (3.14) are obtained from the dispersion relation

Equation (3.11) in a similar way.

Figure B.1 Maple script for the first asymptotic solution of the Hydrodynamic
Dispersion Relation, part 1.
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Figure B.2 Maple script for the first asymptotic solution of the Hydrodynamic
Dispersion Relation, part 2.
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Figure B.3 Maple script for the second asymptotic solution of the Hydrodynamic
Dispersion Relation, part 1.

118



Figure B.4 Maple script for the second asymptotic solution of the Hydrodynamic
Dispersion Relation, part 2.
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B.2 Asymptotic Solution of the Chemotactic Dispersion Relation

Below we present the Maple scripts used to find asymptotic solutions for the growth

rate �(k) from the dispersion relation Equation (3.12). Figures B.5 and B.6 show

how to solve and find the expression shown in Equation (3.15).

Figure B.5 Maple script for the second asymptotic solution of the Chemotactic
Dispersion Relation, part 1.
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Figure B.6 Maple script for the second asymptotic solution of the Chemotactic
Dispersion Relation, part 2.

121



APPENDIX C

LINEAR ANALYSIS IN 2D

Similar to the linear stability analysis for the 3D case in Section 2.3.1, we analyze

the stability of nearly-uniform and isotropic ( 0 = 1/2⇡) suspension in 2D. Again we

consider a suspension of swimmers with no di↵usion D = dr = 0. Here we have only

one turning angle ✓ 2 [0, 2⇡) and the direction vector is p = [cos ✓, sin ✓].

The linearized distribution equation is

@ 

@t
= �p ·r + 2�pTEp� �0 +

�0�

2⇡
p ·rC +

�0
2⇡

Z 2⇡

0

 0d✓. (C.1)

We consider plane-wave perturbations for the distribution

 (x,p, t) = 1/2⇡ + ✏ ̃(p,k) exp(ik · x+ �t)

C(x, t) = �1/�2 + ✏C̃(k) exp(ik · x+ �t) (C.2)

with |✏| << 1, k the wavenumber and � the growth rate.

Substituting the solution for C̃ and ⌃̃p from the quasi-static chemo-attractant

equation and solution to the fluid equations respectively, we arrive at

(� + �0 + ik sin ✓) ̃ =
�↵�k2

⇡(k2 + ⌫2)
sin ✓ cos ✓

Z 2⇡

0

 ̃0 sin ✓0 cos ✓0d✓0

+
�0
2⇡

ik sin ✓
��2

�1 + k2Dc

Z 2⇡

0

 ̃0d✓0 +
�0
2⇡

Z 2⇡

0

 ̃0d✓0 (C.3)
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where we have let k = kk̂. This gives a linear equation for  ̃

 ̃ =
�↵�k2

⇡(k2 + ⌫2)

sin ✓ cos ✓

(� + �0 + ik sin ✓)

Z 2⇡

0

 ̃0 sin ✓0 cos ✓0d✓0

+
�0
2⇡

ik
��2

(�1 + k2Dc)

sin ✓

(� + �0 + ik sin ✓)

Z 2⇡

0

 ̃0d✓0

+
�0
2⇡

1

(� + �0 + ik sin ✓)

Z 2⇡

0

 ̃0d✓0 (C.4)

Therefore,

1 =
�↵�k2

⇡(k2 + ⌫2)

Z 2⇡

0

sin2 ✓ cos2 ✓

(� + �0 + ik sin ✓)
d✓. (C.5)

For the auto-chemotaxis relation, we just integrate Equation (C.4) in ✓ and

obtain

1 =
�0
2⇡

ik
��2

(�1 + k2Dc)

Z 2⇡

0

sin ✓

(� + �0 + ik sin ✓)
d✓

+
�0
2⇡

Z 2⇡

0

1

(� + �0 + ik sin ✓)
d✓. (C.6)

We can do the integrals in the hydrodynamics and auto-chemotaxis dispersion

relations in Equations (C.5) and (C.6) exactly by using contour integrals and residue

calculations. The details of this, while long, are omitted here. The resulting equations

are

1 =
�↵�
ik

k2

k2 + ⌫2

h
2a3 � a± 2a2

p
a2 � 1

i
(C.7)
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for the hydrodynamics relation, and

1 = �0
��2

(�1 + k2Dc)


1± ap

a2 � 1

�
± �0

ik

1p
a2 � 1

(C.8)

which can be re-arranged as

0 = F(�, k) :=
�ik

�↵�
(k2 + ⌫2)

k2
+
h
2a3 � a± 2a2

p
a2 � 1

i
(C.9)

0 = G(�, k) := �ik

�0
+

��2ik

(�1 + k2Dc)


1± ap

a2 � 1

�
± 1p

a2 � 1
, (C.10)

for the auto-chemotaxis relation. We have again let a = (� + �0)/ik, and recognize

here as well the factor R = ��2/(�1 + k2Dc).

The first equation is the hydrodynamic dispersion relation in 2D. It is a cubic

equation for a and can be solved exactly for a and thus for �, though we have to take

care that the solution satisfies the integral relation in Equation (2.49). From the two

cases arising from the ±, only the minus case is feasible [61, 103]. We obtain these

roots

�H1 = �A

�
+

B�

A
+
�

12

�H2 =
A

2�
� 2B�

A
+
�

12
± i

p
3

2

✓
� A

2�
� B�

A

◆
(C.11)

where for simplicity of the formula we have let � = (�↵�)/(1 + ⌧ 2) and

A =
1

12

h
��4 + 36�2k2 � 216k4 + 24�2k3

p
�3�2 + 81k2

i1/3

B =
1

6


k2 � �2

24

�
.
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As for the auto-chemotaxis relation, we can solve it for the growth rate �(k)

and get two branches

� = ��0 +
�20R

2R�0 � 1
±
p

R2�40 + (2R�0 � 1)[(2R�0 � 1)2k2 � �20]

2R�0 � 1
. (C.12)

Note that for small k, the solutions above give

�C� ⇡ 1

2�0
(��0 � 1)k2 +O(k4)

�C+ ⇡ ��0
��0 � 1

2��0 � 1
+O(k2)

for � = �/�1. However, the second (C+) branch does not satisfy the integral relation

Equation (C.6) and it is a spurious solution. To see this clearly, consider the no-auto-

chemotaxis case � = 0 and k = 0 for which the above is �C = ��0, but the integrand

in the integral relation Equation (C.6) has a zero denominator and thus no solution

can be found. Thus the only auto-chemotaxis solution in 2D is

�C = ��0 +
�20R

2R�0 � 1
�
p

R2�40 + (2R�0 � 1)[(1�R�0)2k2 � �20]

2R�0 � 1
. (C.13)
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