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ABSTRACT 

QUANTIFYING BALANCE: COMPUTATIONAL AND LEARNING 
FRAMEWORKS FOR THE CHARACTERIZATION OF BALANCE IN 

BIPEDAL SYSTEMS 

by 
Kübra Akbaş 

In clinical practice and general healthcare settings, the lack of reliable and objective 

balance and stability assessment metrics hinders the tracking of patient performance 

progression during rehabilitation; the assessment of bipedal balance plays a crucial role in 

understanding stability and falls in humans and other bipeds, while providing clinicians 

important information regarding rehabilitation outcomes. Bipedal balance has often been 

examined through kinematic or kinetic quantities, such as the Zero Moment Point and 

Center of Pressure; however, analyzing balance specifically through the body’s Center of 

Mass (COM) state offers a holistic and easily comprehensible view of balance and stability. 

Building upon existing boundary-based stability criteria, a balance region (BR) can 

be constructed in the COM state space (COM position and velocity) by identifying the 

border of the COM state space within which the system can regain its balance by returning 

to the equilibrium state (static upright posture). In contrast to many other approaches, the 

BR considers factors such as subject- or patient-specific actuation limits, perturbation and 

contact responses, boundary constraints, and other essential components that hold 

significance in rehabilitation. 

In this work, a recently developed COM BR method is first extended within an 

optimization-based computational framework and used to quantify balance with evaluation 

of its reachable and viable margins in depth. By demonstrating the potential of this method 



 

in quantifying balance in healthcare environments, a tele-health protocol is introduced for 

the remote assessment and rehabilitation of patients, through which balance exercises can 

be studied within the BR framework. Extracted information can then be relayed to the 

patient as exercise goals, enabling effective monitoring and guidance for rehabilitation. 

Next, to incorporate the contribution of neuromuscular factors into the BR, a 

reinforcement learning (RL)-based framework is used for the development of a real-time, 

muscle-based balance controller. This controller activates individual muscles within a 

musculoskeletal model in response to its state, bringing it to equilibrium; consequently, it 

can be utilized to generate the BR through numerous simulations with varying initial COM 

states. In addition, altering muscle properties affected by neuromuscular disorders or aging 

(e.g., muscle weakness, hemiplegia) significantly reduces the size of their respective BRs, 

providing insights into how balance is affected by physiological changes to muscle and 

offering a pathway to further study other neuromuscular conditions. 

Lastly, an experimental study of various balance exercises is performed to 

demonstrate the feasibility of empirically generating BRs and assessing balance, as well as 

determining the contributions of major balancing muscles during these exercises through 

the analysis of muscle activation patterns. The results show that humans are less likely to 

reach their theoretical BR limits, when an ankle strategy is encouraged, which is in line 

with the findings obtained from numerically generated BRs. 

In summary, this work presents compelling evidence that the proposed frameworks 

for BR generation and analysis can be effectively employed for the quantification and 

subsequent analysis of balance. This has significant implications for patient diagnostics, 

monitoring, and rehabilitation, offering the potential for improved outcomes in these areas.
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CHAPTER 1 

INTRODUCTION 
 

1.1 Background and Motivation 

Throughout the aging process, balancing ability becomes more crucial in maintaining 

overall health: injuries from falling remain a major health risk, particularly for the elderly, 

with over 3 million older patients receiving treatment in the emergency department 

annually, according to the CDC (Centers for Disease Control and Prevention, 2021). In 

addition to aging, other conditions that can exacerbate balance deterioration include 

mobility impairment, reduced activity, and lack of daily proprioception, leading to similar 

health issues (Gandolfi et al., 2018; Levinger et al., 2017; Narici et al., 2021; Visser et al., 

2008). A principal cornerstone in healthcare has been the proper, objective assessment of 

an individual’s status for understanding how to both diagnose and intervene during 

subsequent treatment. For the assessment and quantification of balance, many clinicians 

rely on rubric-oriented, scoring systems, such as the Mini BESTest or the Berg Balance 

Scale (Godi et al., 2013). Due to the low resolution and subjectivity of these scoring 

systems, they can be lacking in reliably tracking the progress of patients or determining 

their current state. In recent years, there have been multiple calls for better quantification 

and assessment during rehabilitation, especially in the realm of remote healthcare 

(Iannaccone et al., 2020; Ruiz et al., 2020; Seshadri et al., 2020). Therefore, the long-term 

goal of this project is to develop a comprehensive and objective balance assessment method 

that can be applicable to both clinical and remote settings. Previously, an optimization-

based balance assessment metric was developed using the center of mass (COM) state 

space (position and velocity) to showcase a bipedal system’s ability to recover from 
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perturbations (Mummolo et al., 2017); the resulting state-space boundary and region, 

referred to as the Balance Region (BR) or Boundary of Balance (BoB), are subject-specific 

and self-explanatory, which makes it compelling at characterizing the balance of a bipedal 

system. However, the process used to generate these BRs requires subject-specific 

optimization and can be time-consuming, making it difficult to generalize to new subjects. 

To this end, normalization can be helpful in extending existing results to different 

individuals, bypassing the need for continuously altered subject parameters and re-

optimization, or facilitating direct comparison between subjects. Although the current BR 

approach is successful and prominently relies on kinematics and dynamics, it lacks the 

physiological factors that influence the balancing capabilities of a person. This can be 

remedied with the inclusion of musculoskeletal (MSK) models that are crucial to balance 

assessment (De Groote et al., 2017; Kaminishi et al., 2019; McKay et al., 2021). 

Developing robust muscle-based balance controllers for humans is an effective approach 

to understanding how humans maintain balance and interact with their environment. Unlike 

traditional robot balance controllers that command joint motors directly (typically one 

motor for each joint), balance control with muscles is much more complicated due to the 

redundancy in muscles and intricate physiological response of muscle neural 

commands.  Recently, reinforcement learning (RL) has shown immense potential in 

developing real-time controllers for robot or human balance and locomotion without the 

need for explicit human intervention in controller design or manual tuning of control 

parameters (Lee et al., 2019; Yang et al., 2017). Therefore, to introduce a more direct 

integration of the physiological aspect, MSK modeling and RL can be combined to address 

the need for a more physically relevant controller for balance recovery. 
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1.2 Hypotheses and Specific Aims 

We hypothesize that using a MSK model-based RL framework will provide a more 

physically relevant balance region analysis; additionally, the region-based analysis can be 

extended to investigate the effects of underlying muscle characteristics by incorporating 

neuromuscular factors associated with aging or neurological disorders. To investigate this, 

we sought to accomplish three major aims involving: 1) balance assessment metrics using 

the BR method, 2) an RL-based algorithm for balance control and recovery, and 3) an 

experimental approach to quantify balance. 

The first aim was to develop an objective and generalizable balance assessment 

metric using the BR method. To accomplish this, BRs were first generated for an example 

subject using an optimization-based approach. These BRs were then normalized to obtain 

a generic model through linear equations that were calculated to characterize the 

boundaries of the BR. These were then scaled to a new subject of interest using their 

anthropometric measurements (e.g., height, foot length). To quantify this new subject’s 

balancing capabilities, their subject-specific BR was used to determine both boundary 

(reachable, viable) and state (eMOS) margins for each BR and/or task of interest (e.g., 

recovery from a change in posture). 

 The second aim was to develop an RL-based algorithm for the generation of BRs 

through neuromuscular control and the testing of balance capabilities of a MSK model. 

The introduction of muscle contraction through the MSK model for BR generation was 

intended to introduce a more physiological meaning to the existing approaches for 

assessing balance, which are generally based on joint torque-limits rather than directly 

accounting for the contribution of muscles. To achieve this, we aimed to create a robust 

balance controller through RL that uses muscle activations to drive human balance 
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recovery from random initial postures and subsequently to generate the BR. For validation, 

the resulting balance controller would be compared with data collected from balance 

experiments, such as experimental BRs, joint kinematics, and muscle activations. 

Additionally, we aimed to investigate the influence of lower-limb muscle characteristics 

on balance recovery capabilities and strategies. Through simulations with the developed 

RL-based controller approach, the effects of muscle characteristics on balance were 

considered through altering the MSK model to reflect aging or neuromuscular disorders 

(e.g., muscle weakness, hemiplegia). 

The third aim was to determine the feasibility of generating experimental BRs from 

human subjects through a series of balance experiments. To test this, several balance 

exercises were selected for the protocol, where exercises that involved a change in posture 

(voluntary sway, supported leaning, leaning with a push) were of particular interest for the 

BRs. These exercises were carried out in a motion capture lab with marker-based optical 

cameras, surface electromyography sensors, force plates, and instrumented shoe insoles. 

After data collection, each subject had a respective (subject-specific) musculoskeletal 

model scaled based on the marker data from the scaling trials. These models were then 

used to solve for the inverse kinematics during each trial, which in turn provided the COM 

kinematics needed to calculate their subject-specific BRs. Through this approach, we 

demonstrated an experimental methodology to quantify balance using a region-based 

approach. 
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1.3 Organization 

Succeeding this introductory chapter, relevant background and established work are 

presented in Chapter 2 to provide a background on the following general areas: balance 

assessment and control, effects of changes in muscle to balance capabilities, and the use of 

RL in bipedal control. Chapter 3 then gives an approach to using subject-specific balance 

regions for the assessment of balance, as well as subsequent applications for training 

balance in a home environment through tele-rehabilitation. In Chapter 4, an RL-based 

balance controller implemented on a MSK model is presented, and its BRs are generated 

to demonstrate a computational approach to region-based balance assessment that is more 

directly integrated with physiology. An experimental approach to quantify balance is 

outlined in Chapter 5, where subject recruitment, experimental protocol, kinematic results, 

and physiological results are presented. Lastly, Chapter 6 concludes this work with a 

general summary and suggestions for future work. 
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CHAPTER 2 

THEORETICAL BACKGROUND AND LITERATURE REVIEW 
 

2.1 Balance Assessment and Rehabilitation 

2.1.1 Zero Moment Point and Center of Pressure 

When considering balance, the simplest and most common methods used involve either the 

Zero Moment Point (ZMP) or the Center of Pressure (COP). The ZMP can be defined as 

the point where the culmination of all forces acting on the system (e.g., the ground reaction 

force (GRF)) is being applied with no resulting moment in the horizontal directions 

(Vukobratović & Borovac, 2012). On the other hand, the COP is the point where a force 

representing the total sum of pressures from contact is applied on the contact surface 

between the system and the ground, or other foundational bodies. In the case of legged 

systems, both the ZMP and COP are with respect to the system’s foot and the ground with 

which it is in contact. In some situations, however, the ZMP and COP can be coincident, 

such as when the force applied at the COP is also the total ground reaction force that results 

in a net-zero horizontal moment (Vukobratović & Borovac, 2012). 

 These two points can then be formulated and tracked using various techniques, but 

both rely on the Base of Support (BoS, Figure 2.1) when considering their utility in balance 

analysis; the BoS can be defined as the area with which the system of interest makes contact 

with the ground. Most commonly, balance analyses and controllers for legged systems seek 

to keep the ZMP within the BoS to maintain stability, while COP is restricted to staying 

within the BoS by definition. This allows for an easily trackable method of ensuring a 

bipedal robot’s gait remains stable while it performs activities; for humans, measuring a 
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person’s ability to keep their ZMP within their BoS during a task can be used as a measure 

of their balance ability. 

 

Figure 2.1 Visualization of Base of Support in double stance. 

 

 For the formulation and calculation of these points, as well as other important 

parameters, the model used to represent the system and derive its EOM is critical. Bipedal 

systems are commonly simplified to an inverted pendulum for the derivation of their COM 

mechanics, due to the oscillatory motion of the COM during walking, and can be modified 

to include or withhold other effects based on preference. For instance, the traditional 

inverted pendulum can be simplified to a linearized version, which assumes that the 

pendulum’s change in angle during motion is small enough for the COM to maintain a 

constant height; other models also enhance the linear inverted pendulum (LIP) to include 

a flywheel, which can account for missing angular momentum effects. As with most 

models, higher complexity can lead to infeasibility due to the difficulty in implementation. 
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2.1.2 Extrapolated Center of Mass, Capture Point, and Divergent Component of 
Motion 

Though commonly used for walking and other dynamic motions, the extrapolated center 

of mass (XcoM) has been used for contact planning and balance. Across the robotics 

research field, the terms “capture point” (CP) and “divergent component of motion” 

(DCM) have also been used interchangeably with XcoM, which will be referred to and 

used extensively in this work. At its core, XcoM can be described as the point where a 

bipedal system has to step to reach a complete stop (Englsberger et al., 2011). LIP models 

are typically used to quantify the XcoM and its derivation is presented step-by-step in 

(Englsberger et al., 2011). In the case of this derivation, the joint of the pendulum (ankle) 

is unactuated, which allows for the COP and ZMP to be coincident. Mathematically, it can 

be represented as follows in the sagittal plane:  

 

 𝜉𝜉𝑥𝑥 = 𝑥𝑥𝑐𝑐 +
�̇�𝑥𝑐𝑐
𝜔𝜔

 (2.1) 

  

where 𝜉𝜉𝑥𝑥 is the XcoM in the x direction, 𝑥𝑥𝑐𝑐 is the COM, and 𝜔𝜔 = �𝑔𝑔 𝑧𝑧𝑐𝑐⁄  is the natural 

frequency of the LIP used to model the system. From this equation form, it is evident that 

the XcoM considers both position and velocity terms. Additionally, the final system 

dynamics that describes both COM and XcoM dynamics is: 

 

 �̇�𝜃 = �−𝜔𝜔 𝜔𝜔
0 𝜔𝜔�𝜃𝜃 + � 0

−𝜔𝜔�𝑝𝑝𝑥𝑥 (2.2) 

 

where 𝜃𝜃 = ⌈𝑥𝑥𝑐𝑐, 𝜉𝜉𝑥𝑥⌉𝑇𝑇 and 𝑝𝑝𝑥𝑥 is the ZMP. 
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2.1.3 Computerized Dynamic Posturography and Interventions for Balance 
Rehabilitation 

Poor balance capabilities are among the leading causes for falls in the elderly (Visser et al., 

2008; Levinger et al., 2017; Gandolfi et al., 2018), often resulting in limited mobility and 

reduced engagement in physical activities. Balance assessment methods are useful in 

helping practitioners determine the proper customized rehabilitation plan for their patients 

and allow researchers to develop better technology to conduct these assessments. Currently 

used methods range from subjective observations performed by medical professionals to 

more quantitative approaches, using medical devices specifically designed for 

computerized dynamic posturography (CDP) analysis. While many balance exercises are 

qualitatively designed and assessed in the clinical setting (e.g., Berg Balance Scale 

(Stevenson, 2001), Balance Error Scoring System (Bell et al., 2011), Activities Balance 

Confidence Scale (Raad et al., 2013), Y Excursion Balance Test (Kinzey & Armstrong, 

1998), Star Excursion Balance Test (Glave et al., 2016)), the score subjectivity and 

variance across physical therapists can lead to inconsistencies in the rehabilitation 

outcomes. Furthermore, this qualitative approach is less feasible in a home-care setting, 

where the physical presence of a therapist is removed. Many clinics use CDP to determine 

a patient’s progress based on a quantitative type of assessment. For example, the 

NeuroCom SMART Balance Master can score a user’s performance through the sensory 

organization test of equilibrium and motor control test (Wagner et al., 2016). The sensory 

organization test evaluates postural stability under various sensory conditions, where the 

visual, proprioceptive, and vestibular senses are altered (Olchowik et al., 2020; Wagner et 

al., 2016). A final “equilibrium score” based on the center of gravity sway is associated to 

the sensory organization test to evaluate postural stability. Additionally, the motor control 
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test uses a “latency score” to quantify the user’s postural response time in reaction to 

platform perturbations (Wagner et al., 2016). 

 Although the existing CDP devices are considered to be the best currently available 

technologies, these machines are too costly and substantial in size for in-home use, and 

they require a trained clinician to supervise the machine setup and operation. Technologies 

for home care rehabilitation must be portable, compact, and must have a user-friendly 

interface so that the general patient can operate the device with minimal training. 

Commercial balance training technologies aimed for the home environment are typically 

presented as “exergames” (exercise games), which utilize the body’s motion as a method 

of controlling gameplay and were developed to encourage activity through fun activities. 

For example, Wii Fit uses the body’s weight distribution on the balance board as a proxy 

indicator of balance (Wikstrom, 2012); the Kinect’s balance training games, based on body 

motion tracking, can provide a low-cost and accessible form of rehabilitation (Sápi et al., 

2019); Neofect’s Smart Balance technology uses virtual environments and other 

visualizations to aid in stroke recovery by measuring COP, COM, pressure distribution, 

and the traveled path during walking (Neofect, 2020); the Togu Challenge Disc made by 

MFT Bodyteamwork uses games and visual targets to train balance and tracks the general 

motion of the user (MFT Bodyteamwork, 2020); the Boditrak2 Balance Assessment 

System also uses games to assist with training and tracks balance through pressure 

mapping. These platforms have been proposed as portable solutions for increasing physical 

activity and for balance assessment and training (Kennedy et al., 2011; Goble et al., 2014; 

Sápi et al., 2019). However, they have limitations in both their technology (e.g., sensor 

quality, resolution, processing power) and assessment approach (e.g., simple tracking of 
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body motion and pressure distribution as proxies for the evaluation of balance control). 

Research efforts are being made to develop more accurate portable and wearable 

technologies for quantitative balance assessment (Conforti et al., 2020; Torricelli et al., 

2020) by including, for instance, inertial measurement units or electromyographic devices 

(Zampogna et al., 2020). 

 The limitations on the CDP and exergames technologies prevent simultaneous 

balance assessment and training from being properly performed at home. Specifically, 

existing assessment metrics and testing protocols need to be improved to better understand 

the mechanisms that affect postural control (Keshner and Fung, 2019). The 

theoretical/computational framework employed in any given technology to quantify 

rehabilitation outcomes must be both specific and comprehensive enough to capture the 

balance skills across multiple subjects and multiple exercises. At the same time, the 

systematic outcomes evaluation must not be too computationally intensive. Current 

balance assessments focus on selected specific measures, which provide only partial 

information on human balance control and may omit important components of balance 

related to the risk of falls (Sibley et al., 2015). Few specific indicators are typically captured 

in CDP or exergames (i.e., reaction time, movement velocity, endpoint excursion, COM 

and COP sway), whose deviation from a baseline only partially and indirectly characterizes 

the balance control ability of a subject (Chaudhry et al., 2004; Ganesan et al., 2015). Each 

of these mechanical indicators alone do not capture the state of balance of a system (i.e., 

whether the subject is balanced or not) nor do they characterize the overall capability of 

the subject to recover from general perturbations. As a result, the perspectives of 

quantification of human balance have not yet reached a golden standard (Sibley et al., 
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2015) and identifying a comprehensive set of quantifiable and customized targets for 

balance rehabilitation remains a challenge. Furthermore, the existing assessment metrics 

and technologies pose a limit to the type of movements that can be analyzed. In typical 

CDP protocols, movements are restricted to the device’s narrow platform and postural 

stability is assessed during periods of quiet standing (Glave et al., 2016). While numerous 

stability analyses have been proposed during general movements (e.g., sit-to-stand 

(Holmes et al., 2020), walking (Young et al., 2012), stair climbing (Herman et al., 2009), 

etc.), these have not been translated into a unified approach for the design of exercise 

protocols (and associated technology) involving multiple motor tasks. Assessment sessions 

typically analyze balance during the upright standing posture (postural stability) and tend 

to be independent from the physical therapy training sessions, which usually involve 

different types of dynamic motor tasks (Bayouk et al., 2006; Marioni et al., 2013; Levinger 

et al., 2017). For effective rehabilitation, assessment and training protocols should be 

simultaneously performed and combined into a unified technology-based framework for a 

broad range of balance exercises with quantifiable custom targets. 

2.1.4 Balance Regions and Boundaries 

While methods based on ground reference points (e.g., COP, ZMP) allow for an easily 

trackable method of determining a bipedal system’s instantaneous balance, they are also 

limited by their lack of critical information involved in contact, such as joint actuation 

limits and contact constraints (Peng et al., 2021). Recent studies have addressed the limited 

scope of quantification of existing balance assessment methods by addressing the stability 

of biped systems from a dynamic system perspective. In this context, balance is defined as 

the ability to maintain the state of a dynamic system inside a defined desired region of the 
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state space (Pratt et al., 2017). A state is considered balanced if it can remain within this 

region indefinitely without altering its contacts; likewise, an unbalanced state requires a 

change in contact, whether that be from falling or from taking a step. 

The quantification of balance capabilities consists in the evaluation of a balanced 

region in the state space (Mummolo et al., 2017), also called basin of attraction or viability 

kernel (Aubin et al., 2011; Koolen et al., 2012; Zaytsev et al., 2015; Smith et al., 2017). 

This quantification was performed through a constrained optimization problem, formulated 

using nonlinear programming, which was developed for the biomechanical analysis of 

balance using the COM state (position and velocity) (Mummolo et al., 2017; Mummolo, 

Peng, Agarwal, et al., 2018; Mummolo, Peng, Gonzalez, et al., 2018; Peng et al., 2022), 

ultimately partitioning the state space into two sets: balanced and unbalanced states. The 

resulting balance stability criterion is a threshold that can discriminate between the 

conditions of balance and imbalance of a given biped system (Koolen et al., 2012; 

Mummolo et al., 2017; Koolen, 2019). 

This partitioning provides a more comprehensive approach for monitoring the state 

of balance of a system and predicting fall, as opposed to tracking individual balance-related 

indicators (e.g., COP), by accounting for relevant physical components through the 

complex dynamics and kinematics that are otherwise not included in most balance 

formulations. Additionally, these regions can be further extended to other metrics, like 

boundary and state margins, to provide a quantification of a subject’s balancing ability 

(Akbas & Mummolo, 2021; Mummolo et al., 2021); these margins aim to quantify both 

the region’s balance by comparing the boundary margins to the subject’s BoS and a specific 

task’s instantaneous balance through a state margin’s relation to the region’s boundary. 
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Furthermore, region-based approaches can be generalized to various movements and 

translated into a broader range of static and dynamic exercise goals for simultaneous 

balance assessment and training. 

2.1.5 Balance Controllers 

Numerous traditional balance control approaches exist for bipedal systems, most of which 

focus on joint-actuated robotic systems (Hinata & Nenchev, 2019; Hosokawa et al., 2018; 

Huynh et al., 2016; Joe & Oh, 2018; Lee & Goswami, 2012; Ott et al., 2011). Since the 

COP and ZMP have been established as a common balance metric, its integration into 

balance control has also been widely used. Balanced gait and recovery can be controlled 

using a COP- or ZMP-based approach to ensure that the COP/ZMP remain within the 

support polygon, which represents the BoS in balance and gait (Goswami & Vadakkepat, 

2018; Huang et al., 2008; Lee & Goswami, 2012). While ground reference points are 

valuable, they are still sometimes limited in their capability to capture whole-body motion 

on their own. On the other hand, many controllers turn to COM- or momentum-focused 

balance control, which has the capability of integrating multiple reference points in their 

formulation (Bayón et al., 2020; Hinata & Nenchev, 2019; Lee & Goswami, 2012; Peng et 

al., 2022). Notably, the feasibility and success of employing the XcoM for balanced gait 

and balance recovery has been demonstrated in various studies (Englsberger et al., 2017; 

Englsberger et al., 2013; Kim et al., 2019; Seyde et al., 2018; Shafiee-Ashtiani et al., 2017). 

When designing high-level balance controllers, the choice of the appropriate 

algorithm significantly influences the success of these controller. Recent advances in 

robotics are moving towards more flexible or adaptive algorithms that can accommodate 

disturbances and changes in their environment (Dakin & Bolton, 2018; Mason et al., 2018). 
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To this end, several methods have been employed to address the need for robustness to 

unexpected perturbations through model predictive control (Joe & Oh, 2018; Mason et al., 

2018), impedance control (Hu et al., 2012; Karunakaran et al., 2020; Lu et al., 2014), and 

RL , to name a few. By enhancing the adaptability of a controller, the successful 

implementation of a robotic device can be increased. Furthermore, the development of 

robotic devices that interact with humans in a manner enabling them to react to unexpected 

phenomena holds particular importance, considering the potential disturbances stemming 

from the asynchronous interaction between the device and the user. 

2.2 Aging and Pathological Effects on Muscle and Balance 

Although various balance assessment and tracking methods have been established and 

implemented, they are all limited by their reliance on only kinematics and dynamics in 

their formulation. While gross motion-based analyses can be useful in measuring the 

outward result of an activity, the underlying systems are physiological, and this influence 

can be noticed in greater detail when considering balance. Kinematic and dynamic 

approaches can include physical effects, like anthropometric properties, mass distributions, 

and joint torque limits, though these are not enough to reflect the physiological influences 

that lead to motion variation. The incorporation of muscle models can help account for 

physiological effects at the muscle-level (Winters, 1990; Winters & Stark, 1987), though 

recent efforts are being made to investigate the neural component as well (Layne et al., 

2022). Musculoskeletal models help bridge the gap between kinematic approaches and 

physiology by integrating joint actuation with individual muscle contraction, which can 

lead to a deeper understanding of a person’s motion. As the study of neuromuscular and 

musculoskeletal disorders expand, understanding the link between movement and 
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muscular activity becomes increasingly relevant; movement disorders can affect individual 

muscle parameters, leading to a change in the resulting motion, which would be missed in 

a kinematic and dynamic approach. For instance, in Parkinson’s Disease, there is a notable 

difference in maximum muscle force generation, force variability, and muscle activation 

timings (McKay et al., 2021; Romanato et al., 2022). Therefore, for a more in-depth and 

physically relevant understanding of balance, the incorporation of information from the 

musculoskeletal system needs to be considered. 

Muscle deficiencies caused by sedentarism, aging, disease, injury, and other 

conditions can lead to many adverse health effects, especially those concerning mobility. 

Likewise, balance is especially reliant on everyday proprioception to maintain overall 

muscle health, leading to reduced physical ability when these pathways are disrupted or 

compromised; many balance rehabilitation programs tend to focus on restoring and 

reconditioning muscle to regain its healthy properties, such as sufficient muscle strength 

(David et al., 2012). Therefore, it is important to fully understand the relationship between 

muscles, particularly those in the lower limbs, and a person’s balancing capabilities. Thus 

far, some have investigated the effects of both healthy aging and Parkinson’s Disease (PD) 

and indicated the potential critical changes to muscle affecting mobility (Carty et al., 2012; 

David et al., 2012; De Groote et al., 2017; Dimitrova et al., 2004; Doherty et al., 1993; 

Inkster et al., 2003; Iwamoto et al., 2017; Koelewijn & Ijspeert, 2020; Marusiak et al., 

2010; McKay et al., 2021; Mileti et al., 2020; Nowakowski et al., 2022; Pijnappels et al., 

2008; Song & Geyer, 2018; Thelen, 2003). 

A common approach to model the underlying muscle dynamics in a MSK model is 

through using a Hill-type muscle model (De Groote et al., 2016; Hill, 1938; Zajac, 1989). 
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In this muscle model, the tendon is presented as a passive element in series with the muscle 

fiber, where the muscle fiber is comprised of both a contractile and passive element (Figure 

2.2). The pennation angle of the muscle fibers is also considered through the introduction 

of the α angle between the tendon and the muscle fiber. 

 

Figure 2.2 Schematic of a Hill-type muscle model with passive tendon (T), muscle fiber 
contractile element (CE), and muscle fiber passive element (PE). 𝑙𝑙𝑇𝑇 is the tendon length, 
𝑙𝑙𝑚𝑚 is the muscle fiber length, 𝑙𝑙𝑀𝑀𝑇𝑇 is the total muscle-tendon unit length, and 𝛼𝛼 is the 
pennation angle.  

Source: De Groote, F., Kinney, A. L., Rao, A. V., & Fregly, B. J. (2016). Evaluation of Direct Collocation 
Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem. Annals of Biomedical 
Engineering, 44(10), 2922-2936. https://doi.org/10.1007/s10439-016-1591-9  

 

Using a MSK model, desired muscle properties can be modified in a selected 

muscle model to directly simulate various conditions ranging from disorders like PD to 

healthy aging conditions. The general equation (Eq. (2.3)) describing the muscle fiber force 

in a classic Hill-type muscle model (Figure 2.2) can be presented as follows: 

  

 𝐹𝐹𝑀𝑀 = 𝐹𝐹0𝑀𝑀�𝑎𝑎 ⋅ 𝑓𝑓𝑙𝑙(𝑙𝑙) ⋅ 𝑓𝑓𝑣𝑣(𝑣𝑣) + 𝑓𝑓𝑃𝑃𝑃𝑃(𝑙𝑙)� (2.3) 
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where 𝐹𝐹𝑀𝑀 is the muscle fiber force at a specified activation (𝑎𝑎) and 𝐹𝐹0𝑀𝑀 is the maximum 

isometric force; the functions 𝑓𝑓𝑙𝑙(𝑙𝑙), 𝑓𝑓𝑣𝑣(𝑣𝑣), and 𝑓𝑓𝑃𝑃𝑃𝑃(𝑙𝑙)) are the normalized active force-

length, force-velocity, and passive force-length curves, respectively. 

The relationship between muscle properties and their changes during balance 

recovery under various conditions has been a point of interest in recent years and has shown 

to indicate potential effects on components like co-contraction, grouping strategies, and 

short-range stiffness (De Groote et al., 2017; Iwamoto et al., 2017; McKay et al., 2021). 

Of particular interest are the changes that occur during balance recovery from external 

perturbations, such as changes in muscle force magnitudes and stiffness (De Groote et al., 

2017; Kaminishi et al., 2019). In other perturbation studies, it has been shown that muscle 

activations also differ between various groups; for instance, PD patients seem to 

abnormally recruit antagonist muscles during recovery from perturbations (McKay et al., 

2021). Some existing work has shown the effects of perturbations and postural balancing 

on various aspects of muscle activity, such as co-contractions (Iwamoto et al., 2017), 

changes in stiffness (De Groote et al., 2017), and muscle grouping strategies (McKay et 

al., 2021). However, when considering conditions such as aging, more fundamental muscle 

properties must also be considered, such as maximum isometric force and contraction 

velocity, to name a few (Doherty et al., 1993; Thelen, 2003). PD has also been shown to 

affect characteristic muscle properties as well, such as passive muscle stiffness (Marusiak 

et al., 2010), altered antagonist muscle responses (Dimitrova et al., 2004; McKay et al., 

2021), and muscle weakness (David et al., 2012; Inkster et al., 2003). Examining these 

muscle parameters in detail is crucial to understanding the strategies employed for balance 

recovery; namely, muscle strength, activation, stiffness, and timing are indicated to be of 
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importance (Carty et al., 2012; David et al., 2012; De Groote et al., 2017; Dimitrova et al., 

2004; Inkster et al., 2003; Koelewijn & Ijspeert, 2020; McKay et al., 2021; Mileti et al., 

2020; Pijnappels et al., 2008). Effects of aging and falls in the elderly population have also 

been explored by others through integrating MSK models with RL, where different models 

were constructed and learned based on changes to muscle established in the literature 

(Nowakowski et al., 2022); however, this approach focuses on simulating falls, rather than 

using a balance assessment approach to anticipate falls. Although the applications of these 

approaches are varied, their individual successes indicate that the adjustment of muscle 

properties in a MSK model can provide better insight to how balance changes over time. 

Within the model, age-related muscle parameters that are indicated to be affected 

are: maximum isometric force 𝐹𝐹0𝑀𝑀, contraction velocity, deactivation time constant for the 

excitation-activation delay (𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑), and passive muscle strain (Cseke, 2020; Doherty et al., 

1993; Thelen, 2003). The contraction velocity and passive muscle strain parameters are 

encapsulated in the muscle force-length and force-velocity curves. During the process of 

aging, it has been shown that maximum isometric force decreases by approximately 30%, 

contraction velocity decreases by 20%, deactivation time constant increases from 50 ms to 

60 ms, and passive muscle strain decreases from 0.6 to 0.5 (Cseke, 2020; Doherty et al., 

1993; Thelen, 2003). Detailed muscle properties reflecting these changes are also presented 

in (Nowakowski et al., 2022). 

All in all, considering the changes in muscle allows for the replication and 

exploration of various conditions without the need for human subjects, providing a means 

of testing new approaches before they are implemented in an experimental setting. 
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2.3 Reinforcement Learning-based Approaches to Balance Analysis and Control 

To better understand how humans maintain their balance, it is essential to study the 

control mechanism of the human body. For legged robotics, the control units are actuators 

at the joints, whereas the control units for humans are the muscles. Developing a real-time 

balance controller for a bipedal system is a very important task to achieve its basic 

functions. As various aspects are often neglected by most balance formulations due to the 

need for simplicity and computational efficiency, such as multiple contact constraints and 

joint limits, developing a robust balance controller that can include these missing factors 

is critical. To encapsulate and address the complexities of balance, RL has been explored 

as a way of implementing higher-order models while bypassing the need to define every 

aspect of a problem. 

As machine learning algorithms in general become ubiquitous across all fields, their 

use in understanding gait and locomotion continues to grow and adapt to various problems 

that were previously difficult to address, especially RL algorithms (Kober et al., 2013; 

Wang et al., 2012). Most recently, RL-based control has increased in popularity due to its 

ability to develop balance controllers with more flexibility and promising results 

(Bogdanovic et al., 2020, 2022; Gil et al., 2019; Hwangbo et al., 2019; Yang et al., 2017). 

Additionally, the use of RL allows for a more direct implementation of a MSK model when 

considering the dynamics of the overall system.  In legged robotics, RL algorithms can be 

formulated based on the desired outcomes or goals, but learning in the joint action space 

tends to be the most common approach (Bogdanovic et al., 2022; Kumar et al., 2020; Lee 

et al., 2019; Xie et al., 2018). In all cases, joint-level dynamics must be considered when 

designing an algorithm; however, other approaches have been taken to include high-level 

goals, such as whole-body postural changes or the tracking of ground reference points (Li 
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et al., 2019; Lin et al., 2016; Wu & Gao, 2017; Yang et al., 2017). RL is not the only 

framework that is available for designing balance controllers, as multiple controllers have 

been developed using model predictive control for instance (Joe & Oh, 2018; Stephens & 

Atkeson, 2010), but many rely on the ground reference points mentioned previously 

regardless of the control algorithm (Koolen et al., 2012; Wang et al., 2015; Wu & Gao, 

2017; Xi & Chen, 2020). Although these controllers are successful, these points are unable 

to fully capture the whole-body dynamics of a biped system; therefore, a controller that can 

account for the multiple factors that comprise balance and its subsequent assessment is 

necessary.  
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CHAPTER 3 

A COMPUTATIONAL FRAMEWORK TOWARDS THE TELE-
REHABILITATION OF BALANCE CONTROL SKILLS 

 

Mobility has been one of the most impacted aspects of human life due to the spread of the 

COVID-19 pandemic. Home confinement, the lack of access to physical rehabilitation, and 

prolonged immobilization of COVID-19-positive patients within hospitals are three major 

factors that affected the mobility of the general population world-wide. Balance is one key 

indicator to monitor the possible movement disorders that may arise both during the 

COVID-19 pandemic and in the future post-COVID-19. A systematic quantification of the 

balance performance in the general population is important for preventing the appearance 

and progression of certain diseases (e.g., cardiovascular, neurodegenerative, and 

musculoskeletal), as well as for assessing the therapeutic outcomes of prescribed physical 

exercises for elderly and pathological patients. Current research on clinical exercises and 

associated outcome measures of balance is still far from reaching a consensus on a “golden 

standard” practice. Moreover, patients are often reluctant or unable to follow prescribed 

exercises, because of overcrowded facilities, lack of reliable and safe transportation, or 

stay-at-home orders due to the current pandemic. A novel balance assessment 

methodology, in combination with home-care technology, can overcome these limitations. 

This chapter presents a computational framework for quantitative assessment of balance 

control skills with the important application on in-home tele-rehabilitation. Novel outcome 

measures of balance performance are implemented in the design of rehabilitation exercises 

with customized and quantifiable training goals. Using this framework in conjunction with 

portable technology, physicians can treat and diagnose patients remotely, with reduced 
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time and costs and a highly customized approach. The methodology proposed in this 

research can support the development of innovative technologies for smart and connected 

home-care solutions for physical therapy rehabilitation. 

3.1 Remote Balance Assessment and Rehabilitation 

3.1.1 Motivation and Applications 

The COVID-19 pandemic and subsequent stay-at-home orders put in place have caused a 

general reduction in physical mobility among countries across the globe (World Health 

Organization, 2020a, 2020b, 2020c). The fundamentally altered daily routine of the healthy 

young, adult, and elderly populations has been preventing them from performing the usual 

daily motor exercise. A direct effect of home confinement is the alteration of normal 

muscle activation during daily motion, which can cause muscular atrophy and other 

problems in motor function in otherwise healthy people of all ages. The negative impact 

that this reduction in mobility due to the COVID-19 pandemic has on muscles, 

neuromuscular junctions, and nerves has been especially stressed (Narici et al., 2021). As 

a secondary effect, the pandemic has made it particularly difficult for the pathological 

populations needing regular physical therapy and rehabilitation sessions to receive 

treatment. This can cause a deterioration of physical health in low-mobility patients, 

leading them to be more prone to falls and injuries (Gandolfi et al., 2018; Levinger et al., 

2017; Visser et al., 2008). In addition, COVID-19 has also caused prolonged 

immobilization of patients within the hospital environment, leading researchers and 

medical professionals to brainstorm proper treatment protocols for these “secondary” 

mobility ailments (Iannaccone et al., 2020). The physical rehabilitation during this 

bedridden stage takes on passive and active modes, including resistance training and both 
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static and dynamic balance training exercises (Iannaccone et al., 2020). In summary, 

sedentarism due to stay-at-home orders, lack of access to proper physical therapy, and 

prolonged immobilization during COVID-19-positive hospitalizations are the three main 

factors causing reduced mobility of various populations during COVID-19. These 

circumstances will continue to impact mobility in the medium/long term after the pandemic 

and motivate the need for alternative solutions for the delivery of physical therapy and 

rehabilitation in remote settings. 

 The use of telehealth and telerehabilitation can help counteract the above-

mentioned challenges. Many benefits exist within switching to remote care: increased 

access to healthcare, reduction in overall cost, increased interaction with providers and 

patient engagement, the ability to provide both synchronous and asynchronous treatment, 

and the eventual generation of large datasets for broader scientific investigation and impact. 

Though many approaches to telemedicine currently exist (Ruiz et al., 2020; Seshadri et al., 

2020), proper telemedicine for use in motor rehabilitation requires more functional 

components in combination with a computational framework that can systematically 

quantify specific aspects of motor performance, such as balance control skills. 

 Within the circumstances caused by the pandemic, there is a focus on restoring 

motor function in the following areas: deconditioning, strength, balance, and the ability to 

perform daily activities (Iannaccone et al., 2020). In particular, static and dynamic balance 

training must be performed to help restore the compromised postural stability due to the 

reduced exercise and exposure to proprioceptive stimuli (Iannaccone et al., 2020; World 

Health Organization, 2020b, 2020c). Balance is influenced by many subsystems of the 

body (i.e., musculoskeletal, vestibular, ocular). This interconnectedness is why balance 



 

25 

assessment within motor rehabilitation is critical to understanding the components of 

falling and how to prevent injury due to falls. To this end, a holistic assessment criterion 

needs to be developed as a means of considering the multi-faceted aspect of balance. 

3.1.2 Theoretical Formulation of Balance Performance Measures 

A stability criterion based on the concept of balanced regions in the COM state space 

(Mummolo et al., 2017) is adopted in this study for the formulation of two categories of 

balance performance measures. This criterion uses nonlinear optimization for the 

numerical construction of a balance threshold in the state space of biped systems; it can be 

applied to general bipeds in various stance configurations, as well as to generic three-

dimensional dynamic motor tasks. 

The balanced region is the set of all possible COM balanced states from which a 

given subject can reach an upright rest state, while avoiding a change in foot stance 

(Mummolo et al., 2017). The balance stability criterion states that a COM state located 

within the balanced region, i.e., balanced state, is the necessary condition for dynamic 

balance in generic biped models (Mummolo et al., 2017). A COM state outside of this 

region is defined as unbalanced and it predicts an inevitable change in foot stance at some 

time in the future. The boundary of the BR, called boundary of balance (BoB), represents 

the maximum limits of balance recovery of a subject while maintaining a given foot stance 

and is quantified in terms of maximum feasible range of COM velocity perturbations. The 

BoB is formed by the COM velocity extrema (minimum and maximum) calculated 

iteratively at various COM sampled positions, 𝑃𝑃𝑖𝑖, where 𝑖𝑖 = 1, … ,𝑁𝑁, and along any 

specified direction; hence the balanced region is a partition of the six-dimensional state 

space of COM Cartesian position and velocity. For practical analysis and visualization, the 
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BoB can be evaluated for a specified plane (e.g., sagittal plane) and projected onto a single 

direction of interest (e.g., anterior/posterior) (Figure 3.1). 

 
(A)                                                            (B) 

Figure 3.1 A) Illustration of the balanced region concept (blue volume) and its boundary 
(BoB) in the sagittal plane of a biped system. At each sampled COM position (circles), the 
maximum feasible range of COM velocity perturbations are calculated and shown with 
respect to local velocity frames. Examples of balanced states at positions P1 and P2 and 
unbalanced states at positions P3 and P4 are shown, whose COM velocities fall inside and 
outside of the BoB, respectively. B) The BoB is projected onto the (𝑋𝑋, �̇�𝑋) plane to illustrate 
the concepts of viable and reachable boundary margins and their relationship with the BoS. 
The instantaneous state margin (eMOS) is also illustrated. 

Source: Akbas, K., & Mummolo, C. (2021). A Computational Framework Towards the Tele-Rehabilitation 
of Balance Control Skills. Front Robot AI, 8, 648485. https://doi.org/10.3389/frobt.2021.648485  

 

The BoB is generated numerically by solving a series of constrained optimization 

problems. For each sampled COM initial position 𝑃𝑃𝑖𝑖, optimization finds the limiting 

balance recovery trajectories in the joint space that drive the biped system from its extreme 

initial conditions (i.e., sampled COM initial position and minimum/maximum COM initial 

velocity) to a rest state, without a change in foot stance. The extremized COM initial state 

of each trajectory solution represents a point of the BoB. From any point of the BoB, there 

exists at least one controlled trajectory from which the subject can reach an upright quiet 
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stance without changing contacts. Alternatively, if the optimization finds no solution at a 

given 𝑃𝑃𝑖𝑖, the feasible range of COM initial velocity that guarantees the COM will return to 

a stationary upright position without altering foot stance is null; in this case, any COM state 

at that specified 𝑃𝑃𝑖𝑖 is unbalanced, i.e., outside of the BoB. The balancing trajectories 

generated from each point of the BoB satisfy the following constraints: 1) a final rest state 

(e.g., upright static posture), 2) various system and physics constraints (e.g., joint and 

torque limits, COP constraints), and 3) the preservation of the original stance (i.e., BoS). 

The resulting BoB is a stance-specific threshold that is customized using subject-specific 

body and joint parameters in the modeling; thus, capturing the balance capabilities of a 

subject as predicted by the model. Details of the numerical optimization algorithm and its 

solution via sequential quadratic programming can be found in previous work (Mummolo, 

Peng, Gonzalez, et al., 2018). The construction method of the balance threshold has been 

demonstrated for the study of gait and posture stability of human, robot, and exoskeleton 

systems (Mummolo et al., 2021; Mummolo et al., 2017; Mummolo, Peng, Gonzalez, et al., 

2018; Mummolo & Vicentini, 2020). 

In this study, the BoB is constructed point by point, by calculating the feasible range 

of COM velocity at various COM positions 𝑃𝑃𝑖𝑖 sampled in the sagittal plane at a selected 

COM height, i.e., 𝑃𝑃𝑖𝑖 = (𝑥𝑥𝑖𝑖,𝑦𝑦�) (Figure 3.1A). The COM initial velocity is extremized along 

the anterior/posterior direction of interest (𝑋𝑋) and the BoB results into the following set of 

limiting COM initial conditions in the sagittal plane: (𝑥𝑥𝑖𝑖,𝑦𝑦�, �̇�𝑥𝑖𝑖,lim
𝐴𝐴𝐴𝐴𝑇𝑇/𝑃𝑃𝑃𝑃𝑃𝑃, �̇�𝑦𝑖𝑖

𝐴𝐴𝐴𝐴𝑇𝑇/𝑃𝑃𝑃𝑃𝑃𝑃), for 𝑖𝑖 =

1 − 𝑁𝑁. The three-dimensional BoB can then be projected onto the state space of COM 𝑋𝑋 

position and velocity (Figure 3.1B) for practical analysis. 
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Two categories of balance performance metrics are formulated in the COM state 

space, based on the balanced region concept described above: 

1) Boundary Margins are numerical indicators that characterize the dimension of 
a balanced region relative to the BoS (Figure 3.1B). These indicators include 
the reachable (𝛥𝛥𝑅𝑅) and viable (𝛥𝛥𝑉𝑉) boundary margins, which quantify the 
capability of a subject in a given stance to recover from internal and external 
perturbations, respectively, along a specified direction. Similar to the balanced 
region, both boundary margins do not depend on a specific motor task but are a 
property of the selected models for both the subject’s body and the desired 
stance configuration. 

The reachable boundary margin 𝛥𝛥𝑅𝑅 is the distance between the point of the BoB 

with zero velocity and the edge of the BoS, measured in both anterior and posterior 

directions. It predicts how far the body can displace its COM outside of the footprint and 

then invert its motion (hence, zero velocity) to recover balance without any external 

impulse or change of contact. This margin identifies a limit to the amount of self-induced 

perturbations (i.e., internal) that a subject can sustain from a given stance; hence it is 

analogous to a maximum voluntary COM sway in dynamic conditions (i.e., out of the BoS 

(Mummolo et al., 2013)). 

The viable boundary margin 𝛥𝛥𝑉𝑉 is the distance between the point of the BoB with 

maximum COM position and the edge of the BoS, measured in both anterior and posterior 

directions. It quantifies the range of COM positions outside of the footprint for which a 

feasible COM velocity exists. The balanced states included in between the reachable and 

the viable margins cannot be attained through the body internal dynamics alone, but they 

are viable initial conditions resulting from an external impulse. Therefore, the viable 

margin identifies a limit to the amount of externally induced perturbations that a subject 

can sustain while in a given stance. 
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2) State Margins are numerical indicators that characterize the instantaneous state 
of balance for a given trajectory, by measuring its relative distance to the BoB. 
Depending on how this distance is measured in the state space, these indicators 
can include position, velocity, or mixed margins. In this study, the extended 
Margin of Stability (eMOS) (Mummolo et al., 2021) is used as a position 
margin that quantifies the distance from a given state to the BoB along the 
position coordinate of the state space (Figure 3.1B). The eMOS is equivalent to 
the Margin of Stability (MOS) for a linear inverted pendulum (LIP) model (Hof 
et al., 2005; Mummolo et al., 2021), but it can be applied to any generic biped 
system. This indicator, unlike the boundary margin, is specific to the motor task 
performed by the subject in a given stance, allowing for the continuous 
evaluation of the COM state of balance. 

3.1.3 Design of Balance Assessment and Training Exercises 

The application of the balanced region and balance performance measures within the 

rehabilitation context is presented. The two categories of balance performance measures 

are used as design criteria for rehabilitation exercises in which balance performance is 

simultaneously quantified and trained. For a given subject and foot stance, the balanced 

region and boundary margins predicted by the optimization-based algorithm provide a 

reference map for defining customized target states across multiple exercises. 
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Figure 3.2 The reachable and viable boundary margins in both the anterior (ANT) and 
posterior (POS) directions divide the balanced region into three partitions, each identifying 
a type of balanced states: statically, reachable, and viable balanced states. For each type of 
balanced state, an illustration of the corresponding balance control strategy is shown using 
a simple legged system with a point mass, flywheel, and foot link. 

Source: Akbas, K., & Mummolo, C. (2021). A Computational Framework Towards the Tele-Rehabilitation 
of Balance Control Skills. Front Robot AI, 8, 648485. https://doi.org/10.3389/frobt.2021.648485  
 

The intersections of the BoB with the edges of the BoS and the boundary margins 

in both anterior and posterior directions identify three partitions of the balanced region 

(Figure 3.2): 

1) The portion of the balanced region characterized by a COM ground projection 
within the edges of the BoS (Mummolo et al., 2013) is the set of statically 
balanced states: a state in this partition can be driven to a static equilibrium 
configuration by controlling the COP position within the given BoS and/or 
through the regulation of whole-body linear and angular momentum. From a 
statically balanced state the motion could in theory be stopped instantaneously 
without causing the system to lose balance. 
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2) The portion of balanced region included within the reachable margins is the set 
of reachable balanced states: each of these states has a COM position outside 
of the footprint, hence is dynamically balanced. Because this partition contains 
both positive and negative COM velocity, the COM can enter it from a statically 
balanced state using internal dynamics and then invert its motion to recover 
balance. Balance recovery from reachable balanced states is only possible 
through the rotation of multiple body segments about the COM that generates 
a stabilizing angular momentum and its derivative, similar to the effect of a 
flywheel. Within this partition, the COP cannot be controlled, and balancing 
must rely on a combination of favorable (i.e., balanced) COM initial conditions 
and whole-body inertial effects over a finite interval of time. 

3) The portion of balanced region characterized by COM positions that are outside 
of the reachable margins, but within the viable margins, is the set of viable 
balanced states: similar to the reachable states, they are also dynamically 
balanced and must rely on favorable initial conditions and whole-body inertial 
effects in order to reach a static equilibrium within a finite interval of time. The 
difference from reachable states is that the system’s COM can enter this 
partition only through externally imposed perturbations, e.g., external impulse. 
However, once the COM state is inside this partition (i.e., it becomes viable) 
the external push can cease and the system in the given stance can recover 
balance by means of its initial conditions and actuation capacity. 

The above partition-based analysis of the balanced region provides a reference map 

that characterizes the different stability nature and means of control for a COM state within 

each partition (Figure 3.2). Statically, reachable, and viable balanced states are three 

categories of exercise targets that can be assigned to the subject’s COM during a 

rehabilitation exercise. The amount of sustainable perturbations and the recovery strategy 

associated with each target category is known a priori; this constitutes a novel approach to 

the design of balance exercise as compared to traditional balance perturbation experiments, 

in which there is no a priori knowledge of the effects of a given perturbation on the COM 

stability, hence no clear and meaningful balance target can be established. 

Two types of balance exercises (perturbation-based and motor task-based) are 

proposed in which the requirements of a desired user’s motion are imposed in terms of 

COM initial, target, and final states. For each exercise, the final state is a statically balanced 
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state, while the initial and target states are assigned to the different partitions of the 

balanced region, based on the exercise desired outcome. In addition, each exercise has a 

prescribed foot contact (or sequence of contacts), used to evaluate the associated contact-

dependent balanced region. 

The first type of balance exercise consists of perturbation experiments guided by 

target states placed progressively closed to the boundaries of the balanced region (i.e., the 

BoB) (Targets A and B, Figure 3.3). This exercise has the purpose of determining the 

amount of internal and external perturbations that can be attained by the subject in 

experimental conditions (i.e., experimental reachable and viable margins), where internal 

perturbations are the impulses generated by the subject when initiating or performing a 

movement, whereas external perturbations require the impulse generated through contact 

with another object, such as pushing off from a wall or the ground. The experimental 

boundary margins are then compared with the exercise targets, i.e., the margins predicted 

by the simulated numerical boundary (i.e., numerical boundary margins). 
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Figure 3.3 Design of motor task for balance exercises (perturbation-based and motor task-
based), where the COM is guided through initial, target, and final states. Targets A are 
selected progressively close to the reachable boundary margin, to find the experimental 
maximum COM sway of a given subject, i.e., the capacity of withstanding internal 
perturbations. Targets B are selected progressively close to the viable boundary margin, to 
find the experimental limits of external perturbations that a subject can withstand. Targets 
C are selected to drive a motor task at a known distance either inside or outside of the BoB 
and determine in real time the instantaneous state margin throughout the motion. 

Source: Akbas, K., & Mummolo, C. (2021). A Computational Framework Towards the Tele-Rehabilitation 
of Balance Control Skills. Front Robot AI, 8, 648485. https://doi.org/10.3389/frobt.2021.648485  
 

Two examples of standing perturbation-based balance exercises are described: 

1) Example training exercise to reject internal perturbations from upright stance—
Starting from rest, the subject is asked to initiate a forward/backward motion, 
come as close as possible to reachable Target A, and then invert their motion to 
reach a final rest state, all while maintaining a double stance configuration. 
Experimental reachable margins resulting from this exercise are quantified as 
the maximum anterior/posterior position reached by the subject’s COM before 
inverting its motion. The experimental and numerical reachable margins are 
compared to have a relative measure of the subject’s maximal COM sway 
capacity along a specific direction. 

2) Example training exercise to reject external perturbations from upright stance—
Starting from rest, the subject is asked to perform a pre-balancing task in which 
the COM should attain initial conditions as close as possible to viable Target B 
using the external impulse generated, for instance, by a hand-push on a fixed 
handle. The subject’s state at the end of the push-off motion is recorded as the 
initial viable state of the balancing motion, which will terminate at upright 
equilibrium with no change in foot stance. The most extreme viable initial state 
that can be successfully attained by the subject gives the experimental viable 
margin, which is compared with the numerical counterpart to have a relative 
measure of the subject’s limits of recovery from external perturbations. 
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This first type of perturbation-based exercise aims at simultaneously quantifying 

and training the general perturbation rejection capability of a subject relative to a given 

stance. Using the reference map, specific portions of the balanced region can be targeted 

for a given patient, to enhance a particular type and direction of balance control. 

The second type of balance exercise is specific for a motor task and focuses on 

quantifying the balance performance of a specific trajectory. Multiple target states are 

assigned either inside or outside (e.g., Target C, Figure 3.3) of the BoB, as via-points of a 

desired motor task placed at selected distances from the boundary as quantified by the state 

margin eMOS. Throughout the exercise, the state margin is also utilized to quantify a 

subject’s instantaneous level of balance/imbalance. As the subject’s COM state trajectory 

remains within the boundary (i.e., balanced), the resulting eMOS values are positive, while 

states that exit the boundary result in negative eMOS values, leading to an inevitable foot 

contact change in the future. Given the general applicability of the BoB, the motor tasks 

for this type of exercise can be selected among common daily lives activities, including 

standing, frontal and lateral stepping, walking, and sit-to-stand actions. 

In summary, the boundary and state margins are used in the proposed exercises as 

balance targets relative to the overall subject’s balance capabilities quantified by the 

balanced regions. At the same time, the experimental boundary/state margins are evaluated 

as balance performance outcomes of a given exercise and compared to the respective 

numerical values predicted by the model, to assess a patient’s relative level of balance 

performance in a given stance and during a specific motor task, respectively. 

When implementing these exercises within tele-rehabilitation settings, the desired 

and current COM state and foot stance information must be recorded and visualized by the 
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patient. The patient’s COM motion can be captured by existing methods (Lafond et al., 

2004) and will be visually guided by targets prescribed within the different partitions of a 

balanced region (i.e., statically balanced, reachable, and viable). Meanwhile the COM state 

and foot stance information can be displayed as an overlay on the subject’s balanced region. 

This would allow the patient and the physician to receive visual feedback on their balance 

performance during the exercises, in which a change in foot stance and/or a COM state 

crossing the BoB will signal an unbalanced motion. Additionally, the physician (remotely) 

could adjust the initial, final, and target states with respect to the balanced region maps, 

according to the patient’s training status and needs. 

3.1.4 Human Subject Modeling Approach 

The theoretical/computational framework described above can be applied to any generic 

human body model, ranging from whole-body (Mummolo et al., 2019) to reduced-order 

(Mummolo et al., 2015b) biped mechanisms, and to various contact configurations between 

the feet and the environment (Mummolo, Peng, Gonzalez, et al., 2018). The balance 

criterion and performance indicators can therefore be implemented in a broad range of 

balance rehabilitation protocols, including static, dynamic, and multi-stance exercises. 
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Figure 3.4 (a) General human body models take into consideration individual 
anthropomorphic parameters, joint strengths and actuations, mass distributions, range of 
motions, ground contact modeling, and stance-specific constraints. Whole-body models 
are valid for the representation of any general motor task, although their simulation can be 
computationally intractable. In practice, task-oriented models can give a practical 
computation of the balanced region for the specific task considered. For balance stability 
during standing posture, both higher- and reduced-order models in the sagittal plane can 
be established. The higher-order models (b) include more detailed subject-specific 
parameters at the link and joint level, upper and lower body segments, as well as multi-
segment feet (5-DOF model), as described in previous work (Mummolo & Vicentini, 
2020). The LIP model (c) constrains the motion of the COM at a fixed height y, equal to 
the Y-coordinate of the body’s COM while standing and does not include joint-level design 
parameters. 

Source: Akbas, K., & Mummolo, C. (2021). A Computational Framework Towards the Tele-Rehabilitation 
of Balance Control Skills. Front Robot AI, 8, 648485. https://doi.org/10.3389/frobt.2021.648485  
 

The construction of a subject’s BoB via the optimization-based algorithm 

previously described requires the establishment of the dynamic model of the subject’s 

body. Links’ length and mass distribution, joint strengths and range of motions, ground 

contact modeling, and stance-specific constraints are specified, and the subject’s dynamics 

can then be described using common robotic modeling approaches for floating-base robotic 

systems with multiple degrees-of-freedom (DOF). The dynamics and stability of systems 

in multi-contact stances is usually more challenging to describe (Del Prete et al., 2018; 



 

37 

Orsolino et al., 2020), given the indeterminacy in the system’s foot reactions when the legs 

form a closed loop with the ground (Mummolo et al., 2015a). Different modeling choices 

(e.g., number of DOF, single vs. double stance, planar vs. three-dimensional) lead to 

different BoB and balanced regions. The complexity of the established biped model should 

reflect a good balance between the accuracy in the numerical prediction of the subject’s 

balanced region and the computational performance of the BoB algorithm. In practice, 

when a balanced region is sought for a specific motor task, a task-oriented modeling 

approach can be pursued for higher computational efficiency. Depending on the motor task 

requirements of a given exercise (e.g., range of desired COM displacement, anatomical 

plane and direction of interest, and expected foot contacts), the simplest model that fits 

those criteria should be selected. 

In this study, balance exercises during standing posture are considered for 

demonstration purposes, which are characterized by a symmetric double stance, small 

variation of COM height, and significant COM perturbations in the sagittal plane along the 

anterior/posterior direction. Three increasingly complex models of human body that satisfy 

the exercise requirements are implemented in the balance assessment framework: a 1-DOF 

linear inverted pendulum (LIP) model, with a single mass and a flat foot (Figure 3.4C); a 

4-DOF model with upper and lower body segments and a rigid foot (i.e., without metatarsal 

joint; Figure 3.4B); a 5-DOF model with upper and lower body segments and a two-link 

foot (i.e., with metatarsal joint; Figure 3.4B). All three models are in the sagittal plane and 

are reasonable candidates to analyze dynamic balance in the anterior-posterior direction. 

The balanced regions and their margins provide a systematic approach to evaluate the 

effects of each modeling assumption on the predictive capability of the model’s balance 



 

38 

stability. An accurate model would result in a balanced region that encompasses all 

experimental COM state trajectories resulting from the exercises in which balance is 

preserved. 

3.2 Demonstrative Results and Discussion 

The novel paradigm for simultaneous balance assessment and training is demonstrated with 

the results of balanced regions and balance performance measures calculated for different 

models of human standing posture. Experimental balance recovery trajectories extracted 

from published literature (Patton et al., 1999) are used to exemplify the proposed 

perturbation-based and motor task-based exercises and associated margins calculation. 

3.2.1 Nondimensional Balanced Regions and Boundary Margins for Standing 
Posture 

The balanced region results are presented for three increasingly complex models of a 

human subject in the sagittal plane, i.e., the LIP, 4-DOF, and 5-DOF models, to illustrate 

the effects of body and foot modeling choices on the predicted range of allowable 

perturbations during standing posture (Figure 3.5A). The anthropometric parameters and 

joint angle/torque limits of the reference subject are from the literature (Mummolo & 

Vicentini, 2020; Winter, 2005). The LIP and the 4-DOF models have a rigid foot link with 

no metatarsal joint, which is assumed to maintain a fixed contact with the ground at all 

times; the 5-DOF model includes a two-link foot, where a metatarsal joint and a multimodal 

foot-ground interaction model (Mummolo et al., 2021) allow the foot to rotate about its 

heel and metatarsal. All models have a total foot length 𝑓𝑓𝑙𝑙 = 0.23 𝑚𝑚. 
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(A)                                                                      (B) 

Figure 3.5 A) Numerical construction of the BoB for a reference subject in upright stance, 
when the subject’s body is modeled with a 5-DOF mechanism with a two-link foot, a 4-
DOF mechanism with a rigid foot, and a 1-DOF LIP with flat foot. B) Nondimensional 
fitted lines provide a general model of BoB for the three types of biped mechanism 
considered (𝑅𝑅2 > 0.99). The nondimensional upper and lower BoB limits are −𝑥𝑥 ≤ �̇�𝑥 ≤
− 𝑥𝑥 + 1 (LIP), −0.89𝑥𝑥 − 0.099 ≤ �̇�𝑥 ≤ − 0.88𝑥𝑥 + 1.01 (4-DOF), and −1.02𝑥𝑥 − 0.29 ≤
�̇�𝑥 ≤ −1.19𝑥𝑥 + 1.61 (5-DOF). 

Source: Akbas, K., & Mummolo, C. (2021). A Computational Framework Towards the Tele-Rehabilitation 
of Balance Control Skills. Front Robot AI, 8, 648485. https://doi.org/10.3389/frobt.2021.648485  
 

For the higher-order models, the BoB is numerically constructed using the proposed 

algorithm. The COM velocity extrema are calculated along the anterior (+𝑋𝑋) and posterior 

(−𝑋𝑋) direction, by sampling the COM initial positions at a constant height 𝑦𝑦� = 1.12 𝑚𝑚, 

corresponding to the subject’s COM 𝑌𝑌-coordinate in the upright standing configuration. 

The BoB of the LIP model can be found analytically using the linear inequalities that limit 

the position of the extrapolated center of mass (𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 = 𝑥𝑥 + �̇�𝑥 𝜔𝜔⁄ ) within the BoS [0,𝑓𝑓𝑙𝑙] 

(Mummolo et al., 2021), i.e., −𝜔𝜔𝑥𝑥 ≤ �̇�𝑥 ≤ − 𝜔𝜔𝑥𝑥 + 𝑓𝑓𝑙𝑙𝜔𝜔, where 𝑥𝑥 and �̇�𝑥 are the COM 

position and velocity, respectively, 𝑦𝑦� and 𝜔𝜔 = �𝑔𝑔 𝑦𝑦⁄  are the pendulum’s length and natural 

frequency. 

Fitted models of the BoB and enclosed balanced regions are obtained in the 

nondimensional COM state space for each of the three biped models considered (Figure 
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3.5B), where the COM position and velocity are normalized with respect to 𝑓𝑓𝑙𝑙 and 𝑓𝑓𝑙𝑙𝜔𝜔, 

respectively. The nondimensional formulation of the BoB provides a general 

characterization of the balanced regions for upright standing posture in three different 

subject modeling approaches. These nondimensional linear models can be used for 

multiple individuals, with different anthropometric parameters, when adopted in a home-

care rehabilitation context. Linear models are used for the fitting to provide a more direct 

comparison with the theoretical LIP model. 

 

Table 3.1 Anterior (ANT) and Posterior (POS) Nondimensional Boundary Margins of the 
General Linear Models of BoB Calculated for The Reduced- and Higher-Order Body 
Models 

 
Reachable  

Boundary Margin 
Viable 

 Boundary Margin 
POS
R∆  ANT

R∆  POS
V∆  ANT

V∆  

5-DOF MODEL 
(two-link foot) 0.288 0.352 0.591 0.808 

4-DOF MODEL 
(rigid foot) 0.110 –0.047 0.248 –0.047 

LIP MODEL 
(rigid foot) 0.0 0.0 n.a. n.a. 

The three balanced regions are representative of the different balance control 

strategies that can be employed by each biped model. This is demonstrated quantitatively 

through the calculation of the nondimensional boundary margins (Table 3.1), which give a 

relative measure of maximum balanced COM displacement as a percentage of foot size. 

The only means of balance control for the LIP model is the regulation of the COP within 

the limits of its flat foot; as a result, the LIP reachable boundary margins are zero, indicating 

that the COM sway cannot exceed the BoS in order to preserve balance, according to this 

reduced-order model predictions. In addition, the linear inequalities for the XcoM do not 
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provide limits to the range of feasible COM positions, therefore the LIP viable margins are 

undefined. On the other hand, the higher-order models show a greater range of sustainable 

COM velocity perturbation for a given COM position and along both anterior and posterior 

directions. The 4-DOF and 5-DOF models have posterior reachable boundary margins 

equal to 11% and 28.8% of the foot size, respectively, predicting that the COM sway can 

exceed the rear edge of the BoS while retaining the ability to invert its motion thanks to 

angular momentum inertial effects. The posterior viable margins in both higher-order 

models quantify the range of viable negative COM positions at which an external impulse 

can be applied to stabilize the system. The anterior reachable margin for the 5-DOF model 

predicts that the COM sway can exceed the front edge of the BoS by 35.2% of foot size, 

and then recover balance. The negative values for the anterior boundary margins in the 4-

DOF model indicate that the set of reachable and viable balanced states is null in the 

anterior direction, due to the kinematic restrictions of a rigid foot, which do not allow 

significant COM displacement at the given COM height 𝑦𝑦�. 

The greater perturbation rejection capability predicted by the higher-order models 

is due to the multiple balancing strategies that can be employed by a multi-DOF system 

(e.g., ankle, hip, upper-body, and general angular momentum regulation) in addition to 

COP control. In particular, the largest boundary margins are for the 5-DOF model, due to 

the presence of a two-link foot that enables the additional balancing strategy of heel-to-toe 

foot rocking, which increases the range of feasible COM positions and velocity 

perturbations. The above boundary margins values predicted by the three models of human 

posture can be used as both targets and outcomes in COM perturbation experiments in 
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telerehabilitation settings, to simultaneously assess and train a subject’s overall balance 

performance ability to reject internal and external perturbations. 

3.2.2 Use of Boundary and State Margins During Balance Exercises 

To showcase the role of boundary margins in a balance rehabilitation exercise, empirical 

data relative to push recovery exercises published in the literature (Patton et al., 1999) is 

partially extracted and adapted to the proposed framework. In the experiments of the 

reference study (Patton et al., 1999), subjects were asked to pull on a horizontal handle, 

targeting various percentages of their maximum pulling force in order to attain perturbed 

COM initial conditions in the posterior direction. At the end of the pull, the trajectories of 

the subjects’ COM as they recovered balance while standing on two feet were recorded. It 

should be noted that, although derived from a different study, the experimental data 

illustrated is the result of perturbation-based balancing exercises analogous to those 

proposed in this framework, with the difference that the experiments in (Patton et al., 1999) 

are guided by force-based targets, while the proposed experiments would be conducted 

using the viable and reachable margins as novel balance-related targets. 
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(A)                                                                         (B) 

Figure 3.6  A) A collection of initial states of a subject during externally-imposed 
perturbation experiments (Patton et al., 1999), compared with the nondimensional models 
of balanced region for standing posture. B) Two experimental balance recovery trajectories 
extracted from (Patton et al., 1999), where the subject standing on two feet recovers balance 
and reaches static equilibrium after receiving an external impulse the subject standing on 
two feet recovers balance and reaches static equilibrium after receiving an external 
impulse. 

Source: Akbas, K., & Mummolo, C. (2021). A Computational Framework Towards the Tele-Rehabilitation 
of Balance Control Skills. Front Robot AI, 8, 648485. https://doi.org/10.3389/frobt.2021.648485  

 

Here, 35 perturbed COM states for one subject of the reference study are extracted, 

normalized, and represented against the nondimensional balanced regions Figure 3.6A. 

The most extreme COM initial state is used to estimate the subject’s experimental viable 

margin in the posterior direction (0.519), which is closely predicted by the posterior viable 

margin of the 5-DOF model (0.591). The 4-DOF posterior viable margin fails to enclose 

eight highly dynamic initial states, hence the model underestimates the subject’s balance 

performance in terms of rejection of external perturbations. Four initial states are either 

outside or on the boundary of the LIP balanced region; while this indicates that the reduced 

order model predicts balance in about 88% of the selected initial states, it should be noted 

that the LIP analytical boundaries did not provide quantifiable target viable states. These 

results demonstrate how the balance performance of a subject can be assessed and trained 
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based on perturbation experiments and the evaluation of experimental boundary margins. 

In the current results and reference study, no data is available to demonstrate the 

experimental evaluation of reachable margins, which is left to future work. 

Lastly, the evaluation of balance performance in the motor task-based exercise is 

illustrated by two example trajectories extracted from the reference study (Patton et al., 

1999), which exemplify the analysis of a generic balancing trajectory with respect to the 

balanced regions of the subject (Figure 3.6B). In both experimental trajectories, the subject 

was able to recover upright static equilibrium without altering the double foot stance. The 

reachable balanced trajectory starts from initial conditions within the reachable boundary 

margins of the higher-order models and well within the LIP balanced region. The first half 

of the reachable balanced trajectory starts from a dynamic reachable state (with COM 

outside of the BoS) and reaches an upright statically stable state (with COM approximately 

aligned with the ankle joint); this segment of trajectory appears close to the linear passive 

dynamics of the LIP, suggesting that the first part of the balancing motion may rely mostly 

on the favorable initial conditions, while angular momentum effects may not be relevant. 

Conversely, the viable balanced trajectory starts from initial conditions outside of all 

reachable boundary margins and even outside of the LIP and 4-DOF balanced regions; 

however, the initial state is viable with respect to the boundary margins predicted by the 5-

DOFmodel, which is an indication that the balancing motion must rely on multiple 

strategies, including the angular momentum and foot rocking strategy, in addition to the 

favorable initial conditions. These results suggest that for such a highly dynamic balancing 

motion, a higher-order mechanism with a multi-segment foot model gives a better 
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prediction of an individual’s balance performance, as compared to biped models with lower 

DOF and rigid foot. 

 

Figure 3.7 The instantaneous state margin (eMOS) is calculated throughout the balancing 
motion of the two example trajectories from (Patton et al., 1999). The eMOS values are 
calculated for the normalized trajectories and BoB of each biped model considered, where 
the solid and dashed lines correspond to state margins relative to the upper and lower BoB 
lines, respectively. 

Source: Akbas, K., & Mummolo, C. (2021). A Computational Framework Towards the Tele-Rehabilitation 
of Balance Control Skills. Front Robot AI, 8, 648485. https://doi.org/10.3389/frobt.2021.648485  
 

The state margin eMOS is calculated for the two example trajectories to evaluate 

their instantaneous level of balance or imbalance (Figure 3.7). The nondimensional eMOS 

quantifies the distance from a given state of the trajectory with respect to both the upper 

and lower bounds of each balance threshold, measured along the position coordinate; here, 

the smallest distance from either lower (dashed lines, Figure 3.7) and upper (solid lines, 

Figure 3.7) bounds is shown, since it represents the most critical balance condition. A 

positive eMOS value indicates that the trajectory is within a balanced region, where a 

greater eMOS absolute value corresponds to a greater balance safety margin, while a 

smaller eMOS absolute value indicates a closer proximity to the unbalanced region; the 

opposite is true for negative eMOS. When the LIP is used the eMOS coincides with the 

MOS (Mummolo et al., 2021), and its positive values range from 0 to 1. 
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The eMOS of the reachable trajectory indicate that all three biped models correctly 

predict a balanced trajectory that is closer to the lower BoB boundaries for approximately 

65% of the motion, after which the COM state results closer to the upper BoB lines (Figure 

7; left). Throughout the reachable trajectory, the BoB of the 4-DOF and LIP models 

underestimate the instantaneous margin of balance, as compared to the 5-DOF model, 

hence predicting a smaller level of balance throughout the motion. The eMOS of the viable 

trajectory indicates that only the 5-DOF model correctly predicts a balanced motion, with 

a state margin always closer to the lower BoB limits (Figure 3.7; right). The 4-DOF and 

LIP models present negative eMOS values at the beginning of the viable trajectory, which 

would wrongly predict the subject’s inability to recover balance from those initial 

conditions, without external help and without changing foot stance. 

The above analysis of balanced regions, boundary and state margins demonstrates 

an objective method of assessing a patient’s progress throughout treatment. The 

nondimensional boundary margins have highlighted the differences between the different 

modeling approaches of human standing posture: the inclusion of a multi-segment foot can 

lead to a more accurate balance characterization in real human subjects. Boundary margins 

allow the selection of customized and quantifiable targets for training balance recovery 

from internal and external perturbations, while state margins provide a numerical 

benchmark of the subject’s balance capabilities during a particular trajectory. All proof-of-

concept results demonstrate the benefits of having a balance criterion that can be extended 

to higher-order models that can more accurately predict dynamic stability, as compared 

with reduced-order models. 
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3.3 Conclusions and Future Work 

This study proposed a novel balance training and assessment computational technique, 

illustrated through an example subject performing a postural stability exercises obtained 

from a reference study (Patton et al., 1999). By using the balanced regions as reference 

maps, new balance exercises can also be developed for the furthering of current physical 

rehabilitation approaches. The application of the proposed framework to home-care 

rehabilitation, which is essential during and after the COVID-19 pandemic, is briefly 

discussed. The balance performance indicators are proposed as both targets and outcomes 

of balance exercises that require only tracking and visual feedback of desired vs. current 

COM motion and foot stance, as opposed to, for example, the measurement of COP, GRFs, 

and external impulse forces profiles, which may not be easily integrated into an affordable 

and portable device. For this reason, the proposed framework could be a promising initial 

step for the development of innovative devices for the remote assessment and rehabilitation 

of balance performance in patients affected by reduced mobility. The integration of the 

presented criterion for quantitative balance assessment with a portable instrumented 

platform would contribute to the advancement of postural stability analysis in three ways: 

first, it would allow patients and the general population to participate in highly customized 

in-home physical therapy treatment plans to prevent or treat mobility disorders while also 

being systematically evaluated; second, it could open the way for clinicians to design and 

test balance exercises that can include dynamic stance changes and other general motor 

tasks; third, it has the capability to generate a unified benchmarking dataset of significant 

volume across multiple populations (e.g., of different ages and pathological conditions), 

which would boost further investigation on the medium/long term effects of COVID-19 on 

people’s balance ability and the associated fall risk.  
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CHAPTER 4 

CHARACTERIZATION OF HUMAN BALANCE THROUGH A 
REINFORCEMENT LEARNING BASED MUSCLE CONTROLLER 

 

In lieu of the optimization approach, which uses torque-actuated models for BRs (used 

interchangeably with BoBs), the utilization of a MSK model with muscle control for 

balance recovery can offer a novel perspective to BRs and facilitate a more intuitive grasp 

of the resulting balancing capabilities. A muscular controller for postural balance recovery 

is developed using RL and is implemented with a MSK model to assess stability in the 

COM state space. The RL training environment adapts the structure of two interconnected 

neural networks (trajectory mimicking and muscle coordination) for the controller based 

on the idea proposed in the Muscle-Actuated Skeletal System (MASS) framework 

developed by (Lee et al., 2019), where MASS is designed to track experimental data 

collected from motion capture. Our approach utilizes a desired equilibrium state (static, 

upright posture in double stance) as the target during training, thus eliminating the need for 

tracking experimental data. Simultaneously, we formulate neuromusculoskeletal physics 

and balance-inspired rewards for the RL algorithm to effectively guide the learning 

process. After training, the controller is tested iteratively at varying initial states to generate 

a balance stability region in the COM state space. The presented RL-based controller 

allows for the control of individual muscles and can instantaneously respond to any state 

of the human to bring the state to equilibrium. This work aims to provide a novel and more 

intuitive approach towards constructing BRs for the characterization and assessment of 

balance in bipedal systems, particularly in humans. 
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4.1 Musculoskeletal Model 

A 2D MSK model (Figure 4.1A) with 9 bilateral muscles (totaling 18 muscles) and 10 

degrees of freedom (3-DOF planar pelvis joint and left/right symmetric 1-DOF hip, knee, 

and ankle joints) is adapted from the gait10dof18musc model available in the OpenSim 

repository (Delp et al., 2007; Seth et al., 2018). The original gait10dof18musc model 

allows for lumbar extension and flexion; however, in this work, we lock the lumbar joint 

to focus on the lower-limb joints and contributing muscles around these joints. For each 

foot, three contact spheres are positioned to establish contact with the ground. Specifically, 

one sphere is located on the heel, while the other two spheres are positioned near the toe 

joint. The heel contact sphere is positioned 4.9 cm behind the ankle joint along the anterior-

posterior (AP) direction, while the toe spheres are situated 15 cm in front of the ankle joint 

in the AP direction; the foot COM is located 5.1 cm in front of the ankle joint. When the 

model is in an upright standing position, the height of the COM (𝐻𝐻𝐶𝐶𝑃𝑃𝑀𝑀0 ) is measured to be 

98.8 cm. In the original gait10dof18musc model, the Millard muscle model with elastic 

tendon was used (Millard et al., 2013). Nonetheless, a muscle model with rigid tendon is 

computationally much faster than its elastic counterpart and can achieve similar accuracy, 

especially for muscles with a relatively small ratio (less than one) of tendon slack length to 

muscle optimum length (Millard et al., 2013; Mousavi et al., 2014; Zajac, 1989). For the 

sake of efficiency, we implement a muscle model that is similar to the one implemented in 

MuJoCo (Todorov et al., 2012), but with the addition of the pennation angle effect, which 

in theory is equivalent to the rigid-tendon muscle model presented in (Millard et al., 2013). 

The physical characteristics (such as fiber length, maximum muscle force) of each muscle 

were loaded from the OpenSim model without modifications. 
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              (A)               (B) 

Figure 4.1 A) Musculoskeletal model with 18 muscles: gluteus maximus (GMAX), 
iliopsoas (IL), hamstrings (HAMS), rectus femoris (RF), vasti (VAS), biceps femoris short 
head (BFSH), gastrocnemius (GAS), soleus (SOL), and tibialis anterior (TA). B) Joint axes 
for ankle, knee, hip, and lumbar are presented in red (x), green (y), and blue (z) axes with 
the z-axis as the rotational axis for all joints,  and COM locations of individual bodies (foot, 
shank, thigh, pelvis, torso) are presented as blue spheres on the musculoskeletal model. 
The whole-body COM, which largely obscures the pelvis COM due to their near 
coincidence, is also presented in pink. 

 

The muscle model takes the muscle force-length-velocity relations and fiber 

pennation angle into consideration when determining muscle force (Millard et al., 2013; 

Zajac, 1989), which is shown as follows: 

 

 𝐹𝐹 = 𝐹𝐹𝑚𝑚𝑑𝑑𝑥𝑥 ⋅ �𝑎𝑎 ⋅ 𝐹𝐹𝐿𝐿(𝑙𝑙) ⋅ 𝐹𝐹𝑉𝑉�𝑙𝑙�̇ + 𝐹𝐹𝑝𝑝(𝑙𝑙)� ⋅ cos(𝛼𝛼) (4.1) 

 

where 𝐹𝐹𝑚𝑚𝑑𝑑𝑥𝑥 is the muscle-specific maximum isometric muscle fiber force, 𝑎𝑎 is the muscle 

activation ranging from 0 to 1, 𝛼𝛼 is the fiber pennation angle, and 𝑙𝑙 is the normalized muscle 
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length with respect to the optimal fiber length. Additionally, 𝐹𝐹𝐿𝐿(𝑙𝑙) and 𝐹𝐹𝑉𝑉�𝑙𝑙�̇ are the 

normalized force-length and force-velocity curves, respectively. 𝐹𝐹𝑝𝑝(𝑙𝑙) represents the 

normalized passive force-length relationship. The muscle activation (𝑎𝑎) is governed by a 

first order excitation-activation dynamics equation: 

 

 �̇�𝑎 =
𝑢𝑢 − 𝑎𝑎
𝜏𝜏(𝑢𝑢, 𝑎𝑎)

 (4.2) 

 

where 𝑢𝑢 is the muscle excitation (motor command or the control signal from the muscle 

network output) and 𝜏𝜏 is the delay time, which is computed as (Millard et al., 2013): 

 

 𝜏𝜏(𝑢𝑢,𝑎𝑎) = � 
𝜏𝜏𝑑𝑑𝑐𝑐𝑑𝑑(0.5 + 1.5𝑎𝑎) 𝑢𝑢 − 𝑎𝑎 > 0

𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑/(0.5 + 1.5𝑎𝑎) 𝑢𝑢 − 𝑎𝑎 ≤ 0    (4.3) 

 

in which 𝜏𝜏𝑑𝑑𝑐𝑐𝑑𝑑 and 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑 are muscle activation and de-activation time constants with 

defaults (0.01, 0.04). The delay between muscle excitation and muscle activation can be 

interpreted as the time required for the excitation signal to propagate from the motor 

neurons to the muscle fibers and for the subsequent physiological processes to occur, 

resulting in muscle contraction. This dynamics equation is solved through integration while 

both excitation and activation are clamped within [0,1]. 

The human musculoskeletal dynamics are mapped in the joint space, where it is 

governed by the Euler-Lagrangian equations using generalized coordinates: 

 

𝑴𝑴(𝒒𝒒)�̈�𝒒 + 𝒄𝒄(𝒒𝒒, �̇�𝒒) = 𝑱𝑱𝑀𝑀𝑇𝑇 𝑭𝑭𝑀𝑀 + 𝑱𝑱𝑑𝑑𝑥𝑥𝑑𝑑𝑇𝑇 𝑭𝑭𝑑𝑑𝑥𝑥𝑑𝑑 (4.4) 
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where 𝒒𝒒, �̇�𝒒, �̈�𝒒 are the vectors of joint angles, angular velocity, and angular accelerations, 

respectively. 𝑭𝑭𝑑𝑑𝑥𝑥𝑑𝑑 is the 𝑅𝑅3 vector of external forces (such as contact forces) and 𝑭𝑭𝑀𝑀 is the 

𝑅𝑅𝑛𝑛 vector of muscles forces (𝑛𝑛 is the number of muscles) that depends on the muscle 

activation vector 𝒂𝒂 = (𝑎𝑎1,𝑎𝑎1,⋯𝑎𝑎𝑛𝑛) . 𝑴𝑴(𝒒𝒒) is the generalized mass matrix, and 𝒄𝒄(𝒒𝒒, �̇�𝒒) is 

the generalized bias force accounting for the Coriolis and gravitational forces. 𝑱𝑱𝑀𝑀 and 𝑱𝑱𝑑𝑑𝑥𝑥𝑑𝑑 

are the Jacobian matrices which map the muscle and external forces into joint torques. 

Since the muscle force is linear with respect to the activation as indicated in Eq. (4.1), we 

also have the muscle forces computed as: 

 

 
𝑭𝑭𝑀𝑀 =

𝜕𝜕𝑭𝑭𝑀𝑀
𝜕𝜕𝒂𝒂

𝒂𝒂 + 𝑭𝑭𝑀𝑀(𝟎𝟎) (4.5) 

 

The corresponding generalized muscle torques are defined by: 

 

 
𝑱𝑱𝑀𝑀𝑻𝑻 𝑭𝑭𝑀𝑀 = 𝑱𝑱𝑴𝑴𝑻𝑻 �

𝜕𝜕𝑭𝑭𝑀𝑀
𝜕𝜕𝒂𝒂

𝒂𝒂 + 𝑭𝑭𝑀𝑀(𝟎𝟎)�  (4.6) 

 

When implemented in the RL framework, the dynamics of the musculoskeletal model are 

integrated using a forward dynamics approach with muscle excitations provided by the 

muscle coordination neural network. During the forward simulations, kinematic 

constraints such as joint limits are enforced and contact forces within the friction cone are 

solved with a linear complementarity problem (LCP) formulation, using the open-source 

DART simulation environment (Lee et al., 2018). 
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4.2 Reinforcement Learning Framework 

The goal of the RL framework is to train the MSK model to recover balance from random 

initial states in the COM space, which are indirectly determined by the angular position 

and velocity of the ankle joint. This generates a controller that takes as input the human 

body state information, predicts desired joint angles and transforms them into desired joint 

torques through PD control, and outputs muscle excitations as the control command for the 

physical MSK simulation environment (Figure 4.2). After the training phase, the controller 

is tested with many random initial states for balance recovery, which are classified as either 

successful or unsuccessful depending on if falling or foot movement happens, and the 

successful states are used to calculate the system’s BR (Figure 4.3). 

 

Figure 4.2 Overall control and RL framework. A random initial state is fed into the 
algorithm at the start of each episode and two neural networks (CPN and MCN) are used 
to control the MSK model. The RL rewards are computed to update the CPN, and a 
supervised loss function is used to update the MCN. The random initial state is given as a 
selected ankle position and velocity determined by the Reference State Initialization 
algorithm explained in Table 4.1. 

 

The learning environment is the dynamic simulator of the MSK model interacting 

with the ground. Control of the environment is achieved through a combination of two 
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multilayer perceptron (MLP) neural networks: one is the control policy network (CPN) and 

the other is the muscle coordination network (MCN).  The agent (CPN) takes as input the 

human body state information (the aggregations of the 3D positions and linear velocities 

of the COMs of all bones), then outputs the desired joint angles as the action. The desired 

joint angles are subsequently transformed to desired joint torques (𝝉𝝉𝑑𝑑) through stable 

Proportional-Derivative (PD) control (Tan et al., 2011). The PD gains, 𝑘𝑘𝑝𝑝 and 𝑘𝑘𝑣𝑣, are set 

to 300 and √2 × 300, respectively. Desired joint torques represent the target for muscle 

activation computation through the MCN. For apparent symmetric scenarios of the lower 

limbs, the dimension of the CPN’s action can be reduced to a half of the number of 

controlled joints (bilateral hip, knee and ankle joints) and transitioned back to the full 

dimension when fed into the MCN. 

Separating joint motion control and muscle excitations into two networks allows 

the two networks to learn and operate at different frame rates. The joint network leans at a 

low frame rate (e.g., 30Hz) while the muscle network leans and operates at the rate of 

forward dynamics simulation (e.g., 600Hz). In addition, the joint network control policy 

𝜋𝜋𝜃𝜃(𝑎𝑎|𝑠𝑠) is a stochastic policy, whereas the muscle network is a deterministic policy that is 

learned through regression via supervised learning. The two networks mutually depend on 

each other and collaboratively interact with each other to achieve maximum rewards in RL. 
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4.2.1 Muscle Coordination Network (MCN) 

The neural network used for learning muscle excitations is a deterministic policy 

𝑎𝑎 = 𝜋𝜋𝜓𝜓(𝝉𝝉𝑑𝑑, 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑐𝑐𝑙𝑙𝑑𝑑), where the network parameters 𝜓𝜓 are learned through regression by 

supervised learning. The muscle network is set up as a multilayer perceptron network with 

3 hidden layers (n = 512, 256, 256 nodes) and the loss function for training is: 

 

𝐿𝐿𝑋𝑋𝑠𝑠𝑠𝑠�𝑎𝑎(𝜓𝜓)� =  𝔼𝔼 ��𝝉𝝉𝒅𝒅 − 𝑱𝑱𝑴𝑴𝑻𝑻 �
𝜕𝜕𝑭𝑭𝑀𝑀
𝜕𝜕𝒂𝒂

𝒂𝒂(𝜓𝜓) + 𝑭𝑭𝑀𝑀(𝟎𝟎)��
2

+ 𝑤𝑤𝑟𝑟𝑑𝑑𝑟𝑟‖𝒂𝒂(𝜓𝜓)‖2� (4.7) 

 

The first term is used to minimize the discrepancy between the desired torques and the 

muscle-produced joint torques under the predicted activation 𝒂𝒂(𝜓𝜓).  The second term is a 

regularization for large muscle activations. To enforce normalized muscle activations 

within [0,1], a bounded activation function is used for the output (i.e., Tanh function 

followed by a ReLU function). The MCN-predicted 𝒂𝒂(𝜓𝜓) is fed to the simulation 

environment as the muscle excitation instead of activation since the activation must obey 

Eq. (4.2). 

4.2.2 Control Policy Network (CPN) 

The CPN acts as the main RL agent controlling the MSK model’s actions, based on its 

accumulated rewards. As the RL agent interacts with its environment, its actions are scored 

using a reward and the agent is updated based on the action’s reward. At each time step 𝑡𝑡, 

the agent’s state 𝑠𝑠𝑑𝑑 in the environment is observed and an action 𝑎𝑎𝑑𝑑 is selected according 

to its control policy 𝜋𝜋𝜃𝜃(𝑎𝑎𝑑𝑑|𝑠𝑠𝑑𝑑) with 𝜃𝜃 being the weights and bias of the neural network.  

  



 

56 

The control policy is learned by maximizing the discounted sum of reward (𝑟𝑟𝑑𝑑): 

 

 𝜋𝜋⋆ = argmax
𝜋𝜋

𝔼𝔼𝜏𝜏~𝑝𝑝(𝜏𝜏|𝜋𝜋) ��𝛾𝛾𝑑𝑑𝑟𝑟𝑑𝑑

𝑇𝑇−1

𝑑𝑑=0

� (4.8) 

 

where 𝛾𝛾 ∈ (0,1) is the discount factor, 𝜏𝜏 is the trajectory over time 

{(𝑠𝑠0,𝑎𝑎0, 𝑟𝑟0), (𝑠𝑠1,𝑎𝑎1, 𝑟𝑟1), . . . }, 𝑝𝑝(𝜏𝜏|𝜋𝜋) is the likelihood of that trajectory 𝜏𝜏 under the control 

policy 𝜋𝜋, and 𝑇𝑇 is the horizon of an episode. 

 The RL framework utilized for the balance controller presented here is trained with 

the Proximal Policy Optimization (PPO) (Schulman et al., 2017), which is a model-free 

policy gradient algorithm that is widely used for continuous control problems. The PPO 

agent samples interactions with the environment and optimizes a “surrogate” objective 

function. PPO updates the control policy’s parameters (𝜃𝜃) using the gradient of the 

expected return with respect to the parameters. To ensure that the new, updated policy is 

close to the old policy, the PPO algorithm uses a trust region constraint with a probability 

ratio: 

 

 𝑃𝑃𝑑𝑑(𝜃𝜃) =
𝜋𝜋𝜃𝜃(𝑎𝑎𝑑𝑑|𝑠𝑠𝑑𝑑)

𝜋𝜋𝜃𝜃,𝑜𝑜𝑙𝑙𝑑𝑑(𝑎𝑎𝑑𝑑|𝑠𝑠𝑑𝑑)
 (4.9) 

 

where 𝜋𝜋𝜃𝜃 is the new control policy, 𝜋𝜋𝜃𝜃,𝑜𝑜𝑙𝑙𝑑𝑑 is the previous control policy before the update. 

Using this ratio, larger probability ratios would indicate that there has been a large change 

in the updated control policy when compared with the old one. PPO uses an objective 
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function that integrates the probability ratio through clipped probability ratios, which can 

provide a conservative estimate of the policy’s performance. The “surrogate” objective 

function is defined as: 

 

 𝐿𝐿(𝜃𝜃) = 𝔼𝔼𝑑𝑑�𝑚𝑚𝑖𝑖𝑛𝑛�𝑃𝑃𝑑𝑑(𝜃𝜃)�̂�𝐴𝑑𝑑, 𝑐𝑐𝑙𝑙𝑖𝑖𝑝𝑝(𝑃𝑃𝑑𝑑(𝜃𝜃), 1 − 𝜖𝜖, 1 + 𝜖𝜖)�̂�𝐴𝑑𝑑�� (4.10) 

 

where 𝜃𝜃 is the parameters of the neural network,  𝑃𝑃𝑑𝑑 is the probability ratio from (4.9), 𝜖𝜖 is 

a small positive number used to help constrain the probability ratio, and �̂�𝐴𝑑𝑑 is the advantage 

value. The advantage value �̂�𝐴𝑑𝑑 provides a measure of how much of a good or bad decision 

a specific action is, given a specific state, by quantifying the difference between the 

discounted rewards R and the predicted value V. Here, the discounted reward R is the 

weighted sum of all rewards for each time step during the current episode, and the predicted 

value V is the estimated final reward for this episode when starting from the current state.  

If �̂�𝐴𝑑𝑑 is positive, then the action that is taken by the controller is good; thus, a positive 

reward is gained through that action and the algorithm increases the probability of that 

action occurring. Alternatively, if �̂�𝐴𝑑𝑑 is negative, the algorithm needs to decrease the 

probability to discourage that action from being selected (Schulman et al., 2017). The 

clipping function is used on the probability ratio to prevent the policy from changing 

drastically and taking the minimum between the probability ratio and the outcome of the 

clipping function results in using the lower, pessimistic bound of the unclipped objective. 

Therefore, changes that result in lower objectives will be included in the probability ratio, 

while other changes are ignored; this can help prevent rapid changes to the policy and can 
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lead to more stable learning. The control policy can then be updated through maximizing 

the clipped discounted total reward in Eq. (4.10) using gradient ascent. 

Through this PPO-based control policy, the agent learns to increase its reward by 

modifying the parameters 𝜃𝜃 of the network. This is implemented as a MLP network with 2 

hidden layers of 256 nodes each (Figure 4.2). In the original MASS framework (Lee et al., 

2019), the trajectory tracking component is used to learn specific joint motions needed to 

follow a motion from motion capture data. Here, rather than mimicking motions from 

experimental data, the framework is tailored to balancing tasks, where balance recovery 

motions are not provided a priori. Instead, a desired equilibrium state is provided as the 

target posture, for which the whole-body COM is situated right on top of the foot COM 

vertically. In addition, our network does not require a phase variable, a number defined as 

the ratio between the current simulation time and the end time of reference motion, as an 

input. 
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4.2.3 Reward Functions 

The reward function for the RL algorithm is designed to drive the MSK model to reach the 

target state by including a target posture reward 𝑟𝑟𝑑𝑑
𝑝𝑝, a torque reward 𝑟𝑟𝑑𝑑

𝑑𝑑𝑜𝑜𝑟𝑟𝑡𝑡𝑚𝑚𝑑𝑑, a body upright 

reward 𝑟𝑟𝑑𝑑
𝑚𝑚𝑝𝑝𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑑𝑑, and an XcoM (Hof et al., 2005) reward 𝑟𝑟𝑑𝑑𝑥𝑥𝑐𝑐𝑜𝑜𝑚𝑚, which is defined as follows: 

 

 𝑟𝑟𝑑𝑑 = 𝑤𝑤𝑝𝑝𝑟𝑟𝑑𝑑
𝑝𝑝 + 𝑤𝑤𝑑𝑑𝑜𝑜𝑟𝑟𝑡𝑡𝑚𝑚𝑑𝑑𝑟𝑟𝑑𝑑

𝑑𝑑𝑜𝑜𝑟𝑟𝑡𝑡𝑚𝑚𝑑𝑑 + 𝑤𝑤𝑚𝑚𝑝𝑝𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑑𝑑𝑟𝑟𝑑𝑑
𝑚𝑚𝑝𝑝𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑑𝑑 + 𝑤𝑤𝑥𝑥𝑐𝑐𝑜𝑜𝑚𝑚𝑟𝑟𝑥𝑥𝑐𝑐𝑜𝑜𝑚𝑚 (4.11) 

 

where 𝑤𝑤𝑝𝑝 = 1.0, 𝑤𝑤𝑑𝑑𝑜𝑜𝑟𝑟𝑡𝑡𝑚𝑚𝑑𝑑 = 0.1, 𝑤𝑤𝑚𝑚𝑝𝑝𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑑𝑑 = 0.1, and 𝑤𝑤𝑥𝑥𝑐𝑐𝑜𝑜𝑚𝑚 = 0.1 are their respective 

weights. The target posture reward is designed to match the target posture with the actual 

joint angles: 

 

 𝑟𝑟𝑑𝑑
𝑝𝑝 = exp (−𝜎𝜎𝑝𝑝��𝑞𝑞�𝑑𝑑

𝑗𝑗 − 𝑞𝑞𝑑𝑑
𝑗𝑗�

2

𝑗𝑗

) (4.12) 

where 𝑗𝑗 is the joint DOF (angle) index, 𝑞𝑞�𝑑𝑑
𝑗𝑗 is the joint DOF value for the target standing 

posture, and 𝜎𝜎𝑝𝑝 = 2.0. Here, the target hip and knee joint angles are set to zero and the 

target ankle angle set to 5.56°, such that the whole-body COM is situated on top of the foot 

COM. The torque reward is included to help reduce energy consumption of the joints: 

 

 𝑟𝑟𝑑𝑑
𝑑𝑑𝑜𝑜𝑟𝑟𝑡𝑡𝑚𝑚𝑑𝑑 = exp (−𝜎𝜎𝑑𝑑𝑜𝑜𝑟𝑟𝑡𝑡𝑚𝑚𝑑𝑑��𝜏𝜏𝑗𝑗�

2

𝑗𝑗

) (4.13) 

 

where 𝜎𝜎𝑑𝑑𝑜𝑜𝑟𝑟𝑡𝑡𝑚𝑚𝑑𝑑 = 0.001. 
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The upright posture reward is defined as: 

 

 𝑟𝑟𝑑𝑑
𝑚𝑚𝑝𝑝𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑑𝑑 = exp (−𝜎𝜎𝑚𝑚𝑝𝑝𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑑𝑑�𝑝𝑝ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥 − 𝑝𝑝𝑝𝑝𝑑𝑑𝑙𝑙𝑣𝑣𝑖𝑖𝑚𝑚𝑥𝑥 �

2
) (4.14) 

 

where 𝑝𝑝𝑝𝑝𝑑𝑑𝑙𝑙𝑣𝑣𝑖𝑖𝑚𝑚𝑥𝑥  is the 𝑥𝑥 (horizontal) position of the pelvis,  𝑝𝑝ℎ𝑑𝑑𝑑𝑑𝑑𝑑𝑥𝑥  is the 𝑥𝑥 position of a point 

on the head which equals to 𝑝𝑝𝑝𝑝𝑑𝑑𝑙𝑙𝑣𝑣𝑖𝑖𝑚𝑚𝑥𝑥  when pelvis tilt angle is zero (upright). The XcoM 

reward is defined as: 

 

 𝑟𝑟𝑑𝑑𝑥𝑥𝑐𝑐𝑜𝑜𝑚𝑚 = exp (−𝜎𝜎𝑥𝑥𝑐𝑐𝑜𝑜𝑚𝑚�𝑋𝑋𝑐𝑐𝑋𝑋𝑋𝑋 − 𝑋𝑋𝑐𝑐𝑋𝑋𝑋𝑋𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑�
2

) (4.15) 

 

where 𝑋𝑋𝑐𝑐𝑋𝑋𝑋𝑋𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑 is set as 𝑥𝑥 position of the foot COM. The 𝑋𝑋𝑐𝑐𝑋𝑋𝑋𝑋 concept is based on the 

region-based stability analysis of a LIP model (Hof et al., 2005), which is given by Eq. 

(2.1) and again here with a simplified notation: 

 

 𝑋𝑋𝑐𝑐𝑋𝑋𝑋𝑋 = 𝑥𝑥 +
𝑣𝑣
𝜔𝜔

 (4.16) 

 

where 𝑥𝑥 is the horizontal COM position in the sagittal plane, 𝑣𝑣 = �̇�𝑥 is the horizontal COM 

velocity, and 𝜔𝜔 =  �𝑔𝑔 𝑙𝑙⁄  is the natural frequency of the LIP, where 𝑔𝑔 is the gravity constant 

and 𝑙𝑙 is the height of the LIP. For the human MSK model, 𝑙𝑙 is the whole-body COM height. 

Assessing stability through this approach is performed by checking, or ensuring (for 
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control), that the XcoM remains within the BoS. By rearranging Eq. (4.16) and introducing 

the foot limits (heel and toe positions) used for determining the BoS, the margin of stability 

(MoS) can be calculated as: 

 

 𝑋𝑋𝑋𝑋𝑀𝑀 = |𝐵𝐵𝑋𝑋𝑀𝑀 − 𝑋𝑋𝑐𝑐𝑋𝑋𝑋𝑋| (4.17) 

 

where 𝐵𝐵𝑋𝑋𝑀𝑀 is the position of the BoS limits (heel or toe) in the horizontal direction of the 

sagittal plane. For simplicity, instead of involving both heel and toe positions, we use the 

distance to 𝑋𝑋𝑐𝑐𝑋𝑋𝑋𝑋𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑑𝑑𝑑𝑑, instead of the MoS, in the reward. 

4.2.4 Training Strategy 

In the work by Peng et al. (Peng, Abbeel, Levine, & Van de Panne, 2018), two specific 

components, reference state initialization (RSI) and early termination, are identified to be 

critical for achieving highly dynamic motions from mimicking a reference motion. In their 

work, RSI is used to initiate the state of the model at the start of each episode by sampling 

the reference motion at a random time. By leveraging RSI, the agent can benefit from a 

diverse and informative distribution of states, which can effectively guide its training 

process. In this study, we also employ RSI for state initialization even in the absence of a 

reference motion. Initial joint space states for each training episode are randomly selected 

from normal distributions for both angular position (mean: 𝜇𝜇𝑝𝑝, SD: 𝜎𝜎𝑝𝑝) and velocity (mean: 

𝜇𝜇𝑣𝑣, SD: 𝜎𝜎𝑣𝑣) of the ankle joint to encourage exploration of the COM state space. The other 

joint DOFs (hip and knee) are set to zeros for the initial posture, so that the model has 

straight legs in the beginning. During the simulations, all the joints are allowed to move 

except for the lumbar joint (that is locked). By integrating RSI during training, it 
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encourages exploration of the COM state space by exposing the controller to different 

initial states, which may range from relatively easy to highly challenging conditions across 

different episodes. 

Algorithm 1 presented in Table 4.1 describes the procedure to generate randomized 

initial states with feet kept level with ground without movement (zero velocity), while the 

body incline and rotational velocity are randomized through ankle joint angle and velocity 

sampling from two normal distributions with prescribed means and SDs. We assume the 

knee and hip maintain their neutral posture (zero joint angles) at initialization and solve the 

translation velocity of the pelvis with a gradient descent minimization method that ensures 

the foot linear velocity is zero. The minimization procedure often converges within a few 

iterations. 

Early termination offers alternative means of shaping the reward function in order 

to discourage undesirable behaviors. Additionally, it can function as a curating mechanism 

that favors data samples that may be more pertinent to a given task. In this work, we use 

the following early termination conditions: 

• Fall: pelvis height is lower than a threshold which is set to 0.8 m, corresponding to 
an ankle angle of 40°. At the upright posture, the pelvis height is 0.965 m and COM 
height is 0.9877 m. 

• Foot lift: either foot moves more than 1 cm along the AP direction. 

• Foot slide: either foot lifts more than 1 cm along the vertical direction. 

During training, each episode is a musculoskeletal simulation that ends at 10 

seconds unless it is terminated earlier. The hyperparameters used in this study are presented 

in Table 4.2.  These hyperparameters, along with the network layer depth and width, are 

either taken from literature (Tan et al., 2018) or selected based on our empirical trials to 

obtain sufficient network representation capability and learning efficiency. 
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Table 4.1 Algorithm for Initial State Randomization 

Algorithm 1: Initial State Randomization 

Set (𝜇𝜇𝑝𝑝,𝜎𝜎𝑝𝑝 ) 

Sample ankle angle (𝜃𝜃𝑑𝑑𝑛𝑛𝑎𝑎𝑙𝑙𝑑𝑑) from a normal distribution with mean and SD (𝜇𝜇𝑝𝑝,𝜎𝜎𝑝𝑝 ) 

Set slope 𝑠𝑠, and (𝜇𝜇𝑣𝑣 = 𝑠𝑠 × 𝜃𝜃𝑑𝑑𝑛𝑛𝑎𝑎𝑙𝑙𝑑𝑑 ,𝜎𝜎𝑣𝑣) 

Sample ankle angular velocity from a normal distribution with mean and SD (𝜇𝜇𝑣𝑣 ,𝜎𝜎𝑣𝑣) 

Set the pelvis tilt angle (angular velocity) as opposite of the ankle angle (angular velocity) to 

ensure leveled feet with zero rotational velocity; shift the pelvis position such that the feet 

remain at the same location. 

Set 𝑡𝑡𝑋𝑋𝑙𝑙𝑡𝑡𝑟𝑟𝑎𝑎𝑛𝑛𝑐𝑐𝑡𝑡 =  1𝑡𝑡 − 8, 𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑟𝑟 = 100 

for iteration =1,2, …, 𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑟𝑟 do 

     Set 𝑡𝑡𝑟𝑟𝑟𝑟𝑋𝑋𝑟𝑟 = 0, Δ�̇�𝒒 = 0, step=0.25 

       for each foot do 

          𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆+= ||𝒗𝒗𝑓𝑓𝑜𝑜𝑜𝑜𝑑𝑑𝐶𝐶𝑃𝑃𝑀𝑀||2  where 𝒗𝒗𝑓𝑓𝑜𝑜𝑜𝑜𝑑𝑑𝐶𝐶𝑃𝑃𝑀𝑀 is the linear velocity of the foot COM 

          Δ�̇�𝒒  −= 2.0 × 𝑠𝑠𝑡𝑡𝑡𝑡𝑝𝑝 × 𝑱𝑱𝑻𝑻𝒗𝒗𝑓𝑓𝑜𝑜𝑜𝑜𝑑𝑑𝐶𝐶𝑃𝑃𝑀𝑀 where 𝑱𝑱 is the Jacobian of the foot COM linear velocity 

       end for 

      if 𝑡𝑡𝑟𝑟𝑟𝑟𝑋𝑋𝑟𝑟 <  𝑡𝑡𝑋𝑋𝑙𝑙𝑡𝑡𝑟𝑟𝑎𝑎𝑛𝑛𝑐𝑐𝑡𝑡, exit the iteration  

        Increment only the pelvis translation velocities with corresponding components in Δ�̇�𝒒  

end for 

 

Table 4.2: Hyperparameters Used for Training 
Parameters Value Parameters Value 

Discount Factor 0.99 Epochs 10 

Policy Adam learning rate 10-4 Clip threshold 0.2 

Batch Size 128 Memory buffer 2048 

 

Solving complex human movement and control problems with deep RL is prone to 

instability and frequently results in unfavorable local optima. To encourage convergence 

to a robust and natural human balance controller, we train the controller with three different 

approaches: 1)  RSI with random initial ankle angle (𝜎𝜎𝑝𝑝 ≠ 0) and zero starting velocity 
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(𝜇𝜇𝑣𝑣 = 𝜎𝜎𝑣𝑣 = 0), 2) RSI with random initial ankle angle and velocity (𝜎𝜎𝑝𝑝 ≠ 0,𝜎𝜎𝑣𝑣 ≠ 0), and 

3) a two-step curriculum learning (CL) process by first training with zero starting velocity 

(𝜇𝜇𝑣𝑣 = 𝜎𝜎𝑣𝑣 = 0) and then continuing with non-zero random velocity (𝜎𝜎𝑝𝑝 ≠ 0,𝜎𝜎𝑣𝑣 ≠ 0).  CL 

(Bengio et al., 2009) has been used in literature to learn complex human and robot 

movement skills (Kidziński et al., 2020; Lee et al., 2020; Weng et al., 2021; Xie et al., 

2020). CL enhances the learning process by breaking down a challenging task into multiple 

intermediate steps that are easier to learn, thereby facilitating progress towards a favorable 

direction.  In our CL process, we start by learning to balance from an inclined state with 

zero initial velocity (by setting the initial velocity mean and SD 𝑢𝑢𝑣𝑣 = 𝜎𝜎𝑣𝑣 = 0). After 

completion of the training, the best performing neural networks (with the highest reward 

or minimal loss) are used as the starting point of the next step, which uses non-zero velocity 

mean and SD (𝜇𝜇𝑣𝑣 = 𝑠𝑠 × 𝜇𝜇𝑝𝑝 with 𝑠𝑠 = −𝜔𝜔, 𝜎𝜎𝑣𝑣 = 0.1 𝑟𝑟𝑎𝑎𝑟𝑟/𝑠𝑠). 𝑠𝑠 is a slope factor that tilts the 

velocity mean based on the current sampled position 𝜃𝜃𝑑𝑑𝑛𝑛𝑎𝑎𝑙𝑙𝑑𝑑 and we use 𝜔𝜔 for it to follow 

the LIP balance region limits (Mummolo et al., 2021). For the first two approaches, 50,000 

iterations are used for each training course. For CL, 50,000 iterations are used for each 

training step. All training is performed on a Linux machine with Intel Xeon CPUs 

(2.30GHz) and a 16G Nvidia Quadro RTX 5000 GPU, and typical training time for 50,000 

iterations is around 40 hours. 

4.2.5 Testing and Balance Region Generation 

The learned balance controller is tested with the MSK model to examine its ability to regain 

balance from various initial states, as illustrated in Figure 4.3. During testing, the learned 

controller strives to drive the MSK model from a given random initial state to a balanced 

state that does not trigger the terminating conditions. To generate the BR with the trained 
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controller, we perform 10,000 simulations with random initial ankle positions and 

velocities; this number is selected to ensure densely sampled initial states within reasonable 

computational time. The CPU time needed for BR generation was typically less than a few 

hours since each simulation terminates at 10s or less of the simulation time and the 

simulation was faster than real time (~5 times faster). The outcome of each simulation is 

recorded as “successful” if it runs to the end of the specified episode time (10 seconds) 

without triggering the same termination conditions that are used during training. Otherwise, 

it is recorded as “unsuccessful”. For every successful simulation, the corresponding initial 

COM position and velocity is stored as a point of the system’s BR. Thus, we can generate 

an initial point-based BR (PBR) from the collection of all successful initial COM states (a 

point cloud). Note that, during the course of dynamic balance recovery, a COM state 

trajectory may go outside of the PBR. However, since all points on the trajectory (COM 

states at discrete times) lead to balance recovery at the end, these points are included in the 

final BR. To generate the PBR or BR envelope from a point cloud, we used the alpha shape 

toolbox (https://github.com/bellockk/alphashape) in Python to generate the bounding 

polygon of the point cloud. The point cloud’s convex hull was considered but found to 

significantly overestimate the BR. On the other hand, the alpha shape bounding polygon 

can be concave but may not strictly encapsule all the points in the cloud depending on the 

𝛼𝛼 parameter. 
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Figure 4.3 Schematic describing testing protocol for BR generation. 

4.3 Results 

The neural networks were trained using the three different methods outlined in the training 

strategy (Section 4.2.4), which included: RSI with random initial ankle angle and zero 

velocity, RSI with random initial ankle angle and velocity, and two-step CL. For the first 

method, the following parameters were used: 𝜇𝜇𝑝𝑝 = 0.09745 𝑟𝑟𝑎𝑎𝑟𝑟 corresponding to the 

target ankle angle (5.58°),𝜎𝜎𝑝𝑝 = 0.1 𝑟𝑟𝑎𝑎𝑟𝑟, 𝑠𝑠 = 0, 𝜇𝜇𝑣𝑣 = 𝑠𝑠 × 𝜇𝜇𝑝𝑝 = 0, and 𝜎𝜎𝑣𝑣 = 0. For the 

second method, the same 𝜇𝜇𝑝𝑝 and 𝜎𝜎𝑝𝑝 were used, while 𝑠𝑠 was set to −𝜔𝜔 and 𝜎𝜎𝑣𝑣 was set to 

0.1. As for the third (two-step CL) method, the training with the first method was 

repurposed as the first step and the second step involved using the best outcomes from the 

first step and performing another training using the identical parameters as the second 

method. The original rewards as well as the smoothed rewards obtained using a 5-point 

moving average for these training methods are presented in Figure 4.4. In the case of the 

first two methods, the reward exhibited a rapid increase from a very small value to over 

200 within 5,000 iterations. It is noted the overall reward from method 2 slightly surpassed 

that of method 1. As for the third method (CL), the second step reward started off at a high 

value. Further training led to incremental improvements in the maximum reward; however, 

these improvements occurred after a considerable number of iterations and the magnitude 

of each increase was not substantial. 
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Figure 4.4 The rewards (original and smoothed rewards with 5-point moving average) 
for training with three different methods. Left: training with random initial ankle angle 
and zero starting velocity; middle: training with random initial ankle angle and velocity, 
and right: the second training step of the curriculum learning with random ankle angle 
and velocity. 

 

Using the learned controllers from these three methods, we conducted tests to 

generate BRs with the approach outlined in section 4.2.5.  For each test, we ran dynamic 

simulations for 10,000 times with random initial state sampling similar to the training 

performed with the second method. The successful and failed (early terminated) simulation 

trials of the described three methods are illustrated in Figure 4.5 with different colored 

markers. The success rates of these cases are calculated by comparing the number of 

successful simulation trials with the total number of trials conducted, which are 59.59%, 

16.31%, 41.60%, for the three methods respectively.  The envelopes of successful initial 

COM states (i.e., PBR) were generated from these successful points using alphashape. 

Within the PBRs, there are scattered failed points (blue markers), most of which are 

covered by the success points (yellow markers) due to rendering but some are still visible.   
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(A) 

 
(B) 

 
(C) 

Figure 4.5 COM state space BRs (enclosed by the thick red curves) for the learned 
controllers trained with A) method 1 (zero starting velocity); B) method 2 (non-zero 
velocity), and C) method 3 (CL).  Left: Initial COM states (points) of successful trials 
(yellow markers) and unsuccessful trails (blue markers) and generated PBRs from the 
successful trials. Right: COM state trajectories of selected successful trials and generated 
BRs.  
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Within the PBR from method 1, it also contains 74 failed points, mostly located 

near the bottom right corner where a concave area is covered. This indicates a 

5959/(5959 + 74) = 98.77% success rate from inside. And the success rates within 

PBRs for method 2 and 3 are 42.72% and 87.38%, respectively. The areas of these PBRs 

are also listed in the figure, the method 2 has the smallest area while the method 1 and 3 

have comparable areas that are over 45% larger. Comparing the areas covered by method 

1 and 3, the method 1 area is more convex and has higher success rate (98.77% vs 87.38%). 

In addition, the PBR from method 1 covers a much wider range on the zero COM velocity 

line when compared to methods 2 and 3. 

As stated earlier, since all points on the successful trajectories lead to balance 

recovery, the points on the trajectories should be included in the final BR. Therefore, we 

constructed trajectory-based BRs from selected successful COM trajectories, as shown in 

Figure 4.5. For the sake of efficiency, we only included the trajectories that originated from 

the boundary points of the PBR and an additional 100 randomly chosen (successful) 

trajectories. This approach ensures computational efficiency while maintaining a 

representative sample of trajectories for analysis. We used α =15 to generate the alpha 

shape envelopes for all cases. Typically, a larger α value generates tighter and more 

concave envelopes, but in some cases, it may produce multiple disjointed envelopes. On 

the contrary, a smaller α value generates looser envelopes and likely overestimates the 

covered areas. A similar trend in the covered areas is observed with method 2 having the 

smallest area whereas method 1 has a comparable area to that of method 3 but displays 

more convexity. Nonetheless, the zero COM velocity line, indicating the foot base of 

support, is mostly covered by all three methods. 
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For comparison, the expected analytical solution to the LIP model was calculated 

(Hof et al., 2005). The upper bound of the LIP region was determined by 𝑣𝑣𝑚𝑚𝑑𝑑𝑥𝑥 =

𝜔𝜔(𝑢𝑢𝑚𝑚𝑑𝑑𝑥𝑥 − 𝑥𝑥) and the lower bound from 𝑣𝑣𝑚𝑚𝑖𝑖𝑛𝑛 = 𝜔𝜔(𝑢𝑢𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑥𝑥) for each COM position 𝑥𝑥 in 

the horizontal direction of the sagittal plane. The COM position is zero (𝑥𝑥 = 0) when it 

sits right on top of the ankle joint. 𝑢𝑢𝑚𝑚𝑑𝑑𝑥𝑥 = 15𝑐𝑐𝑚𝑚 and 𝑢𝑢𝑚𝑚𝑖𝑖𝑛𝑛 = −4.9cm are the locations of 

the toe and heel contact spheres. The upper and lower bounds, along with the zero COM 

velocity line, are plotted in conjunction with the BRs in Figure 4.5. It is observed that all 

BRs largely fall within the analytical bounds. 

To investigate the effect of the trained controllers on joint kinematics, we analyzed 

the average joint angles of the 100 randomly selected trajectories for each of the three 

cases, resulting in the mean final posture at the end of the 10-second simulations. Figure 

4.6 displays these mean final postures with the MSK model, in comparison with the target 

posture. Additionally, Table 4.3 shows the joint angles and COM positions  of the final 

postures from the three training methods with an additional comparison with results from 

experimental data. Experimental joint angles and COM position for standing were 

collected from standing trials performed in the BioDynamics Lab at NJIT under IRB 

approval #2212027868. Data was collected from 22 subjects (11 males and 11 females) 

who were instructed to stand straight with their eyes open and arms crossed against their 

chest. Joint and COM information were obtained through inverse and body kinematics, 

respectively, which were performed in OpenSim using the Hamner 2010 model (Hamner 

et al., 2010; Seth et al., 2018) It is evident that the final posture resulting from method 1 is 

more upright and aligned with a natural stance, whereas the final postures obtained from 

methods 2 and 3 exhibit further forward inclination compared to the target posture. With 
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the exception of hip flexion, method 1 closely resembles the standing posture obtained 

from experiments. Taking into account the success rate, shape and coverage of BRs, and 

mean final posture, the controller trained using method 1 (zero velocity) appears to be more 

robust and performs the best. 

    
(A)                    (B)                         (C)                       (D) 

Figure 4.6 The mean postures at 10s for A) method 1, COM position: 0.049 ± 0.023 m; 
B) method 2, COM position: 0.108 ± 0.033 m; and C) method 3, COM position: 0.104 ± 
0.023 m; and D) the target posture, COM position: 0.051 m. In the figure, the muscle 
tendons are displayed as narrower white cylinders. 

 

Table 4.3 Mean and SD of the Final Postures from the Three Training Methods 

 Method 1 Method 2 Method 3 Experimental 

Pelvis tilt (°) −3.388 ± 3.879 −8.663 ± 2.782 −9.162 ± 2.668 −2.885 ± 3.059 

Hip flexion (°) −0.606 ± 1.136 3.265 ± 1.493 1.896 ± 0.688 −6.750 ± 3.543 

Knee angle (°) −1.436 ± 4.093 −4.560 ± 1.070 −0.261 ± 1.726 0.763 ± 4.327 

Ankle angle (°) 5.971 ± 1.541 10.421 ± 1.404 8.103 ± 0.500 5.289 ± 2.110 

COM Position (m) 0.049 ± 0.023 0.108 ± 0.033 0.104 ± 0.023 0.0302 ± 0.0155 

*Negative pelvis tilt angle indicates leaning forward; negative hip flexion angle indicates 
hip extension; negative knee angle indicates knee bending; positive ankle angle indicates 
dorsiflexion. 
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4.3.1 Balance Recovery from Forward and Backward Lean 

Using the trained controller from training method 1 (zero starting velocity), we conducted 

tests to evaluate its performance in balance recovery from forward and backward leans. 

For the forward lean test, we imposed restrictions on the RSI, setting a mean ankle angle 

of 𝜇𝜇𝑝𝑝 = 8°(close to the model’s recovery limit) with a SD of 𝜎𝜎𝑝𝑝 = 0.1° and zero velocity. 

Similarly, for the backward lean test, we restricted the RSI with a mean ankle angle of 

𝜇𝜇𝑝𝑝 =– 1.45° (near its backward extreme) with a SD of 𝜎𝜎𝑝𝑝 = 0.1° and zero velocity. In both 

tests, we ran muscle-controlled dynamic simulations to collect 100 successful trials.  Figure 

4.7 presents the COM trajectories of these trials for balance recovery from forward lean, 

along with the time history profiles of the mean COM position and velocity. Based on the 

figure, we can observe that the COM initially moves forward with a positive velocity, 

gradually decelerating until it reaches its furthest point where its velocity becomes zero. 

Subsequently, the COM retraces and passes the original starting position, moving toward 

the COM of the foot in the AP direction. The time history data reveals that the variations 

in motion increase over time, which can be attributed to two factors: 1) small variation in 

the starting position is cumulated during dynamic time integration; 2) the first control 

policy network is stochastic and employs a multivariate normal distribution for output, 

introducing additional variations during the simulation. 

Figure 4.8 displays the time history profiles of the mean joint angles and muscle 

activations. The tilt angle of the pelvis determines the upper body inclination, given that 

the lumbar joint is locked. A negative tilt angle signifies forward inclination, whereas a 

positive angle indicates backward inclination. In the early stage of balance (within 1 

second), the pelvis (and upper body) tilts further forward, while the ankle moves in the 
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opposite direction (plantarflexion). Simultaneously, the knee extends further and reaches 

its limit, and the hip flexes, causing the leg to strive towards the more upright posture. After 

the initial 2 seconds of the simulation, the body gradually approaches the final converged 

state, exhibiting small oscillations. Regarding muscle activation, the iliopsoas muscle 

demonstrates the highest activation, peaking at a value close to 0.4, followed by the 

hamstrings, biceps femoris, and soleus. The tibialis anterior muscle exhibits greater 

activation in the first second of the simulation but has a relatively low level of activation 

throughout the remaining duration. On the contrary, the gastrocnemius, another ankle 

plantar flexor, displays minimal activation in the early stage of the balance recovery but 

intensifies its activation as the body attains a more upright posture toward the end of 

simulation. Unlike the tibialis, the gastrocnemius is a biarticular muscle, generating knee 

flexion torque when contracting, thus remaining mostly inactive during the initial balance 

phase when knee extends. Other muscles such as gluteus maximus, vasti, and rectus 

femoris are mostly inactive or have very low activation during forward lean balance 

recovery. 

Figure 4.9 and Figure 4.10 present results for balance recovery from backward lean.  

Initially, the COM exhibits oscillations around its starting position for less than a second 

before accelerating with a positive velocity towards the COM of the foot in the AP 

direction. Around the three-second mark, the COM enters a state of oscillation around the 

final position, forming a circular pattern in the COM state space. The joint angle plot 

reveals an immediate dorsiflexion of the ankle and bending of the knee during the early 

recovery phase. However, the pelvis (and upper body) initially falls backward, leading to 
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hip extension. Compared to the forward lean recovery, the joint angles display more 

pronounced oscillations in both magnitude and frequency. 

 

 

(A)             (B) 

Figure 4.7 A) COM trajectories of balance recovery from forward lean 
(Mean: 8o, SD: 0.1o) using controller trained with method 1 due to its better performance 
when compared to the other methods. The red points are the starting positions, and the blue 
points are the end positions at 10 s. For reference, the origin of the COM position is at the 
same horizontal (x) position as the ankle joint and the x-position of the toe contact point is 
0.15 m. B) The time history profiles of COM state (mean and SD averaged from 100 
successful trials). The shaded area displays ±𝑀𝑀𝑇𝑇𝑆𝑆 of the mean. 𝑐𝑐𝑋𝑋𝑚𝑚_𝑥𝑥 is the COM x 
position and 𝑐𝑐𝑋𝑋𝑚𝑚_𝑣𝑣𝑡𝑡𝑙𝑙_𝑥𝑥 is the COM x velocity. 
 

 

(A)      (B) 

Figure 4.8. Mean and SD plots of A) joint angles and B) muscle activations from forward 
lean recovery. “_l_a” in the legend text indicates muscle activation on the left side. 
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By analyzing the mean muscle activation, it is evident that the rectus femoris 

muscle exhibits the highest level of activation, reaching a peak slightly below 0.6. It is 

followed by the tibialis anterior muscle, hamstrings, and then the iliopsoas. For the entire 

duration, both the iliopsoas and hamstrings demonstrate low levels of activation (less than 

0.1). The biceps femoris briefly exhibits low activation at the beginning of the simulation, 

vanishes until after 2 seconds, and then reactivates with a low level of activation. During 

the later phase of balance, these five muscles remain activated, with the rectus femoris 

showing the highest activation, while the other four muscles not mentioned here remain 

mostly inactive. 

 
 

 
(A)                                                               (B) 

Figure 4.9 A) COM trajectories of balance recovery from backward lean (Mean: −
1.45°, SD: 0. 1o). The red points are the starting positions, and the blue points are the end 
positions at 10 s, where the model is statically stable and within the foot limits. B) The time 
history profiles of COM state (mean and SD averaged from 100 successful trials) from 
backward lean recovery. 
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(A)      (B) 

Figure 4.10 Mean and SD plots of A) joint angles and B) muscle activations from 
backward lean recovery.  

 

4.3.2 Effects of Muscle Weakness and Neural Delay 

Aging and neuromuscular disorders often induce significant changes to muscle 

physiological properties that affect people’s balance. For example, during the process of 

aging, it has been shown that muscle fiber’s maximum isometric force and contraction 

velocity decreases while activation and deactivation time constants increases (Cseke, 2020; 

Doherty et al., 1993; Thelen, 2003). To investigate the effect of muscle property 

degradation on balance recovery, we conducted tests by modifying muscle properties in 

several ways. In the first case, we reduced the maximum isometric fiber forces of all 

muscles by 30% to simulate muscle weakness, resembling conditions such as those 

associated with aging. In the second case, we specifically reduced the maximum isometric 

fiber forces of muscles on the left side only by 30% (hemiparesis). In the third case, we 

further reduced the maximum isometric fiber forces of muscles on the left side to 0% of 

their original strength to simulate complete loss of muscle strength on one side 

(hemiplegia). In the two latter cases, the maximum isometric fiber forces of muscle on the 

right side were kept at their original strength. Both cases allowed us to explore the effect 



 

77 

of muscle weakness and asymmetry and the last case allowed us to explore the effect of 

complete muscle disability on one side. Note in the two asymmetric cases, we switched to 

use a 3D MSK model by changing the 3-DOF planar root joint at the pelvis to a 6-DOF 

free joint, enabling global lateral movement. In addition, the symmetry condition for the 

first neural network (CPN) was removed. For each of these cases, we again trained the 

controller using training method 1 (zero velocity) due to its overall good performance 

demonstrated earlier and then tested it with random ankle angle and velocity. In Figure 

4.11, we present a comparison of both the PBRs and system BRs for these three cases with 

muscle weakness on one or both sides. To investigate the effect of muscle activation and 

deactivation time (Eq. (4.3)) on the ability to recover balance, we increased both durations 

by 50% to simulate a longer neuromuscular response time (i.e., neural delay). 

Subsequently, we conducted the same training process to obtain a new controller and tested 

it to generate new BRs. Compared to the normal BRs depicted in Figure 4.5A, the new 

BRs are much smaller in terms of the covered area, particularly in the region above the 

zero-velocity line. This suggests that the controller’s performance is compromised when 

recovering from a large backward inclined angle. 

  



 

78 

 
(A) 

 
(B) 

 
(C) 

Figure 4.11 COM state space BRs for the learned controllers trained with modified muscle 
properties.  A) Maximum isometric fiber forces of all muscles were reduced by 30% of 
their original strength; B) Maximum isometric fiber forces of muscles on the left side were 
reduced by 30% of their original strength; C) Maximum isometric fiber forces of muscles 
on the left side were reduced to 0% of the original strength for all muscles. 
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Figure 4.12 COM state space BR for the learned controller trained with muscle activation 
and deactivation time increased by 50%.  

4.4 Discussion 

The proposed balance controller trained by the RL framework represents a novel method 

to explore the limits of dynamic balance of human standing posture, under comprehensive 

kinematics, contact, and muscle activation constraints. The results demonstrated that 

effective muscle-based balance controllers can be generated using RL techniques. Our RL 

approach involved the utilization of two decoupled yet interconnected neural networks, 

similar to the method employed by (Lee et al., 2019); however, unlike their work, we did 

not rely on any reference motion. Instead, we developed various neuromusculoskeletal 

physics and balance inspired rewards for controlling balance recovery. These included 

reaching a target balanced posture, maintaining an upright upper body, and utilizing a LIP 

model-based balance criterion known as XcoM. We conducted an ablation study by 

removing selected rewards from the total reward in Eq. (4.11) and trained additional 

controllers with method 1. Without the XcoM reward, the generated system BR has an area 

of 0.0932 with weaker backward lean recovery capability, an overall success rate of 

17.29% and a success rate of 51.75% within the BR. Without the upright posture reward, 

the system BR has an area 0.0706 with weaker forward recovery capability, an overall 
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success rate of 20.46%, and a success rate of 56.77% with the BR. These results signify 

the importance of these two balance-inspired rewards since including both in the reward 

drastically increases the success rates (an overall success rate of 59.59% and a success rate 

of 98.77% within the BR). 

To explore the COM state space during balance recovery, we devised a novel 

procedure (Algorithm 1 in Table 4.1) for RSI, which was utilized during both training and 

testing. We also investigated the use of early termination and CL to enhance the efficiency 

and convergence of balance recovery controllers during training. We found that RSI and 

early termination were crucial in achieving robust balance recovery controllers, aligning 

with the observations made by (Peng, Abbeel, Levine, & Panne, 2018). We have 

experimented to remove some of the early termination conditions, which resulted in the 

emergence of balance recovery strategies such as foot sliding and stepping when dealing 

with challenging initial conditions. Notably, when trained without RSI, such as using a 

fixed initial state, the resulting controller exhibited difficulties in effectively handling 

unexplored conditions.  We employed three distinct training methods, where each utilized 

different RSI strategies or CL, in order to obtain robust neuromuscular controllers. Among 

these methods, the controller generated from the first method, which involved starting from 

a random initial inclination angle with zero velocity, exhibited the best overall performance 

in terms of robustness (success rate) and coverage of the recoverable COM state space (i.e., 

BR). In addition to the success rate, the first method’s controller also demonstrated more 

convexity around the static equilibrium (zero-velocity line along the base of support), 

which is more physically consistent with bipedal systems behaving like inverted 

pendulums. The CL approach employed in our study did not appear to improve the 
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performance of the controllers. Nonetheless, we believe there are potential avenues for 

enhancing the CL approach by using more sophisticated training procedures, such as 

gradually increasing the difficulty of the RSI and adjusting the early termination conditions 

to relax and then tighten them. 

For the time history plots of joint angles and COM positions from Figure 4.7 to 

Figure 4.10, we can observe that the trained models demonstrate a slower response in 

balance recovery (approximately 3-5 s to reach relative stable states) than that typically 

observed in humans (approximately 2-3 s based on what we observed from human 

experiments). This could be due to the higher focus on positional measures than time-

related metrics, leading to the model preferring recoveries that enable it to reach the target 

posture instead of recovering quicker. Additionally, when recovering to its final posture, 

the RL-trained controllers exhibited an oscillatory effect at maintaining balance rather than 

steadying itself; this oscillatory effect is also not observed in humans at a large scale. These 

oscillations could potentially be influenced by the lack of reward that encourages 

smoothness of the motion as well as the selected stable PD parameters. Further 

investigation is warranted to understand the specific role played by these factors in 

contributing to the observed oscillations. 

Although there are large overlapping areas in the BRs of the three controllers, none 

of them encompassed all the areas covered by the other two. This poses a question as to 

whether the human achievable BR should be the one from the best performing controller 

or the union of the BRs from all three controllers, the latter of which might be more 

appropriate if one can train a universal controller that is robust enough. Additionally, if we 

were to train additional controllers using different training strategies or methods, it would 
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be worthwhile to investigate how much the BR can be expanded, and to what extent or 

limit, with these controllers. 

When comparing the successful COM states shown in the PBRs and the 

corresponding system BRs generated from the trajectories, we can observe that in general 

the system BRs cover more COM state space areas than the PBRs. The covered states 

outside the PBRs are included in the BRs because they reside on the successful balance 

recovery trajectories. Note, in the RSI, the initial states (at 𝑡𝑡 = 0) are only specified for 

joint angle and angular velocities. However, initial muscle states (i.e., activations) are also 

very important in determining the balance outcome. One choice is to set muscle activations 

to zero at the beginning and let it ramp up with the MCN predicted excitation.  Since this 

introduces a delay in muscle response to the initial inclined state, we set the muscle 

activations to be the same as the excitations to mimic the effect of anticipation. Therefore, 

two coincident COM states in the PBR and BR could indicate very different overall system 

dynamic states that consider muscles and result in different balance outcomes. For instance, 

in Figure 4.7, it can be observed that the COM state starts within the foot then shifts towards 

the toe before settling back over the COM of the foot (final balanced state); if the model 

were to start at the toe, on the other hand, it would likely fall and be counted as an 

unbalanced COM state because the initial muscle states would not be able to lead to a 

balanced state at the end. 

 Ideally, it is desired to have a universal balance controller that is highly robust and 

capable of recovering from the largest possible area within the COM state space. This 

objective is likely to require further study employing more advanced training methods, 

which can effectively explore the control space, avoid convergence to local optima, and 
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utilize sophisticated physical models that account for variations in physics properties and 

uncertainties in human-environment interaction. In the literature, techniques such as 

kinematics and dynamics randomization (Ding & Dong, 2020; Exarchos et al., 2021; Luo 

et al., 2023; Luo et al., 2021; Rajeswaran et al., 2017; Tan et al., 2018; Vinitsky et al., 

2021) have been used to enhance robustness of trained controllers and enable sim-to-real 

transfer of virtually trained controllers to physical hardware, accounting for modeling 

inaccuracies or uncertainties in modeling. Similar randomization strategies can potentially 

enhance the performance of our trained controllers. Besides the randomization of the 

typical kinematics (e.g., link length, joint positions) and dynamics quantities (e.g., mass, 

inertia, COM position), we can also randomize muscle properties (e.g., maximum isometric 

force, activation and deactivation time, maximum contraction velocity, etc.) during the 

training. 

 The BRs obtained using various trained RL controllers and the MSK model were 

largely contained within and aligned with the analytical LIP model-based limits but could 

not have large COM excursions that deviate too far from the balanced upright posture. This 

is because of the limits of human strength and joint range of motions, which were not 

considered in the theoretical model. In the LIP model, since it is for ideal systems, the total 

area of the analytical limits is infinite in theory, but these limits can then be constrained 

using the friction cone to obtain a more meaningful BR with appropriate limits (Mummolo 

et al., 2021). However, the BRs obtained from the RL-based controllers are still comparable 

because the MSK model was encouraged to focus on recovering its balance using an ankle 

strategy through the imposed initial states in the RSI, which is similarly aligned with the 

ankle strategy used in the LIP model. 
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 Although the current method is significantly different from the torque-based motion 

optimization method, the predicted BRs show comparability with the results obtained from 

optimization (Mummolo et al., 2021). However, it is worth noting that, in general, the 

predicted BRs using our muscle controller-based method tend to be smaller. This suggests 

that the utilization of the MSK model imposes stricter physical and physiological 

constraints on the feasibility of balance recovery from wider initial states due to muscles’ 

actuation capabilities. The torque-based optimization method does not consider the neural 

delay and often assumes constant torque capacities during the entire motion, whereas the 

torques generation capacity of muscles are affected by their states (e.g., fiber lengths) and 

moment arms at different instantaneous state. Despite of the lack of comprehensive 

comparison between these two approaches, we believe BRs predicted with MSK models 

encompass more important physical and physiological factors or constraints affecting 

balance recovery and are likely to be more realistic from this perspective. 

 To explore the effects of altered muscle properties on the limits of dynamic balance, 

we generated RL-based controllers with modified muscle properties, such as maximum 

isometric fiber forces and activation and deactivation time of the neural excitation-

activation delay for all or selected muscles. By analyzing the resulting BRs, we observed 

that in the first two cases, in which the maximum isometric fiber forces are reduced by 

30% on both sides and only one side,  the corresponding controllers could still recover 

from statically balanced states (i.e., COM states with positions within the base of support 

and zero velocity). Conversely, in the case of fully disabled muscles on one side, the trained 

controller could not cover the entire set of statically balanced states. This suggests that in 

pathologies such as hemiplegia, the capability of maintaining a static posture is much 
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reduced, resulting in a much smaller range of feasible COM sway postures that are near 

the middle of base of support. Additionally, we discovered that asymmetric muscle 

weakness (30% less strength on one side) produced a smaller BR, particularly in the region 

of backward inclination, than that of the case with muscle weakness on both sides. It should 

also be noted that, the asymmetric model has the global translation and rotation DOFs at 

the pelvis in all directions, but it does not include hip abduction and rotation, considering 

the muscles included in the MSK model are largely used for actuating motion in the sagittal 

plane. For the case with longer (50%) activation and deactivation time, the BR is much 

smaller in the region of backward inclination as well. These findings suggest that 

individuals or patients with muscle weakness or slower neural response times may have 

difficulties recovering from backward imbalance and are more prone to falling.  

 Our numerical experiments demonstrate that these RL-trained muscle controllers 

have great potential to study human balance in the deeper neuromuscular domain and 

provide valuable insights on the factors that influence balance improvement or 

deterioration. The obtained BRs under different muscle conditions offer valuable 

information regarding the capabilities and limitations of balance recovery of individuals or 

patients with symptoms such as muscle weakness or hemiplegia. These findings can also 

be relevant for fall detection and monitoring of the margin of stability during daily 

activities, especially if a personalized BR can be established through subject-specific 

modeling and control. Our work can be extended to study balance in other patient 

populations, such as cerebral palsy patients and people with Parkinson’s disease. By 

adapting the RL-trained muscle controllers to these specific conditions, we can gain further 

insights into balance challenges faced by these individuals.. 
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4.5 Conclusions and Future Work 

An RL framework was developed to effectively learn muscle-based balance controllers and 

utilized them to establish physiologically feasible regions of stability for standing balance 

(i.e., the BRs). Several key factors have contributed to the novel outcomes of this work. 

Firstly, neuromusculoskeletal physics and balance-inspired rewards, as well as balance-

related initial states, were incorporated in the RL training. This ensured that the controllers 

learned to prioritize actions that align with the principles of human balance during standing. 

Secondly, two separate yet interconnected neural networks were utilized that separately 

generated control policies for torques and muscle activations, which was expected to 

improve performance based on the results from (Lee et al., 2019). Additionally, a 

combination of training strategies including novel RSI, early termination, and curriculum 

learning were employed to test the efficiency and effectiveness of the learning processes.  

To evaluate the performance of the trained controllers, we compared them based on 

different training strategies and examined the resulting BRs under various muscle 

conditions. By comparing the obtained BRs with the theoretical limits of dynamic balance 

defined by the LIP model, we gained valuable insights into human balance recovery by 

considering the physiological capabilities and limitations of the human musculoskeletal 

system. This study has laid a solid foundation for the stability region-based analysis of 

human balance, integrating physiological factors and whole-body biomechanics. This 

approach surpasses traditional methods of balance control and assessment that rely on 

reduced-order kinematics or ground reference points and provides more informative and 

subject-specific limits of dynamic balance. 

 Moving forward, the robustness of the learned controllers will be enhanced by 

introducing domain randomization, perturbations, and more sophisticated learning or 
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training methods. This will improve their adaptability to a wider range of balance scenarios. 

Additionally, we aim to explore more balance-specific reward formulations to further 

optimize the training process and improve the assessment of balance. Furthermore, an in-

depth analysis of the resulting balance kinematics and muscle activations predicted by this 

RL framework will be conducted, through a comparison with empirical data collected from 

postural sway exercises in a laboratory setting. Future experimental investigation will 

include the collection of both kinematic measurements and muscle EMG recordings from 

selected relevant lower-limb muscles. By combining simulation-based analysis with 

experimental validation, we can refine and validate the RL framework's predictions, 

making it a more reliable tool for studying human balance and its underlying mechanisms. 
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CHAPTER 5 

EXPERIMENTAL APPROACH TO BALANCE ASSESSMENT 
 

To better understand the real-world physiological effects of postural balance, human 

subject experiments were conducted by performing various physical exercises in the 

BioDynamics motion capture lab at the New Jersey Institute of Technology. These 

experiments were performed to gauge the feasibility of using a BR-based approach to 

analyzing human postural balance. First, data was collected from twenty-two healthy 

subjects through marker-based optical motion capture, surface electromyography (sEMG), 

force plates, and instrumented shoe insoles. Second, a subject-specific musculoskeletal 

model was created for each subject using OpenSim (Seth et al., 2018). With the collected 

marker data, inverse kinematics and body kinematics were then performed in OpenSim for 

each subject. The OpenSim analyses provided the COM kinematics necessary for subject-

specific BR generation. Additionally, the sEMG data was analyzed to obtain a general 

profile of muscle activity during the exercises. Lastly, the COP was also considered to 

investigate any trends in anteroposterior/mediolateral balance. 

5.1 Subject Recruitment 

This study was approved through the Institutional Review Board at the New Jersey Institute 

of Technology (Approval #2212027868). Subjects were voluntarily recruited from the 

university through word-of-mouth and flyer distribution. Twenty-two subjects were 

recruited for the study, eleven male and eleven female, and their demographic data is 

provided in Table 5.1 and visually presented in Figure 5.1. Additionally, general 

descriptive statistics of the subject pool are presented in Table 5.2. 
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Table 5.1 Demographic and Anthropometric Description of the Subjects 

ID Age 
(yrs) Sex Height 

(m) 
Weight 

(kg) 
Leg Length 

(m) 
Foot Length 

(m) BMI Dominant 
Leg 

1 21 M 1.905 91.95 0.980 0.300 25.34 L 
2 21 M 1.780 82.95 0.980 0.295 26.18 R 
3 30 M 1.890 94.60 0.960 0.305 26.48 R 
4 25 F 1.580 52.25 0.815 0.273 20.93 R 
5 23 M 1.720 51.20 0.905 0.275 17.31 L 
6 28 F 1.690 54.15 0.860 0.280 18.96 R 
7 22 M 1.730 66.65 0.925 0.290 22.27 R 
8 26 M 1.800 55.55 0.990 0.330 17.15 R 
9 21 M 1.840 89.80 0.940 0.330 26.52 R 

10 22 M 1.940 95.75 1.045 0.340 25.44 R 
11 33 M 1.870 89.4 0.920 0.300 25.57 R 
12 23 F 1.685 72.10 0.870 0.270 25.39 R 
13 21 F 1.530 48.95 0.840 0.265 20.91 R 
14 20 F 1.750 66.00 0.910 0.310 21.55 R 
15 24 F 1.550 55.50 0.820 0.260 23.10 L 
16 20 M 1.790 81.70 0.950 0.290 25.50 L 
17 33 F 1.575 48.40 0.830 0.250 19.51 R 
18 26 F 1.490 58.65 0.740 0.240 26.41 R 
19 25 F 1.720 78.95 0.850 0.280 26.69 R 
20 21 F 1.580 59.10 0.820 0.250 23.67 R 
21 34 M 1.750 88.05 0.920 0.300 28.75 R 
22 26 F 1.670 91.00 0.870 0.280 32.63 R 

 

Table 5.2 Human Subject Descriptive Statistics (Mean ± Standard Deviation) 

Total Subjects (N=22) Male (N=11) Female (N=11) 

Age (yrs) 24.82 ± 5.15 24.73 ± 3.69 

Height (m) 1.82 ± 0.07 1.62 ± 0.086 

Weight (kg) 80.70 ± 15.70 62.28 ± 13.50 

BMI 24.23 ± 3.78 23.62 ± 3.99 
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Figure 5.1 Boxplots of subject demographic data for all subjects and grouped by sex, 
including: A) age, B) height, C) weight, D) hand-measured shoe length, E) foot length 
calculated from markers, and F) BMI. 

 

Subjects were screened for the following inclusion criteria: the subject 1) is 

between the ages of 18 and 60, 2) has no movement disorders, and 3) is self-assessed 

healthy. Subjects were also screened for exclusion criteria as follows: the subject 1) has 

neurological/psychological/neuromotor/musculoskeletal disorders, 2) had recent muscle 

over-strain/injury, 3) is known to experience severe skin reactions to foreign objects, or 

have skin allergies to silver, medical tape, or isopropyl alcohol, 4) is under the influence 

of any psychoactive substance including alcohol, 5) has implanted electronic devices of 

any kind, and 6) has irritated skin or open wounds. 
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5.2 Human Experiment Design and Approach 

5.2.1 Experimental Setup and Balance Exercises 

Subjects who meet the criteria were asked to wear appropriate clothing during the 

experiment session: tight shorts or leggings exposing the thigh, a tight top with minimal 

shifting, sneakers, and minimal/no reflective material. Those who participated in the study 

were informed and consented regarding the expected exercises and protocol, potential risks 

associated with the study, and their rights as a subject. Fall risks during balance activities 

were mitigated by providing rigid bars for the subject to hold on to when needed, reducing 

muscle fatigue with scheduled breaks, and at least one researcher was near the subject for 

support during the session. When handling data, identifiable subject information was de-

identified through replacement with an identification number. After the consent process, 

anthropometric measurements were taken from each subject (Table 5.3). 

 

Table 5.3 Anthropometric Measurements Taken from Each Subject 

Height Weight 

Leg Length (MAL-knee-ASIS) Arm/Wing Span 

Hip Height (from ankle-ASIS) Hip Width 

Shoulder Height (from ankle) Shoulder Width 

Knee Height (from ankle) Knee Width 

Elbow Span Elbow Width 

Ankle Height (from floor) Ankle Width 

Wrist Span Wrist Width 

Left Upper Arm Right Upper Arm 

Left Forearm Right Forearm 

Total Foot Length Metatarsal Joint to Heel Length 
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Depending on the subject’s shoe size, insole sensors (Moticon OpenGo Sensor 

Insoles, Size S6) were placed in the subject’s shoes to collect plantar pressure and were 

calibrated using their corresponding mobile application (Moticon OpenGo App). Due to 

the size of the available pair of insoles, which correspond to the shoe size EU 42/43, insole 

data was limited to subjects with larger feet. 

EMG data was collected to measure the activation patterns and intensities of 

various muscles during the prescribed exercises. sEMG sensors were placed on 16 muscles 

on the dominant side (Figure 5.2), which are listed in Table 5.4. 

Table 5.4 sEMG Sensor Numbers and Corresponding Muscles 

Dominant Side 

Sensor # Muscle Sensor # Muscle 

1 Gastrocnemius Lateralis 2 Gastrocnemius Medialis 

3 Soleus 4 Semitendinosus 

5 Biceps Femoris 6 Tibialis Anterior 

7 Vastus Medialis 8 Vastus Lateralis 

9 Rectus Femoris 10 Sartorius 

11 Rectus Abdominis 12 Erector Spinae Longissimus 

13 Multifidus 14 Gluteus Maximus 

15 Tensor Fasciae Latae 16 Iliopsoas 
 

The dominant side was selected due to a limitation in the number of available 

sEMG sensors and the fact that most of the activities are symmetric. sEMG placement areas 

were shaved to remove hair obstructing the connection between the sensor and skin, when 

necessary. Leg muscles were selected based on commonly selected muscles in balance 

literature (Barbado Murillo et al., 2012; Cimadoro et al., 2013; Lee, 2022; McKay et al., 

2021; Morris & Christie, 2020; Wang & van den Bogert, 2020), which generally included: 
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gastrocnemius medialis, soleus, tibialis anterior, rectus femoris, and biceps femoris. Extra 

upper-leg muscles were added to supplement existing literature, since many studies do not 

consider the activation patterns or contributions of the tensor fasciae latae, sartorius, vastus 

medialis, vastus lateralis, and semitendinosus muscles on balance. The iliopsoas muscle 

was also included since it is a stabilizing muscle and contributes to balance (Kappler, 1982; 

Lifshitz et al., 2020). Additionally, a strong core is commonly correlated with better 

balance (Chevidikunnan et al., 2016; Kahle & Tevald, 2014; Karthikbabu & Verheyden, 

2021; Watson et al., 2017); therefore, based on existing literature, three selected trunk and 

core muscles (erector spinae longissimus, multifidus, rectus abdominis) were included to 

investigate their activations and contributions to postural balance (Calatayud et al., 2015; 

García-Massó et al., 2016). 

 

 

Figure 5.2 sEMG placement on anatomical model assuming right-side dominant (left) and 
placement on a right-side dominant subject (right). 

Source for anatomical model: Innerbody Research. (2023). Interactive Guide to the Muscular System. 
Retrieved May 9, 2023 from https://www.innerbody.com/image/musfov.html 
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 Maximum voluntary contractions (MVCs) were collected for the normalization of 

the EMG signals during post-processing. Ten maximum voluntary contractions (MVCs) 

were collected for each subject (Table 5.5). 

Table 5.5 Maximum Voluntary Contraction Exercises for Dominant Side 

MVC Description Muscle(s) 

1 
Stand on toes (heel raise, plantarflexion) and hold 
for 3-5 seconds while resistance is applied 
downward on shoulders. 

Gastrocnemius Medialis, 
Gastrocnemius Lateralis, 
Soleus 

2 Lift toes up (dorsiflexion) while resistance is 
applied downward on top of foot. Tibialis Anterior 

3 
While seated, knee of instrumented leg is extended 
straight while resistance is applied downward on 
shin. 

Rectus Femoris, Vastus 
Medialis, Vastus 
Lateralis 

4 

While seated, knee is bent and subject attempts to 
lift ankle to opposite knee while resistance is 
applied to the medial side of the dominant ankle. If 
seated does not provide enough activation, perform 
same activity while in a supine position. 

Sartorius 

5 
While in a supine position, flex the knee and 
attempt to lift towards self while resistance is 
applied against top of the thigh. 

Iliopsoas 

6 
While in a supine position, attempt to perform a 
sit-up while resistance is applied to the shoulders 
and/or torso. 

Rectus Abdominis 

7 

While in a prone position, perform a “Superman” 
exercise by lifting both arms and legs to flex the 
back while resistance is applied to all four 
peripheral limbs. 

Erector Spinae 
Longissimus, Multifidus 

8 
While in a prone position, bend knee of 
instrumented leg while resistance is applied to the 
shank. 

Semitendinosus, Biceps 
Femoris 

9 

While in a prone position, light thigh up away from 
the weight bench while resistance is applied 
against the back of the thigh. Alternatively, while 
standing, place hands on bench while bent over and 
“kickback” against resistance. 

Gluteus Maximus 

10 
While laying on non-dominant side, laterally raise 
the instrumented leg away from self while 
resistance is applied downwards against the shank. 

Tensor Fasciae Latae 
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Subjects were prepared for the study by placing 57 optical markers on bare skin or 

clothing with skin-safe double-sided tape, following the Biomech 57 markerset from 

OptiTrack (Figure 5.3 and Figure 5.4). OptiTrack Prime 13 cameras and OptiTrack’s 

Motive 3.0.1 software were used for collecting kinematic data. After placing the markers, 

subjects were asked to stand still in an anatomical pose (standing up straight, feet shoulder-

width apart and parallel, arms by side with palms facing forward) and a T-pose (standing 

up straight, arms raised laterally perpendicular to the body with palms facing down) to 

collect static data for both calibrating the avatar in Motive and later scaling the MSK model. 

 

Figure 5.3 Biomech-57 Markerset from OptiTrack Motive documentation. 

Source: OptiTrack. (2022). Biomech (57) - OptiTrack Documentation. Retrieved November 7, 2020 from 
https://docs.optitrack.com/movement-sciences/movement-sciences-markersets/biomech-57 
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Figure 5.4 Subject standing in T-pose on AMTI force plates; the subject is outfitted with 
markers, sEMG sensors, and insoles (in sneakers). 

 

After the preparation period, subjects were asked to perform a specific set of 

balance exercises (Table 5.6). GRF data was also collected through force plates on the 

ground, on which the balance exercises were executed. Each subject was asked to perform 

10 different exercises: quiet standing in double stance, quiet standing in double stance with 

eyes closed, single leg standing, standing in tandem stance, standing heel-toe raises, 

maximum voluntary sway (Anterior-Posterior/AP direction), supported leaning (AP 

direction), leaning with a push (AP direction), squatting, and sit-to-stand transitions. 

Exercises that involved holding a specific pose (quiet standing, quiet standing with eyes 

closed, single leg standing, tandem stance) were held for 30 seconds in total. Heel-toe 

raises, maximum voluntary sway, supported leaning, leaning with a push, squats, and sit-

to-stand cycles were repeated for 10 reps in each direction. 
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Table 5.6 Pictures of Performed Balance Exercises 

1) Standing & 2) Eyes Closed Standing 3) Standing on One Leg 

  

4) Tandem Stance (Dominant in Front) 4) Tandem Stance (Non-Dominant in Front) 
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5) Heel-Toe Raises 6) Voluntary Sway 

  

7) Supported Lean 8) Lean with Push 

 

  



 

99 

9) Squats 10) Sit to Stand & Stand to Sit 

 
 

 

5.3 Kinematic Data Processing 

5.3.1 Marker Gap Filling 

Since gaps occurred in the marker trajectories due to occlusions during the trials, this 

missing data had to be filled. The sternum (SXS), anterior superior iliac spine (ASIS), and 

trochanter (TRO) markers were especially prone to being occluded by the subject’s arms 

being crossed over their chest or their pants folding over the markers while moving. Gaps 

were filled in OptiTrack’s Motive 3.0.1 software manually based on the size and severity 

of the gap. If a gap was less than approximately 10 frames, a cubic interpolation was used, 

since small gaps are less likely to have high variations in their movement. Larger gaps were 

typically filled using a pattern-based approach, where the interpolation was based on 

another marker located on the same rigid body. For instance, if the ASIS marker was 

occluded for 100 frames, the posterior superior iliac spine (PSIS) markers could be used 

for a pattern-based fill, since the ASIS and PSIS markers are located on the same rigid 
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body (i.e., pelvis). All trials were filled following these general guidelines, then exported 

as CSV and TRC files through the Motive Batch Processor for further analysis. 

5.3.2 OpenSim Scaling and Kinematics 

To compute the COM for each subject, inverse kinematics had to be performed using the 

tracking data collected from the marker-based motion capture. Each subject had a 

corresponding musculoskeletal model (Hamner et al., 2010) that was scaled using 

OpenSim 4.4 (Figure 5.5), where the model was comprised of 23 DOFs and 92 

musculotendon actuators. For scaling, each subject’s anatomical pose was used, since this 

posture provides a more natural and relaxed stance for the subject—T-pose was observed 

to shift marker positions on the arms and narrow the shoulders of the subject. Although the 

MSK model used in Chapter 4 had 10 DOFs, the higher DOF Hamner model was used here 

for processing the experimental data to help increase the accuracy of the COM, since the 

COM is highly reliant on the number of rigid bodies and joints taken into consideration 

when performing kinematics. Additionally, when scaling, the “preserve mass distribution” 

option in OpenSim was unchecked to ensure that the variability in mass distribution of each 

subject was considered. After a model was scaled, it was prepared for inverse kinematics 

(IK) by better adjusting the marker positions and removing the scaling markers (i.e., 

RHME, LHME, RFME, LFME, RTAM, LTAM); the scaling markers were also removed 

during the experimental trials, as they were used to create the skeleton avatar in OptiTrack 

and were not needed during the dynamic trials. Additionally, some tracking markers (i.e., 

RUA, LUA, RTH, LTH, RSK, LSK) were also removed, since these are not directly used 

for joint kinematics and are placed somewhat arbitrarily for each subject. IK was performed 

in OpenSim using the IK tool by loading in the tracking marker data for each respective 
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exercise, and weights for each marker were set to 1.0 so that all markers contributed equally 

to the motion. 

 

Figure 5.5 Example subject in anatomical pose (left) and their resulting scaled 
musculoskeletal model (right). 

 

Body kinematics were performed in OpenSim using the Analyze tool, where the 

resulting motion from IK for each exercise was selected as the input into the analysis. Body 

kinematics provides the position, velocity, and acceleration of all bodies within the MSK 

model; however, even though COM position and velocity are included in the body 

kinematics, the COM acceleration is not. To calculate the COM acceleration when needed, 

the COM velocity was filtered and then derived. 
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5.4 EMG Data Processing 

5.4.1 EMG Filtering 

All EMG signals were first high-pass filtered, then rectified and de-meaned, and were 

finally low-pass filtered to obtain the envelope (Arnold et al., 2013; Uchida & Delp, 2021). 

EMG signals (minus the rectus abdominis and erector spinae longissimus muscles) were 

high-pass filtered using a fourth order zero-lag Butterworth filter with a cutoff frequency 

of 30 Hz and sample frequency of 1000 Hz. The rectus abdominis and erector spinae 

longissimus muscles were generally subject to noise from local ECG effects, which 

resulted in false activation spikes that reflected the subject’s heartbeat. Although a 30 Hz 

high-pass filter is generally accepted to remove this noise, since the majority of the power 

of an ECG signal is expected to be below 30 Hz (Murthy et al., 1978), using the same high-

pass filter for these trunk muscles was not enough to completely filter the ECG signal. A 

QRS complex template subtraction method (Costa Junior et al., 2019) was attempted to 

remove the ECG signal more accurately; however, this was not easily generalizable to all 

subjects due to the need for fine-tuning filter parameters. For a more simple approach, the 

ECG signal’s power was assumed to be below 45 Hz for this approach (Abbaspour & 

Fallah, 2014), and a fourth order zero-lag Butterworth filter with a cutoff frequency of 45 

Hz and sample frequency of 1000 Hz was tested on the trunk EMG sensors that showed 

artifacts (rectus abdominis and erector spinae longissimus). Occasionally, the multifidus 

showed slight artifacts from heartbeat, but this was not notable enough to make a 

generalization to all subjects. Therefore, a fourth order zero-lag Butterworth filter with a 

cutoff frequency of 45 Hz and sample frequency of 1000 Hz was used for the rectus 

abdominis and erector spinae longissimus, while taking into consideration that this choice 

will cause some removal of the EMG signal.  
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 After the high-pass filter, each EMG signal was de-meaned and full-wave rectified 

before being low-pass filtered using a sixth order zero-lag Butterworth filter with a cutoff 

frequency of 5 Hz and sample frequency of 1000 Hz. Since the majority of exercises in this 

study were less dynamic, this lower cutoff frequency was reasonable to achieve a cleaner 

EMG signal necessary for further analysis. 

 Although sEMG sensors were securely taped on and wrapped in place, due to 

movement and skin artifacts, there were occasional contact issues between the sensor and 

the skin. Effects from contact loss were reduced by detecting unexpected spikes in data 

through percentile-based outlier detection. Using a rectified and de-meaned version of the 

unfiltered EMG signal, the lower percentile was set to 0% (as no signal should be below 0 

due to the rectification) and the upper percentile was set to 99.5% (as there were minimal 

peaks and over 30,000 datapoints for most trials). Though, it should be noted that each 

EMG signal had a different number of peaks from contact loss and the percentiles should 

be adjusted for each muscle individually. However, the 99.5% upper limit was observed to 

work well enough for less problematic signals. These moments of contact loss were then 

linearly interpolated, and the resulting EMG signal was used for further filtering; “spline” 

interpolation was also attempted, but this caused unfavorable spikes in the resulting signal 

when the percentiles were adjusted to lower values. 

5.4.2 EMG Normalization 

To better understand the activations reflected in the EMG signals, the data from each 

muscle’s sEMG sensor is normalized with a reference (Halaki & Ginn, 2012; Lehman & 

McGill, 1999; Yang & Winter, 1984). The current general “gold standard” is to perform 

MVC trials, where subjects perform exercises intended to activate specific muscles and the 
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corresponding EMG signal is treated as the maximum for the normalization. MVCs can be 

further separated into isometric or dynamic trials (Chuang & Acker, 2019; Uchida & Delp, 

2021), where dynamic trials involve a high-intensity movement that would produce a 

maximum for the muscle(s) of interest (Wang et al., 2023). However, this is dependent on 

the exercises that are chosen, the number of times those exercises are performed, a subject’s 

energy levels that day, and many other factors. 

In this study, EMG signals were normalized by spanning through both the MVC 

trials and the balance exercises for a maximum value, and each EMG signal was filtered 

following the method outlined in 5.4.1 prior to selecting the maximum. For many subjects, 

normalization from MVC trials alone was not sufficient to scale the EMG signals between 

0 and 1; higher activations could be observed in the balance exercises themselves, which 

served as the motivation for including EMG signals from the exercises as well when 

selected the maximum value for normalization. For instance, during the squatting trials, 

muscle activations in the thigh muscle were sometimes observed to be higher than the 

MVC trials (e.g., an approximately 5x increase in the filtered EMG signal for Subject 02 

from ~0.028 mV for the vastus medialis and lateralis during the MVC trial to ~0.15 mV 

taken from the squatting trial); similarly, the heel and toe raises were observed to produce 

higher activations in the lower-leg muscles. However, contact loss was observed to affect 

normalization of EMG signals, since the spikes in voltage can artificially create maxima in 

the data. In cases where the abovementioned contact loss filter was insufficient in removing 

these spikes, the problematic trials were ignored during the normalization process. The 

normalization signals used for each subject were individually checked to ensure that no 

artificial maxima were used (Figure 5.6). 
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Figure 5.6 EMG signals for Subject 02 where the maximum was taken for normalization, 
with their corresponding trial file names. 
 

5.4.3 Force Plate Conventions and Equations 

GRF data was collected from AMTI OR6-7-2000 force plates (Figure 5.4 and 

Figure 5.7) through a National Instruments BNC2090A terminal block, where each force 

plate was attached to an AMTI MSA-6 amplifier. These were then synced with OptiTrack’s 

Motive software through the OptiTrack eSync-2 device using the internal clock setting. 

The COP in the AP and ML directions can be calculated for each exercise using the GRF 

data collected from the force plates (in the local frame) using the following equations: 

 

 𝑋𝑋𝐶𝐶𝑃𝑃𝐴𝐴𝑃𝑃 =
−𝑋𝑋𝑥𝑥

𝐹𝐹𝑧𝑧
     𝑋𝑋𝐶𝐶𝑃𝑃𝑀𝑀𝐿𝐿 =

𝑋𝑋𝑦𝑦

𝐹𝐹𝑧𝑧
 (5.1) 

 

where 𝑋𝑋𝑥𝑥 and 𝑋𝑋𝑦𝑦 are the moments in their respective axes, and 𝐹𝐹𝑧𝑧 is the vertical force. 
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Figure 5.7 Orientation of both the A) local frame and the B) reaction frame for the AMTI 
force plates. The local frame indicates the corresponding axes for the collected data, and 
the reaction frame indicates the forces acting on the person. 

 

5.5 Results 

5.5.1 Quantification and Assessment with Balanced Regions 

Each subject had their BR generated for each of the five sway-type activities: voluntary 

sway, supported forward leaning, supported backward leaning, forward lean with a push, 

and backward lean with a push. These were determined through the aforementioned body 

kinematics analysis (5.3.2) by extracting the time-series COM position and velocity data. 

The velocity obtained from this analysis is too noisy for direct use, likely due to the 

derivation needed to go from position to velocity, it was filtered using a sixth order zero-

lag Butterworth filter with a cutoff frequency of 5 Hz and sample frequency of 100 Hz. 

This was based on filters commonly used for marker data in walking trials (Rácz & Kiss, 

2021); since the sway-type activities are less dynamic than typical gait, a slightly lower 

cutoff frequency was used. 

 During the supported and pushing trials, hand contact may contribute to the 

subject’s balance recovery. However, there were no sensors placed on the researcher’s 
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hands to measure this during the trial; therefore, a free-body diagram was used to estimate 

the amount of external pushing force from the hands (Figure 5.8). 

 

Figure 5.8 General free-body diagram of subject on force plate with three main forces on 
the subject: external pushing force, friction force, and the total inertial/acceleration force. 

 

The force balance on the free-body diagram provides the following equation: 

 

 �𝐹𝐹 = 𝑚𝑚𝑎𝑎 = 𝐹𝐹𝑝𝑝𝑚𝑚𝑚𝑚ℎ − 𝐹𝐹𝑓𝑓𝑟𝑟𝑖𝑖𝑐𝑐𝑑𝑑𝑖𝑖𝑜𝑜𝑛𝑛 (5.2) 

 

where 𝑚𝑚 is the subject’s mass, 𝑎𝑎 is the subject’s acceleration calculated from the body 

kinematics analyses, 𝐹𝐹𝑝𝑝𝑚𝑚𝑚𝑚ℎ is the unknown force from the hand contact, and 𝐹𝐹𝑓𝑓𝑟𝑟𝑖𝑖𝑐𝑐𝑑𝑑𝑖𝑖𝑜𝑜𝑛𝑛 is the 

friction force as measured by the force plate. After rearranging Eq. (5.2), we can determine 

an estimate of the external pushing force through: 

 

 𝐹𝐹𝑝𝑝𝑚𝑚𝑚𝑚ℎ = 𝑚𝑚𝑎𝑎 + 𝐹𝐹𝑓𝑓𝑟𝑟𝑖𝑖𝑐𝑐𝑑𝑑𝑖𝑖𝑜𝑜𝑛𝑛 (5.3) 

 

𝐹𝐹𝑝𝑝𝑚𝑚𝑚𝑚ℎ was then plotted for all trials to find a force threshold that would be able to 

approximately identify moments with hand contact. Force profiles for voluntary sway and 
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backward leaning with a push are presented for one subject as an example (Figure 5.9). 

The external pushing force during voluntary sway is minimal, which is expected since there 

is no contact. During the supported sway exercises, the external force is generally above 

10 N and below 40 N for most subjects. On the other hand, during the push exercises, the 

calculated external force can reach up to 150 N with some subjects; this spike in the 

external force also has a distinct profile that is indicative of pushing. After comparing the 

force profiles across all subjects, a threshold of ±30 N (with the sign depending on direction 

of the pushing force) was used to determine hand contact. Since the estimated pushing 

force during voluntary sway a small nonzero number and the estimated pushing force 

during supported leaning was generally below 40 N, this threshold was selected as a more 

relaxed criterion so that data from voluntary sway and supported leaning would not be lost. 

Although there was a small contribution during supported leaning, the pushing force was 

not expected to provide enough assistance to alter subjects’ balance recovery capabilities. 
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Figure 5.9 Forces from acceleration, friction, and pushing are presented for an example 
subject during the A) Voluntary Sway, B) Supported Backward Lean, and C) Backward 
Lean with Push exercises. Acceleration Force: 𝑚𝑚𝑎𝑎; Measured Friction Force: 𝐹𝐹𝑓𝑓𝑟𝑟𝑖𝑖𝑐𝑐𝑑𝑑𝑖𝑖𝑜𝑜𝑛𝑛; 
External Force: 𝐹𝐹𝑝𝑝𝑚𝑚𝑚𝑚ℎ. 
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After determining the force threshold, the portions of the balance COM state that 

were estimated to be without hand contact were extracted for the supported and pushing 

conditions. Additionally, the recovery phases of the exercises were also isolated based on 

the direction of the COM velocity (i.e., whether the velocity was positive/negative) and 

included for BR generation, while the leaning (forward or backward) phases were not 

included in BR since these phases end with hand support. The COM states of the voluntary 

sway, supported leaning, and perturbed leaning trials were then plotted for each subject to 

obtain their respective balance regions (Figure 5.10). 

From the figure depicting the BRs of all subjects, during the voluntary sway 

exercise (blue), subjects’ COM states stay within the analytical boundaries determined by 

the LIP model (using their respective height and foot length). COM states during supported 

leaning also generally stay within the analytical limits; though, in some cases, the subjects 

are able to reach the edges of their BoS in the supported condition, which is what the 

exercise was intended to do. By providing assistance during the leaning phase, we 

hypothesized that the fear of falling would be lessened and that subjects would be able to 

recover from farther COM displacements than they would have been able to achieve during 

voluntary swaying. On the other hand, the pushing exercises were intended to “fill in” the 

higher velocity portions of each subject’s BR. Even though the pushing forces had to be 

removed, it can still be observed that the subject’s COM position is close to the BoS limits. 

While supported leaning provides useful information regarding a person’s ability to recover 

from larger COM displacements, the pushing trials also shed light onto the ability to 

recover from perturbations. 
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Figure 5.10 Experimental balance regions for all subjects, where voluntary sway is blue, 
supported forward leaning is red, supported backward leaning is yellow, forward lean with 
a push is purple, and backward lean with a push is green. The analytical LIP boundary is 
presented in black, and the foot (from marker positions of the heel and toe) of the subject 
is also presented in black with the subject’s ankle position at x = 0 (from body kinematics). 
All COM positions are with respect to the ankle position. Thick lines indicate the balance 
recovery portions of the exercise when there is no external support or pushing forces 
applied (based on the force threshold), and the lighter lines indicate the entire trial with 
duplicated portions covered by the thick line. 
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5.5.2 Muscle Activity Comparisons and Analyses for Sway-Type Exercises 

To investigate the activation patterns and muscle selection during the exercises, 

particularly the sway-type activities, each EMG signal was filtered (5.4.1) and normalized 

(5.4.2). Each sway activity was broken down into different phases, depending on the 

different postures present in each activity (Figure 5.11). Since multiple reps were 

conducted during the trial for each exercise, this breakdown allows for an easier 

comparison between the different strategies needed for postural balance. 

 

Figure 5.11 Activity phases for sway-type activities. A) The voluntary sway exercise 
involved subjects starting from a standing posture (0%), leaning forward (25%), returning 
to standing (50%), leaning backward (75%), then returning to standing again (100%). B) 
The activities involving a forward lean only (supported forward lean and forward lean with 
push) were broken down into initial standing (0%), forward lean (50%), and returning to 
standing (100%). C) Similarly, activities involving a backward lean were split up into an 
initial standing posture (0%), backward lean (50%), and the recovered standing posture 
(100%). 
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EMG signals were first segmented to break each rep down into these activity phases 

by using the COM velocity in the AP direction, which was also filtered according to the 

process for the BRs (5.4.1). The velocity was used because this would better indicate 

standing postures and swaying postures, since leaning forward/backward then recovering 

back to standing would require a change in direction. However, since each rep had a 

different time duration, the length of each EMG segment would have to be adjusted so that 

they can be compared; therefore, EMG signals were time-normalized using the time 

duration of each of these activity phases in each rep. During the time-normalization, each 

segment of the EMG signal was resampled to 500 samples by a factor calculated from the 

segment’s time duration, ensuring that each EMG segment had an equal length allowed for 

the averaging across all reps for each sway-type activity. This resampling was performed 

using the resample function available in MATLAB, which applies an FIR Antialiasing 

Lowpass Filter to the data for sampling by default. After each activity phase was 

resampled, they were then conjoined again to represent the entire rep of the exercise from 

0% to 100% and averaged across all reps. This mean EMG activity for each subject was 

then averaged together to provide a final representation of the overall EMG activity for 

each exercise. The EMG activity patterns for all sixteen muscles averaged across all 

subjects are presented for the five sway-type exercises (Figure 5.12 – Figure 5.16). 

Additionally, the mean EMG activity with standard deviations for two example subjects (1 

male and 1 female) are provided in Appendix A. 
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Figure 5.12 Mean EMG activity for Voluntary Sway from all subjects. Shaded region 
indicates ± SD of the mean EMG activity for each subject.  

 

 

Figure 5.13 Mean EMG activity for Supported Forward Lean from all subjects.   
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Figure 5.14 Mean EMG activity for Supported Backward Lean from all subjects. 

 

 

Figure 5.15 Mean EMG activity for Forward Lean with Push from all subjects. 
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Figure 5.16 Mean EMG activity for Backward Lean with Push from all subjects. 

 

When considering muscle activations profiles during the sway-type activities, 

which were obtained through the sEMG sensors, there is a general trend of relying on 

lower-leg muscles. Since subjects were instructed to employ ankle strategies when 

recovering their balance, this preference of muscles closer to the ankle makes sense. 

Additionally, during the backward leaning portions of the activities, anterior muscles 

tended to be recruited; similarly, forward leaning induced the activation of more posterior 

muscles. This is more apparent in the supported and perturbed trials, which may have been 

due to some assistance and reassurance provided by the researcher. However, there seems 

to be some co-contraction occurring around the ankle during voluntary sway, which had 

no interaction with the researcher; this could be caused by the subject bracing themselves 

throughout the sway to maintain balance and should be investigated further. 
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5.6 Conclusions and Discussion 

This series of experiments served as a means of determining the feasibility of measuring 

postural stability using motion capture. Through the prescribed exercises, data from 

kinematics and EMG were used to investigate the effects of postural changes on balance, 

particularly through the sway-type activities. Using the subject-specific MSK models, BRs 

were generated for each subject to provide a metric of assessing balance through their COM 

state during the trials. Using the foot BoS and analytical LIP limits as references, the COM 

state trajectories from successful trials showed the subjects’ ability to maintain their COM 

state within the analytical limits. Additionally, sEMG data showed a preference for lower-

leg muscles during the balance recovery tasks, which was expected due to the imposed 

ankle strategy during the trials. 

 Although the presented experimental study was successful at demonstrating the 

feasibility of quantifying balance, there were a few limitations and areas of improvement. 

For instance, collecting data from the iliopsoas using sEMG can be difficult (Jiroumaru et 

al., 2014) and many existing approaches involve fine-wire EMG (Andersson et al., 1997; 

Basmajian, 1979; Juker et al., 1998). When using sEMG, the iliopsoas is susceptible to 

crosstalk from other neighboring hip flexor muscles, since it is a deeper muscle; this is why 

those who choose to collect data from the iliopsoas may prefer to use fine-wire EMG, but 

this is more invasive than sEMG and subjects may be less willing to participate in these 

trials. Here, the inclusion of the iliopsoas was to include hip flexion in general, which is 

why sEMG was considered to provide enough information and more in-depth approaches 

weren’t taken. Additionally, sEMG data that was collected from the trunk muscles had 

contamination from nearby ECG signals, which was mitigated using a 45 Hz high-pass 

filter; however, this also removes some of the sEMG data and is not ideal. In the future, 
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ECG signal removal based on independent component analysis (Willigenburg et al., 2012) 

or empirical mode decomposition (Cimeša et al., 2017; Taelman et al., 2011) should be 

explored. Lastly, due to a limitation in the number of sEMG sensors, the muscles that were 

collected were selected carefully. Although more muscles were included in this study when 

compared to most existing literature, there are still other muscles that would have been 

important to include in balance-related experiments: peroneus longus, extensor digitorum 

longus, gracilis, adductor longus, adductor magnus, external obliques, transverse 

abdominis, and semimembranosus. 

Regarding the kinematics, it should be noted that the sternum marker was highly 

susceptible to being occluded due to the arms-crossed condition, so the weight of the 

sternum marker should have been adjusted; however, when the sternum marker weight was 

lowered in a few test cases, the marker error during IK did not change or improve—so, 

equal contribution across all markers was used for IK. Additionally, the pelvis and 

trochanter muscles were also highly susceptible to occlusion during the squat and sit-stand 

trials; thus, the IK for those trials tended to have the highest marker error across all subjects, 

but those trials were not investigated in the work presented here. 
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CHAPTER 6 

SUMMARY AND FUTURE WORK 
 

As the prevalence of balance issues continues to rise in society, assessing and treating 

balance deficiencies becomes increasingly crucial. However, clinical approaches that are 

currently accepted as the standard of care (i.e., Berg Balance Scale, MiniBESTest) have 

limitations in their subjectivity and ability to quantify patient performance. In recent years, 

there has been a strong push to integrate more sensor-based technologies and 

methodologies into clinics to enable more objective measures to be tracked. In line with 

this, we explored region-based balance analyses that quantify balance in the COM state 

space, which provides a holistic understanding of a person’s physical capabilities. We 

hypothesized that using an MSK model integrated with RL-trained muscle control would 

result in a more physically relevant balance region analysis and that the region-based 

analysis could be extended to investigate the effects of underlying muscle characteristics 

by incorporating neuromuscular factors associated with aging or neurological disorders. 

We set out to examine three specific aims: 1) Developing generalizable balance assessment 

metrics using the BR method, 2) Designing an RL-based algorithm for training robust 

muscle controllers for balance recovery, and 3) Establishing an experimental approach to 

evaluate balance and validate computational results. 

 To accomplish the first aim, we established a computational approach to develop a 

generalizable balance assessment method by demonstrating a baseline BR that could then 

be scaled to new subjects, allowing for the generation of subject-specific BRs based on 

anthropometric measurements. These BRs provide a quick and objective measurement of 

a subject’s balance capabilities. In the second aim, we expanded existing BR 
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methodologies and used an RL-based algorithm to learn muscle-based balance controllers, 

which were then tested to generate BRs. By utilizing a MSK model in the analysis of 

balance, rather than a joint torque-actuated model, our approach offers a more direct 

physiological interpretation of balance assessment. We accomplished this by incorporating 

neuromusculoskeletal physics and balance-inspired rewards for the RL training, employing 

a combination of training strategies (including novel RSI, early termination, and 

curriculum learning), and utilizing two separate yet interconnected neural networks for 

torque and muscle activation. Through this, we compared the subsequently obtained BRs 

with the analytical limits defined by the corresponding LIP model, which showed apparent 

deviations from the expected boundaries; for instance, the analytical limits seem to hold 

true closer to zero COM velocity but seem to overestimate the balancing capabilities as the 

COM velocity increases in either the forward or backward direction. 

In the third aim, we established an experimental protocol and subsequent data 

processing pipeline to demonstrate the feasibility of assessing balance through BRs and to 

provide a contextualization for the simulation work performed in aims 1 and 2. Through 

these experiments, we determined that humans are less likely to reach their theoretical 

limits as determined by the LIP model when an ankle strategy is encouraged. This 

observation is in line with the results from the simulation work, since BRs from the RL-

based muscle controller were unable to surpass the theoretical limits mostly. 

 Although the RL-based muscle controller demonstrated the capability to provide a 

region-based balance assessment, there remains a few areas of improvement that were 

delved into in this approach. One notable aspect is enhancing the controller’s robustness. 

While robustness was considered to some degree through RSI, further measures are 
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necessary to create a widely generalizable balance controller. To address this, future plans 

include introducing more domain randomization and random perturbations during the 

training to expose the controller to a wider array of environment variations and increased 

difficulties. We also plan to improve the controller by considering other learning 

algorithms or training strategies, which can then be compared to select an algorithm with 

better performance. In order to provide better context and understanding on balance, we 

intend to introduce more balance-specific reward formulations that align with balance goals 

and strategies. Lastly, the results of the controller are currently limited to the simulation 

environment. While the experiments performed in the third aim provide some insight into 

the RL-based controller’s outputs, a more in-depth analysis and comparison between 

simulation and empirical data is necessary. This analysis will provide a more robust 

evaluation and validation of the controller's performance in real-world scenarios. 

 When examining the conducted experiments, there are a few notable limitations 

that should be acknowledged. Firstly, the EMG filtering of certain sensors with ECG 

contamination or contact loss was performed but can be argued that the approach taken 

was not rigorous enough to obtain clean signals in some activities. Regarding the hand 

contribution, the use of a force sensing resistor, pressure gloves, and/or the addition of 

reflective markers onto the researcher’s hands in future experiments would help mitigate 

the uncertainty in hand contact and give more insight into the amount of force being 

applied. Similarly, the use of a perturbation device (e.g., a handheld device like in 

(Ferraresi et al., 2021) or a benchtop cable-driven device like in (Tan et al., 2020)) would 

provide a more consistent force application, rather than relying on the researcher’s strength, 
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and could open the door for a more systematic approach to measure recoverable 

perturbations by incrementally increasing the amount of force applied. 

In future experiments, we plan to explore two other avenues for balance assessment: 

dynamic balance and recovery from platform perturbations. Examining region-based 

approaches for assessing and quantifying dynamic balance activities, such as excursion 

tests, would enhance current clinical approaches. Currently, excursion tests involve 

measuring the maximum reach of a patient’s free leg in multiple directions while standing 

on the other leg. While this offers some level of quantification, implementing a COM-

based approach would significantly improve the assessment of these activities. Secondly, 

platform perturbations closely resemble the types of uncertainties encountered in our daily 

life, such as slipping on black ice or sudden jolts from a train stop. Thus, it is crucial to 

conduct further experimental investigations into the ability to recover from such 

perturbations and develop assessment and training methods for balance to prevent potential 

falls in the future. These investigations are of paramount importance for improving balance 

rehabilitation strategies and reducing the risk of falls. 
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APPENDIX A 

AVERAGED EMG ACROSS REPS FROM TWO EXAMPLE SUBJECTS FOR 
ALL SWAY-TYPE EXERCISES 

Figures A.1 to A.5 show the average normalized EMG activity for Subjects 19 (F) and 21 
(M) for all five sway-type activities. 

 

 
Figure A.1 Mean normalized EMG activity for Subject 19 (F) and Subject 21 (M) 
during the voluntary sway activity. Shaded region indicates ± SD of the mean EMG 
activity for each subject. 

 



 

127 

 

Figure A.2 Mean normalized EMG activity for Subject 19 (F) and Subject 21 (M) 
during the supported forward lean activity. 
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Figure A.3 Mean normalized EMG activity for Subject 19 (F) and Subject 21 (M) 
during the supported backward lean activity. 
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Figure A.4 Mean normalized EMG activity for Subject 19 (F) and Subject 21 (M) 
during the forward lean with push activity. 
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Figure A.5 Mean normalized EMG activity for Subject 19 (F) and Subject 21 (M) 
during the backward lean with push activity. 
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