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ABSTRACT

DEEP HYBRID MODELING OF NEURONAL DYNAMICS USING
GENERATIVE ADVERSARIAL NETWORKS

by
Soheil Saghafi

Mechanistic modeling and machine learning methods are powerful techniques for

approximating biological systems and making accurate predictions from data.

However, when used in isolation these approaches suffer from distinct shortcomings:

model and parameter uncertainty limit mechanistic modeling, whereas machine

learning methods disregard the underlying biophysical mechanisms. This dissertation

constructs Deep Hybrid Models that address these shortcomings by combining deep

learning with mechanistic modeling. In particular, this dissertation uses Generative

Adversarial Networks (GANs) to provide an inverse mapping of data to mechanistic

models and identifies the distributions of mechanistic model parameters coherent to

the data.

Chapter 1 provides background information on the major ideas that are

important for this dissertation. It provides an introduction to parameter inference

techniques and highlights some of the methodologies available for solving stochastic

inverse problems. Chapter 2 starts with a brief overview of the Hodgkin-Huxley

model, and then introduces other conductance-based models that are used in the

dissertation. The first part of Chapter 3 focuses on methodologies for global

sensitivity analysis and global optimization, in particular Sobol sensitivity analysis

and Differential Evolution. The second part of this chapter explains how the Markov

chain Monte Carlo (MCMC) algorithm can be used for parameter inference and

then introduces a novel parameter inference tool based on conditional Generative

Adversarial Networks (cGANs). In Chapter 4, the performance of cGAN and MCMC

are compared on synthetic targets. Chapter 5 then uses cGAN to infer biophysical



parameters from experimental data recorded at the single-cell and network levels

from neurons involved in the regulation of circadian (∼24-hour) rhythms and from

brain regions associated with neurodegenerative diseases. Finally, conclusions and

suggestions for further research are presented in Chapter 6.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Mechanistic models are built on an understanding of how the components of a system

behave, and are powerful tools for approximating biological systems. However,

determining whether or not such a model and its outputs are coherent with a set

of experimental observations is a major challenge since mechanistic models contain

many unknown parameters and are not amenable to statistical inference due to their

non-invertibility. The main difficulty in solving the inverse problem for mechanistic

models arises from intractability of the likelihood function [13]. On the other hand,

purely statistical models with tractable likelihoods do not provide much insight

into the underlying biological mechanisms [20]. Improvements in methodologies

for parameter identification of mechanistic models are needed to advance towards

reproducibility of real-world data by models capable of both predicting and explaining

physiological and pathophysiological phenomena.

1.2 Deep Hybrid Modeling

Empirical models are based on patterns observed in data rather than underlying

mechanistic knowledge of a system’s components. Machine learning (a.k.a. statistical

learning) is a type of empirical modeling where algorithms are trained on data and

then are capable of producing accurate data-driven predictions using computational

techniques that do not rely on a predefined equation as a model [3, 42,59]. However,

it is often difficult to interpret how a machine learning algorithm is making its

predictions in terms of the underlying biology. Hybrid modeling (HM) is a framework

that integrates the machine learning approach with mechanistic models [27, 35, 39].

The primary goal of this thesis is the development and application of a flexible
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hybrid modeling architecture that enables the mapping of streams of experimental

observations into the space of biophysical model parameters (see Figure 1.1). We

will apply this framework to tackle a set of important biological questions involving

neuroscience and circadian (∼24-hour) rhythms.

Figure 1.1 Overview of the hybrid modeling concept. HM is a hybrid machine
learning/mechanistic modeling library developed at IBM Research by Viatcheslav
Gurev, Jaimit Parikh, and Timothy Rumbell. The HM library enables the mapping
of a stream of experimental observations (Y ) into the space of biophysical parameters
(X) through a mechanistic model (M). Given the joint density of features extracted
from experimental observations, the goal of HM is to perform an inverse mapping
to identify the distribution of mechanistic modeling parameters coherent to the data
(see Chapter 3 for definition of coherent).

Machine learning (ML) algorithms can be divided into two categories:

supervised learning and unsupervised learning. In supervised learning, ML models

learn the boundaries between classes or labels in a dataset in the form of classification

or regression problems, and then are used to make predictions given new data points.

These models, which result from various ML approaches such as logistic regression,

support vector machines, and classification trees, are referred to as discriminative

models [3,42,59]. In unsupervised learning, ML algorithms such as Bayesian networks,

autoregressive models, and generative adversarial networks (GANs) are used to
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perform probability and likelihood estimation. These models are able to generate new

data instances, thus they are referred to as generative models [22, 64]. In this study,

we will develop GANs to solve generative modeling problems where experimental

data comes from multiple individuals (or cells) across a population, and the task is

to sample (or generate) mechanistic model parameter sets such that the resulting

population of model outputs is consistent with the observed population data. This is

referred to as the stochastic inverse problem or the “population of models” problem

[10, 34]. Here, we use deep learning to perform inversion of complex biophysical

models and enable the mapping of experimental data into the space of biophysical

model parameters. Since this approach combines deep learning with mechanistic

modeling, we refer to it as deep hybrid modeling (DeepHM).

In biological systems, the tremendous amount of inherent cell-to-cell variability

presents a significant challenge to mapping experimental data to underlying cellular

mechanisms. It is common to handle this variability by simply averaging over the

data and finding a single set of model parameters that best fits the averaged data.

The “populations of models” approach allows deterministic models to reflect the

inherent variability in biological data through identification of not just the single

best parameter set but a population of parameter sets such that the output of the

group of models displays the same heterogeneity as the population being modeled

[2, 7, 20, 34, 38, 54, 60]. The problem of constructing populations of deterministic

models and identifying distributions of model input parameters from stochastic

observations from multiple individuals in a population is known as the stochastic

inverse problem (SIP). State-of-the-art methods for solving SIPs apply Bayesian

inference techniques, including Markov chain Monte Carlo (MCMC) sampling, and

are limited to finding a distribution for a single set of observations [11,34,49,55]. To

draw inferences about a new target dataset, the SIP would have to be solved again.

We have recently proposed an alternative approach to solving SIPs, using generative
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adversarial networks (GANs), that enables amortized inference— i.e., the trained

GAN can be reused on many target datasets without re-solving the SIP [48].

GANs are a deep learning paradigm involving two artificial neural networks that

compete with each other in a minimax game. The generator network attempts to

produce fake samples that are as similar as possible to a distribution of real samples,

and the discriminator network tries to distinguish fake samples from real samples.

Since being introduced in 2014, GANs have garnered significant interest across a

wide range of fields including applications in image processing, cybersecurity, and

cryptography [21,24]. To solve SIPs, we use a conditional GAN (cGAN) structure [40]

where the generator is trained with parameter sets X conditioned on the output

features Y of a mechanistic model.

1.3 Structure of the Dissertation

This dissertation is organized as follows. Chapter 2 introduces different types of

mechanistic/biophysical models that we will be using throughout this study, namely

conductance-based models of neuronal dynamics. In Chapter 3, we briefly cover

the optimization, sensitivity analysis, and parameter inference methodologies that

are applied throughout this dissertation. More specifically, we provide background

material on differential evolution (a global optimization strategy), Sobol indices (a

type of global sensitivity analysis), and MCMC. We describe GANs and cGANs and

then illustrate our parameter inference methodology using the Rosenbrock function as

a toy model at the end of this chapter. In Chapter 4, we show that cGAN outperforms

a benchmark MCMC method on a relatively simple parameter inference task. We

then validate the ability of cGAN to accurately infer complex parameter distributions

through a series of tests with synthetic targets extracted from different biophysical

models. In Chapter 5, we apply the trained cGAN for parameter estimation on

experimental data as a target and use the inferred parameter distributions in three
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different contexts to identify the ionic conductances that: (1) control day/night

variation of electrical activity in circadian clock neurons, (2) are affected by aging

and mutations associated with Alzheimer’s disease in CA1 pyramidal neurons, and

(3) are affected by mutations associated with Huntington’s disease in a network of

medium spiny neurons. We conclude this dissertation with a discussion of alternative

methods and future work in Chapter 6. Some of the work in this dissertation on the

application of cGANs to CA1 pyramidal neuron excitability has been published as a

preprint [56].
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CHAPTER 2

CONDUCTANCE-BASED MODELS

This chapter will introduce five different mechanistic models that we will use within

the DeepHM framework. All of them are conductance-based models that describe the

electrical dynamics of neurons.

2.1 Hodgkin-Huxley model

The conductance-based modeling formalism was introduced by Hodgkin and Huxley

in 1952 to explain the ionic mechanisms underlying the initiation and propagation

of action potentials in the squid giant axon [25]. Hodgkin-Huxley-type models

use an equivalent electric circuit to describe the excitability of the cell membrane.

Figure 2.1A represents the equivalent circuit underlying the Hodgkin-Huxley

equations [16] showing the cell membrane capacitance C, ionic conductances gx,

where x ∈ {Na,K,L} for sodium, potassium, and leak, respectively, the equilibrium

potential or reversal potential Ex, and the applied current as a function of time

t, Iapp(t). Figure 2.1B shows the schematic of the cell membrane potential V

(mV) versus time t (ms) during an action potential with three main phases: (1)

depolarization of the cell membrane through activation of the voltage-dependent

sodium channels, (2) repolarization of the cell membrane through inactivation of

the sodium channels and activation of potassium channels, and (3) refractory period

during which time the cell membrane is not able to fire or generate another action

potential.

At steady state, the inside of the cell is more negatively charged compared

to the outside, leading to a hyperpolarized membrane potential V of around -60 or

-70 mV. The cell membrane acts as a capacitor C that separates charges, however

there are channels in the membrane that conduct certain ions. For sodium ions,
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the extracellular concentration is higher than the intracellular concentration, while

for potassium ions the opposite is true. Due to these ionic concentration gradients,

when sodium channels are open Na+ ions tend to flow into the cell and depolarize

the membrane potential, whereas K+ ions flow out of the cell and hyperpolarize the

membrane potential when potassium channels are open. These ionic currents are

described by Ohm’s Law, for example, for sodium ions we have INa = gNam
3h(V −

ENa), where INa is the sodium current, gNa is the maximal conductance of the sodium

channel and ENa is the equilibrium potential or reversal potential at which no current

would flow. The gating variable m describes whether the sodium channels are open

(m → 1) or closed (m → 0), and the other gating variable h models whether the

sodium channels are inactivated (h → 0) or de-inactivated (h → 1). Relatively

similar equations could explain the ionic current for potassium and leak ions IK

and IL respectively (see (2.1), which is explained below). Note that, the potassium

channel has a single gating variable n, since it does not inactivate. In addition, the

leak channel L is passive and thus there are not any gating variables associated with

it.
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The equations representing the Hodgkin-Huxley model are

C
dV

dt
= Iapp − gNam

3h(V − ENa)− gKn
4(V − EK)

−gL(V − EL),

dm

dt
= αm(1−m)− βmm =

m∞ −m

τm
,

dh

dt
= αh(1− h)− βhh =

h∞ − h

τh
,

dn

dt
= αn(1− n)− βnn =

n∞ − n

τn
,

x∞ =
αx

αx + βx

, τx =
1

αx + βx

, x ∈ {m,h, n},

αm = 0.1
V + 40

1− exp
(
−V+40

10

) , βm = 4 exp

(
−V + 65

18

)
,

αh = 0.07 exp

(
−V + 65

20

)
, βh =

1

1 + exp
(
−V+35

10

) ,
αn = 0.01

V + 55

1− exp
(
−V+55

10

) , βn = 0.125 exp

(
−V + 65

80

)
.

(2.1)

The parameter values and gating functions are C = 1 µF/cm2, gNa = 120 mS/cm2,

gK = 36 mS/cm2, gL = 0.3 mS/cm2, ENa = 55 mV, EK = −77 mV and EL =

−54.4 mV.

The current-balance equation in (2.1) originates from Kirchhoff’s Current Law

(the algebraic sum of all currents entering and exiting a node in a circuit must equal

zero) and says that the sum of the capacitive and ionic currents must be equal to

the applied current Iapp. The gating variables m, h and n in (2.1) are based on a

two-state channel model with x being the fraction of open channels and 1 − x the

fraction of closed channels, with voltage-dependent rates of closed channels opening

αx and open channels closing βx, where x ∈ {m,h, n}. Note that the gating variable

equations can be rewritten in terms of steady-state activation x∞ and time constant

τx functions as shown in (2.1). By solving this system of ODEs (2.1), we can obtain

the membrane potential over time V (t), as shown in Figure 2.1B. The dynamics of

the voltage-dependent gating variables, with m being on a faster time scale than h
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Figure 2.1 (A) Equivalent circuit underlying the Hodgkin-Huxley equations [16] showing

the cell membrane capacitance C, ionic conductances gx, where x ∈ {Na,K,L} for sodium
Na, potassium K and leak L, the equilibrium potential or reversal potential Ex, and

the applied current Iapp(t) as a function of time t. (B) Schematic of the cell membrane

potential V (mV) versus time t (ms) with an action potential and three main phases: (1)

depolarization of the cell membrane through activation of the voltage-dependent sodium

channels, (2) repolarization of the cell membrane through inactivation of the sodium

channels and activation of potassium channels, and (3) refractory period time during which

the cell membrane is not able to fire or generate another action potential.

and n, create positive and negative feedback in the cell membrane. This results in a

stable periodic solution that corresponds to the repetitive firing of action potentials.

We use the Hodgkin-Huxley model for parameter inference tests on synthetic target

data in Section 4.2.

2.2 Morris-Lecar Model

The Morris-Lecar model is a conductance-based model that has become a canonical

low-dimensional model for studying neuronal dynamics. Originally developed by

Catherine Morris and Harold Lecar in 1981 to model barnacle muscle fibers [43], it

consists of three ionic currents: voltage-dependent inward calcium, voltage-dependent

outward potassium, and passive leak. The equations for the Morris–Lecar model are

as follows:
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Cm
dv

dt
= Iapp − gl(v − El)− gCam∞(v)(v − ECa)− gkn(v − Ek),

dn

dt
= ϕ(n∞(v)− n)/τn(v),

m∞(v) =
1

2
[1 + tanh((v − v1)/v2)],

n∞(v) =
1

2
[1 + tanh((v − v3)/v4)],

τn(v) = 1/ cosh((v − v3)/(2v4)).

(2.2)

For different values of the parameters, the Morris-Lecar model can exhibit qualita-

tively different types of excitability. We will use the Morris-Lecar model and cGAN

to generate models with different excitability types in Section 4.1.

2.3 Suprachiasmatic Nucleus Neuron Model

The suprachiasmatic nucleus (SCN) is the central circadian (∼24-hour) clock in

mammals. A conductance-based model of SCN neurons is given by the following

equations [4]:

C
dV

dt
= Iapp(t)− INa − IK − ICa − ILNa

− ILK
− IH − IA (2.3)

dq

dt
=

q∞(V )− q

τq(V )
, q = {mi, hi, n}

INa = gNam
3
NahNa(V − ENa), IK = gKn

4(V − EK)

ICa = gCamCahCa(V − ECa), ILNa
= gLNa

(V − ENa)

ILK
= gLK

(V − EK), IH = gHmH(V − EH), IA = gAm
3
AhA(V − EK)

q∞(V ) =
1

2
+

1

2
tanh

(
V − νq
dνq

)
, τq(V ) = τq0 + τq1

(
1− tanh2

(
V − νq
dνq

))

where C is membrane capacitance, V is membrane potential, Iapp(t) is the applied

current, I are ionic currents (transient sodium INa, non-inactivating potassium IK ,
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transient calcium ICa, sodium leak ILNa
, potassium leak ILK

, hyperpolarization-

activated potassium IH , and transient potassium IA, respectively), g are maximal

conductances, E are reversal potentials, and q are gating variables with steady-state

functions q∞ and time constants τq. We will use the SCN model with experimental

target data in Section 5.1.

2.4 CA1 Pyramidal Neuron Model

In mouse models of Alzheimer’s disease, pyramidal neurons in the CA1 region of the

hippocampus exhibit altered excitability properties [63]. Nowacki et al. [46] developed

a conductance-based model of CA1 pyramidal neurons that includes the following

ionic currents: two Na+-currents, one transient (INaT ) and one persistent (INaP ); two

Ca2+-currents, one T-type (ICaT ) and one high-voltage activated (ICaH ); and three

K+-currents, delayed rectifier (IKDR
), M-type (IKM

), and leak (IL). The dynamics of

the membrane potential V and ionic gating variables x are governed by the following

system of ordinary differential equations:

C
dV

dt
= Iapp − INaT − INaP − ICaT − ICaH − IKDR

− IKM
− IL − IKH

(2.4)

dx

dt
=

x∞ − x

τx

where:

INaT = gNaTm
3
NaT∞

hNaT (V − ENa), INaP = gNaPmNaP∞
(V − ENa)

ICaT = gCaTm
2
CaT

hCaT (V − ECa), ICaH = gCaHm
2
CaH

hCaH (V − ECa)

IKDR
= gKDR

mKDR
hKDR

(V − EK), IKM
= gKM

mKM
(V − EK)

IL = gL(V − EL), IH = gH(pmH + (1− p)nH)(V − EH)

and x ∈ {hNaT ,mCaT , hCaT ,mCaH , hCaH ,mKDR
, hKDR

,mKM
,mH , nH}.
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The ionic currents I are described by Ohm’s Law with maximal conductance

parameters g and reversal potentials E. The steady-state activation and inactivation

functions x∞ for all gating variables, including mNaT and mNaP , are given in

Boltzmann form:

x∞(V ) =
1

1 + exp
(
−V−Vx

kx

) .
The time constants τx for all gating variables are fixed parameters, except for hNaT ,

for which the time constant is a voltage-dependent function:

τhNaT
(V ) = 0.2 + 0.007 exp (exp (−(V − 40.6)/51.4)) .

The parameter values for this model are provided in Appendix Table A.1. We use the

CA1 model with synthetic target data in Section 4.3 and with experimental target

data in Section 5.2.

2.5 Medium Spiny Neuron Network Model

Ponzi et al. [51] modeled the balance of synaptic excitation and inhibition in the

striatum by constructing a 2500-cell network of medium spiny neurons (which

comprise over 90% of cells in the striatum) using single-compartment Hodgkin-

Huxley-type models. They were able to reproduce the interspike interval (ISI)

distributions obtained from extracellular spike train recordings by fitting just two

network parameters, the amount of net feedforward excitatory drive (gE), and

the strength of recurrent inhibition coming from the medium spiny neuron (MSN)

collateral network (gI). All simulations involve 2500 cells randomly linked through

inhibitory synapses with a probability of 0.2, implying that each cell gets input from

about 500 other cells. The model is described by the following equations:

12



Cm
dV

dt
= −

∑
x

Ix, Ix = gxm
p
xh

q
x(V − Vx),

dqx
dt

=
q∞x − qx

τqx
, q∞x =

1

1 + exp(V−θqx
kqx

)
, q ∈ {m,h},

ds

dt
= aH(V )(1− s)− bs, τ 0qx +

τ 1qx − τ 0qx
exp(ϕ−V

σ0
qx

) + exp(ϕ−V
σ1
qx

)
,

Isyn = gsyns(V − Vcl), Iex = gex(V − Vcat)

(2.5)

where gsyn ∈ [0.001gI , 0.001gI+0.001] is the maximal synaptic conductance, s is

a voltage-dependent synaptic gating variable, and gex ∈ [0.04381, 0.04381 + 0.002gE]

is excitatory drive. H(v) is a Heaviside function applied to the membrane potential

of the presynaptic cell and is unity if the presynaptic cell spikes, otherwise it is

zero. τ 0 and τ 1 are the minimal and maximal time constants for the gating variable

respectively, θ and k are constants for determining the voltage-dependent steady-state

value of the gating variable, ϕ, σ0 and σ1 are constants determining the time course

of voltage-dependent gating time constants. Vcat is the cation reversal potential.

Parameter values are based on [12]. We will use the MSN network model with

synthetic target data in Section 4.4 and with experimental target data in Section

5.3.

13



CHAPTER 3

METHODS

This chapter provides background information on some of the methodologies that

we will use in this dissertation, including differential evolution, Sobol sensitivity

analysis, and the Metropolis-Hastings algorithm. We also introduce conditional

Generative Adversarial Networks as a novel parameter inference tool within the

DeepHM framework.

3.1 Global Optimization - Differential Evolution

Differential evolution is a type of stochastic global optimization and a population-

based search technique first introduced by Storn and Price in 1997 [53, 62]. This

method is comprised of four different steps, including Initialization, Mutation,

Crossover, and Selection.

Initialization - a population of individuals, which is also known as the first

generation or parents, is often defined by drawing a population randomly from a

uniform distribution to explore the objective landscape. In this context, an individual

is essentially an ordered set of parameters.

Mutation - a new vector (a.k.a donor vector) is introduced in this step by

a linear combination of three random vectors from the current generation, but not

the one which we are going to compare and substitute with in the next generation

(i.e., target vector). This means at least four members are needed for applying this

method.

Crossover - the recombination of the donor vector with the best member of the

previous generation with a probability rate brings both exploration and exploitation

to the search and helps the system escape local minima.
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Selection - during the selection step, we have a new vector, which is a candidate

for going to the new generation in place of the target vector if it satisfies certain

conditions, and if it has a better score, 1 than the target vector. In this way, after

each generation we might have better members, or in the worst-case scenario, all

members could be the same as the previous generation without any change, but none

of them are worse than the previous generation.

The Differential Evolution Algorithm that we used in this project is known as

classic DE in [53] (see Figure 3.1). It is also referred to as DE/rand/1/bin which

means the base vector is randomly selected and only 1 vector difference is added in

the mutation part. Finally, the donated parameters in the crossover section follow a

binomial distribution.

Initialization Mutation Crossover Selection

Figure 3.1 Schematic of the Differential Evolution Optimization. There are four different

stages: (1) Initialization, (2) Mutation, (3) Crossover and (5) Selection. This algorithm

iterates over steps (2) to (4) until it reaches certain criteria.

3.2 Global Sensitivity Analysis - Sobol Indices

Sensitivity Analysis (SA) [23, 28, 32, 61, 65] addresses the question of how much the

output of a model changes given a change in the input. There are two main classes of

1The score could be the output of the objective function and depends on the minimization
or maximization problem. The new candidate will either be rejected or accepted for the
next generation.
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sensitivity analysis, local and global. In local SA, the goal is to deal with sensitivity in

the neighborhood of a particular parameter value. Taking a derivative is an example

of local sensitivity analysis as it only considers the behavior of the system near a

single point. Global SA, on the other hand, focuses on the variability of model

outputs throughout parameter space. Global SA provides more information about

the system and because of that it is often preferred, but if the system is too large the

computational cost of this technique can be prohibitive. There are several different

global SA approaches, including linear methods, tree-based methods, regionalized

sensitivity analysis (also known as Monte Carlo filtering methods), and variance-

based techniques [31, 36]. Sobol SA is a variance-based technique that considers

the contribution of the input parameters to the variance of the system outputs. In

Sobol SA we typically use two measures, the first order index and total effect index.

The first order index is the contribution of an individual parameter to the response

variance without considering any interactions with the other parameters. The total

effect index is the contribution of an individual parameter to the response variance

that does consider interactions with the other parameters.

Suppose we have a function of f that maps the vector of variables X =

(X1, X2, · · · , Xp) to some quantity of interest. We assume X has some known

probability distribution, which corresponds to certain parameters in the model. This

probability distribution reflects the level of uncertainty in them. The goal is to

determine the sensitivity of f to X, under the assumption that f is square integrable:

f : Rp → R

X 7→ f(X).
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If f is square integrable (i.e., f(x) ∈ L2), we can decompose the above function as

the sum of the functions of only 1, 2, · · · , p parameters:

f(X) = f0 +

p∑
i=1

fi(Xi) +
∑

1≤i<j≤p

fi,j(Xi, Xj) + · · ·+ f1,2,··· ,p(X1, X2, · · · , Xp) (3.1)

where:

f0 = E[f(X)]

fi(Xi) = E[f(X)∥Xi]− f0

fi,j(Xi, Xj) = E[f(X)∥Xi, Xj]− fi(Xi)− fj(Xj)− f0

If X1, X2, · · · , Xp are statistically independent then all f satisfy the orthogo-

nality property, which includes:

Var(f(X)) =

p∑
k=1

Dk(Xk) +
∑

1≤k≤k′≤p

Dk,k′ (Xk, Xk′ ) + · · ·+D1,2,··· ,p

=
∑
u

Du(Xu), u ⊂ {1, 2, · · · , p}

where:

Dk(Xk) = Var [fk(Xk)] , Dk,k′ (Xk, Xk′ ) = Var
[
fk,k′ (Xk, Xk′ )

]
D0 = Var [f0] = 0, and u = {i1, i2, · · · , is} , 1 ≤ s ≤ p

This means the total variance of the response f(X) can be written as the sum

of partial variances. By defining the total variance of the response f(X) that can be

attributed to input parameter Xk as the ratio of Var [E[f(X)∥Xk]] /Var(f(X)), the

Sobol index for a subset u (i.e., u ⊂ {1, · · · , p}) can be defined as the ratio between

the contribution given by the interaction among the components of u for the model

variance, and the total variance itself. Thus, the Sobol index for a subset u can be
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written as:

Su =
Du(Xu)

Var(f(X))
,

∑
u⊂{1,··· ,p}

Su =

∑
u Du(Xu)

Var(f(X))
=

V ar(f(X))

Var(f(X))
= 1. (3.2)

As was mentioned before, in Sobol SA, two measures (i.e., the first order index

and the total index) are usually computed. The first order index refers to the

contribution of any one parameter to the output variance and can be defined as:

Si =
Di(Xi)

Var(f(X))
, i = 1, · · · , p.

The total index refers to the contribution of all subsets with more than one

parameter to the output variance, which means:

ST =
∑

1≤i≤j≤p

Si,j + · · ·+ S1,··· ,p =
∑

u⊂{1,··· ,p}

Su

= 1− Si, i ∈ u.

The first order index (i.e., Si) describes the impact of Xi individually on the

defined output, whereas the total index (i.e., ST ) represents the effect of Xi along

with the interaction of other input variables. A high value for either of these two

indices suggests that Xi, either alone or in conjunction with other input variables,

has a considerable overall impact on the output space.

3.3 Parameter Inference Methodologies

3.3.1 Markov Chain Monte Carlo

The Monte Carlo method [19, 26] is a stochastic technique that aims to calculate

numerical results from many random samples. In other words, if a method uses

random numbers to solve a problem, that method is a type of Monte Carlo method.

By employing this randomness, it is possible to address some problems that, in theory,

may have deterministic solutions that are hard to obtain. In order to draw some
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samples from a known distribution, this method repeatedly produces some random

samples coming from that distribution. By repeating this process, eventually all the

samples come from the desired distribution. One of the main issues with using a Monte

Carlo method is that because it is a memoryless process, it can be time consuming

to draw samples from a complex distribution. In other words, if one sample comes

from a highly probable region of the distribution, there is no guarantee that the next

candidate will also come from the same highly probable region. A Markov Chain

is a sequence of events where the probability of the next event depends only on the

present [8, 9]. By incorporating a Markov process into the Monte Carlo method,

which is known as Markov Chain Monte Carlo (MCMC), information about

the previous step affects the next proposal candidate, and the process of sampling from

complex distributions is sped up. The Metropolis Hastings algorithm (Algorithm 1)

is a particular MCMC method that performs a random walk through the probability

distribution to try to evaluate the regions with higher probability. The main idea

behind Metropolis-Hastings is that by running this algorithm for a sufficient number

of iterations, the random walk procedure helps the Monte Carlo method to draw

samples from the stationary distribution, which is the posterior distribution or the

target distribution. The key point here is that based on this algorithm, the acceptance

probability that comes from the density of the model output is computed using a

Gaussian mixture model that is fit to the target dataset.

3.3.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are an example of generative models in

machine learning. Since GANs have a deep neural network architecture we can

classify them as deep learning models. The application we are interested in here

is to build an inverse surrogate model for mapping the output of a mechanistic

model into its corresponding region in parameter space. More precisely, the goal

19



Algorithm 1 Markov Chain Monte Carlo method - Metropolis Hastings

Define f(x) as the target distribution, N as the total number of iterations, xi as the

current value, and q(x|xi) as the proposal distribution. This proposal distribution

can be symmetric or asymmetric in this method. Choose x0 randomly from its

defined range (i.e., x0 = xl + rand(0, 1)× (xu − xl)).

1. while Iter < N do

2. x⋆ ∼ q(x|xi), proposed candidate

3. ρ = min
{
1, f(x

⋆)q(xi|x⋆)
f(xi)q(x⋆|xi)

}
, u ∼ U(0, 1),

4. if u < ρ

5. xi+1 = x⋆

6. else

7. xi+1 = xi

8. end

9. Iter = Iter + 1

10. end

is to map the density of observed data (i.e., PY ) to a coherent density αX of the

model input parameter space. A distribution αX is coherent if: (1) upon sampling

from αX and applying the mechanistic model, the estimated density in output space

satisfies P̂Y ∼ PY , and (2) αX covers all possible solutions in the range described

by the prior PX . In this section we will first introduce standard GANs, and then

move on to conditional GANs (cGANs) which are designed to incorporate conditional

distributions into GANs.

The basic GAN consists of two artificial neural networks, a generator G and a

discriminator D, that compete with each other (Figure 3.2). The Generator tries to

produce fake samples that are as close as possible to real samples that come from some

distribution, and the Discriminator tries to distinguish real samples from fake samples.
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Training the GAN is an iterative process through which G gets better at fooling D,

and D gets better at identifying fake samples. The first step in training the GAN is to

create a training dataset (referred to as real samples) by simulating the mechanistic

model with parameter sets x drawn from a uniform distribution Pdata(x). Then we

initialize the Generator with a base distribution Pz(z) which is a random variable

with typically a Gaussian distribution. These parameter sets G(z) ∼ PG, referred

to as fake samples, are passed to the Discriminator along with the real samples.

For a given sample x or G(z), the Discriminator outputs a probability ŷ = D(x) or

ŷ = D(G(z)), referred to as a reconstructed label, indicating whether it thinks the

sample is real (ŷ > 0.5) or fake (ŷ < 0.5). If D is correct (i.e., ŷ = D(x) > 0.5

or ŷ = D(G(z)) < 0.5), then the weights and biases (ω, β) of the D network will

remain fixed, but (ω, β) of the G network will be adjusted through backpropagation

(referred to as fine-tuning in Figure 3.2). If D is incorrect (i.e., ŷ = D(x) < 0.5

or ŷ = D(G(z)) > 0.5), then (ω, β) of D are adjusted while (ω, β) of G remain

fixed. In practice, convergence of generator and discriminator one at a time not only

would be time consuming but also lead to instability due to a vanishing gradient for

the generator. Therefore, in this case the weights are adjusted after computing the

loss function from the outputs of D and G over each mini-batch. As a result, both

the generator and the discriminator are being trained simultaneously, and they are

converging gradually.

Derivation of the objective function for the GAN Cross-entropy is a measure

from the field of information theory which calculates the difference between two

probability distributions and is defined by the following equation:

L(ŷ, y) = [y log(ŷ) + (1− y) log(1− ŷ)] (3.3)
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Figure 3.2 Schematic of a generative adversarial network (GAN). The Generator
(G) and Discriminator (D) are two neural networks that compete with each other
during the training process, with the end result being that G can produce fake
samples from a distribution that matches the distribution of the real samples. D(x)
and D(G(z)) provide the reconstructed label ŷ (i.e., the output of the Discriminator
network), which represents the probability of the sample being real rather than fake.
If ŷ is greater than (less than) 0.5, the Discriminator classifies the sample as real
(fake). If D is correct (incorrect), then the weights of G (D) are fine-tuned through
backpropagation.

where ŷ is the reconstructed label D(x) or D(G(z)) and y is the actual label for

the sample. Therefore, the corresponding label for a real sample (i.e., a sample

coming from Pdata(x)) is y = 1 and the reconstructed label (i.e., the output of the

Discriminator) is ŷ = D(x). By substituting these labels for the real samples into the

equation (3.3) we can get:

L(D(x), 1) = log(D(x)) (3.4)

Likewise the data coming from the Generator has the real label y = 0 and the

reconstructed label is ŷ = D(G(z)), therefore, by substituting these expressions for

the fake samples into Equation (3.3) we end up with:

L(D(G(z)), 0) = log(1−D(G(z))). (3.5)
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Panels A1 and A2 in Figure 3.3 are the visualization of Equations. (3.4) and (3.5),

respectively. Since the output of the Discriminator is a probability, in both of these

panels we only consider the region between zero and one on the x−axis (which

represents D(x) or D(G(z))). In panel A1, log(D(x)) is an increasing function of

D(x). If we have a strong Discriminator, then we expect D(x) ∼ 1 for a real

sample. In panel A2, the x−axis represents D(G(z)), and the expectation for a

strong Discriminator would be D(G(z)) ∼ 0 for a real sample. As these two points

are close to the maximum of both Equations. (3.4) and (3.5), the objective function

for the Discriminator is:

max
D
{logD(x) + log(1−D(G(z)))} . (3.6)

The same logic also holds in the case of having a strong Generator, the only difference

here is that we are going to minimize Equation (3.5), which corresponds to the right

panel of Figure 3.3. Having a very strong Generator means it is able to fool the

Discriminator easily. This means the Discriminator will erroneously return a high

probability even for a fake sample, i.e., D(G(z)) ∼ 1. This point is the minimum

value of Equation (3.5). Thus, the objective function for the Generator is:

min
G
{log(1−D(G(z)))} = min

G
{logD(x) + log(1−D(G(z)))} . (3.7)

In order to obtain a single objective function for the GAN, we combine

Equations (3.6) and (3.7) and take the expectation over the whole dataset. The

resulting objective function for the GAN, which is inspired by the cross-entropy loss,

is given by:

min
G

max
D
{Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z)))]}. (3.8)

In practice, at the beginning of the training process the Generator is not strong enough

and the output of the Generator is very different from the training dataset. Thus,
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Figure 3.3 Visualization of the components of the GAN objective function
(Equation (3.8)). (A1) Discriminator loss function (Equation (3.4)). D(x) is the
probability that x came from the real data rather than Pg. (A2) Generator loss
function (Equation (3.5)). D(G(z))) is the probability that G(z) came from Pg

rather than Pdata. The green shading identifies the possible regions for these two
probabilities.

the Discriminator can easily distinguish the real and the fake samples. This causes

log(1 −D(G(z))) to saturate (see Figure 3.3A2), and the gradient does not provide

any information as it is almost zero. Therefore, as is mentioned in [21], instead of

minimizing log(1−D(G(z))) we can minimize the log(1−D(G(z)))− log(D(G(z))).

This will help ensure we have a more stable loss function during the training process.

3.3.3 Conditional Generative Adversarial Networks

A standard GAN could be trained to produce samples of parameter sets, samples

of feature sets, or even samples of combined parameter-feature sets. However, it

is not able to produce samples of parameter sets corresponding to a set of given

feature values. To accomplish this, we employ conditional GANs [40], where features

extracted from the output of the mechanistic model are passed as a condition to the

Generator. The parameter samples produced by the Generator, augmented with the

features it was provided as a condition, are then passed to the Discriminator. Ground
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truth parameters, with their corresponding features, as a condition, are also passed to

the Discriminator. During the training process, the Generator learns how to produce

samples in parameter space that are similar to the ground truth parameters for a

given set of features.

The overall structure of the cGAN is similar to the basic GAN model. However,

the main difference is that the input into both the Generator (G) and Discriminator

(D) are augmented by the conditional variable Y as described in Figure 3.4. The

objective function of the cGAN is:
min
D

{−Ex∼Pdata(x)[logD(x|y)]− Ez∼Pz(z)[log(1−D(G(z|y)))]}

min
G

{Ez∼Pz(z)[log(1−D(G(z|y)))]− Ez∼Pz(z)[log(D(G(z|y)))]}
(3.9)

Discriminator
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Y= 0

𝑓𝑙𝑟(2 ∗ 𝐷 𝐺 𝑧 ) ≠ 0

Fine-Tuning

𝑓𝑙𝑟(2 ∗ 𝐷 𝑥 ) ≠ 1
𝑓𝑙𝑟 2 ∗ 𝐷 𝐺 𝑧 = 0
𝑓𝑙𝑟 2 ∗ 𝐷 𝑥 = 1

𝑌, 𝑋

𝑌, 𝑋!

⊕
𝑌

⊕

Figure 3.4 Schematic of a conditional GAN (cGAN). Features of the training
dataset (Y ) are passed as a condition into the Generator (G) - already initialized
with a Gaussian distribution (Z) - in order to produce some samples Xg given that
condition [Y,Xg]. This output, along with real samples X augmented with their
output features [Y,X], are passed into the Discriminator (D). If the Discriminator’s
output is close to zero (one), it means the Discriminator has assigned a low (high)
probability of that sample being real.
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Illustration of cGAN training process

We used the Rosenbrock function (Equation 3.10) as a toy mechanistic model to

illustrate the training process for cGAN:

Y = (1−X1)
2 + 100(X2 −X2

1 )
2. (3.10)

In this example, we have only two input parameters (X1 and X2) and only one

feature (Y , the output of the Rosenbrock function). Thus, with a fixed output as a

condition, cGAN converges to the ground truth region in the parameter space after

a few training epochs. Figure 3.5 provides a visual summary of the training. We

used Jensen Shannon Divergence (JSD), a measure of the similarity between two

probability distributions, as our stopping criterion:

JSD(p∥q) = 1

2

{∫
p(x) log

(
p(x)

M(x)

)
dx+

∫
q(x) log

(
q(x)

M(x)

)
dx

}
,

where

M =
p+ q

2
.

When the JSD measure for a fixed epoch number approaches zero, then we stop

training after that epoch. If one continues training after this stopping point, the

training process destabilizes and the JSD measure starts increasing (Figure 3.5 bottom

right panel). This phenomenon occurs due to the vanishing gradient problem2.

2During the process of training, all the weights and biases of the neural network are updated
through the process of backpropagation, which is a gradient based technique. This gradient
sometimes gets smaller and smaller due to the multiplication of small values by each other
through the chain rule. This might slow down the neural network’s training process and
have a negative impact it, which is known as the vanishing gradient problem.
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Figure 3.5 Illustration of the cGAN training process on the Rosenbrock function
(Equation (3.10)). Over the course of the training process, both the discriminator and
the generator improve. The discriminator gets better at distinguishing between real
(coming from Pdata) and fake (coming from Pg) samples, and for a fixed discriminator,
the generator gets better at fooling the discriminator. (A1-A6) KDE plots of the
cGAN samples (blue) and the training data (red) for parameters X1, X2, and feature
Y at epochs 0, 3, 6, 46, 142, and 208. At epoch 142 (A5), the cGAN distributions
are good approximations of the training distributions, but by epoch 208 (A6) the
cGAN distributions are no longer good approximations. (B1-B3) The discriminator
loss (B1), the generator loss (B2), and the JSD measure between the ground truth
parameters versus estimated parameters (B3) as a function of epoch number. The
point labeled A5 in panel B3 represents the JSD stopping criterion: once the JSD
starts to increase we stop training the cGAN.
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CHAPTER 4

PARAMETER INFERENCE ON SYNTHETIC TARGET DATA

In this chapter, we will validate our parameter inference approach by employing it on

synthetic target datasets where the ground truth parameter distributions are known.

We perform these parameter inference tests with four different mechanistic models

corresponding to distinct biological questions about types of excitability, circadian

rhythms, and the effect of mutations on single-cell and network activity. We also

compare the performance of cGAN to a baseline MCMC method.

4.1 Morris-Lecar Model - Type I and Type II Excitability

The difference between type I and type II excitability is illustrated by the experimental

recordings shown in Figure 4.1. A layer 5 pyramidal cell (panel A1) goes from silent

at I = 20 to repetitive firing at a very slow rate at I = 40 to firing at a very high rate

at I = 320. On the other hand, a brainstem mesV cell (panel A2) goes from silent

at I = 500 (aside from a few transient spikes at the start of the stimulus) to firing

at a high rate at I = 600, but then doesn’t fire all that much faster at I = 1000.

Panels B1 and B2 plot the firing frequency vs input (F-I) curve for these two cell

types. The main difference is that the F-I curve for the pyramidal cell (panel B1) is

approximately continuous with firing arbitrarily low rates, whereas the F-I curve for

the mesV cell (panel B2) shows a clear discontinuity when the firing rate jumps up

from zero. These properties of the F-I curve are characteristic of type I and type II

excitability, respectively.

These different types of excitability can be exhibited by different parameter

regimes of the Morris-Lecar model (see Section 2.2). With the parameter values in

the first column of Table 4.1 (labeled Hopf), the model exhibits type II excitability;

with the parameter values in the second column (labeled SNIC), the model exhibits

28



A1 A2

B1 B2

Figure 4.1 Panels A1 and B1 - type I excitability class. Panels A2 and B2 - type
II excitability class. The F-I curve in panel B1 is continuous whereas there is a clear
discontinuity in panel B2. Figure modified from [29].

type I excitability. Note that one can go from type II to type I behavior by changing

just three parameters (i.e., ϕ, v3 and v4). The qualitatively different behavior of the

model in these parameter regimes is due to the different bifurcations underlying the
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transition from silent to spiking, i.e., a Hopf bifurcation results in type II excitability

whereas a SNIC (saddle node on invariant circle) bifurcation results in type I.

Table 4.1 Morris-Lecar Parameter Values

Hopf SNIC

ϕ 0.04 0.067

gCa 4 4

V3 2 12

V4 30 17.4

gK 8 8

gL 2 2

V1 -1.2 -1.2

V2 18 18

For all simulations, C = 20, ECa = 120, EK = −84 and EL = −60.

4.1.1 Parameter Estimation with cGAN for Type I and Type II
Excitability Classes

We will use the Morris-Lecar model with randomly distributed parameters to

create a synthetic dataset. We will train a cGAN on this dataset to learn the

parameter distributions that correspond to type I and type II excitability. The benefit

of this approach is that the trained cGAN, since it is a generative model, can then be

used to generate samples (parameter sets) that produce each type of excitability in

order to populate a conductance-based network model with parameter heterogeneity

and the desired fraction of type I vs type II behavior.

To create the synthetic dataset we first need to choose random parameter values.

Here, for each parameter we simply used a uniform distribution over an interval with
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a lower bound of 0 and an upper bound of two times the mean of the values shown

in Table 4.1 (except for V1, which has an upper bound of 0 and a lower bound of

two times its mean value). Alternatively, we could use Latin Hypercube Sampling to

get samples more representative of the multidimensional parameter space. For each

parameter set, we then simulate the Morris-Lecar model over a range of Iapp values and

compute an F-I curve. Some models do not fire at all, so these samples are classified as

silent. For models that do fire, if the F-I curve is sufficiently discontinuous we classify

the sample as type I; otherwise it is classified as type II. To make this classification

accurately, we ran at least 1000 simulations for each sample, first searching over a

coarse grid of Iapp values and then a refined grid near the minimal Iapp value for which

the model begins to spike; see Algorithm 2 for a detailed description of our method.

The excitability class (type I, type II, or silent), which we refer to as a “feature”

or “label”, is appended to the parameter set for each sample using one-hot encoding

in order to create the synthetic dataset that is used to train the cGAN.

4.1.2 Case 1: cGAN Results Varying 3 Parameters

In the first case we consider, only three parameters of the Morris-Lecar model (ϕ, V3

and V4) are chosen randomly while the other 5 parameters are held constant. The

rationale for considering these three parameters alone is that it is already known (as

shown in Table 4.1) that varying these three is sufficient to produce both types of

excitability.

The training dataset is shown in Figure 4.2A. Along the diagonal are kernel

density estimate (KDE) plots showing the distribution of each parameter for type

I (red) and Type II (blue) samples. Off the diagonal are scatter plots showing

pairwise relationships between the parameters and excitability type. Once the cGAN

is trained, we now have an inverse surrogate model. This means we can provide a

label to the cGAN, e.g., type I, and ask it to provide parameter sets that will produce

type I behavior when fed to the Morris-Lecar model. Here, the trained cGAN was
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Algorithm 2 Method for Classifying Samples as Type I or Type II

1. Create a large number of random samples, P , based on a uniform distribution
for each parameter x ∈ [xlow, xhigh] where xlow = xmean − (100% {xmean}) and
xhigh = xmean + (100% {xmean}) where xmean = (x ∈ Hopf + x ∈ SNIC)/2

for iteration1 in length(P) do

2. Find the first Iapp value over a coarse grid for which the model starts firing for
Morris-Lecar(P(iteration1)) and save that index into IFirst. This search is pretty
fast but not accurate, as initially we are just trying to get the approximate location
of the first spike.

3. Create new finer search interval, linspace(IFirst − 1, IFirst, ITERATION), where
ITERATION is a high number. In our case 1000 seems to be accurate enough.
Although increasing this number will increase the accuracy, the simulation time
will increase dramatically. Thus we need to find a trade off between accuracy and
simulation time.

for iteration2 in range(ITERATION) do

F ← FR(Morris− Lecar(P(iteration1)Iapp(iteration2)
)) (FR is the firing rate)

end for loop

4. Discontinuity ← Diff (F)

if max(Discontinuity) > 1 do

Classify P(iteration1) as type II

else

Classify P(iteration1) as type I

end if loop

end for loop

32



asked to generate 4,000 type I parameter sets and 4,000 type II parameter sets. It

was able to do so quite accurately for type I excitability, with 98.37% of the cGAN

type I parameter sets actually having type I excitability when passed through the

Morris-Lecar model. The accuracy was quite high for type II cGAN samples as well,

at 96.82%. Figure 4.2B shows KDE and scatter plots for the samples produced by

the trained cGAN for type I (orange) and type II (purple). Comparing panels A and

B, we see that the parameter distributions produced by the cGAN match very well

the parameter distributions in the training dataset. For example, in both cases there

is quite a bit of overlap in the parameter ϕ for type I and type II, with type I skewed

to the right. Furthermore, for V3, type II is skewed left and type I is skewed to the

right, whereas for V4 type I is skewed left and type II is skewed right. The excellent

agreement between the samples produced by the cGAN and the training dataset is

even more evident in Figure 4.3, where both the training and cGAN distributions for

type I (panel A) and type II (panel B) are plotted on the same set of axes.

In Figure 4.4, we show the distribution of all classes (i.e., type I, type II and

silent for both training (panel A) and cGAN samples (panel B) together. The main

point here is that by providing the silent class information in our training dataset,

cGAN is not only able to produce some samples from their corresponding region

in parameter space with high accuracy, but also avoid going into that region when

asked to provide samples for type I and type II excitability classes.

4.1.3 Case 2: cGAN Results Varying 8 Parameters

This case is similar to the previous case but instead of varying just three parameters

we randomly vary all eight parameters shown in Table 4.1. The main purpose of

this case is to see if the cGAN is still successful inferring parameter distributions

in a higher-dimensional space, and also to learn if other parameters besides ϕ, V3,
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A B

Figure 4.2 cGAN inference of type I and type II classes varying three parameters of
the Morris-Lecar model. (A) Training dataset containing 40,000 different parameter
sets, out of this number 12,979 of them are type I class (red) and 26,300 are type II
(blue). The 721 training samples that are silent are not shown. (B) 4,000 samples
produced by the trained cGAN samples for type I (orange) and type II (purple)
excitability.

A B

Figure 4.3 Replotting cGAN inference of type I and type II classes varying three
parameters of the Morris-Lecar model. Same data as Figure 4.2, but with type I
training and cGAN samples (panel A) and type II training and cGAN samples (panel
B) plotted on top of each other.

and V4 can change the type of excitability exhibited by the Morris-Lecar model.

The results are shown in Figure 4.5. The parameter distributions for type I (red),

type II (blue), and silent (green) are shown for the training dataset in panel A and

for the cGAN samples in panel B. We see that the distribution of V2 is skewed to
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A B

Figure 4.4 cGAN inference of type I, type II, and silent classes varying three
parameters of Morris-Lecar model. Same data as Figure 4.2, but now the training
samples for silent cells (green, panel A) and the cGAN samples for silent cells (light
green, panel B) are also shown.

the left for type I and to the right for type II in the training dataset, and this

asymmetry is captured well among the cGAN samples. However, the distributions of

other parameters, such as V4, in the cGAN samples do not match up as well with the

training data distributions. Also, the classification accuracy of the cGAN samples for

the 8-parameter case was lower than what it was for the 3-parameter case—here we

have 85.3% accuracy for type I and 80.6% for type II. The lower accuracy here is not

surprising, since we have increased the dimension of the parameter space from 3 to

8 but we have not increased the number of training samples accordingly. Thus, the

samples are distributed more coarsely throughout parameter space which negatively

affects the training of the cGAN. To resolve this issue, we could increase the number

of samples. It is also possible that the distribution of V4 in the cGAN samples

is an example of mode collapse due to the vanishing gradient problem. In other

words, sometimes during the process of training, the generator only produces limited

varieties of samples (mode collapse) which leads to having a very strong discriminator

and makes the generator’s gradient vanish. Thus, the generator won’t be able to

learn anything new in each iteration and will converge to a distribution covering a
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small portion of samples. If so, we could try to resolve the mode collapse issue by

using spectral normalization (a novel weight normalization technique to stabilize the

training of the discriminator [41]). Finally, we note that for the 8-parameter case

we used a balanced distribution in feature space (10,000 samples of each excitability

class) which results in a non-uniform distribution in parameter space. Perhaps better

results could be obtained using a uniform distribution in parameter space.

4.2 Suprachiasmatic Nucleus Neurons - Day/Night Variation

Circadian rhythms are oscillations in physiology and behavior with a period of ∼24

hours, such as the sleep-wake cycle. There are two key properties that have to be

satisfied for a rhythm to be considered circadian, the first one is that it needs to persist

without any external time cues (i.e., it is internally generated) and the second one

is that it can synchronize to external periodic stimuli. These rhythms are controlled

by a group of ∼20,000 neurons in the hypothalamus called the suprachiasmatic

nucleus (SCN). SCN neurons possess an internal molecular clock that produces 24-h

oscillations in gene expression and membrane excitability. Conductance-based models

of SCN excitability have been developed in prior work [5,14,15,17]. Most of what we

know about SCN electrical activity comes from studies of mice and other nocturnal

(night-active) rodents. This hinders the translation of this knowledge to humans, a

diurnal (day-active) species. Recently, Mino Belle and his colleagues at the University

of Manchester [47] made the first single-cell recordings from SCN neurons of a diurnal

rodent, Rhabdomys pumilio. Overall, these recordings revealed that diurnal SCN

neurons exhibit the same type of day/night rhythms in resting membrane potential

(RMP) and firing rate as nocturnal SCN neurons—they have a more depolarized

RMP and fire at a higher rate during the day than at night (see Figure 4.6). Thus,

we are motivated to assess what ionic conductances are responsible for the day/night

differences observed in Rhabdomys SCN electrical activity.
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A B

Figure 4.5 cGAN inference of type I (red), type II (blue), and silent (green) classes
varying eight parameters of Morris-Lecar model. Column A: KDE plots for the
training dataset containing 30,000 different parameter sets, of which 10,000 are type
I, 10,000 are type II, and 10,000 are silent. Column B: KDE plots for 4,000 cGAN
samples produced for each excitability class.

To validate the ability of the cGAN framework to perform this type of inference,

we created a synthetic circadian datasets by simulating the Hodgkin-Huxley (HH)
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A B

Figure 4.6 Day/night changes in the spontaneous electrical activity of Rhabdomys
pumilio SCN neurons. (A) resting membrane potential (RMP), (B) spontaneous firing
rate (SFR). Figure modified from [47].

model (see Section 2.1) with some of the parameters systematically varied to produce

a bimodal distribution in parameter space to represent an artificial “day/night”

difference. Then we trained a cGAN to see if it can build an inverse surrogate model

to infer the underlying parameter distributions based on two features, firing rate and

RMP.

Since it is known that sodium leak currents play a role in regulating the

day/night activity of SCN neurons [17], our first step was to modify the HH model

separating out the leak current IL into a sodium leak current INaL and a potassium

leak current IKL. To do this, we solve the following set of two equations with two

unknowns to obtain unique solutions for the default values of gNaL and gKL
:

IL = gL(V − EL) =⇒ IL = INaL + IKL

where:

INaL = gNaL(V − ENa) and IKL
= gKL

(V − EK)
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gL(V − EL) = gNaL(V − ENa) + gKL

(V − EK)

gL = gNaL + gKL

(4.1)

There are now four maximal conductances in our modified HH model: gNa, gK , gNaL ,

and gKL
. We will assume that gNa and gK do not have day/night variation but that

gNaL and gKL
do. Specifically, we assume that gNaL is higher during the day and

lower at night, whereas gKL
is lower during the day and higher at night. To create

a synthetic training dataset, we draw parameter values from uniform distributions.

For both the day and night simulations, the lower and upper bounds for gNa and gK

are ±100% of their default value. For the day simulations, the lower bound of gNaL

is its default value and the upper bound is +100% of that value; for gKL
the lower

bound is 0 and the upper bound is its default value. On the other hand, for the

night simulations, the lower bound of gKL
is its default value and the upper bound is

+100% of that value; for gNaL the lower bound is 0 and the upper bound is its default

value.

The next step is to pass these parameters to the HH model and extract

the features for 2500 “day” training samples and 2500 “night” training samples.

Figure 4.7A shows the distributions of parameter values, firing rate, and RMP for

our synthetic training dataset. We see that, as we hoped, the day samples (orange)

have a higher firing rate and a more depolarized RMP than the night samples (green).

Next, we trained the cGAN, and then asked it provide 1000 “day” samples and 1000

“night” samples. Figure 4.7B shows that the distributions of the cGAN day samples

(purple) and the cGAN night samples (blue) agree very well with the distributions for

the training data. This indicates that the cGAN was able to find the correct region

of parameter space corresponding to day and night neuronal activity through the

mapping process, and gives us confidence that a cGAN will provide useful information
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when trained on the single-cell SCN model and provided experimental data from

Rhabdomys SCN neurons in Section 5.1.

A B

Figure 4.7 cGAN results for Hodgkin-Huxley model with bimodal parameter
distribution representing day/night circadian variation. (A) Parameter-feature
training dataset which is created by passing day (orange) and night (green) parameter
sets into the HH model and extracting their corresponding feature values, firing rate
(FR), and resting membrane potential (RMP). (B) Samples produced by the trained
cGAN and passed to the HH model for day (purple) and night (blue).

4.3 CA1 Pyramidal Neuron Model - Disease Effect

4.3.1 Overview

Alzheimer’s disease (AD) is believed to occur when abnormal amounts of the proteins

amyloid beta and tau aggregate in the brain, resulting in a progressive loss of

neuronal function. Hippocampal neurons in transgenic mice with amyloidopathy

or tauopathy exhibit altered intrinsic excitability properties. Our goal here is to

combine deep learning with biophysical modeling to map experimental data recorded

from hippocampal CA1 neurons in transgenic AD mice and age-matched wild-type

littermate controls to the parameter space of a conductance-based CA1 model. In this

section, we demonstrate that cGANs can accurately infer parameter distributions of
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the conductance-based model and outperforms a Markov chain Monte Carlo method

on several test cases using synthetic data.

4.3.2 Experimental Data and Feature Extraction

The experimental data we use consists of patch-clamp recordings made from

hippocampal CA1 neurons associated with two previous studies involving mouse

models of Alzheimer’s disease. In Tamagnini et al. [63], CA1 current-clamp

recordings were obtained from transgenic PDAPP mice exhibiting amyloidopathy.

In unpublished data, Tamagnini et al. obtained CA1 current-clamp recordings from

transgenic rTg4510 mice exhibiting tauopathy. In this dissertation, we use voltage

traces from n = 30 cells of 24-month-old PDAPP mice (and n = 19 cells from their

age-matched WT littermate controls) and n = 26 cells of 12-month-old rTg4510 mice

(and n = 26 cells from their age-matched WT littermate controls).

To characterize the excitability of these cells, we focused on the properties of

the first action potential (AP) elicited in response to a square depolarizing current

pulse (300 pA, 500 ms; Figure 4.8A) and on the electrotonic properties of the plasma

membrane measured upon the membrane potential exponential decay in response to

a square hyperpolarizing current pulse (-100 pA, 500 ms; Figure 4.8B). To account

for the biasing effect of cell-to-cell variability of the membrane potential over the

excitability properties, all recordings were made from a starting membrane potential

of Vm = −80 mV. This Vm value was obtained via the constant injection of a

biasing current. To summarize the behavior of these voltage traces, we defined

9 features associated with the APs and 4 features associated with the membrane

hyperpolarization.

The AP features are illustrated in Figures 4.9A-B and are defined as follows:

1. AP threshold: voltage at 10 percent of the AP max positive rate of rise (feature
6)

2. AP peak: maximum value of the voltage trace
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A1 A2 A3 A4

B1 B2 B3 B4

Figure 4.8 Experimental recordings. Waveforms of the first action potential in
response to depolarizing current pulses (A1-A4) and voltage traces in response to
hyperpolarizing current pulses (B1-B4) injected into CA1 pyramidal neurons for four
different categories of mice: Wild-type (WT) 12-month-old mice (black traces, A1-
B1), tau mutant (rTg4510) 12-month old mice (red traces, A2-B2), WT 24-month old
mice (blue traces, A3-B3), and amyloid beta mutant (PDAPP) 24-month-old mice
(green traces, A4-B4).

3. AP trough: minimum value of the voltage in the 2 ms time interval after the
AP peak

4. AP width: duration of time that the voltage is above the AP voltage at max
positive rate of rise (feature 7)

5. AP min voltage before the pulse: minimum voltage in the 1 ms interval before
the AP peak

6. AP max positive rate of rise: maximum value of dV/dt in the 3 ms time interval
around the AP peak (i.e., 1 ms before and 2 ms after the peak)

7. AP voltage at max positive rate of rise: voltage value at the AP max positive
rate of rise

8. AP max negative rate of rise: minimum value of dV/dt in the 3 ms time interval
around the AP peak (i.e., 1 ms before and 2 ms after the peak)

9. AP voltage at max negative rate of rise: voltage value at the AP max negative
rate of rise.

The membrane hyperpolarization features are illustrated in Figure 4.9C and are
defined as follows:
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10. HP A - voltage at negative peak and baseline differences

11. HP B - voltage at exponential fit1 and baseline differences

12. HP C - voltage at steady state and baseline differences

13. HP D - voltage at rebound and baseline differences.
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Figure 4.9 Schematic of feature extraction. (A-B) Action potential features: (1) AP
threshold, (2) AP peak, (3) AP trough, (4) AP width, (5) AP min voltage before
the pulse, (6) AP max positive rate of rise, (7) AP voltage at max positive rate of
rise, (8) AP max negative rate of rise, (9) AP voltage at max negative rate of rise.
(C) Hyperpolarization features: (10) HP A - voltage at negative peak and baseline
differences, (11) HP B - voltage at exponential fit and baseline differences, (12) HP C
- voltage at steady state and baseline differences and (13) HP D - voltage at rebound
and baseline differences.

We note that these features were chosen to try to capture as much of the

behavior of the voltage traces in as few features as possible. Increasing the

dimensionality of the feature space can reduce the accuracy of cGAN training if

the additional features are not sufficiently informative.

We then calculated these features for the voltage traces from PDAPP, rTg4510,

and WT mice (see Figure 4.10 for the AP features, and Figure 4.11 for the

hyperpolarization features). Despite the large amount of variability within each

category, for some features clear differences are observed across categories. For

example, AP peak appears to be reduced in PDAPP mice compared to their WT

1The exponential curve is fitted to the 10% into 95% of the falling phase of the voltage trace
during the hyperpolarization pulse
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controls (Figure 4.10 top middle panel) and AP width appears to be reduced in

rTg4510 mice compared to their WT controls (Figure 4.10 middle left panel).
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Figure 4.10 Action potential features in experimental data and initial models.
Box and whisker plots of the action potential (AP) features extracted from the
experimental data and the biophysical CA1 model with three different parameter
sets: (1) the parameters in the original Nowacki et al. [46] paper (solid gray
lines), (2) parameters obtained using differential evolution, optimizing only the
maximal conductance parameters (DE-MG, dashed orange lines), and (3) parameters
obtained using differential evolution, optimizing the maximal conductances and the
half-activation voltage of the transient sodium current (DE-MG-Vmnat, dashed
magenta lines).

4.3.3 Optimal Parameters - Differential Evolution

First, we simulated the pyramidal neuron model (see Section 2.4) with the parameter

values provided in Nowacki et al. [46] (see Appendix Table A.1) and calculated feature

values based on the model output (i.e., the simulated voltage trace). For certain

features, the model’s feature value is outside the range of the feature values observed

in the experimental data (solid gray lines in Figures 4.10 and 4.11). For example, the

AP threshold and AP peak in the model are significantly more depolarized than the
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Figure 4.11 Membrane hyperpolarization features in experimental data and initial
models. Box and whisker plots of the membrane hyperpolarization features extracted
from the experimental data and the biophysical CA1 model with three different
parameter sets: (1) the parameters in the original Nowacki et al. paper ( [46], solid
gray lines), (2) parameters obtained using differential evolution, optimizing only the
maximal conductance parameters (DE-MG, dashed orange lines), and (3) parameters
obtained using differential evolution, optimizing the maximal conductances and the
half-activation voltage of the transient sodium current (DE-MG-Vmnat, dashed
magenta lines).

AP thresholds and peaks seen in these CA1 neurons (Figure 4.10 top left and top

middle panels).

Thus, we used stochastic global optimization to find model parameters that

produce model output with feature values consistent with the experimentally observed

feature values. Specifically, we used differential evolution (DE), a population-based

search technique first introduced by Storn and Price [53, 62]. The objective function

for the DE algorithm was to minimize the sum of squares error between the simulated

voltage trace and the average voltage trace for each category (PDAPP, rTg4510, WT

12 and 24 month) across all four categories. More details on our implementation of

the DE algorithm are provided in Section 3.1.

Initially, we chose to hold all the reversal potentials and gating variable

parameters at their original Nowacki et al. values, so the only free parameters for

DE to optimize were the 8 maximal conductances. The model with optimized
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maximal conductances produced model output with feature values more consistent

with the range of the feature values in the experimental data (dashed orange lines

in Figures 4.10 and 4.11). However, this model’s AP threshold was still significantly

more depolarized than in the data (Figure 4.10 top left panel).

We used a variance-based sensitivity analysis (Sobol’s method) to determine

which model parameters affect the model’s AP threshold, and found that the half-

activation of the transient sodium current (VmNaT ) has the largest effect (see Section

3.2 for a description of our sensitivity analysis procedure). We then ran DE again,

this time with VmNaT as a free parameter in addition to the maximal conductances.

The model with optimized VmNaT produced model output with feature values within

the range of the feature values in the experimental data, including the AP threshold

(dashed magenta lines in Figures 4.10 and 4.11). Furthermore, the action potential

and membrane hyperpolarization voltage traces produced by this model agree well

with the experimental voltage traces themselves, as the model output appears to lie

in the middle of the four voltage traces obtained by averaging the traces within each

of the four categories (Figure 4.12).

We refer to the parameter set obtained through DE with VmNaT and maximal

conductances as free parameters as the “default” model parameters. We will use these

parameters to set parameter bounds when creating the training dataset for cGAN.

4.3.4 cGAN Training on Biophysical Model and Validation on Synthetic
Target Data

Recall that our main goal is to use cGAN to map voltage traces recorded

from WT and Alzheimer’s mutant mice to the parameter space of our CA1

model. To enable cGAN to learn the mapping from electrophysiological features

to the CA1 model parameter space, we will create a training dataset consisting of

features calculated from CA1 model simulations with randomly chosen parameter

46



0 1 2 3
-80

-60

-40

-20

0

20

40
WT (12 mo)
rTg4510 (12 mo)
WT (24 mo)
PDAPP (24 mo)
DE - Model

0.2 0.4 0.6 0.8
-105

-100

-95

-90

-85

-80

-75

-70

A B

Figure 4.12 Average AP and hyperpolarization voltage traces from experimental
data and optimized model. The DE-Model shown here is the same model that was
labeled DE-MG-Vmnat in Figures 4.11 and 4.10, and was obtained by minimizing
the least square error between the DE-Model output and the average AP and
hyperpolarization traces across all four categories. (A) Mean of the AP waveforms in
the experimental data for each category, and the AP waveform simulated using the
optimized DE model (magenta). (B) Mean of the membrane hyperpolarization traces
in the experimental data for each category, and the hyperpolarization trace simulated
using the optimized DE model (magenta).

values. Since we are primarily interested in how the maximal conductances of the

various ion channels present in CA1 pyramidal neurons are affected by aging and

amyloidopathy/tauopathy, we will only vary the maximal conductance parameters in

our training dataset and keep the gating variable kinetic parameters and the reversal

potentials fixed at their default values. However, it may be that some of the maximal

conductances do not have a large effect on the output features of interest. To explore

this possibility, before creating a training dataset, we first conducted Sobol sensitivity

analysis (see Section 3.2) to see how each of the 8 maximal conductance parameters

affect the features. We found that 3 of these conductances, gNaP , gCaT , and gL have

a small effect on the features compared to the other 5 conductances (Figure 4.13).

From a biological standpoint, these 3 conductances are unlikely to play a major role in

determining the AP features for the following reasons: (1) persistent sodium current
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(INaP ) is likely to be much smaller than transient sodium current (INaT ), (2) T-type

calcium (ICaT ) is likely to be much slower than INaT , and (3) the leak current (IL)

primarily affects resting membrane potential rather than AP dynamics. Therefore,

when we create the training dataset, we keep those 3 conductances fixed at their

default values, and only vary 5 conductances: gNaT , gCaH , gKDR, gKM , and gH .

A B

Figure 4.13 Dimensionality reduction using variance-based (Sobol) sensitivity
analysis. The height of the bars represent how sensitive the AP and hyperpolarization
features are to each parameter. (A) A1: average first-order index across feature space.
(B) ST: average total-effect index across feature space.

For the training dataset, we performed 3 million simulations of the CA1 model

with these 5 conductances drawn from uniform distributions with upper and lower

bounds at ±100% of their default values. We then calculated the feature values

for these simulations, and trained the cGAN with the parameters X conditioned on

the features Y . Once the cGAN was trained, we passed the features for a subset

of the training dataset (10,000 simulations) to the trained cGAN and asked it to

produce samples (i.e., parameter sets) for those features. We then simulated the

CA1 model with the parameter sets from the cGAN and calculated the features

from these simulations. To compare the distributions of features from the training

dataset and from the cGAN samples, we plotted Kernel Density Estimates (KDEs)

for each feature and scatter plots for each pair of features (Figure 4.14A). These plots
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show that the cGAN samples produced features that were very consistent with the

features in the training data. We also plotted KDEs and pairwise contour plots for

each parameter, which show that the distributions of parameters produced by the

cGAN are similar to the parameter distributions in the training dataset (Fig. 4.14B).

This visual conclusion was confirmed by calculating the Jensen Shannon Divergence.

The JSD between the cGAN samples and training data on the joint distribution of

parameters and features was approximately zero (1.11×10−14).

4.3.5 Comparison with Markov Chain Monte Carlo Method on Synthetic
Target Data

Although the results shown in Figure 4.14B are encouraging, it is important to

test the performance of the cGAN on data that were not part of the training dataset.

To create synthetic target data to use for validation, we constructed 100 random

parameter sets with each parameter p drawn from a normal distribution with mean

µp and standard deviation µp/8, where µp is the default value of that parameter. If

the randomly drawn value was negative or was larger than the upper bound for that

parameter in the training set, then the value was set to zero or the upper bound,

respectively.

We simulated these 100 parameter sets with the CA1 model, calculated the

features, and passed the features to the trained cGAN to generate 100 cGAN

parameter samples. We then simulated these cGAN parameter samples with the

CA1 model, calculated the features, and compared the target and cGAN feature

distributions. KDE plots for each feature, as well as 2D KDE plots for each

pair of features, show that the cGAN feature distributions are similar to the

target feature distributions (Figures 4.15 and 4.16A lower triangles). Furthermore,

KDE plots for each parameter and each pair of parameters show that the cGAN

parameter distributions are similar to the parameter distributions used to generate
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the target data (Figure 4.16B lower triangle). To confirm these visual conclusions,

we performed two-sample Kolmogorov-Smirnov (KS) tests to compare the cGAN and

target distributions in feature and parameter space. In all cases but one (the voltage

at the maximum positive rate of rise feature), the KS test failed to reject the null

hypothesis (with a p-value threshold of 0.01) that these two sets of samples come

from the same probability distribution, suggesting that the cGAN distributions are

indeed similar to the target distributions.

We then performed the same procedure using a Markov chain Monte Carlo

(MCMC) method instead of cGAN to infer parameters from the target data. The

details of our MCMC implementation are provided in Section 3.3.1. We chose MCMC

as the benchmark method to compare the performance of cGAN to because most

state-of-the-art methods for solving stochastic inverse problems are based on MCMC

[10, 34]. We passed the same 100 target data features to the MCMC algorithm as

we did the cGAN, and then simulated the parameters produced by MCMC with the

CA1 model. The feature distributions produced by the MCMC parameters, and the

distributions of the MCMC parameters themselves, differ from their respective target

distributions (Figures 4.15 and 4.16 upper triangles). Furthermore, we performed KS

tests between the MCMC parameters and features and the target parameters and

features, and in all cases the null hypothesis that these samples come from the same

probability distribution was rejected, suggesting that the MCMC distributions are

indeed different from the target distributions.

4.3.6 Parameter Inference Tests on Synthetic Target Data

To further test the ability of cGAN to accurately infer biophysical model parameters

from feature data, we generated synthetic target datasets with a variety of underlying

parameter structures. These structures were chosen to reflect the possible scenarios

one may encounter when working with data from 2 different categories (e.g., data

from WT versus mutant mice, or data from young versus old mice). For the CA1
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model, we are interested in 5 parameters. Suppose that in the mutant mice, only

1 of these parameters (e.g., gNaT ) is altered compared to WT, and the other 4

parameters are not. To simulate this scenario, we construct two groups of target

data. For each of the 4 parameters that are not hypothesized to be altered by the

mutation (i.e., gCaH , gKDR, gKM , and gH), we draw 100 values from the same normal

distribution N (µp, (µp/8)
2) for each group. For the parameter that is altered by the

mutation (gNaT ), we draw 100 values from N (0.5µp, (µp/8)
2) for Group 1 and 100

values from N (1.5µp, (µp/8)
2) for Group 2. For each group, we then: (1) simulate

these parameter sets using the CA1 model and calculate the features, (2) pass the

features to the trained cGAN as target data to obtain cGAN samples (parameter

sets), (3) simulate the cGAN parameter sets using the CA1 model and calculate the

features, and (4) compare the cGAN feature and parameter distributions between

Group 1 (G1) and Group 2 (G2) and to their respective targets. The G1 and G2

target distributions of some AP features are quite different from each other (Appendix

Figure A.8 lower triangle), whereas the G1 and G2 membrane hyperpolarization

feature target distributions are similar (Figure A.9 lower triangle), illustrating that

the value of gNaT affects some features more than others. Nonetheless, for all features

the cGAN samples reproduce the target distributions well across both G1 and G2.

Figure 4.17 (lower triangle) shows that the cGAN was able to accurately infer the

distributions of all 5 parameters as well. Importantly, the cGAN-inferred distributions

for gNaT are distinct between Groups 1 and 2, whereas for the other 4 parameters the

cGAN-inferred distributions are similar for G1 and G2.

We also used KS tests to assess the cGAN performance. First, we ran KS tests

on the target data from G1 and G2. For the parameters, the null hypothesis that the

G1 and G2 target samples come from the same distribution is rejected for gNaT , but

is not rejected for the other 4 parameters, as one would hope since this was the true

structure used to create the target data. For the feature distributions, the KS tests
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reject the null for 10 out of the 13 features. When we ran the KS tests on the cGAN

G1 and G2 distributions, we get the exact same results for both the parameters and

features as we did for the target data. This consistency in KS test results suggests that

cGAN is able to correctly identify the structure of parameter variations between two

groups of samples based on their features. Additionally, we ran KS tests to compare

the cGAN distributions for G1 to the target data for G1, and the cGAN distributions

for G2 to the target data for G2. For G1, all of the KS tests (for both parameters and

features) failed to reject the null, again indicating the cGAN distributions are similar

to the target distributions. For G2, all of the KS tests failed to reject the null except

for one feature (the voltage at the maximum positive rate of rise). We then repeated

this simulation and testing procedure 4 more times with the other possible choices

for having a single parameter distinguish G1 and G2. For the G1 vs. G2 KS tests,

the cGAN sample tests returned the same result as the target data tests 70 out of 72

times (Appendix Figure A.2 top panels). For the cGAN sample vs. target data KS

tests, the null was rejected 0 out of 72 times for G1 (Figure A.2 bottom left panel)

and 2 out of 72 times for G2 (Figure A.2 bottom right panel).

Next, we investigated scenarios with more than one parameter distinguishing

G1 and G2. For example, we considered the case where gNaT is not altered by the

mutation, but the other 4 parameters all are altered by the mutation (i.e., gNaT ∼

N (µp, (µp/8)
2) in both G1 and G2, but gCaH , gKDr, gKM , and gH are all distributed

N (0.5µp, (µp/8)
2) in G1 and N (1.5µp, (µp/8)

2) in G2). The KDE and scatter plots

for the AP features (Figure A.8 upper triangle), membrane hyperpolarization features

(Figure A.9 upper triangle), and parameters (Figure 4.17 upper triangle) indicate

that the cGAN samples are consistent with the target data distributions. We also

simulated the 4 other cases where each of the other 4 parameters was the only one

not altered by the mutation. For the G1 vs. G2 KS tests, the cGAN sample tests

returned the same result as the target data tests 89 out of 90 times (Figure A.5 top
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panels upper portion). For the cGAN sample vs. target data KS tests, the null was

rejected 0 out of 90 times for G1 and 3 out of 90 times for G2 (Figure A.5 top panels,

bottom left and bottom right portions, respectively).

There are 35 other ways that exactly 4 out of the 5 parameters could be altered

by the mutation. In Figure 4.17 (upper triangle), the other 4 parameters all had lower

means in G1 than in G2. Instead, up to three of these parameters could have higher

means in G1 than in G2 (if all 4 had higher means, it would be equivalent to the case

we already simulated just with the G1 and G2 labels swapped). We simulated and

tested these additional parameter structures. For the G1 vs. G2 KS tests, the cGAN

sample tests returned the same result as the target data tests 624 out of 630 times

(Figure A.5 bottom 7 panels upper portions). For the cGAN sample vs. target data

KS tests, the null was rejected 15 out of 630 times for G1 and 38 out of 630 times for

G2 (Figure A.5 bottom 7 panels lower portions).

So far, we have discussed scenarios where either exactly 1 parameter was affected

by the mutation or exactly 4 parameters were affected by the mutation. Here, we

consider the remaining scenarios of exactly 2, 3, or 5 parameters being affected. The

number of possible cases for each scenario is given by(
5

k

)
× 2k−1, k = 1, · · · , 5 (4.2)

where k is the number of parameters affected by the mutation. Thus, for k = 2,

we have 20 different cases. For the G1 vs. G2 KS tests, the cGAN sample tests

returned the same result as the target data tests 353 out of 360 times (Figure A.3

upper portions of panels). For the cGAN sample vs. target data KS tests, the null

was rejected 3 out of 360 times for G1 and 15 out of 360 times for G2 (Figure A3

lower portions of panels). For k = 3, there are 40 different cases. For the G1 vs. G2

KS tests, the cGAN sample tests returned the same result as the target data tests 711

out of 720 times (Figure A.4 upper portions). For the cGAN sample vs. target data
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KS tests, the null was rejected 9 out of 720 times for G1 and 38 out of 720 times for

G2 (Figure A4 lower portions). Finally, for k = 5, we have 16 different cases. For the

G1 vs. G2 KS tests, the cGAN sample tests returned the same result as the target

data tests 288 out of 288 times (Figure A.6 upper portions). For the cGAN sample

vs. target data KS tests, the null was rejected 9 out of 288 times for G1 and 13 out

of 288 times for G2 (Figure A.6 lower portions). The results of the KS tests for all of

the 5 choose k cases are summarized in Figure A.7.

In summary, these results on synthetic target data demonstrate that cGAN is

capable of accurately identifying complex parameter variation structures from subtle

differences in the features of CA1 model simulations. This gives us the confidence to

apply the cGAN method to CA1 experimental data in Section 5.2.

4.4 Medium Spiny Neuron Network Model - Disease Effect

In this section we will show the results of using cGANs for parameter estimation on a

mechanistic model of the MSN network (introduced in Section 2.5). Ponzi et al. [51]

used their network model and the data from both wild-type (WT) and Hungtington’s

Disease (HD) mutant mice to generate insights into network pathologies associated

with HD symptoms. In order to test the feasibility of using DeepHM for network

models, we reanalyzed some of their data and applied the cGAN architecture. As

the data provided in their paper is not well distributed between the lower and upper

bounds of each parameter, we used Latin Hyper Cube sampling to help distribute

the samples evenly in the parameter space. We made 170 new datasets by passing

these parameters into the MSN-network mechanistic model. From the simulated spike

trains for each neuron in the network (see Figure 4.18), we extracted four features

for each of the samples: mean interspike interval (ISI), Local Coefficient

of Variation (CV) of the ISIs, Skew of the ISIs, and Firing Rate. The

dataset comprising different parameter sets and their corresponding features formed
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the synthetic dataset we used to train the cGAN. The trained cGAN then takes the

4D feature values as input and produces samples from parameter distributions that

generate those feature values as output. We checked the trained network quality at

each training epoch by probing the network with a feature set that was generated

by simulating the MSN network model at a known point in parameter space, and

measured the divergence between those target parameter values and the distribution

of parameter values output by the cGAN. We found minimal divergence at training

epoch 1000 (which was the last epoch in our training), and obtained parameter

samples that were very close to the original parameter values (see Figure 4.19 and

4.20), despite a relatively coarse sampling of only 170 points in the original 2D

parameter space.
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Figure 4.14 Comparison of cGAN samples and training dataset. (A) Feature space:
scatterplots (center of panel) and KDE plots (top and right of each panel) with cGAN
samples in red and the training dataset in green. (B) Parameter space: contour plots
(center of panel) and KDE plots (top and right of each panel) with cGAN samples in
red and the training dataset in green. In both (A) and (B), the KDE plots for the
cGAN samples are nearly identical to the KDE plots for the training dataset (and
have almost zero JSD measure).
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Figure 4.15 Performance of cGAN and MCMC on synthetic target data - AP
features. Lower main diagonal and lower triangle - KDE and scatter plots of the
cGAN samples (red) versus target (green). Upper main diagonal and upper triangle
- KDE and scatter plots of the MCMC samples (blue) versus target (green).
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Figure 4.16 Performance of cGAN and MCMC on synthetic target data - HP
features and parameter space. Lower main diagonal and lower triangle - KDE and
scatter plots of the cGAN samples (red) versus target (green). Upper main diagonal
and upper triangle - KDE and scatter plots of the MCMC samples (blue) versus target
(green). (A) HP features. (B) Parameter space.
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Figure 4.17 Performance of cGAN in parameter space on synthetic targets from
two groups with distinct parameter structures. KDE plots (main diagonals) and
scatter plots (lower and upper triangles) for Group 1 (G1) target data (magenta),
Group 2 (G2) target data (green), cGAN samples for G1 (blue) and cGAN samples
for G2 (red). Lower main diagonal and lower triangle - only one parameter (gNaT )
is distributed differently in the G1 target data than in the G2 target data, and the
other four parameters have the same distribution in the G1 and G2 target data. Upper
main diagonal and upper triangle - Four parameters (all parameters except gNaT ) are
distributed differently in the G1 target data than in the G2 target data.
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Figure 4.18 Spike raster plots for two different parameter sets of the MSN network
model. The y-axis range is cell index (from 1 to 2500 as we have this number of cells
in the MSN network), and the x-axis is time. Each row represents the spike train
data for that specific cell, with black tick marks indicating the time of a spike.
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Figure 4.19 Panels A1 and B1 are plots of the joint parameter distribution for two
different test datasets. The red area in each panel represents the sampling region
coming from the final distribution of the generator based on their target vector (gE
and gI parameters are known and are specified in each panel with a yellow circle).
Panel A2 and B2 are magnifications of the left panels.
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Figure 4.20 cGAN results for simulated MSN test data. KDE plots along the
diagonal and scatter plots in the lower triangle. Sampled features in blue and target
features in orange corresponding to the same panels in Figure 4.19. All samples
created by the generator (i.e., blue points) are in a close neighborhood of the target
features (i.e., orange points). This means the cGAN was able to map the target
features correctly into the parameter space.
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CHAPTER 5

PARAMETER INFERENCE ON EXPERIMENTAL TARGET DATA

The ability of the DeepHM framework to accurately identify complex parameter

distributions from synthetic target data as demonstrated in Chapter 4 motivates

us to apply the approach to experimental target data. In this chapter, we use

cGANs to infer the distributions of ionic conductances underlying neuronal activity

in three different biological contexts: (1) day/night variation of firing rate and RMP

in SCN neurons, (2) altered excitability due to aging and mutations associated

with Alzheimer’s disease in CA1 pyramidal neurons, and (3) disrupted synaptic

connections in the MSN network associated with Huntington’s disease.

5.1 Suprachiasmatic Nucleus Neurons - Day/Night Variation

As described in Section 4.2, the SCN is a group of ∼20,000 neurons in the

hypothalamus that serves as the central circadian pacemaker coordinating daily

rhythms in physiology and behavior. In order to evaluate which ionic conductances

are in charge of the variations responsible for the differences between day and night in

the electrical activity of the Rhabdomys SCN, we will use the DeepHM methodology

to map Rhabdomys SCN electrical activity data during the day and at night to the

parameter space of our conductance-based SCN model (Section 2.3). These parameter

distributions will enable us to infer which conductances are controlling the day/night

variation.

Before analyzing the estimated parameter distributions generated by cGAN and

their corresponding feature distributions, one may wonder how closely the voltage

traces of the push forward of these estimated parameters into the SCN mechanistic

model match their corresponding voltage traces obtained from real mice. Addressing

this question is crucial because it reveals whether the number of defined features, and
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the definition of the features themselves, were sufficient to capture the structure of

the voltage trace. More specifically, if the feature distribution of the push forward

parameters in the mechanistic model is very similar to the target distribution but

there are some discrepancies in the voltage trace’s shape, then more feature values

must be defined in order to capture the shape of the target voltage traces as closely as

possible. Figures 5.1A and 5.1B compare the voltage traces of the estimated cGAN

samples pushed forward into the SCN model (on the left) versus the recorded data

from the real mice (on the right). Four different examples of cells recorded during

the night (panel A) and during the day (panel B) are provided.

The fact that the trained cGAN was able to converge into each cell’s proper

region in the parameter space indicates that the definition and the quantity of features

were specified correctly based on these results. In Panel C, a swarm plot is used to

display all of the extracted features (i.e., FR and RMP) from the real data as well as

the cGAN samples that were pushed forward into the SCN model. The features of

each cell were precisely captured by cGAN after converging into their proper region

in the parameter space. In order to demonstrate the existence of nonlinearity and

heterogeneity across various ionic conductances [45], we compared the parameter

distribution predicted by cGAN to the feature distribution of real targets acquired

from the experiment.

Figure 5.2A shows the KDE plots of the estimated cGAN parameter distribution

for different target features (extracted from real mice, see Figure 5.2B). In other

words, the trained cGAN created a population of samples back in the parameter

space according to the given features all of which were extracted from the recorded

voltage trace of the real mice. To verify the accuracy of the cGAN, the JSD

measurement between the distribution of the features extracted from the real data

and the distribution of the features from the push forward estimated samples into

the SCN mechanistic model (see Figure 5.2C) was very close to zero. According
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Figure 5.1 Day and night variation - voltage traces and swarm plots. (A) Voltage
traces of the push forward cGAN estimated parameters into the SCN model (left
panels) corresponding to the extracted features of the experimental targets (right
panels) for real data recorded during the night. (B) Voltage traces of the push
forward cGAN estimated parameters into the SCN model (left panels) corresponding
to the extracted features of the experimental targets (right panels) for real data
recorded during the day. (C) Swarm plots of extracted features of the push forward
cGAN estimated parameters into the SCN model on the left in comparison with their
corresponding target features on the right.

to Figure 5.2A, the most impactful parameters which play a role in capturing the

differences between the day and night variation in the feature space are gK and gA.

Although it is known that sodium leak currents play a role in regulating the day/night

activity of SCN neurons [66] in mice, based on this figure it seems both gLNa
and gLK

did not vary between day and night.
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Figure 5.2 Day and night variation - distributions of the cGAN samples
corresponding to the experimental targets in both parameter and feature space.
(A) Diagonal - KDE plots of the parameter distributions, off diagonal - shaded
contour plots with scatter plots on the top. (B) Diagonal - KDE plots of the feature
distributions of the target features, off diagonal - shaded contour plots with scatter
plots on the top. (C) Diagonal - KDE plots of the feature distributions of the push
forward estimated parameters into the SCN model, off diagonal - shaded contour
plots with scatter plots on the top.

To investigate the role of sodium leak currents in regulating the day/night

variation in more detail, we split the target into two sub-targets; the first one

represents all cells with zero firing rate (see Figure 5.3) as a feature and the other

one is all cells with non-zero firing rate (see Figure 5.4). This approach will enable

us to determine whether sodium leak played a role in either of the two sub-targets.

Figure 5.3A – diagonal and lower triangle – represents the KDE and shaded contour

plots with scatter plots on the top of cGAN samples for all zero firing rate target

features. According to this figure, there is a higher impact of gNa, gLNa
and gLK

on day/night variation. As it is clear, these three parameters come with a higher

mean for night in comparison with day which comes with the lower mean value.
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More interestingly, the story is different when the target has non-zero firing rate.

Figure 5.4A – diagonal and lower triangle – represents, gCa, gA, gLNa
and gLK

are

the key parameters in this day/night variation where they come with a higher mean

value for day in comparison with night which comes with the lower mean value.

A B
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Figure 5.3 Day and night variation - distributions of the cGAN samples corre-
sponding to the experimental targets with zero firing rate in both parameter and
feature space. (A) Diagonal - KDE plots of the parameter distributions, off diagonal
- shaded contour plots with scatter plots on the top. (B) Diagonal - KDE plots of
the feature distributions of the target features, off diagonal - shaded contour plots
with scatter plots on the top. (C) Diagonal - KDE plots of the feature distributions
of the push forward estimated parameters into the SCN model, off diagonal - shaded
contour plots with scatter plots on the top.

5.2 CA1 Pyramidal Neuron Model - Age and Disease Effect

5.2.1 Overview

In this part, we use DeepHM to estimate parameter distributions corresponding to

the experimental data and infer which ion channels are altered in the Alzheimer’s

mouse models compared to their wildtype controls at 12 and 24 months. We
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Figure 5.4 Day and night variation - distributions of the cGAN samples corre-
sponding to the experimental targets with non-zero firing rate in both parameter and
feature space. (A) Diagonal - KDE plots of the parameter distributions, off diagonal
- shaded contour plots with scatter plots on the top. (B) Diagonal - KDE plots of
the feature distributions of the target features, off diagonal - shaded contour plots
with scatter plots on the top. (C) Diagonal - KDE plots of the feature distributions
of the push forward estimated parameters into the SCN model, off diagonal - shaded
contour plots with scatter plots on the top.

find that the conductances most disrupted by tauopathy, amyloidopathy, and aging

are delayed rectifier potassium, transient sodium, and hyperpolarization-

activated potassium, respectively.

5.2.2 Parameter Inference on Alzheimer’s Mouse Model Data

Now that we have established cGAN as a tool for mapping observed traces to

unobserved/unmeasured parameter values, we turn our attention back to experi-

mental data (Figures 4.8, 4.10, 4.11) and seek to answer the following questions:

Which maximal conductances are responsible for the differences observed in feature
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space between (1) the wild type versus the mutant mice (i.e., the disease effect), and

(2) the 12-month old mice versus the 24-month old mice (i.e., the age effect)?

To answer these questions, we will pass the features for each cell to the cGAN to

obtain a population of models for each individual cell. For some cells, certain feature

values fall outside the range of the values for that feature used in our training dataset.

This can lead to inaccurate cGAN samples; thus, if a cell has a feature value outside

that range we replaced that value with the median value of that feature across the

training dataset.

We obtained 100 cGAN samples for each cell, and then pushed those parameters

forward through the mechanistic model. Figure 5.5A shows that the mean AP

and hyperpolarization traces produced by the cGAN samples agree well with the

mean AP and hyperpolarization traces from the experimental recordings in each of

the 4 categories. For example, we can see from the voltage traces that the AP

peak feature exhibits the same trend in the cGAN samples and experimental data,

with WT 24 month having the highest mean AP peak, followed by PDAPP, WT

12 month, and rTG4510, respectively. To give a sense of how the variability of

the cGAN samples compares to the experimental recordings, Figure 5.5B shows the

mean ± standard deviation of the AP and hyperpolarization traces. Overall, the

amount of variability in the cGAN samples appears comparable to the amount of

variability in the experimental data across the four categories, with the exception of

the hyperpolarization traces for WT 24 month where there is less variability in the

cGAN samples than in the data. Furthermore, box-and-whisker plots for the output

of the cGAN samples in feature space also agree well with the feature distributions

in the experimental data (compare Figure A.10 to Figure 4.10, and Figure A.11 to

Figure 4.11).

Seeing that the cGAN samples produce appropriate behavior in feature space,

we move on to assessing the distributions of the cGAN samples in parameter space
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Figure 5.5 AP and membrane hyperpolarization traces from cGAN samples with
experimental targets. (A) Mean AP and membrane hyperpolarization traces from
each experimental data category (1st and 3rd panels) and mean AP and membrane
hyperpolarization traces from simulated the mechanistic model with 100 cGAN
parameter samples for each cell in each category (2nd and 4th panels). (B) Same
as A1, but shading shows the mean ± standard deviation for each category.
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in order to answer the questions posed at the beginning of this section. First, we

compare the cGAN samples for rTg4510 and their age-matched controls (WT 12

month). Based on KDE plots for each parameter (lower main diagonal of Figure 5.6),

we see that for 3 of the parameters (gNaT , gCaH , gH), the WT 12 month and rTg4510

distributions are centered around the same values. However, the distribution for gKDR

is shifted to the right in rTg4510 relative to WT 12 month, whereas the distribution

of gKM is shifted to the left in rTg4510 relative to WT 12 month. The KDE plots

comparing PDAPP and their age-matched controls (WT 24 month) show a similar

trend, with the gKDR and gKM distributions shifted to the right and left, respectively,

for PDAPP relative to WT (upper main diagonal of Figure 5.6). For PDAPP, the

distribution of gNaT is also shifted to the left relative to WT. From these observations,

we hypothesize that for the mouse model of tauopathy, it is the conductances gKDR

and gKM that are responsible for the altered excitability properties. For the mouse

model of amyloidopathy, we hypothesize that these conductances plus gNaT play a

role in the altered excitability.

Having considered the disease effect, we now move on to assessing the age effect.

First, we compare the cGAN samples for WT 12 month and WT 24 month. Based on

KDE plots for each parameter (lower main diagonal of Figure 5.7), we see the most

striking differences for gH , with the distribution for the older mice shifted to the right

relative to the distribution for the younger mice.

The parameter gKM also shows a rightward shift in the older mice. On the

other hand, the distribution for gKDR is shifted to the left in the older mice. The 12

to 24 month WT comparison is the most appropriate one for assessing an age effect,

since the only difference between these two groups of mice is their age. However, for

the sake of completeness we also compared the 12 month mutant (rTg4510) to the 24

month mutant (PDAPP). Remarkably, the 3 shifts in the parameter distributions that

we observed with age in the WT mice were all preserved in the mutant mice, despite
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Figure 5.6 Disease effect - parameter distributions from cGAN samples with
experimental targets. Lower main diagonal and lower triangle - KDE and shaded
contour plots of cGAN samples for 12-month-old WT (black) and 12-month-old tau
mutant (rTg4510, red) mice. Upper main diagonal and upper triangle - KDE and
shaded contour plots of cGAN samples for 24-month-old (blue) and 24-month-old
amyloid beta mutant (PDAPP, green) mice.

the fact that the 12 and 24 month mutants have different mutations (tauopathy and

amyloidopathy, respectively). Specifically, the gH and gKM distributions are shifted

to the right in the older mutants relative to the younger mutants, while gKDR is

shifted to the left in the older mutants (upper main diagonal of Figure 5.7). These

results lead us to hypothesize that these three conductances underlie the changes in

excitability properties observed with aging.

5.3 Medium Spiny Neuron Network Model - Disease Effect

In Section 4.4, we covered the performance of cGAN on a couple of examples based on

synthetic target simulated by our mechanistic model. In other words, both training

and test features came from model simulations. In these cases the cGAN performed

with high accuracy even though samples were distributed coarsely in the parameter
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Figure 5.7 Age effect - parameter distributions from cGAN samples with experi-
mental targets. Lower main diagonal and lower triangle - KDE and shaded contour
plots of cGAN samples for 12-month-old (black) and 24-month-old (blue) WT mice.
Upper main diagonal and upper triangle - KDE and shaded contour plots of cGAN
samples for 12-month-old (rTg4510, red) and 24-month-old (PDAPP, green) mutant
mice.

space. At this point, an important question is how this performance might change

when using experimental (rather than simulated) data to obtain the test features.

Thus, we next extracted features from time series data recorded from mice. Figure 5.8

shows the results of cGAN parameter inference for real mouse data. In panel A, the

accuracy of cGAN samples are high, which means cGAN was able to map the target

features correctly into parameter space. However, in panel B, cGAN failed to map

the target features into the parameter space.
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A B

Figure 5.8 cGAN results for experimental MSN test data (i.e., Y281-23 and Y016-
16). KDE plots on diagonal and scatter plots in lower triangle. (A) High accuracy in
cGAN parameter inference model - Latin Hypercube Sampled (LHS) training dataset
covers the range of target in the feature space - cGAN samples (orange diamonds)
are in a close neighborhood of the target features (red squares). (B) Low accuracy in
cGAN parameter inference model - Latin Hypercube Sampled (LHS) training dataset
do not cover the range of target in the feature space - target feature is away from the
region of features in the training dataset. In both panels green diamonds represents
the closest features among the training dataset to the target features.

The main reason for the poor performance of the cGAN shown in panel B is the

lack of information about that area of feature space in the simulated dataset that the

cGAN was trained on. In general, if the target features that cGAN wants to map in

parameter space have been seen before in our synthetic dataset, then the accuracy of

cGAN will be high. On the other hand, poor performance of cGAN is inevitable if the

target features are outside of the region of features seen in our training dataset. One

easy way to solve this issue is by increasing the number of samples in our training

dataset, but this is difficult to do for models that are very time consuming to simulate.

Indeed, the MSN network model considered here is very expensive to simulate with

each taking more than an hour to complete. Therefore, we need a strategy to find the
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best region of parameter space to sample, thereby reducing the number of simulations

needed to get as close as possible to the region of target features.
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CHAPTER 6

CONCLUSION AND OUTLOOK

6.1 Overview

In this dissertation, we looked at different biophysical models at both single-cell

and network levels and tried to address certain unanswered questions regarding

the biophysical mechanisms with a novel parameter inference technique. The

conclusions and main results and conclusions discussed throughout the dissertation

are summarized in this chapter. We then end by listing some potential follow-up

studies that apply the findings from this work to additional interesting challenges.

6.2 Summary of Results

The last decade has seen a rise in the application of population-based modeling in

the neuronal and cardiac electrophysiology domains [33, 38, 44, 50, 54, 58, 60]. The

development of methods for selecting and producing virtual patient populations

that accurately reflect the statistics of clinical populations has also received a lot

of attention in fields such as quantitative systems pharmacology [2, 11,18,30,55].

In this dissertation, we have introduced and employed a deep hybrid modeling

(DeepHM) framework [48, 49] featuring conditional generative adversarial networks

(cGANs) that can be categorized as a population of models technique. More

specifically, we considered a stochastic inverse problem (SIP), where the experimental

data comes from multiple individuals across a population. Our method utilized

recent advances in deep learning to generate model parameter sets that produced a

population of deterministic mechanistic models with outputs that are consistent with

the experimental population data. A distinct but related problem is simulation-based

inference (SBI), where experimental data are acquired from a single individual. In

SBI, stochastic mechanistic model is used to infer the set of model parameters most
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likely to have generated the data distribution observed from the individual. While

deep learning methods such as neural density estimation with normalizing flows have

been used in SBI problems [20, 37], to our knowledge our work is among the first to

apply a deep learning approach to an SIP.

We compared the performance of cGAN and a standard Bayesian inference

Markov chain Monte Carlo (MCMC) method [52] on a parameter inference task with

synthetic target data where the ground truth was known. The cGAN outperformed

MCMC on this task, and showed it is capable of producing a population of models

that captures the type of variability that is often present in biological data.

The cGAN was able to accurately detect a variety of complex differences in

the distribution of parameters across different synthetic target data such as type-I

and type-II excitability targets in the Morris-Lecar model (Section 4.1), day/night

variation in a modified Hodgkin-Huxley model (Section 4.2), and across two groups

of synthetic target data in a CA1 pyramidal neuron model (Section 4.3). Therefore,

based on this success with synthetic target data, we employed the cGAN approach

to infer the parameter distributions in experimental target data across two groups

of SCN recordings (one group recorded during the day, and the other during the

night) and four groups of CA1 pyramidal neurons (WT and mutant mice at two

different ages). From these distributions, we drew conclusions about the biophysical

mechanisms (i.e., the ionic conductances) underlying the differences in the observed

excitability properties of day versus night, WT versus mutant, and younger versus

older mice. Overall, our results illustrate the value of mapping experimental data

back to the parameter space of a mechanistic model.

6.3 Future Work

In future research, the predictions we made about the role of certain conductances in

either day/night variation in the SCN or in Alzheimer’s disease and aging phenotypes
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in CA1 can be tested experimentally. In addition, we can expand our analysis of the

SCN to the network level. In the SCN, the main neurotransmitter coupling neurons

to each other is GABA. Although GABA is an excitatory neurotransmitter early

in development, throughout most areas of the adult brain it acts as an inhibitory

neurotransmitter. The SCN is an exception to this rule, as GABA exhibits both

excitatory and inhibitory actions in the adult SCN. The polarity of GABA synapses

depends on the concentration of chloride in the post-synaptic cell. There is data

suggesting that the expression of chloride transporters in SCN neurons is under

circadian control. Thus, a major open question in the circadian field is whether

or not GABA polarity changes across the day/night cycle, contributing to day/night

rhythms in overall SCN activity. To test this hypothesis, one can conduct simulations

of an SCN network model and then use DeepHM to map the features back to

parameter space. The mechanistic model parameters of most interest to us are

the excitatory and inhibitory synaptic conductances, gsyn−E and gsyn−I . Thus, this

problem has a very similar setup to the MSN network explored in Section 5.3. The

SCN network simulations will take a long time to complete; in fact, we predict that

we won’t be able to supply the cGAN with enough training data to function properly.

In order to deal with this issue, one can develop a new GAN approach where it trains

iteratively to identify the most optimal regions of parameter space and minimize the

number of simulations it needs to perform.

Finally, since DeepHM can produce populations of cell models that accurately

reflect the heterogeneous responses of real cells, this framework could prove useful

in virtual drug design applications. This future direction is inspired by recent work

where a population of models approach was used to identify a set of ion channel drug

targets that optimally convert Huntington’s disease cellular phenotypes to healthy

phenotypes simultaneously across multiple measures [1].

78



APPENDIX

SUPPLEMENTARY INFORMATION

A.1 Supplementary Results

A.1.1 Synthetic Target Methodology

As we are dealing with five parameters in our mechanistic model, we design different

target data scenarios with five choose k parameters distinguishing two different groups

of target data.

5 choose 0: In this scenario, since k = 0, we only have one target group. All

five parameters are drawn from a normal distribution with a mean µ and standard

deviation µ/8, where µ is the value of that parameter in the optimized DE model

parameter set (DE-MG-Vmnat). There is only one case to consider in this scenario.

5 choose 1: In this scenario, since k = 1, we choose one of the five parameters

to draw from a different distribution for the Group 1 (G1) and Group 2 (G2) target

datasets. For that parameter, we draw the G1 samples from a normal distribution

with a mean of 0.5µ and the G2 samples from a normal distribution with a mean of

1.5µ. For both groups the normal distribution has a standard deviation of µ/8, where

again µ is the value of that parameter in the optimized DE model. There are five

different cases in this scenario, since there are five parameters that can be chosen to

distinguish G1 and G2.

5 choose k: Here we consider the scenarios k ∈ {2, 3, 4, 5}. The number of

cases for each value of k can be computed from Equation (A.1). The 2k−1 term

reflects the number of different ways k parameters can be different between G1 and

G2. For example, suppose k = 3, and the 3 parameters chosen to be distributed

differently between G1 and G2 are g-Na-T, g-Ca-H, and g-K-DR. There are 22

different possibilities: (1) all 3 parameters are low in G1 and high in G2 – denoted

79



L-H, L-H, L-H; (2) g-Na-T is high in G1 and g-Ca-H, g-K-DR are low in G1 – denoted

H-L, L-H, L-H; (3) g-Na-T low in G1, g-Ca-H high in G1, and g-K-DR low in G1

– denoted L-H, H-L, L-H; and (4) g-Na-T, g-Ca-H low in G1 and g-K-DR high in

G1 – denoted L-H, L-H, H-L. We do not have to simulate possibilities such as H-L,

H-L, H-L or L-H, H-L, H-L, since they are equivalent to possibilities (1) and (2) listed

above, respectively, just with the labels swapped for G1 and G2 swapped.

(
n

k

)
× 2k−1, k = 1, · · · , 5 (A.1)

A.1.2 Kolmogorov Smirnov Tests

We performed Kolmogorov Smirnov tests (KS-tests) to compare the cGAN samples

to the ground truth target samples for all the different 5 choose k synthetic target

scenarios. The null hypothesis for these tests is that the two samples are from the

same probability distribution. The plots in Figures A.1-A.6 represent the results of

these tests, where black indicates the null hypothesis is rejected (p-value ≤ 0.01) and

peach indicates the null hypothesis is not rejected (p-value > 0.01).
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Figure A.1 5 choose 0 - KS tests for cGAN samples versus target data samples.
Peach color indicates failure to reject the null hypothesis that the cGAN and synthetic
target data samples are from the same distribution.
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L-H

Figure A.2 5 choose 1 - KS tests. Top left - KS tests on two groups of targets
(i.e., G1 (G2) with low - L (high - H) values of the parameter). Top right - KS test
on cGAN samples corresponding to the two groups of target data (i.e. cGAN-G1
(cGAN-G2) with low - L (high - H) values of the parameter). Bottom left - KS test
of cGAN-G1 versus target-G1. Bottom right - KS test of cGAN-G2 versus target-G2.
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Figure A.3 5 choose 2 - KS tests. Panels are arranged in a similar fashion as
Figure A.2. Top: L-H, L-H. Bottom: L-H, H-L.
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Figure A.4 5 choose 3 - KS tests. Panels are arranged in a similar fashion as
Figure A.2. From top to bottom: (1) L-H L-H L-H, (2) H-L L-H L-H, (3) L-H H-L
L-H, (4) L-H L-H H-L.
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Figure A.5 5 choose 4 - KS tests. Panels are arranged in a similar fashion as
Figure A.2. From top to bottom: (1) L-H L-H L-H L-H, (2) H-L L-H L-H L-H, (3)
L-H H-L L-H L-H, (4) L-H L-H H-L L-H, (5) L-H L-H L-H H-L, (6) H-L H-L L-H
L-H, (7) H-L L-H H-L L-H, (8) H-L L-H L-H H-L.
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Figure A.6 5 choose 5 - KS tests. - Panels are arranged in a similar fashion as
Figure A.2. From top to bottom: (1) L-H L-H L-H L-H L-H, (2) H-L L-H L-H L-H
L-H, (3) L-H H-L L-H L-H L-H, (4) L-H L-H H-L L-H L-H, (5) L-H L-H L-H H-L
L-H, (6) L-H L-H L-H H-L L-H H-L, (7) H-L H-L L-H L-H L-H, (8) H-L L-H H-L
L-H L-H, (9) H-L L-H L-H H-L L-H, (10) H-L L-H L-H L-H H-L, (11) L-H H-L H-L
L-H L-H, (12) L-H H-L L-H H-L L-H, (13) L-H H-L L-H L-H H-L, (14) L-H L-H
H-L H-L L-H, (15) L-H L-H H-L L-H H-L, (16) L-H L-H L-H H-L H-L.
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5-choose-1

2/90

3/900/90

True

Total = 5/270

5-choose-2

7/360

15/3603/360

True

Total = 25/1080

5-choose-3

9/720

38/7209/720

True

Total = 56/2160

5-choose-4

7/720

41/72015/720

True

Total = 63/2160

5-choose-5

0/288

13/2889/288

True

Total = 22/864

Figure A.7 Summary of KS test results for all 5 choose k synthetic target data cases.
The demoninators are the total number of tests, and the numerators are the number of
those tests for which the null hypothesis was rejected. Top left quadrants: These KS
tests are taken to be the ground truth as they compared target G1 versus target G2.
Top right quadrants: These KS tests compared cGAN-G1 versus cGAN-G2. Bottom
left quadrants: These KS tests compared target-G1 versus cGAN-G1. Bottom left
quadrants: These KS tests compared target-G2 versus cGAN-G2.
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A.1.3 Output of cGAN Samples in Feature Space for Synthetic Target
Data

Figure A.8 Performance of cGAN on synthetic targets from two groups with
distinct parameter structures - AP features. KDE plots (main diagonals) and scatter
plots (lower and upper triangles) for Group 1 (G1) target data (magenta), Group
2 (G2) target data (green), cGAN samples for G1 (blue) and cGAN samples for
G2 (red). Lower main diagonal and lower triangle - only one parameter (gNaT ) is
distributed differently in the G1 target data than in the G2 target data, and the other
four parameters have the same distribution in the G1 and G2 target data. We refer
to this scenario as “5 choose 1” in Appendix A.1.1. Upper main diagonal and upper
triangle - Four parameters (all parameters except gNaT ) are distributed differently in
the G1 target data than in the G2 target data. We refer to this scenario as “5 choose
4” in Appendix A.1.1.

86



target-G2cGAN-G1target-G1 cGAN-G2

Figure A.9 Performance of cGAN on synthetic targets from two groups with
distinct parameter structures - HP features. KDE plots (main diagonals) and scatter
plots (lower and upper triangles) for Group 1 (G1) target data (magenta), Group
2 (G2) target data (green), cGAN samples for G1 (blue) and cGAN samples for
G2 (red). Lower main diagonal and lower triangle - only one parameter (gNaT ) is
distributed differently in the G1 target data than in the G2 target data, and the
other four parameters have the same distribution in the G1 and G2 target data.
Upper main diagonal and upper triangle - Four parameters (all parameters except
gNaT ) are distributed differently in the G1 target data than in the G2 target data.
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A.1.4 Output of cGAN Samples in Feature Space for Experimental
Target Data
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Figure A.10 Box and whisker plots of the action potential (AP) features extracted
from the mechanistic model voltage traces obtained by pushing forward the cGAN
parameter samples with experimental target data.
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Figure A.11 Box and whisker plots of the membrane hyperpolarization (HP)
features extracted from the mechanistic model voltage traces obtained by pushing
forward the cGAN parameter samples with experimental target data.
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A.2 Mechanistic Model Parameters

Table A.1 Parameters of CA1 Pyramidal Neuron Model

Parameter Value Units Parameter Value Units

Cm 1 µF/cm2 VmH
-102 mV

ENa 60 mV VnH
-102 mV

ECa 90 mV kmNaT
5 mV

EK -85 mV khNaT
-7 mV

EH -30 mV kmNaP
3 mV

EL -65 mV kmCaT
5 mV

gNaT 65.0 (7.2603) µS/cm2 khCaT
-8.5 mV

gNaP 0.1 (0.0423) µS/cm2 kmCaH
5 mV

gCaT 0.6 (0.067) µS/cm2 khCaH
-7 mV

gCaH 0.74 (1.5208) µS/cm2 kmKDR
11.4 mV

gKDR
9.5 (12.505) µS/cm2 khKDR

-9.7 mV

gKM
0.8 (3.3837) µS/cm2 kmKM

10 mV

gH 0.05 (0.0503) µS/cm2 kmH
-13 mV

gL 0.02 (0.0035) µS/cm2 knH
-6 mV

VmNaT
-37 (-60.00) mV τmCaT

2 ms

VhNaT
-75 mV τhCaT

32 ms

VmNaP
-47 mV τmCaH

0.08 ms

VmCaT
-54 mV τhCaH

300 ms

VhCaT
-65 mV τmKDR

1 ms

VmCaH
-15 mV τhKDR

1400 ms

VhCaH
-60 mV τmKM

75 ms

VmKDR
-5.8 mV τmH

15 ms

VhKDR
-68 mV τnH

210 ms

VmKM
-30 mV p 0.85 -

Note: For most parameters, we used the values given in Nowacki et al. [46] paper. Parameter
values for the hyperpolarization-activated potassium current (IH) are taken from Booth et
al. [6]. Optimized parameter values for the maximal conductances and transient sodium
half-activation that we obtained through differential evolution (DE-MG-Vmnat) are shown
in parentheses.

89



REFERENCES

[1] S. L. Allam, T. H. Rumbell, T. Hoang-Trong, J. Parikh, and J. R. Kozloski. Neuronal
population models reveal specific linear conductance controllers sufficient to
rescue preclinical disease phenotypes. iScience, 24(11):103279, 2021.

[2] R. Allen, T. R. Rieger, and C. J. Musante. Efficient generation and selection
of virtual populations in quantitative systems pharmacology models. CPT:
Pharmacometrics and Systems Pharmacology, 5(3):140–146, 2016.

[3] E. Alpaydin. Introduction to machine learning. Cambridge, MA: MIT Press, 2020.

[4] Beatriz Bano-Otalora, Matthew J Moye, Timothy Brown, Robert J Lucas, Casey O
Diekman, and Mino DC Belle. Daily electrical activity in the master circadian
clock of a diurnal mammal. Elife, 10:e68179, 2021.

[5] M. D. Belle, C. O. Diekman, D. B. Forger, and H. D. Piggins. Daily electrical silencing
in the mammalian circadian clock. Science, 326(5950):281–284, 2009.

[6] C. A. Booth, J. Witton, J. Nowacki, K. Tsaneva-Atanasova, M. W. Jones, A. D.
Randall, and J. T. Brown. Altered intrinsic pyramidal neuron properties and
pathway-specific synaptic dysfunction underlie aberrant hippocampal network
function in a mouse model of tauopathy. Journal of Neuroscience, 36(2):350–
363, 2016.

[7] O. J. Britton, A. Bueno-Orovio, K. Van Ammel, H. R. Lu, R. Towart, D. J. Gallacher,
and B. Rodriguez. Experimentally calibrated population of models predicts
and explains intersubject variability in cardiac cellular electrophysiology.
Proceedings of the National Academy of Sciences, 110(23):E2098–E2105, 2013.

[8] S. Brooks. Markov chain Monte Carlo method and its application. Journal of the
Royal Statistical Society: Series D (The Statistician), 47(1):69–100, 1998.

[9] S. Brooks, A. Gelman, G. Jones, and X. Meng. Handbook of Markov chain Monte
Carlo. CRC Press, Boca Raton: FL, 2011.

[10] T. Butler, J. Jakeman, and T. Wildey. Combining push-forward measures and Bayes’
rule to construct consistent solutions to stochastic inverse problems. SIAM
Journal on Scientific Computing, 40(2):A984–A1011, 2018.

[11] Y. Cheng, C. J. Thalhauser, S. Smithline, J. Pagidala, M. Miladinov, H. E. Vezina,
M. Gupta, T. A. Leil, and B. J. Schmidt. QSP toolbox: Computational
implementation of integrated workflow components for deploying multi-scale
mechanistic models. The American Association of Pharmaceutical Scientists
Journal, 19(4):1002–1016, 2017.

90



[12] V. L. Corbit, T. C. Whalen, K. T. Zitelli, S. Y. Crilly, J. E. Rubin, and A. H. Gittis.
Pallidostriatal projections promote β oscillations in a dopamine-depleted
biophysical network model. Journal of Neuroscience, 36(20):5556–5571, 2016.

[13] K. Cranmer, J. Brehmer, and G. Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055–30062, 2020.

[14] C. O. Diekman, M. D. Belle, R. P. Irwin, C. N. Allen, H. D. Piggins, and D. B.
Forger. Causes and consequences of hyperexcitation in central clock neurons.
PLoS Computational Biology, 9(8):e1003196, 2013.

[15] C. O. Diekman and D. B. Forger. Clustering predicted by an electrophysiological
model of the suprachiasmatic nucleus. Journal of Biological Rhythms,
24(4):322–333, 2009.

[16] G. B. Ermentrout and D. H. Terman. Mathematical foundations of neuroscience,
volume 35. New York, NY: Springer Science and Business Media, 2010.

[17] M. Flourakis, E. Kula-Eversole, A. L. Hutchison, T. H. Han, K. Aranda, D. L.
Moose, K. P. White, A. R. Dinner, B. C. Lear, D. Ren, C. O. Diekman,
I. M. Raman, and R. Allada. A conserved bicycle model for circadian clock
control of membrane excitability. Cell, 162(4):836–848, 2015.

[18] K. Gadkar, N. Budha, A. Baruch, J. Davis, P. Fielder, and S. Ramanujan. A
mechanistic systems pharmacology model for prediction of LDL cholesterol
lowering by PCSK9 antagonism in human dyslipidemic populations. CPT:
Pharmacometrics & Systems Pharmacology, 3(11):1–9, 2014.

[19] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian data analysis.
Chapman and Hall/CRC, Boca Raton: FL, 1995.
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[50] E. Passini, A. Mincholé, R. Coppini, E. Cerbai, B. Rodriguez, S. Severi, and
A. Bueno-Orovio. Mechanisms of pro-arrhythmic abnormalities in ventricular
repolarisation and anti-arrhythmic therapies in human hypertrophic cardiomy-
opathy. Journal of Molecular and Cellular Cardiology, 96:72–81, 2016.

[51] A. Ponzi, S. J. Barton, K. D. Bunner, C. Rangel-Barajas, E. S. Zhang, B. R. Miller,
G. V. Rebec, and J. Kozloski. Striatal network modeling in huntington’s
disease. PLoS Computational Biology, 16(4):e1007648, 2020.

[52] D. Poole and A. E. Raftery. Inference for deterministic simulation models: the
Bayesian melding approach. Journal of the American Statistical Association,
95(452):1244–1255, 2000.

[53] K. Price, R. M. Storn, and J. A. Lampinen. Differential evolution: A practical
approach to global optimization. Springer Science & Business Media, 53851,
Lappeenranta, 2006.

[54] A. A. Prinz, D. Bucher, and E. Marder. Similar network activity from disparate
circuit parameters. Nature Neuroscience, 7(12):1345–1352, 2004.

[55] T. R. Rieger, R. J. Allen, L. Bystricky, Y. Chen, G. W. Colopy, Y. Cui, A. Gonzalez,
Y. Liu, R. White, R. Everett, H.T. Banks, and C. J. Musante. Improving
the generation and selection of virtual populations in quantitative systems
pharmacology models. Progress in Biophysics and Molecular Biology, 139:15–
22, 2018.

[56] S. Saghafi, T. Rumbell, V. Gurev, J. Kozloski, F. Tamagnini, K. C. A. Wedgwood,
and C. O. Diekman. Inferring parameters of pyramidal neuron excitability
in mouse models of Alzheimer’s disease using biophysical modeling and deep
learning. bioRxiv, pages 2023–04, 2023.

[57] S. Saghafi and P. Sanaei. Dynamic Entrainment: A deep learning and data-driven
process approach for synchronization in the Hodgkin-Huxley model. bioRxiv,
pages 2023–04, 2023.

[58] C. Sánchez, A. Bueno-Orovio, E. Wettwer, S. Loose, J. Simon, U. Ravens, E. Pueyo,
and B. Rodriguez. Inter-subject variability in human atrial action potential in
sinus rhythm versus chronic atrial fibrillation. PLoS One, 9(8):e105897, 2014.

[59] B. Schölkopf and A. J. Smola. A short introduction to learning with kernels. Berlin,
Germany: Springer, 2003.

[60] E. A. Sobie. Parameter sensitivity analysis in electrophysiological models using
multivariable regression. Biophysical Journal, 96(4):1264–1274, 2009.

[61] I. M. Sobol. Global sensitivity indices for nonlinear mathematical models and their
Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1-
3):271–280, 2001.

94



[62] R. Storn and K. Price. Differential evolution–a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization,
11(4):341–359, 1997.

[63] F. Tamagnini, J. Novelia, T. L. Kerrigan, J. T. Brown, K. Tsaneva-Atanasova, and
A. D. Randall. Altered intrinsic excitability of hippocampal CA1 pyramidal
neurons in aged PDAPP mice. Frontiers in Cellular Neuroscience, 9:372, 2015.

[64] L. Theis, A. v. Oord, and M. Bethge. A note on the evaluation of generative models.
arXiv preprint arXiv:1511.01844, 2015.

[65] M. Tosin, A. Côrtes, and A. Cunha. A Tutorial on Sobol Global Sensitivity Analysis
Applied to Biological Models. Networks in Systems Biology, pages 93–118,
2020.

[66] N Yang. NALCN-Encoded Sodium Leak Currents in the Regulation of Daily Rhythms
in the Excitability of Neurons in the Suprachiasmatic Nucleus. PhD thesis,
Washington University in St. Louis, 2023.

95


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 3)
	Biographical Sketch (2 of 3)
	Biographical Sketch (3 of 3)

	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Conductance-Based Models
	Chapter 3: Methods
	Chapter 4: Parameter Inference on Synthetic Target Data
	Chapter 5: Parameter Inference on Experimental Target Data
	Chapter 6: Conclusion and Outlook
	Appendix: Supplementary Information
	References

	List of Tables
	List of Figures (1 of 10)
	List of Figures (2 of 10)
	List of Figures (3 of 10)
	List of Figures (4 of 10)
	List of Figures (5 of 10)
	List of Figures (6 of 10)
	List of Figures (7 of 10)
	List of Figures (8 of 10)
	List of Figures (9 of 10)
	List of Figures (10 of 10)




